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We propose numerical methods that provide estimations of super-hedging prices of European claims in financial market models with transaction costs. The transaction costs we consider are functions of the traded volumes and prices. Contrarily to the usual models of the literature, the transaction costs are not necessary proportional to the traded volumes, neither convex. The particular case of fixed cost is also considered. Limit theorem are established and allow to numerically compute the infimum super-hedging prices.

Introduction

Computing the super-hedging prices of a European option in presence of transaction costs is a difficult task. Indeed, the classical results of the literature focus on linear transaction costs and only dual characterizations of the super-hedging prices are formulated, see the FTAP theorems (Fundamental Theorem of Asset Pricing) by [START_REF] Guasoni | The fundamental theorem of asset pricing for continuous processes under small transaction costs[END_REF], [START_REF] Guasoni | The fundamental theorem of asset pricing under transaction costs[END_REF], [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF] among others. These results are formulated under rather strong no-arbitrage conditions (see [START_REF] Guasoni | Consistent Price Systems and Face-Lifting Pricing under Transaction Costs[END_REF], [START_REF]Consistent price systems and arbitrage opportunities of the second kind in models with transaction costs[END_REF]) and the super-hedging prices are estimated through dual characterizations based on the so-called consistent price systems, see [START_REF] Campi | A super-replication theorem in Kabanov's model for transaction costs[END_REF], [START_REF] Vallière | Hedging of American options under transaction costs[END_REF].

The interesting question is how to implement the FTAP theorem and deduce numerical estimation of the prices. Few attempts have been achieved in that direction, e.g. [START_REF] Löhne | An algorithm for calculating the set of superhedging portfolios in markets with transaction costs[END_REF] in the case of a finite probability space. The general case is difficult as we have first to identify the dual elements, i.e. the consistent price systems, which are martingales evolving in the positive duals of the solvency cones. The second step is to propose a numerical procedure to evaluate the possible super-hedging prices. There is no such a numerical method in the literature. Moreover, if the transaction costs are non linear, there is a priori no dual elements characterizing the no-arbitrage condition.

The methods we develop in this paper are based on the recent paper [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF] where the super-hedging prices are characterized for a large class of transaction cost models which are not necessary linear. Indeed, using a new approach based on a weak no-arbitrage condition, mainly the prices of the non negative claims are supposed to be non negative, we prove that the infimum prices of a European claim are solutions to a dynamic programming problem it is possible to solve backwardly, at least in discrete-time. However, in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], the results are merely theoretical. The authors do not provide algorithms to compute the super-hedging costs in practice. In this paper, we address this problem. To be precise, we consider financial markets with transaction costs defined by a cost process (C t ) 0≤t≤T depending on traded volumes and a process (S t ) 0≤t≤T that includes the asset prices. We shall consider the case of countably infinite t-conditional supports for S t+1 where an exact characterization of the super-hedging costs is given. The randomized procedure we propose is based on the simulation of conditionally identically distributed random variables which share the same conditional support as the price process (S t ) 0≤t≤T . We formulate a limit theorem, see Theorem 3.15, that proves the efficiency of our method.

The paper is organized as follows. In Section 2, we recall the market model studied in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF] and the dynamic programming theorem. In Section 3, we describe the numerical scheme and the main convergence theorems. We present in Section 4 the special case of a model with one risky asset and a piecewise cost process (C t ) 0≤t≤T . In Section 5, we also give the exact solution of the super-hedging cost in the models with proportional costs and with and without fixed cost. Finally, in Section 6, we prove a limit theorem for a sequence of financial markets defined by convex cost processes.

The model

Let ξ ∈ L 0 (R d , F T ) be a contingent claim. Our goal is to characterize the set of all self-financing portfolio processes (V t ) T t=-1 such that V T = ξ. Recall that a portfolio process is by definition (see [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]) a stochastic process (V t ) T t=-1 where V -1 ∈ Re 1 is the initial endowment expressed in cash that we may convert immediately into V 0 ∈ R d at time t = 0. By definition, we suppose that

∆V t = V t -V t-1 ∈ -G t , a.s., t = 0, • • • , T,
where, for every t ≤ T , G t is the random set of all solvent positions. Our general model is defined by a set-valued process (G t ) T t=0 adapted to the filtration (F t ) T t=0 . Precisely, we suppose that for all t ≤ T , G t is F tmeasurable in the sense of the graph Graph(G t ) = {(ω, x) : x ∈ G t (ω)} that belongs to F t × B(R d ), where B(R d ) is the Borel σ-algebra on R d and d ≥ 1 is the number of assets.

We suppose that G t (ω) is closed for every ω ∈ Ω and G t (ω)+R d + ⊆ G t (ω), for all t ≤ T . The cost value process C = (C t ) T t=0 associated to G is defined as:

C t (z) = inf{α ∈ R : αe 1 -z ∈ G t } = min{α ∈ R : αe 1 -z ∈ G t }, z ∈ R d .
We suppose that the right hand side in the definition above is non empty a.s. and -e 1 does not belong to G t a.s. where e 1 = (1, 0, • • • , 0) ∈ R d . Moreover, by assumption, C t (z)e 1 -z ∈ G t a.s. for all z ∈ R d . Note that C t (z) is the minimal amount of cash one needs to get the financial position z ∈ R d at time t. In particular, we suppose that C t (0) = 0.

If we define the liquidation value process L t (z) = -C t (-z), we get that G t = {z ∈ R d : L t (z) ≥ 0} and, as G t is supposed to be closed a.s., L t (z) is upper semicontinuous (u.s.c.) in z, see [START_REF] Lépinette | Arbitrage theory for non convex financial market models[END_REF], or equivalently C t (z) is lower semicontinuous (l.s.c.) in z. Naturally, C t (z) = C t (S t , z) depends on the available quantities and prices for the risky assets, described by an exogenous vector-valued F t -measurable random variable S t of R m + , m ≥ d, and on the quantities z ∈ R d to be traded. Here, we suppose that m ≥ d as an asset may be described by several prices and quantities offered by the market, e.g. bid and ask prices, or several pair of bid and ask prices of an order book and the associated quantities offered by the market. Some examples of models are given in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]. In the following, we are interested in the infimum cost one needs to super-hedge ξ, i.e. the infimum value of the initial capitals V -1 ∈ R among the portfolios (V t ) T t=-1 super-replicating ξ.

In the following, we use the notation z = (z 1 , z 2 , ..., z d ) ∈ R d and we denote z (2) = (z 2 , ..., z d ) ∈ R d-1 . Recall that the F t -measurable conditional essential supremum of a family of random variables is the smallest F t -measurable random variable that dominates the family with respect to the natural order between

[-∞, ∞]-valued random variables, i.e. X ≤ Y if P (X ≤ Y ) = 1, see [20, Section 5.3.1].

The one step hedging problem between time t -1 and t

Recall that V t-1 ≥ Gt V t by the definition of portfolio process. Then, the hedging problem V t = ξ is equivalent at time t -1 to:

L t (V t-1 -ξ) ≥ 0 ⇐⇒ V 1 t-1 ≥ ξ 1 -L t ((0, V (2) 
t-1 )), ⇐⇒ V 1 t-1 ≥ ess sup F t-1 ξ 1 -L t ((0, V (2) 
t-1 -ξ (2) )) , ⇐⇒ V 1 t-1 ≥ ess sup F t-1 ξ 1 + C t ((0, ξ (2) -V (2) 
t-1 )) ,

⇐⇒ V 1 t-1 ≥ F ξ t-1 (V (2) 
t-1 ), where

F ξ t-1 (y) = ess sup F t-1 ξ 1 + C t ((0, ξ (2) -y)) . (2.1)
By virtue of [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]Proposition 5.7], we may suppose that

F ξ t-1 (ω, y) is jointly F t-1 × B(R d-1
)-measurable, a.s. l.s.c. (lower semi-continuous) as a function of y and convex in y if C t (s, y) is convex in y. As F t-1 is supposed to be complete, we conclude that F ξ t-1 is an F t-1 -normal integrand, see [START_REF] Rockafellar | Variational analysis[END_REF][Theorem Corollary 14.34].

The multi-step hedging problem

We denote by P t (ξ) the set of all portfolio processes starting at time t ≤ T that replicates ξ at the terminal date T :

R t (ξ) := (V s ) T s=t : V s ∈ L 0 (R d , F s ), ∆V s ∈ -G s , ∀s ≥ t + 1, V T = ξ .
The set of replicating prices of ξ at time t is

P t (ξ) := V t = (V 1 t , V (2) 
t ) : (V s ) T s=t ∈ R t (ξ) .
We define the the infimum replicating cost by:

c t (ξ) := ess inf Ft {C t (V t ), V t ∈ P t (ξ)} . By Section 2.1, we know that V T -1 ∈ P T -1 (ξ) if and only if V 1 T -1 ≥ ess sup F T -1 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) a.s.

Similarly, V T -2 ∈ R T -2 (ξ) if and only if there exists V (2) T -1 ∈ L 0 (R d-1 , F T -1 ) such that V 1 T -2 ≥ ess sup F T -2 ess sup F T -1 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) + C T -1 (0, V (2) 
T -1 -V (2) 
T -2 ) .

By the tower property satisfied by the conditional essential supremum, we deduce that

V T -2 ∈ R T -2 (ξ) if and only if there is V (2) T -1 ∈ L 0 (R d-1 , F T -1 ) such that V 1 T -2 ≥ ess sup F T -2 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) + C T -1 (0, V (2) 
T -1 -V

T -2 ) .

Recursively, we get that V t ∈ P t (ξ) if and only if, for some

V (2) s ∈ L 0 (R d-1 , F s ), s = t + 1, • • • , T -1, and with V (2) T = ξ (2) , we have V 1 t ≥ ess sup Ft ξ 1 + T s=t+1 C s (0, V (2) s -V (2) 
s-1 ) .

In the following, for

u ≤ T -1, ξ u-1 ∈ L 0 (R d , F u-1 ), and ξ ∈ L 0 (R d , F T ),
we define the sets:

Π T u (ξ u-1 , ξ) := {ξ (2) u-1 } × Π T -1 s=u L 0 (R d-1 , F s ) × {ξ (2) } of all families (V (2) s ) t+1 s=u-1 such that V (2) u-1 = ξ u-1 , V (2) s ∈ L 0 (R d-1 , F s ) for all s = u, • • • , T -1 and V (2) T = ξ (2) . We set Π T u (ξ) := Π T u (0, ξ) = Π T u (ξ u-1 , ξ) when ξ (2) u-1 = 0. When u = T , we set Π T T (ξ T -1 , ξ) := {ξ (2) 
T -1 }×{ξ (2) }. Therefore, the infimum replicating cost at time 0 is given by

c 0 (ξ) = ess inf F 0 V 2 ∈Π T 0 (ξ) ess sup F 0 ξ 1 + T s=0 C s (0, V 2 s -V 2 s-1 ) . For 0 ≤ t ≤ T and V t-1 ∈ L 0 (R d , F t ), we define γ ξ t (V t-1
) as:

γ ξ t (V t-1 ) := ess inf Ft V (2) ∈Π T t (V t-1 ,ξ) ess sup Ft ξ 1 + T s=t C s (0, V (2) s -V (2) s-1 ) . (2.2)
Note that γ ξ t (V t-1 ) is the infimum cost to replicate the payoff ξ when starting from the initial position (0, V

t-1 ) at time t. Observe that γ ξ t (V t-1 ) does not depend on the first component V 1 t-1 of V t . Moreover, γ ξ T (V T -1 ) = ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ).

As

G T + R d + ⊆ G T , we also observe that γ ξ T (V T -1 ) ≥ γ 0 T (V T -1 ) if ξ ∈ L 0 (R d + , F T ). At last, observe that c 0 (ξ) = γ ξ 0 (0).
We recall the following result from [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]:

Proposition 2.1 (Dynamic Programming Principle). For any 0 ≤ t ≤ T -1 and V t-1 ∈ L 0 (R d , F t-1
), we have

γ ξ t (V t-1 ) = ess inf Ft Vt∈L 0 (R d ,Ft) ess sup Ft C t (0, V (2) t -V (2) 
t-1 ) + γ ξ t+1 (V t ) . (2.3) 
Assumption 1. The payoff ξ is hedgeable, i.e. there exists a portfolio process

(V ξ u ) T u=0 such that ξ = V ξ T .
The dynamic programming principle (2.3) allows to get γ ξ t (V t-1 ) from the cost function C t and from γ ξ t+1 . In the paper [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], we have shown that γ ξ t is l.s.c. for any t and convex, or piecewise linear, if γ ξ t+1 satisfies the same properties.

As the term C t (0, V

t -V (2) 
t-1 ) in (2.3) is F t-1 -measurable, we consider the conditional supremum

θ ξ t (V t ) := ess sup Ft γ ξ t+1 (V t )
to compute the essential supremum of (2.3). In the following, we shall use the following notations:

D ξ t (V t-1 , V t ) = C t ((0, V (2) t 
-V

(2)

t-1 )) + θ ξ t (V t ), (2.4) 
D ξ t (S t , V t-1 , V t ) = C t (S t , (0, V (2) t -V (2) 
t-1 )) + θ ξ t (S t , V t ).

(2.5)

The second notation is used when we stress the dependence on S t . Observe that

γ ξ t (V t-1 ) = ess inf Ft Vt∈L 0 (R d ,Ft) D ξ t (V t-1 , V t ).
In order to numerically compute the minimal costs, we need to impose the finiteness of γ ξ t (V t-1 ), i.e. γ ξ t (V t-1 ) > -∞ a.s., at any time t and for all V t-1 ∈ L 0 (R d , F t-1 ). This is why, we consider the following condition, see [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]: Definition 2.2. We say that the financial market satisfies the Absence of Early Profit condition (AEP) if, at any time t ≤ T , and for all

V t ∈ L 0 (R d , F t ), γ 0 t (V t ) > -∞ a.s..

Numerical schemes

In the following, we suppose the following assumptions on the cost process C. For any t ≤ T , the cost function C t is a lower-semi continuous Borel function defined on

R k × R d such that C t (s, 0) = 0, ∀s ∈ R k + , C t (s, x + λe 1 ) = C t (s, x) + λ, λ ∈ R, x ∈ R d , s ∈ R k + (cash invariance), C T (s, x 2 ) ≥ C T (s, x 1 ), ∀x 1 , x 2 s.t. x 2 -x 1 ∈ R d + (C T is increasing w.r.t. R d + ). Note that C T is increasing w.r.t. R d + is equivalent to G T + R d + ⊆ G T .
Moreover, for some a ≥ 0, we say that C t is a-super homogeneous if the following property holds:

C t (s, λx) ≥ λC t (s, x), ∀λ ≥ a, s ∈ R k + , x ∈ R d .

The one period model

In this section, we consider two complete sub σ-algebras F t and F t+1 such that F t ⊂ F t+1 ⊂ F and an adapted price process (S s ) s=t,t+1 satisfying the following assumption.

Assumption 2. Suppose that there is a family of F t -measurable random variables (α m t ) m≥1 such that S t+1 ∈ {α m t : m ≥ 1} a.s. and suppose that P (S t+1 = α m t |F t ) > 0 a.s. for all m ≥ 1. Moreover, we suppose that there exists continuous functions on R m , that we still denote by α m t with an abuse of notation, such that α m t = α m t (S t ). In [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], we have shown the following: Lemma 3.1. Suppose that Assumption 2 holds. Then, for any Borel function f : R d → R, we have

ess sup Ft f (S t+1 ) = sup m≥1 f (α m t ), a.s.. Definition 3.2. The random variables {b i t+1 , i ≥ 1}, b i t+1 ∈ L 0 (R k , F t+1
), are said independent and identically distributed conditionally to F t (for short F t -i.i.d.) if, for all finite set J ⊂ N, and Borel sets B, B j , j ∈ J: 

P b i t+1 ∈ B|F t = P b j t+1 ∈ B|F t , a.s. ∀i, j ≥ 1, P j∈J b j t+1 ∈ B j F t = j∈J P b j t+1 ∈ B j F t ,
θ t ∈ L 0 (R m , F t ). Let f j : R k × R m → R, j = 1, • • • , n be n ≥ 1 measurable functions such that E |f j (b 1
t+1 , θ t )||F t < ∞ a.s. (resp. f j is non negative), for all j ≤ n. Then, for any finite set J ⊂ N of cardinality n, we have:

E f k (b i t+1 , θ t )|F t = E f k (b j t+1 , θ t )|F t , a.s., i, j, k ≥ 1, E j∈J f j (b j t+1 , θ t ) F t = j∈J E f j (b j t+1 , θ t ) F t , a.s..
Proof. We prove the result by induction on n. Suppose that f j = 1 D j where

D j = B j ×A j and B j ∈ B(R k ), A j ∈ B(R m ).
Then, the claim holds by definition of the F t -i.i.d. random variables for all n ≥ 1 and the F t -measurability of θ t . By the monotone class argument, this holds for any

D 1 ∈ B(R k )⊗B(R m ) if n = 1. If n > 1,
we expand the product in the second claim and we use the induction hypothesis. Then, we repeat the arguments for D 2 ∈ B(R k ) ⊗ B(R m ) and so on. By linearity, and the induction argument after having expanding the product, we also deduce that the claim holds when

f j = n h=1 c j h 1 C j h and for any c j h ∈ R, C j h ∈ B(R k ) ⊗ B(R m ), h ≥ 1.
By standard increasing approximations, we conclude in the case where f j ≥ 0. Otherwise, we write f j = (f j ) + -(f j ) -. In particular, we get that ). The following holds: θ m t → θ t , a.s. as m → ∞. In particular, sup m θ m t = θ t a.s. Proof. We may suppose w.l.o.g. that θ t < ∞. Indeed, we may consider g(θ t ) and the sequence (g(θ m t )) m≥1 where g is a bounded strictly increasing continuous function in the contrary case. By Lemma 3.1, we get that ess sup Ft f (b 1 t+1 ) = sup m≥1 f (α m t ) = θ t a.s. For any > 0, we deduce by assumption that

E |f j (b i t+1 , θ t )||F t = E |f j (b 1 t+1 , θ t )||F t < ∞,
P [θ t -θ m t > |F t ] = P [θ t -max i≤m f (b i t+1 ) > |F t ] = P [θ t -f (b i t+1 ) > , ∀i ≤ m|F t ] = E m i=1 1 {θt-f (b i t+1 )> } F t , a.s.
. By Lemma 3.3, we deduce that

P [θ t -θ m t > |F t ] = P [θ t -f (b 1 t+1 ) > |F t ] m = P [ess sup Ft f (b 1 t+1 ) -f (b 1 t+1 ) > |F t ] m , a.s. We claim that P [ess sup Ft f (b 1 t+1 )-f (b 1 t+1 ) > |F t ] < 1 a.s. Indeed, assume on the contrary that P [ess sup Ft f (b 1 t+1 ) -f (b 1 t+1 ) > |F t ] = 1 on some non null set Λ t ∈ F t .
In other words, we have

E 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ } F t 1 Λt = 1 Λt .
Taking the expectation, we deduce that:

E 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ } 1 Λt = E [1 Λt ] We then deduce that 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ } 1 Λt = 1 Λt a.s. We now define θt := ess sup Ft f (b 1 t+1 )1 Ω\Λt + (ess sup Ft f (b 1 t+1 ) -)1 Λt . Observe that θt is F t - measurable and θt ≥ f (b 1 t+1 ) a.s. However, θt < ess sup Ft f (b 1 t+1
) on the non null set Λ t , in contradiction with the definition of the conditional essential supremum. Therefore,

lim m→∞ P [θ t -θ m t > |F t ] = 0, a.s.
Finally, by the dominated convergence theorem, we have

lim m→∞ P [θ t -θ m t > ] = lim m→∞ E E[1 {θt-θ m t > } |F t ] = E lim m→∞ E[1 {θt-θ m t > } |F t ] = 0.
Hence θ m t increasingly tends to θ t in probability, i.e. sup m θ m t = θ t a.s.. Assumption 3. The payoff function ξ is of the form ξ = g(S T ), where g ∈ R k + is continuous. Moreover, ξ is hedgeable, i.e. there exists a portfolio process (V ξ u ) T u=-1 such that ξ = V ξ T . We recall here two weak no-arbitrage conditions introduced in [22]: Definition 3.5. We say that the condition AIP holds at time t if the minimal cost c t (0) = γ 0 t (0) of the European zero claim ξ = 0 is 0 at time t ≤ T . We say that AIP holds if AIP holds at any time.

The following condition is more technical. Definition 3.6. We say that the condition SAIP (Strong AIP condition) holds at time t if AIP holds at time t and, for any

Z t ∈ L 0 (R d , F t ), we have D 0 t (S t , 0, Z t ) = 0 if and only if Z (2) t 
= 0 a.s.. We say that SAIP holds if SAIP holds at any time.

The condition SAIP states that the minimal cost of the zero payoff is 0 at time t and this minimal cost is only attained by the zero strategy V t = 0, see [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]. This is intuitively clear as soon as any non null transaction implies positive costs. 10

We now introduce the sequence of functions which is defined recursively as follows:

γξ T (s, v T -1 ) := ξ 1 + C T (s, (0, ξ (2) -v (2) 
T -1 )), v t-1 , ξ ∈ R d , s ∈ R k , θξ t (s, v t ) := sup m γξ t+1 (α m t (s), v t ), t ≤ T -1, v t ∈ R d , Dξ t (s, v t-1 , v t ) := θξ t (s, v t ) + C t (s, (v (2) 
t -v (2) t-1 )), γξ t (s, v t-1 ) := cl inf vt∈R d Dξ t (s, v t-1 , v t ) . (3.6)
Here, the notation cl(f ) designates the l.s.c. regularization of f . In this paper, we will impose later in the sequel a condition under which we have γξ

t (s, v t-1 ) := inf vt∈R d Dξ t (s, v t-1 , v t
). The introduction of the functions above is motivated by the following result proved in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF].

Theorem 3.7. Suppose that either AIP holds and C t (s, .) is convex for fixed s or SAIP holds. Then, we have γ ξ t (S t , V t ) = γξ t (S t , V t ) a.s. and, also,

θ ξ t (S t , V t ) = θξ t (S t , V t ) a.s. and D ξ t (S t , V t-1 , V t ) = Dξ t (S t , V t-1 , V t ) for any V t-1 , V t ∈ L 0 (R d , F t ). Moreover, γξ t (s, v) is l.s.c. on R k × R d and convex in v when C t (s, .) is convex.
Recall that the family of F t -measurable random variables (α n t (S t )) n≥1 is defined in Assumption 2. We now consider an F t -i.i.d. sample of random variables {b i t+1 , i ≥ 1} that satisfies P [b 1 t+1 = α n t (S t )|F t ] > 0 a.s. for all n ≥ 1 and b 1 t+1 ∈ {α n t (S t ), n ≥ 1} a.s. Now, let us define the (random) functions Dξ T (s, x, y)

:= γξ T (s, y), Dξ t (s, x, y) := C t (s, (0, y (2) -x (2) )) + γξ t+1 (s, y), Dn T (ω, x, y) := Dξ T (s, x, y) Dn t (ω, x, y) := max i≤n Dξ t (b i t+1 (ω), x, y). (3.7) 
Since γξ t+1 (s, x) is l.s.c. in s, it is Borel in s for fixed x. Then, by Lemma 3.4, we deduce that:

lim n→∞ max i≤n γξ t+1 (b i t+1 (ω), y) = sup n γξ t+1 (α n t (S t (ω)), y) = θξ t (S t (ω), y), a.s.
In particular, lim n→∞ Dn t (ω, x, y) = Dξ t (S t (ω), x, y). We now investigate the question whether inf y∈R d Dn t (ω, x, y) converge a.s.(ω) to inf y∈R d Dξ t (ω, x, y)

as n → ∞. To do so, we first recall the definition of epi-convergence, see [START_REF] Molchanov | Theory of Random Sets[END_REF]Chapter 3] or [START_REF] Rockafellar | Variational analysis[END_REF]Chapter 7]. In the following, the notation B(x, r) designates the closed ball of R d , where d ≥ 1 depends on the context, centered a point x ∈ R d and of radius r ≥ 0.

Definition 3.8. Let f n : R k → R, n ≥ 1, be a sequence of functions.

The epi-limit inferior li e f n and epi-limit superior ls e f n of (f n ) n≥1 are defined as:

li e [(f n ) n≥1 ](u) := sup k≥1 lim inf n→∞ inf v∈B(u,1/k) f n (v), ls e [(f n ) n≥1 ](u) := sup k≥1 lim sup n→∞ inf v∈B(u,1/k) f n (v).
The sequence

(f n ) n≥1 is said to be epi-convergent at point u if li e [(f n ) n≥1 ](u) = ls e [(f n ) n≥1 ](u).
We also introduce the definition of almost sure epi-convergence for random functions.

Definition 3.9. If (f n ) n≥1 , is a sequence of functions f n : Ω × R k → R such that f n is F t ⊗ B(R d
)-measurable for each n, we say that f n epi-converges to f almost surely (notation f n epi -→ f a.s.) if, for any ω outside a P -null set, and for all u:

li e [(f n (ω, •)) n≥1 ](u) = ls e [(f n (ω, •)) n≥1 ](u) = f (ω, u).
Theorem 3.10. Suppose that AIP holds and C t (s, y) is convex in y. We then have Dn t (ω, ., .) ∨ -C t (S t (ω), (0,

x (2) )) epi -→ Dξ t (S t (ω), ., .) a.s.(ω), as n → ∞.
Suppose that SAIP holds and, for any t, 

C t (s, v 1 t ) ≥ C t (s, v 2 t ) if v 1 t ≥ R d + v 2 t .
li e [( Ln t (ω, •, •) n≥1 )](x, y) = ls e [( Ln t (ω, •, •) n≥1 )](x, y) = sup n Ln t (ω, x, y).
We now prove that there exists a negligible set H such that for any ω ∈ Ω\H and x, y ∈ R d × R d the following holds:

sup n Ln t (ω, x, y) = Dξ t (ω, x, y). (3.8) 
By assumption on (C t ) t≥0 , we get by induction that

θ ξ t (V t ) ≥ θ 0 t (V t ) a.s. for any V t ∈ L 0 (R d , F t ). We deduce that D ξ t (V t-1 , V t ) ≥ -C t (S t (ω), (0, V (2) 
t-1 )) for any for any

V t-1 , V t ∈ L 0 (R d , F t ). Indeed, under AIP, D 0 t (0, V t ) ≥ 0 a.s. hence D ξ t (V t-1 , V t ) = θ ξ t (V t ) + C t (S t , (0, V (2) t -V (2) t-1 )) ≥ θ ξ t (V t ) + C t (S t , (0, V (2) 
t )) -C t (S t , (0, V (2) 
t-1 )), (by subadditivity)

≥ θ 0 t (V t ) + C t (S t , (0, V (2) 
t )) -C t (S t , (0, V (2) 
t-1 )) ≥ D 0 t (0, V t ) -C t (S t , (0, V (2) 
t-1 )) ≥ -C t (S t , (0, V (2) 
t-1 )), a.s.

for any

V t-1 , V t ∈ L 0 (R d , F t ).
We now deduce that Dξ t (S t (ω), x, y) ≥ -C t S t (ω), (0, x (2) ) for every x, y a.s.(ω). Indeed, suppose on the contrary that the F t -measurable set

Γ t (ω) := (x, y) ∈ R d × R d : Dξ t (S t (ω), x, y) < -C t S t (ω), (0, x (2) 
) is non-empty on the non-null set G t := {ω : Γ t (ω) = ∅}. We then deduce a measurable selection ( Vt-1 , Vt )

∈ L 0 (R d , F t ) × L 0 (R d , F t ) such that we have Dξ t (S t , Vt , Vt-1 ) < -C t (S t , (0, V (2) 
t-1 )) on G t and we extend to the whole space by putting Vt-1 = 0 = Vt on the complementary set Ω \ G t . Moreover, by Theorem 5.5, we then deduce that D ξ t ( Vt , x) < -C t (S t , (0, V

t-1 ) on the non-null set G t , which is a contradiction.

Similarly, under AEP and Assumption 3, we have that [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]. Then, by a measurable selection argument, using the fact that 

D ξ t (V t-1 , V t ) ∈ R a.s. for any V t-1 , V t ∈ L 0 (R d , F t ), see
D ξ t (V t-1 , V t ) = Dξ t (S t , V t-1 , V t ) a.s.,
(s, v 1 t ) ≥ C t (s, v 2 t ) for any v 1 t , v 2 t ∈ R d such that v 1 t ≥ R d + v 2 t .
cl(f )(x) = lim inf y→x f (x) = α ∈ R : ∃(x n ) n≥1 , x n → x, lim n f (x n ) = α . Consider x 1 , x 2 ∈ R d such that x 1 ≥ R d + x 2 and a sequence (x n ) n≥1 such that x n → x 2 and f (x n ) → cl(f )(x 2 ) as n → ∞. Observe that x n + x 1 -x 2 → x 1 as n → ∞. We then have f (x n + x 1 -x 2 ) ≤ f (x n ) by our hypothesis. We deduce that cl(f )(x 1 ) ≤ lim inf n f (x n + x 1 -x 2 ) ≤ lim n f (x n ) = cl(f )(x 2 ).
Definition 3.12. We say that a set-valued mapping 

K t : R k + × R d R d is

Multi-period framework

In this section, we consider the multi-period setting t = 0, • • • , T . Our goal is to determine the infimum super-hedging cost of ξ := g(S T ) = (g 1 (S T ), g (2) (S T )) at time 0, where g : R k + → R d + is a deterministic continuous function. To do so, we apply the dynamic programming principle of Proposition 2.1 to recursively compute γ ξ t (V t-1 ) for t = 0, • • • , T . Moreover, since γ ξ 0 (0) = γξ 0 (S 0 , 0) under the weak no-arbitrage condition we suppose, it is then sufficient to compute γ0 (S 0 , V 0 ) for V 0 = 0. We work under the following assumption: Assumption 4. For each t, suppose that there is a reachability set-valued mapping 1) b i 0 = S 0 for all i ∈ J 0 = N \ {0}. 2) For given t ≥ 0, we denote Ft = σ(b k u : k ∈ J u , u ≤ t) where (b k u ) k∈Ju are the random variables constructed at time t. Then, for time t + 1, and for each i ∈ J t , we generate a sequence of i.i.d. random variables α j t+1 , j ≥ 1, independent of F t such that α j t+1 ∈ L 0 (Θ, F t+1 ) for each j. Moreover, supp Ft α j t+1 = Θ. We then define for each i ∈ J t and j ≥ 1, b i,j t+1 = α j t+1 b i t . Then, J t+1 = {(i, j) : i ∈ J t , j ≥ 1}.

K t : R k + × R d R d such that K t (s, v t-
To compute γξ 0 (S 0 , 0), we approximate γξ t (b i t , v t-1 ) by the randomization method considered in the last section that we extend to the multi-period setting.

We denote

n 1 = (n 1 u ) u=1,••• ,T a generic element in N T and, for t = 1, • • • , T , we define n t = (n t u ) u=t,••• ,T ∈ N T -t+1 . If b i t ∈ {α k t b j t-1 ; j ∈ J t-1 , k ≥ 1}, i ∈ J t ,
we set:

θn T T -1 (b i T -1 , v T -1 ) := max m≤n T T γξ T (α m T b i T -1 , v T -1 ), θn t+1 t (b i t , v t ) := max m≤n t+1 t+1 γn t+2 t+1 (α m t+1 b i t , v t ), n t+2 = (n t+1 u ) u=t+2,••• ,T , t ≤ T -1, Dn t+1 t (b i t , v t-1 , v t ) := θn t+1 t (b i t , v t ) + C t (b i t , (0, v (2) 
t -v

(2)

t-1 )), t ≤ T -1, γn t+1 t (b i t , v t-1 ) := inf vt∈Kt(b i t ,v t-1 ) Dn t+1 t (b i t , v t-1 , v t ), t ≤ T -1.
Note that by assumption

γξ T (s, v T -1 ) := g 1 (s) + C T (s, (0, g 2 (s) -v (2) 
T -1 )). Therefore, γξ T is l.s.c. Since K t is an upper hemicontinuous compact set-valued mapping by assumption, see [ The following theorem is our main contribution of this section. We use the convention that

n 1 → ∞, n 1 ∈ N T , if and only if n 1 i → ∞, ∀i = 1, • • • , T . Theorem 3.15.
[Limit theorem to approximate the infimum super-hedging price] Suppose that Assumption 4 holds and suppose that C t satisfies C t (s,

v 1 t ) ≥ C t (s, v 2 t ) whenever v 1 ≥ R d + v 2 t . Then: lim n 1 →∞
γn 1 0 (S 0 , 0) = γξ 0 (S 0 , 0), a.s..

Proof. By Remark 3.13, Assumption 4 implies that γξ 0 (S 0 , 0) = inf

v 1 ∈K 0 (S 0 ,0) Dξ 0 (S 0 , 0, v 1 )
where K 0 (S 0 , 0) is a compact set-valued mapping. Moreover, since γξ t+1 (., v t ) is l.s.c. hence Borel, Theorem 3.14 applies when we replace S t by each random variable b

i t ∈ α k t b j t-1 ; j ∈ J t-1 , k ≥ 1 .
Precisely, in accordance with (3.7), we shall consider: We now prove by induction that lim n 1 →∞ γn 1 0 (S 0 , 0) = γξ 0 (S 0 , 0) a.s. Observe that, at time T -1, n T =: n T ∈ N and γn

Dn t+1 t+1 t (b i t , v t-1 , v t ) = sup n≤n s t+1 γξ t+1 (α n t b i t , v t ) + C t (α n t b i t , (0, v (2) 
t -v (2) t-1 )), t ≤ T -1, γn t+1 t+1 t (b i t , v t-1 ) := inf vt∈Kt(b i t ,v t-1 ) Dn t+1 t+1 t (b i t , v t-1 , v t ), t ≤ T -1, sup n t+1 t+1 γn t+1 t+1 t (b i t , v t-1 ) = γξ t (b i t , v t-1 ), t ≤ T -1,
T T -1 (b i T -1 , v T -1 ) and γn T T -1 (b i T -1 , v T -1
) coincide. So, by Theorem 3.14, we have lim

n T →∞ γn T T -1 (b i T -1 , v T -2 ) = lim n T →∞ γn T T -1 (b i T -1 , v T -2 ) = γξ T -1 (b i T -1 , v T -2 )
Now, we suppose that sup

n t+2 ∈N T -t-1 γn t+2 t+1 (b i t+1 , v t ) = γξ t+1 (b i t+1 , v t ) for any b i t+1 ∈ {α k t+1 b j t ; j ∈ J t , k ≥ 1}.
We have by definition:

Dn t+1 t (b i t , (0, v (2) 
t -v

(2)

t-1 )) = θn t+1 t (b i t , v t ) + C t (b i t , (0, v (2) 
t -v

(2)

t-1 )) = max m≤n t+1 t+1 γn t+2 t+1 (α m t b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) 
t-1 )),

n t+2 = (n t+1 u ) u=t+2,••• ,T .
Consider the directed set of all n t+1 ∈ N T -t endowed with the partial order n t+1 ≥ m t+1 if and only if n t+1 i ≥ m t+1 i for all t + 1 ≤ i ≤ T . By construction and by induction, it is easy to check that ( Dn t ) n∈N [t+1,T ] is increasing, i.e. Dn t ≥ Dm t whenever n ≥ m. Also, we may show by induction that Dn t (b i t , .) is l.s.c. for all n. By Lemma 3.16 that allows us to exchange the supremum and infimum in the following first equality, plus the induction hypothesis, we deduce that sup

n t+1 γn t+1 t (b i t , v t-1 ) = sup n t+1 inf vt∈Kt(b i t ,v t-1 ) Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N sup n t+2 Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N sup n t+2 max m≤n t+1 t+1 γn t+2 t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
t -v

(2)

t-1 )) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N max m≤n t+1 t+1 sup n t+2 γn t+2 t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) t-1 )) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N max m≤n t+1 t+1 γξ t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
t -v

(2)

t-1 )) = inf vt∈Kt(b i t ,v t-1 ) Dξ t (b i t , , v t-1 , v t ) = γξ t (b i t , v t-1 ).
To deduce the last two equalities, we use the definition of θξ t (b i t , , v t-1 , v t ) and Dξ t (b i t , , v t-1 , v t ), see (3.6) but also (3.9) in Remark 3.13. The conclusion follows by induction.

In the proof above, we have used the following lemma: Lemma 3.16 (Dini-Cartan). Consider a family of l.s.c. functions (f n ) n∈I , f n : R d → R such that for every finite set J ⊂ I, there is n 0 ∈ I with sup j∈J f j ≤ f n 0 . Consider a compact set G, then the following holds:

sup n inf x∈G f n (x) = inf x∈G sup n f n (x).
Proof. By considering an increasing homeomorphism from [-∞, +∞] onto [0, 1], we then restrict ourselves to the case sup n f n is bounded. It is clear that sup n inf x∈G f n (x) ≤ inf x∈G sup n f n (x) so that the inequality holds if the second term is -∞. For the reverse inequality, consider any a < inf x∈G sup n f n (x). For all x ∈ G, we have a < sup n f n (x). Then, there exists some k = k x such that a < f k (x). Note that the set O k := {x : a < f k (x)} is open since f k is l.s.c. By compactness argument, we deduce a finite covering of G by some O k i , j = 1, • • • , N . By our hypothesis, there exists n 0 such that a ≤

f k i (x) ≤ f n 0 (x), for all x ∈ G and i = 1, • • • , N hence we have a ≤ inf x∈G f n 0 (x) ≤ sup n inf x∈G f n (x).
Lemma 3.17. For all t , for all j ∈ J t+1 , consider b j t+1 = α k t+1 b i t where i ∈ J t and k ≥ 1. Then, b j t+1 ∈ {a n t b i t , n ≥ 1} a.s. and P [b j t+1 = a n t b i t |F t ] > 0 a.s. Moreover, {b j t+1 , j ∈ J t+1 } are F t -i.i.d. Proof. For all n ≥ 1, we have almost surely :

P b j t+1 = a n t b i t |F t = P α k t+1 b i t = a n t b i t |F t ≥ P α k t+1 = a n t |F t > 0.
The last statement follows directly from Lemma 3.3 as (α j t+1 ) j≥1 are F t -i.i.d. by assumption.

Model with one risky asset and piecewise linear costs

As we may observe in the previous section, the reachability set-valued mapping plays an important role in propagating the lower semicontinuity which, in turn, propagates the convergence property. We consider in this section a special case of convex cost functions and provide explicit expressions for the minimal super-hedging costs. In particular, under SAIP condition, we obtain an explicit expression of the reachability set K t (s, v t-1 ) when the payoff is of linear growth, i.e. ξ = (ξ 1 , ξ 2 ) ≤ R 2 + (aS T + b, c) for some a, b, c ∈ R + . We suppose the the market consists of one risk-free asset and one risky asset denoted by (S t ) 0≤t≤T . We impose the following assumption for the conditional support of the price and cost processes.

Assumption 5. The price process satisfies S t+1 ∈ {a n t S t , n ≥ 1} where the sequence (a n t ) n≥1 is deterministic and satisfies

a 1 t = min n a n t = k d t ≥ 0, a 2 t = max n a n t = k u t ∈ R + , where k d t , k u t are deterministic. The cost process C t is given by C t (S t , (x, v t )) = x + S t Ct (v 2
t-1 ) for some deterministic piecewise linear function Ct : R → R.

We recall the AEP condition in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF] Definition 4.1. We say that the financial market satisfies the Absence of Early Profit condition (AEP) if, at any time t ≤ T , and for all

V t ∈ L 0 (R d , F t ), γ 0 t (V t ) > -∞ a.s.
. By Lemma 4.11 in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], AIP implies AEP if the cost function C t is either sub-additive or super-additive. Moreover, by Theorem 4.5 in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], AEP implies that γξ t (S t , .) > -∞ a.s. This property will be used in the proof of the following result. 

= (mS T +G, K), m, G, K ∈ R, is given by γξ t (S t , v t-1 ) = G+S t h t (v 2 t-1 )
, where h t : R → R is a deterministic piecewise linear function.

Moreover, Dt (S t , v t , v t-1 ) = S t ht (v t , v t-1 ) for some deterministic piecewise linear function ht : R × R → R.

Proof. We first show by induction that, if γξ t+1 (S t+1 , v t ) = S t+1 ft+1 (v 2 t ) where ft+1 : R → R is a piecewise linear function, then γξ t (S t , v t-1 ) = S t ft (v 2 t-1 ) for some piecewise linear function ft : R → R. To do so, observe that:

θξ t (S t , v t ) = sup s∈{a n t St,n≥1} s ft+1 (v 2 t ) = max k d t S t ft+1 (v 2 t ), k u t S t ft+1 (v 2 t ) = S t max k d t ft+1 (v 2 t ), k u t ft+1 (v 2 t ) .
Since ft+1 is piecewise linear function by the hypothesis, we deduce that gt (v

2 t ) := max{k d t ft+1 (v 2 t ), k u t ft+1 (v 2 t )} is also piecewise linear by [26, Propo- sition 3.55]. Therefore, γξ t (S t , v t-1 ) = inf v 2 ∈R Dξ t (S t , v t-1 , v t ) = inf v 2 ∈R θξ t (S t , v t ) + C t (S t , v 2 t -v 2 t-1 ) = S t inf v 2 t ∈R gt (v 2 t ) + Ct (v 2 t -v 2 t-1 )
.

By [START_REF] Rockafellar | Variational analysis[END_REF]Proposition 3.55], we also deduce that gt (

v 2 t ) + Ct (v 2 t -v 2 t-1 ) is a piecewise linear function in (v 2 t , v 2 t-1
). Moreover, under AEP, we know that γξ t (S t , v t-1 ) > -∞ a.s.. Therefore, by [26, Proposition 3.55],

ft (v 2 t-1 ) := inf

v 2 ∈R gt (v 2 t ) + Ct (v 2 t -v 2 t-1 ) is a piecewise linear function in v 2 t-1 . If the payoff is ξ = (mS T + G, K), then γξ T (S T , v T -1 ) = G + S T fT (v 2 T -1 ) where fT (v 2 T 1 ) := m + CT (K -v 2 T -1
) is a piecewise linear function by assumption on C T . We then argue by induction as previously done to deduce that

γ ξ t-1 (S t-1 , v t-2 ) = G + S t-1 ft-1 (v 2 t-2 ) for some piecewise linear function ft-1 . At last, since D ξ t (S t , v t , v t-1 ) = θt (S t , v t ) + C t (S t , (0, v (2) 
t -v (2) 
t-1 )), the conclusion on Dt follows.

The following is our main result of this section. It states the existence of the reachability set under SAIP. Proposition 4.3. Suppose that the payoff ξ = (g 1 (S T ), g 2 (S T )) satisfies g 1 (S T ) ≤ aS T + b and g 2 (S T ) ≤ c for some a, b, c ∈ R + . We also suppose that

C t (s, v 1 ) ≥ C t (s, v 2 ) whenever v 1 ≥ R 2
+ v 2 and suppose that C t (s, .) is subadditive and 1-homogeneous.

Under the no-arbitrage condition SAIP, the reachability set K t (s, v t-1 ) is defined for every (s, v t-1 ) ∈ R × R and is explicitly given by:

K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1)
where r t (s, v t-1 ) = sf t (v t-1 )/g t (s) and f t , g t are deterministic piecewise linear functions such that g t (s) > 0 for all s > 0.

Proof. We define ξ := (aS T + b, c) so that ξ ≤ R 2 + ξ. We show by induction that D0

t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , v t )
. By the proof of [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]Theorem 4.15], we get that

K t (s, v t-1 ) ⊆ v t : Dξ t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , 0)
Moreover, by sub-additivity and 1-homogeneity.

D0 t (s, v t-1 , v t ) = C t (s, (0, v 2 t -v (2) 
t-1 )) + θ0 t (s, v t ) ≥ -C t (s, (0, v 2 t-1 )) + D0 t (s, 0, v t ) D0 t (s, 0, v t ) ≥ |v t | D0 t (s, 0, v t /|v t |) ≥ |v t | min z∈{-1,1} D0 t (s, 0, z), ∀ |v t | ≥ 1.
We deduce that K t (S t , v t-1 ) ⊆ B(0, r t (S t , v t-1 )+1), where the radius r t (S t , v t-1 ) is given by

r t (S t , v t-1 ) := Dξ t (S t , v t-1 , 0) + C t (S t , (0, v 2 t-1 )) min z∈{-1,1} D0 t (S t , 0, z) =: S t f t (v 2 t-1 ) g t (S t )
.

Note that by Proposition 4.2, f t : R → R and g t : R → R are deterministic piecewise linear functions. Moreover, we have g t (S t ) = S t inf z∈{-1,1} a t (z) for some deterministic piecewise linear function a t . Since SAIP holds, we deduce that inf z∈{-1,1} a t (z) > 0. We then define g t (s) := s inf z∈{-1,1} a t (z) > 0 for all s > 0. The conclusion follows.

Examples

In this section, we consider two classical examples. The first one corresponds to the market with proportional transaction cost and the second one is with fixed cost. We provide the explicit expression of the reachability set-valued mapping K t for the Put option. Then, as a by-product, the minimal superhedging cost for Put option is computed.

For a sake of simplicity, we consider the binomial market model, i.e. the price process satisfies supp Ft S t+1 = k d t S t , k u t S t , where k d t , k u t ∈ R + .

Market model with proportional transaction costs

We consider a particular case of section 4 where

C t (S t , v) = v 1 + (1 + t )S t v 2 1 v 2 ≥0 + (1 -t )S t v 2 1 v 2 ≤0 . (5.15) 
for some deterministic coefficient t ∈ R + . By a direct computation, see Appendix, we obtain the following Proposition 5.1. If v t-1 ∈ R 2 , the following holds:

θ0 t-1 (S t-1 , v) = -(1 -t )k d t-1 S t-1 v 2 1 v 2 ≥0 -(1 + t )k u t-1 S t-1 v 2 1 v 2 ≤0 D0 t-1 (S t-1 , 0, v) = ((1 + t-1 )S t-1 -(1 -t )k d t-1 S t-1 )v 2 1 v 2 ≥0 + ((1 -t-1 )S t-1 -(1 + t )k u t-1 S t-1 )v 2 1 v 2 ≤0
Moreover, AIP t-1 holds if and only if:

k d t-1 ≤ 1 + t-1 1 -t and k u t-1 ≥ 1 -t-1 1 + t . (5.16) 
Moreover, SAIP t-1 holds if and only if the above inequalities are strict. If AIP t-1 holds, we then deduce that:

inf v 2 ∈{-1,1} D0 t-1 (S t-1 , 0, v) = S t-1 min (1 + t-1 ) -(1 -t )k d t-1 , (1 + t )k u t-1 -(1 -t-1 ) .
Proof. Recall that AIP t-1 holds if and only if D0 t-1 (S t-1 , 0, v) ≥ 0 for any v ∈ R d which is equivalent to (5.16). Moreover, suppose that SAIP t-1 holds.

If k d t-1 = 1 + t-1 1 -t , D 0 t-1 (S t-1
, 0, v) = 0 for any v 2 > 0, i.e. SAIP t-1 fails. Similarly, we get that k u t-1 > (1t-1 )/(1 + t ). At last, suppose that the inequalities in (5.16) are strict. Since S t-1 > 0 a.s., inf

v 2 ∈{-1,1} D0 
t-1 (S t-1 , 0, v) > 0, a.s. so that SAIP t-1 holds by [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]Theorem 4.15].

We apply the result above at time T and we proceed by induction, see Appendix, to deduce the following result at time T -2.

Proposition 5.2. Assume that 1 + T -1 ≤ (1 + T )k u T -1 and 1 -T -1 ≥ (1 -T )k d T -1 , we have: θ0 T -2 (S T -2 , z) = -(1 + T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 , D0 T -2 (S T -2 , 0, z) = (1 + T -2 )S T -2 -(1 + T -1 )k d T -2 S T -2 ) z 2 1 z 2 ≥0 + (1 -T -2 )S T -2 -(1 -T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 .
and AIP T -2 holds if and only if:

k d T -2 ≤ 1 + T -2 1 + T -1 and k u T -2 ≥ 1 -T -2 (1 -T )k d T -1 .
Moreover, SAIP T -2 holds if and only if the above inequalities are strict. Moreover, under SAIP T -2 , we have:

inf v 2 ∈{-1,1} D0 T -2 (S T -2 , 0, v) = S T -2 min ((1 + T -2 ) -(1 -T -1 )k d T -2 ), -((1 -T -2 ) -(1 + T )k d T -1 k u T -2 ) .
The assumptions of Proposition 5.2 are chosen for a sake of simplification. The computations for t < T -2 are similar. In particular, for a Put option with payoff (K -S T ) + , K > 0, we obtain a simple formula for the reachability set.

Lemma 5.3. Suppose that SAIP holds and ξ = (g(S T ), 0) where g is a continuous function bounded from above by a constant M ∈ R + . Then, there exists a reachability set K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1), t ≤ T -1, closed ball of radius r t (s, v t-1 ) := λ t (s, v t-1 )/i t (s) where the functions

i t (s) := inf v 2 ∈{-1,1} D0 
t (s, 0, v), λ t (s, v t-1 ) := C t (s, (0, v 2 t-1 )) + M + C t (s, (0, -v 2 t-1 )), are explicitely given by Proposition 5.1 and Proposition 5.2. In particular, we have i t (s) > 0 for all s > 0.

We illustrate the results above by a numerical example. We consider the put option payoff g(S T ) := (K -S T ) + at time T = 2. We suppose that the proportional cost coefficients 1 = 2 = 0.02. We assume that SAIP condition holds and choose k d 2 = 0.9, k u 2 = 1.1, k d 1 = 0.9, k u 1 = 1.2. The price function at time t = 0 is presented in Figure 1. 

Market model with fixed cost

In this section, we consider a financial market model in presence of both proportional and fixed costs modeled by the following liquidation and cost functions:

L t (S t , v t ) := v 1 t + (v 2 t (1 -t )S t -c t ) + 1 vt>0 + (v 2 t (1 + t )S t -c t )1 vt<0 C t (S t , v t ) := -L t (S t , -v t ).
for some deterministic constant c t > 0 representing the fixed cost we need to pay to obtain a non-null position.

In this model, the cost function does not satisfy the condition property that C t (S t , λz) ≥ λC t (S t , z) for any λ ≥ 1. Then, the propagation of lower semicontinuity is not guaranteed if we only assume the SAIP condition on the market defined by this cost function. In [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], we have introduced the horizon cost function defined as follows:

C ∞ t (s, y) := lim inf α→∞ C t (s, αy) α .
(5.17) Definition 5.4. We say that the robust no-arbitrage condition RSAIP holds at time t if the SAIP condition holds at time t for the enlarged model defined by C ∞ t . We say that RSAIP holds if it holds at any time. In [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], we proved the following theorem analogous to Theorem 5.5: Theorem 5.5. Suppose that the condition RSAIP holds. Then, we have γ ξ t (S t , V t ) = γξ t (S t , V t ) a.s., θ ξ t (S t , V t ) = θξ t (S t , V t ) a.s. and, also, we have

D ξ t (S t , V t-1 , V t ) = Dξ t (S t , V t-1 , V t ) a.s. for any V t-1 , V t ∈ L 0 (R d , F t )
, where θξ t , Dξ t are given by (3.6). As the horizon cost function coincides with the cost function (5.15) without fixed costs, the results stated in Propositions 5.16 and 5.2 allows us to characterize the reachability set-valued mapping K t for this market. In particular, since C t ≤ C ∞ t + c t , by a straightforward computation, we deduce a simple formula of K t for the Put option: Lemma 5.6. Suppose that ξ = (g(S T ), 0) where g is a continuous function bounded from above by M ∈ R + . Then, a reachability set K t (s, v t-1 ) is explicitly given at any time t ≤ T -1 by K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1), closed ball of radius r t (s, v t-1 ) := λ t (s, v t-1 )/i t (s) where

i t (s) := inf v 2 ∈{-1,1} D 0,∞ t (s, 0, v), λ t (s, v t-1 ) := C ∞ t (s, (0, v 2 t-1 )) + M + C ∞ t (s, (0, -v 2 t-1 )) + T s=t c s ,
and D 0,∞ t is given in the model without fixed cost given by Proposition 5.1 or Proposition 5.2. In particular, we have i t (s) > 0 for all s > 0.

As a numerical example, we also consider the put option payoff (K -S T ) + at time T = 2. We consider the binomial tree model as previously. In the case where the conditional support supp Ft S t is countable, we can use the randomized method established in section 3.

We use the same parameters as in Section 5.1 and we consider fixed costs c 1 = c 2 = 0.8. The price function is illustrated in Figure 3. We also visualize the ratio of put price to asset price S 0 We also compare the price of put option with and without fixed costs. 

Limit theorem for convex markets

In the literature, there is few results providing limit theorems for financial market models with transaction costs, see [START_REF] Grépat | On a multi-asset version of the Kusuoka limit theorem: convergence of hedging sets[END_REF] and [START_REF] Bank | The scaling limit of superreplication prices with small transaction costs in the multivariate case[END_REF], but also [START_REF] Kusuoka | Limit theorem on option replication cost with transaction costs[END_REF] and [START_REF] Hubalek | When does convergence of asset price process imply convergence of option prices ?[END_REF] without transaction costs. In this section, we consider a sequence of markets defined by convex cost functions {C n t (S t , x), n ≥ 1} such that C n t (S t , x) ↓ C t (S t , x) as n → ∞ for some convex function C t . We associate to each C n t a dynamic programming scheme deduced by our general analysis, see [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]:

γ ξ,n T (S T , V T -1 ) := g 1 (S T ) + C n T (S T , (0, g (2) (S T ) -V T -1 )), θ ξ,n t (S t , v t ) := ess sup Ft γ ξ,n t+1 (S t+1 , V t ), D ξ,n t (S t , V t-1 , V t ) := θ ξ,n t (S t , V t ) + C n t (S t , (0, V (2) 
t -V (2) t-1 )), γ ξ,n t (S t , V t-1 ) := ess inf Ft Vt∈L 0 (R d ,Ft) D ξ,n t (S t , V t-1 , V t ).
Assumption 6. We suppose that supp Ft S t+1 = φ t (S t ) = conv{φ 1 t (S t ), ...φ J t (S t )} where φ j t : R d → R d , j ≤ J, are piecewise linear mappings in the sense of Definition 7.3.

We define γξ,n

t : R d × R d → R recursively as follows: γξ,n T (s, v T -1 ) := γ ξ,n T (s, v T -1 ), θξ,n T -1 (s, v T -1 ) := max j≤J γξ,n T (φ j T -1 (s), v t-1 ), Dξ,n t (s, v t-1 , v t ) := θξ t (s, v t ) + C n t (s, v (2) 
t -v

t-1 ), γξ,n t (s, v t-1 ) := cl inf

vt∈R d Dξ,n t (s, v t-1 , v t ) .
Assumption 7. Suppose that for any t ≤ T -1, inf vt∈S d-1 (0,1) D0 t (s, 0, v t ) > 0 for all s ∈ R k + , so that there is a upper hemicontinuous reachability set-valued mapping K t (s, v t-1 ) for the super-hedging problem in the market defined by C t . Moreover, we suppose that K t is an universal reachability set in the sense that it satisfies for all n ≥ 1 and (s, v t-1 ):

γξ,n t (s, v t-1 ) = inf vt∈Kt(s,v t-1 )
Dξ,n t (s, v t-1 , v t ).

Remark 6.1. Consider the case where C, C n and S t satisfy the assumptions specified in section 4. Since C ≤ C n for all n ≥ 1 by assumption, we deduce that inf vt∈S d-1 (0,1) D0 t (s, 0, v t ) > 0 implies inf vt∈S d-1 (0,1) D0,n t (s, 0, v t ) > 0 for all n. By the proof of Proposition 4.3, it is sufficient to suppose that SAIP holds for the market defined by C. If we suppose that C t (s, v t ), C n t (s, v t ) are bounded above by |h t (s, v t )| for some continuous function h t , by the same argument as in Lemma 5.21 in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF], we deduce that the quantities D0 t (s, v t-1 , 0) and D0,n t (s, v t-1 , 0) are bounded above by a continuous function ĥt (s, v t-1 ). Hence, an universal reachability set exits as K t (s, v t-1 ) = B(0, r t (s, v t-1 )) where

r t (s, v t-1 ) = ĥt (s, v t-1 ) + |h t (s, v t-1 )| inf vt∈S d-1 (0,1) D0 t (s, 0, v t )
.

Since r t is u.s.c., we deduce by Lemma 5.12 in [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF] that K t is upper hemicontinuous.

Theorem 6.2. Suppose that the functions φ j t : R k + → R k + , j ≤ J satisfy Assumption 6. Suppose that Assumption 7 holds. Then, for any t ≤ T -1 and for any v t-1 ∈ R d , lim n→∞ γξ,n t (s, v t-1 ) = γξ t (s, v t-1 ). Moreover, SAIP condition holds for the markets defined by C n and lim n→∞ γ ξ,n t (S t , V t ) = γ ξ t (S t , V t ) a.s. as n → ∞ for any V t ∈ L 0 (R d , F t ) and t ≤ T . 32

Proof. We first observe that γξ,n 

(s, v T -1 ) = max j≤J γξ,n T (φ j T -1 (s), v t-1 ), θξ T -1 (s, v T -1 ) = max j≤J γξ T (φ j (s), v t-1
,n T -1 (s, .) = max j≤J γξ,n T (φ j (s), .) epi -→ max j∈J γξ T (φ j (s), .) = θξ T -1 (s, .), n → ∞. Since C n T -1 (s, .) ↓ C T -1 (s, .) and C T -1 (s, .
) is continuous, we deduce by the Dini theorem that the convergence is uniform on any compact subset K of R d . By [START_REF] Rockafellar | Variational analysis[END_REF]Theomrem 7.14], we deduce that C n T -1 (s, .) converges continuously to C T -1 (s, .) in the sense that C n T -1 (s, x n ) → C T -1 (s, x) whenever x n → x. We then deduce by [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 7.46 ). At last, since inf vt∈S(0,1) D0 t (s, 0, v t ) > 0, SAIP holds for the market defined by C t , see [START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF]Theorem 4.16]. By Theorem 5.5, we have γξ t (S t , V t ) = γ ξ t (S t , V t ) a.s. for any V t ∈ L 0 (R d , F t ). Moreover, since D0,n t (s, 0, v t ) ≥ D0 t (s, 0, v t ), we deduce that SAIP also holds for market defined by C n t and, similarly, we have γξ,n t (S t , V t ) = γ ξ,n t (S t , V t ) a.s. for any V t ∈ L 0 (R d , F t ). The conclusion follows.

Appendix

By [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 14.37], we have: Proposition 7.1. If f is an F t -normal integrand, inf y∈R d f (ω, y) is F tmeasurable and {(ω, x) ∈ Ω × R d : f (ω, x) = inf y∈R d f (ω, y)} ∈ F t ⊗ B(R d ) is a measurable closed set.

We now recall a result from [START_REF] Baptiste | Pricing without martingale measure[END_REF] which characterizes a conditional essential supremum as a pointwise supremum on a random set. Let H and F be two complete sub-σ-algebras of F T such that H ⊆ F. The conditional support of X ∈ L 0 (R d , F) with respect to H is the smallest H-graph measurable random set supp H X containing the singleton {X} a.s., see [START_REF] Baptiste | Pricing without martingale measure[END_REF]. Proposition 7.2. Let h : Ω × R k → R be a H ⊗ B(R k )-measurable function which is l.s.c. in x. Then, for all X ∈ L 0 (R k , F), ess sup H h(X) = sup x∈supp H X h(x) a.s.

Piecewise linear cost function

We recall from [START_REF] Rockafellar | Variational analysis[END_REF] the definiton of piecewise linear function: Definition 7.3. A mapping F : D → R m defined on a set D ∈ R n is piecewise linear on D if D is the union of finitely many polyhedral sets (P i ) i∈J such that, for all x ∈ P i , F (x) = A i x + B i , for some matrix A i ∈ R m×n and B i ∈ R m .

A function f : R n → R is piecewise linear if it is a real-valued piecewise linear function on its domain domf = {x : f (x) ∈ R}.

Complement to Section 4

Recall that the model is defined by one risk-free asset and one risky asset denoted by S. The cost function is given by C t (S t , v) = v 1 + S t Ct (v 2 ), (7.18) where Ct : R → R is a piecewise linear function.

By Proposition 7.2, we have: -(1

θ 0 T -
+ T )sv 2 1 v 2 ≤0 -(1 -T )sv 2 1 v 2 ≥0 = max -(1 + T )k d T -1 S T -1 v 2 1 v 2 ≤0 -(1 -T )k d T -1 S T -1 v 2 1 v 2 ≥0 , -(1 + T )k u T -1 S T -1 v 2 1 v 2 ≤0 -(1 -T )k u T -1 S T -1 v 2 1 v 2 ≥0 = -(1 -T )k d T -1 S T -1 v 2 1 v 2 ≥0 -(1 + T )k u T -1 S T -1 v 2 1 v 2 ≤0
. and

C T -1 (S T -1 , (0, v 2 -z 2 )) = (1 + T -1 )S T -1 v 2 1 v 2 -z 2 ≥0 + (1 -T -1 )S T -1 v 2 1 v 2 -z 2 ≤0 -(1 + T -1 )S T -1 z 2 1 v 2 -z 2 ≥0 + (1 -T -1 )S T -1 z 2 1 v 2 -z 2 ≤0 .
We then have:

D 0 T -1 (S T -1 , 0, v) = θ 0 T -1 (S T -1 , v) + C T -1 (S T -1 , (0, v 2 )) = ((1 + T -1 )S T -1 -(1 -T )k d T -1 S T -1 )v 2 1 v 2 ≥0 + ((1 -T -1 )S T -1 -(1 + T )k u T -1 S T -1 )v 2 1 v 2 ≤0
More generally:

D 0 T -1 (S T -1 , z, v) = θ 0 T -1 (S T -1 , v) + C T -1 (S T -1 , (0, v -z)) = (1 + T -1 )S T -1 v 2 1 v 2 -z 2 ≥0 + (1 -T -1 )S T -1 v 2 1 v 2 -z 2 ≤0 -(1 + T -1 )S T -1 z 2 1 v 2 -z 2 ≥0 + (1 -T -1 )S T -1 z 2 1 v 2 -z 2 ≤0 -(1 -T )k d T -1 S T -1 v 2 1 v 2 ≥0 -(1 + T )k u T -1 S T -1 v 2 1 v 2 ≤0 .
In the following, we assume that 1 + T -1 ≤ (1 + T )k u T -1 and, also, that

1 -T -1 ≥ (1 -T )k d T -1 .
We shall use the usual convention that inf ∅ = ∞. We get that:

γ 0 T -1 (z) = inf v∈R 2 D 0 T -1 (S T -1 , z, v) = min i=1,••• ,4 D 0,i T -1 (S T -1 , z, v),
where:

D 0,1 T -1 = inf v 2 :v 2 ≥z 2 ,v 2 ≥0 (1 + T -1 )S T -1 (v 2 -z 2 ) -(1 -T )k d T -1 S T -1 v 2 = -(1 -T )k d T -1 S T -1 z 2 1 z 2 ≤0 -(1 + T -1 )S T -1 z 2 1 z 2 ≥0 . D 0,2 T -1 = inf v 2 :v 2 ≥z 2 ,v 2 ≤0 (1 + T -1 )S T -1 (v 2 -z 2 ) -(1 + T )k u T -1 S T -1 v 2 = ∞1 z 2 >0 -(1 + T -1 )S T -1 z 2 1 z 2 ≤0 . D 0,3 T -1 = inf v 2 :v 2 ≤z 2 ,v 2 ≥0
(1

-T -1 )S T -1 (v 2 -z 2 ) -(1 -T )k d T -1 S T -1 v 2 = ∞1 z 2 <0 -(1 -T -1 )S T -1 z 2 1 z 2 ≥0 . D 0,4 T -1 = inf v 2 :v 2 ≤z 2 ,v 2 ≤0
(1

-T -1 )S T -1 (v 2 -z 2 ) -(1 + T )k u T -1 S T -1 v 2 = -(1 -T -1 )S T -1 z 2 1 z≥0 -(1 + T )k u T -1 S T -1 z 2 1 z 2 ≤0 .
We deduce that

γ 0 T -1 (S T -1 , z) = inf v∈R 2 D 0 T -1 (S T -1 , z, v) = -(1 + T -1 )S T -1 z 2 1 z 2 ≥0 -(1 -T )k d T -1 S T -1 z 2 1 z 2 ≤0 .
We now compute D 0 T -2 (S T -1 , 0, z). We have: 

θ 0 T -2 (S T
+ T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 +(1 + T -2 )S T -2 z 2 1 z 2 ≥0 + (1 -T -2 )S T -2 z 2 1 z 2 ≤0 = (1 + T -2 )S T -2 -(1 + T -1 )k d T -2 S T -2 ) z 2 1 z 2 ≥0 + (1 -T -2 )S T -2 -(1 -T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 .
We then get the following:

Proposition 7.4. AIP holds at time T -2 if and only if the following holds:

k d T -2 ≤ 1 + T -2 1 + T -1 and k u T -2 ≥ 1 -T -2 (1 -T )k d T -1
.
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  1 (S T -1 , v) := ess sup F T -1 C T (S T , (0, -v 2 )) = sup s∈supp F T -1 S T C T (s, (0, -v 2 )) = sup s∈supp F T -1 S T -(1 + T )sv 2 1 v 2 ≤0 -(1 -T )sv 2 1 v 2 ≥0 = sup s∈[k d T -1 S T -1 ,k u T -1 S T -1 ]

  -2 , z) = ess sup F T -2 γ 0 T -1 (S T -1 , z) = sup s∈[k d T -2 S T -2 ,k u T -2 S T -2 ] γ 0 T -1 (s, z) = sup s∈[k d T -2 S T -2 ,k u T -2 S T -2 ] -(1 + T -1 )sz 2 1 z 2 ≥0 -(1 -T )k d T -1 sz 2 1 z 2 ≤0 = -(1 + T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 . D 0 T -2 (S T -2 , 0, z) = θ 0 T -2 (S T -2 , z) + C T -2 (S T -2 , (0, z 2 )) = -(1

  a.s..

	Lemma 3.3. Consider a family of F t -i.i.d. random variables b i t+1 , i ≥ 1 and

  We first consider the case where AIP holds and C t (s, y) is convex in y. Let us define Lξ

Then, Dn t (ω, ., .) epi -→ Dξ t (S t (ω), ., .) a.s.. Proof. t (ω, x, y) := Dn t (ω, x, y) ∨ -C t (S t (ω), (0, x (2) )) . Observe that Ln t (ω, x, y) is l.s.c. in (x, y) as a maximum of two l.s.c. functions. As the sequence ( Ln t ) n≥1 is also non decreasing, we deduce by [26, Proposition 7.4], that for any ω:

  (2) )) as n → ∞ for any ω outside a negligible set N (x, y). Moreover, by the discussion above, we deduce a negligible set M such that for any ω ∈ Ω \ M , we have Dξ R d . Indeed, by the definition of H, we deduce that(3.8) holds for any y ∈ Q d . Now, since Dξ t (S t (ω), ., .) is convex and takes values in R, it is continuous for any ω ∈ Ω \ H. Moreover, we claim that sup n Ln Ln t (ω, x k , y k ) for any sequence x k , y k ∈ Q d such that x k → x and y k → y. Moreover, by the definition of H and the continuity of Dξ Moreover, sup n Ln t (ω, ., .) also convex as a supremum of convex functions, it is also continuous. We then deduce by continuity that (3.8) holds for any y ∈ R d . Now, we consider the second case where C t

		Indeed,
	by lower semicontinuity, we have:
	sup n	Ln t (ω, x, y) ≤ lim inf
	By Lemma 3.4, Ln	

we deduce that Dξ t (S t (ω), x, y) ∈ R for any x, y, for any ω outside a negligible set. t (ω, x, y) → Dξ t (S t (ω), x, y) ∨ (-C t (S t (ω), (0, x t (S t (ω), x, y) ≥ -C t (S t (ω), (0, x (2) )) and Dξ t (S t (ω), x, y) ∈ R for any x, y. We set H := ∪ y∈Q d N (x, y) ∪ M , we claim that for any ω ∈ Ω \ H, sup n Ln t (ω, x, y) = Dξ t (S t (ω), x, y) for all x, y ∈ t (ω, x, y) < ∞ for any x, y ∈ R d and ω ∈ Ω \ H. k sup n t (S t (ω), ., .) for any ω ∈ Ω\H, we have lim inf k sup n Ln t (ω, x k , y k ) = lim inf k Dξ t (S t (ω), x k , y k ) = D ξ t (S t (ω), x, y) ∈ R. We deduce that sup n Ln t (ω, x, y) ∈ R for any x, y ∈ R d , and ω ∈ Ω \ H.

  R d . Indeed, fix some y ∈ R d and a sequence (y k ) k≥1 in Q d such that y k → y and y k ≥ R d In the Proof of Theorem 3.10, we have used the following result: Lemma 3.11. Let f : R k → R be a function such that f that is non increasing with respect to the partial order ≥ R k + . Consider cl(f ) the lower semicontinuous regularization of f . Then, cl(f ) is non increasing w.r.t. the partial order ≥ R k + . Proof. From [26, Lemma 1.7], we have the following representation of the l.s.c. closure:

	Moreover, by the definition of H, we have sup n	γξ t+1 (b n t+1 (ω), y k ) = θξ t (S t (ω), y k )
	for any ω ∈ Ω \ H. We then deduce that sup n	γξ t+1 (b n t+1 (ω), y) = θξ t (S t (ω), y)
	for any ω ∈ Ω \ H. At last, by the definition of Dξ t and Dn t , we conclude that sup n Dn t (ω, x, y) = Dξ
	n	γξ t+1 (b n t+1 (ω), y) ≤ lim inf k	sup n	γξ t+1 (b n t+1 (ω), y k ) ≤ sup n	γξ t+1 (b n t+1 (ω), y).
	Then, we have			
			θξ t (S t (ω), y) = lim inf k	θξ t (S t (ω), y k ),
		sup n	γξ t+1 (b n t+1 (ω), y) = lim inf k 14	sup n	γξ t+1 (b n t+1 (ω), y k ).

Similarly to the first case, we only need to prove sup n Dn t (ω, x, y) = Dξ t (S t (ω), x, y) for all x, y and ω outside a negligible set. By the definition of γξ t and θξ t , we can show by induction an by Lemma 3.11 that the mappings y → θξ t (s, y) and y → γξ t (s, y) are decreasing with respect to R d + . Recall the definition of N (x, y), we also denote H := ∪ y∈Q d N (x, y) ∪ M and claim that for any ω ∈ Ω \ H, sup n γξ t+1 (b n t+1 (ω), y) = θξ t (S t (ω), y), for all y ∈ + y. By lower semicontinuity and the discussion above, we have for any ω ∈ Ω \ H: θξ t (S t (ω), y) ≤ lim inf k θξ t (S t (ω), y k ) ≤ θξ t (S t (ω), y), and sup t (S t (ω), x, y) for any x, y and ω ∈ Ω \ H.

  a reachability set at time t ≤ T for the super-hedging problem if K t has compact set values and satisfies: Remark 3.[START_REF] Guasoni | The fundamental theorem of asset pricing under transaction costs[END_REF]. By[START_REF] Lépinette | Dynamic programming principle and computable prices in financial market models with transaction costs[END_REF] Theorem 4.14], under SAIP, the determining set K t (s, x) is constructed for s = S t (ω) as a closed ball B(0, r t (s, x) + 1), where r t (s, x) is an u.s.c. function. We shall see later in the model with one risky asset how to characterize K t (s, x) explicitely for every (s, x) ∈ R × R such that K t (s, x) is compact for all (s, x) and upper hemicontinuous. Moreover, By[START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF] Lemma 17.29], the upper hemicontinuity of K implies that Theorem 3.14. Suppose that SAIP holds and C t (s,v 1 t ) ≥ C t (s, v 2 t ) for any v 1 t , v 2 t ∈ R d such that v 1 ≥ R d + v 2 .Then, we have:Moreover, for each fixedx t ∈ L 0 (R d , F t ) such that the random set K t (S t , x t ) is F t -measurable, there exists a sequence (ŷ n t+1 ) n≥1 of L 0 (R d , F t+1 ) such that ŷn t+1 ∈ arg min Kt(St,xt) ( Dn t (ω, x t , .)) a.s. and ŷn t+1 → ŷ0 t+1 ∈ L 0 (R d , F t+1 ) along a random F t+1 -measurable subsequence where ŷ0 t+1 ∈ arg min( Dξ t (S t , x t , .)). In the case where C t (s, y) is convex in y, the same conclusion holds if we replace Dn Moreover, in that case, if K t (S t , x t ) is also convex, for fixed x t ∈ L 0 (R d , F t ) such that the random set K t (S t , x t ) is F t -measurable, ŷn We prove the claim in the first case, the second case is deduced similarly using Theorem 3.10.Consider the negligible set H in the proof of Theorem 3.10 such that Dn Since K t (s, x) is compact, for any ω ∈ Ω \ N and x ∈ R d , there is a random subsequence {ŷ n k Dξ t (S t (ω), x, y), we deduce that for any ω ∈ Ω \ N :We then deduce that ŷ0 t (ω, x) ∈ arg min Kt(St(ω),x) ( Dξ t (S t (ω), x, .)) for any ω ∈ Ω\N , i.e. (3.10) holds. Using the definition of the reachability set-valued mapping K t , we conclude that ŷ0 t (ω, x) ∈ arg min( Dξ t (S t (ω), x, .)) outside a negligeable set. Recall that inf y∈Kt(St(ω),xt) Dn t (ω, x t , y) is F t+1 -measurable, see [22]. Therefore, by a measurable selection argument, we may deduce the existence of ŷn t+1 ∈ L 0 (R d , F t+1 ) such that Dn If K t (S t , x t ) is F t -measurable, consider a Castaing representation (z m t ) m≥1 of K t (S t , x t ). The generalized conditional expectation E(ŷ n t+1 |F t ) exists as ŷn t+1 ∈ K t (S t , x t ) is F t -bounded. Note that ŷn t+1 may be approximated by a sequence of F t+1 -measurable random variables in the set {z m
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						y∈R d	Dξ t (S t , x t , y)|F t ,
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t (S t (ω), x, y) = inf y∈Kt(St(ω),x) Dξ t (S t (ω), x, y), a.s.. Moreover, we suppose that K t (s, x) is upper hemicontinuous in (s, x), see [1, Definition 17.2]. t (ω, x, y) by Dn t (ω, x, y) ∨ -C t (S t (ω), (0, x (2) )) . t = E(ŷ n t+1 |F t ) ∈ K t (S t , x t ) a.s. and converges a.s. to ŷ0 t = E(ŷ 0 t+1 |F t ) ∈ arg min( Dξ t (S t , x t , .)). Proof. t (ω, x, y) ≤ Dξ t (ω, x, y), for all x, y and for any ω ∈ Ω \ H and n ≥ 1. t (S t (ω), x, y), ∀x, (3.11) for any ω ∈ Ω \ H. We now establish the reversed inequality. Since each Dn t is an F-normal integrand, then by [26, Theorem 13.37], we deduce that inf y∈Kt(St(ω),x) Dn t (ω, x, y) is almost surely attained at some ŷn t (ω, x). In other words, we have ŷn t (ω, x) ∈ arg min Kt(St(ω),x) ( Dn t (ω, x, .)) for any ω outside a negligible set N such that H ⊂ N . t (ω, x), k ≥ 1} of {ŷ n t (ω, x), n ≥ 1} converging to some ŷ0 t (ω, x) ∈ K t (S t (ω), x). Since Dn t (ω, ., .) epi -→ Dξ t (S t (.), ., .) a.for any ω ∈ Ω \ N . As Dξ t (S t (ω), x, ŷ0 t (ω, x)) ≥ inf y∈Kt(St(ω),x) t (ω, x t , ŷn t+1 ) = inf y∈Kt(St(ω),xt) Dn t (ω, x t , y) and ŷn t+1 ∈ K t (S t , x t ) a.s.. By [20, Lemma 2.1.2], we may suppose that ŷn t+1 ∈ K t (S t , x t ) is convergent for some random subsequence towards a F t+1 -measurable limit ŷ0 t+1 ∈ K t (S t , x t ). Moreover, by the first step, we have ŷ0 t+1 ∈ arg min Kt(St,xt) ( Dξ t (S t , x t , .)). t : m ≥ 1}. We deduce that E(ŷ n t+1 |F t ) ∈ K t (S t , x t ) if K t (S t , x t ) is convex. It is clear that E(ŷ n t+1 |F t ) converges to E(ŷ 0 t+1 |F t ) ∈ K t (S t , x t ). When the cost function is convex, Dn t (ω, x t , y) is convex. Using the Jensen inequality for conditional expectations, we get that Dξ t (S t , x t , E(ŷ 0 t+1 |F t )) ≤ E Dξ t (S t , x t , ŷ0 t+1 )|F t , ≤ E inf t (S t , x t , y). t (S t , x t , .)).

  [START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF] ) is a compact upper hemicontinuous set-valued mapping, i.e.

	inf y∈R d	Dξ t (s, x, y) = inf y∈Kt(s,x)	Dξ

t (s, x, y), a.s.. For simplicity, we consider the model where the price process satisfies

supp Ft (S t+1 ) = {a t S t : a t ∈ Θ} , t ≤ T -1,

such that P [S t+1 = a t S t |F t ] > 0 a.s. for all a t ∈ Θ, where Θ = {a n t , n ≥ 1} is a deterministic sequence of positive numbers. Consider a sequence of random variables {b i t , i ∈ J t , t = 0, • • • , T } in R k×T generated by the following procedure:

  ).Under Assumption 6 holds, the mapping (s, v t-1 ) → (φ j (s), v t-1 ) is piecewise linear in the sense of Definition 7.3. Since, γξ,n

		T	is convex, we deduce by
	[26, Exercies 2.20] that γξ,n T (φ j (.), .) is jointly convex. Moreover, since we
	have lim n→∞	γξ,n

T (φ j (s), .)

epi

= γξ

T (φ j (s), .), for any j ≤ J, we deduce by

[START_REF] Rockafellar | Variational analysis[END_REF] Proposition 7

.48] that: θξ

  As in the case t = T -1, we deduce by induction that lim n→∞ Dξ,n t (s, v t-1 , .)

			] that
		Dξ,n
	Suppose that lim n→∞	Dξ,n
			and takes
	real values, it is also continuous. We deduce by [26, Proposition 7.4] that
	lim n→∞	γξ,n t+1 (s, .)

T -1 (s, v T -2 , .) epi -→ Dξ,n T -1 (s, v T -2 , .), n → ∞. t+1 (s, v t , .) epi = Dξ,n t+1 (s, v t , .) and, by induction, let us show that lim n→∞ Dξ,n t (s, v t-1 , .) epi = Dξ,n t (s, v t-1 , .). Since K t+1 (s, .) is compact, we deduce that γξ,n t+1 (s, .) ↓ γξ t+1 (s, .). Since γξ t+1 (s, .) is convex epi = γξ t+1 (s, .). epi = Dξ t (s, v t-1 , .