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Abstract. Contractile force in muscle tissue is produced by the interaction of myosin molecular
motors that bind and pull on specific sites located on surrounding actin filaments. The classical
framework set by the landmark works of A.F. Huxley and T.L. Hill to model this active system is
build on the central assumption that thermal fluctuations of a given myosin motor are sufficiently
small so that it cannot interact with more than one binding site at any time. In this paper we
present the physiological and mathematical limitations of this approach to motivate a new
formulation that circumvent them without resorting to the more complex multi-site model
paradigm.

The acto-myosin system is now described as a Markov process combining Langevin drift-
diffusion and Poisson jumps dynamics. We show that the corresponding system of Stochastic
Differential Equation is well-posed and derive its Partial Differential Equation analog in order to
obtain the thermodynamic balance laws. We finally show that by applying standard elimination
procedures, a modified version of the original Huxley-Hill framework can be obtained as a
reduced version of our model. Theoretical results are supported by numerical simulations where
the model outputs are compared to benchmark experimental data.
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1. Introduction

1.1. Muscle contraction
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Figure 1. Physiological context. (a) The muscle contraction is generated by
the interaction of myosin molecular motors with actin filaments in so-called con-
tractile units. (b) Antagonist contractile units are stacked in parallel to form
sarcomeres. (c) sarcomere are assembled in series to form the fibrils of the muscle
cells.

Muscle contraction is produced at the nanoscale by the concerted action of myosin molecular
motors, converting metabolic energy into mechanical power. These motors are proteins called
myosins that act as enzymes catalyzing the hydrolysis of ATP1 in the presence of another protein,
call f-actin with which myosin motors interact to form so-called cross-bridges. In the muscle
tissue, at the microscale, myosins form thick filaments running in the longitudinal direction
of the muscle fibers, see Figure 1(a). F-actin also takes the form of filaments made out of
polymerized g-actin (globular actin) which runs parallel to the mysoin filaments.

The metabolic energy extracted from the hydrolysis of ATP by the motors is transformed
into a mechanical working strokes that pull on the actin filament. Both filaments are oriented to
build a contractile unit as the myosin-actin interaction produces their relative sliding in opposite
direction

At the mesoscale, antagonists contractile units are stacked in the transverse direction and
form a ∼2 µm-long sarcomere, see Figure 1(b). Sarcomere themselves are arranged in series to
form bundles of fibrils inside the muscle cells, see Figure 1(c). Thanks to this highly organized

1Adhenosine TriPhosphate
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structure, the metabolic activity of the acto-myosin molecular system results in the macroscopic
contraction.

At the core of the contraction mechanism is the interaction between a myosin protein and its
neighboring actin monomers. This interaction takes the form of a cyclic succession of structural
and chemical transitions during which a myosin binds actin to form a force producing cross-
bridge, and then disengage to hydrolyze one ATP molecule, see [25] for more details on the
molecular mechanism. The constant supply of fresh ATP molecule is necessary to maintain this
cycle out of equilibrium.

1.2. Modeling the actin-myosin interaction

The first physiologically relevant theory of actin-myosin interaction was formulated in 1957 by
A.F. Huxley [27]. The general idea, which is developed in details in the next section, was to
model a representative myosin protein as a linear elastic spring existing in two states: attached
to actin or detached. Huxley postulated the existence of specific target zones (or binding sites)
positioned periodically on the actin filament. While the myosin is bound, the tension it generates
is proportional to the distance between the tip (head) of the protein which is located at the
binding site and its anchor in the myosin filament. The attachment and detachment events are
modeled as a “chemical” jump process with rates that depend on the distance to the nearest
binding site. The dynamics of the system takes the form of a transport PDE for the population
of attached and detached myosins, with sources and sinks terms accounting for the transition
between the two states.

This modeling framework has been formalized and generalized by T.L. Hill and co-workers
[24, 22, 23, 14, 15]. The generalization consisted in formulating the population dynamics equa-
tions for an arbitrary number of states and in formalizing the fundamental mathematical re-
quirements that ensure the compatibility of the model with conservation laws and in particular,
the thermodynamic principles.

Since then plethora of such chemical-mechanical models have been proposed to account for a
constantly increasing body of experimental data. The refinements as compared to the original
two-state model of Huxley consists in defining additional chemical states and the corresponding
transition rates, see for instance [28, 47, 52, 53, 11, 54, 51, 2, 38, 39, 41] or in using generalized
non-linear energy potentials for the elastic spring representation of the myosin head [45, 31].

The goal of this paper is to revisit one of the fundamental hypothesis underlying all Huxley–
Hill-like models, while proposing a new SDE formulation, based on Poisson random measures.

1.3. The Huxley’1957 model

Before presenting the objectives of our work, we here summarize the framework set by the
landmark Huxley’1957 model (H57 model).

The framework. The original Huxley model [27] sets a 1D framework to describe the dynam-
ics of a population of independent myosin motors interacting with a single actin filament, see
Figure 1(a). Since the motors are considered independent, considering a single representative
motor is sufficient, see Figure 2(a). We define as the origin of the 1D axis, the position of a
representative myosin anchor point to the myosin filament. The actin sites are located on the
actin filament, supposed to be rigid and parallel to the myosin filament. At all time, the myosin
head has the possibility to bind only to the nearest actin site whose position, with respect to
the anchor point, is parametrized by the variable s.

The distance between consecutive binding sites being denoted by d, the binding to the nearest
site occurs necessarily within the restricted fixed window (−d/2,+d/2) so that the current actin
site is at most d/2 far from this base point: a site enters the window at the time the previous
one leaves.

The myosin head is assumed to attach instantaneously to its site with rate f(s) to form a
cross-bridge. This cross-bridge can subsequently be detached, also instantaneously, with rate
g(s). Both rates f(s) and g(s) are assumed to depend only on s.
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Figure 2. (a) The Huxley–Hill model is parametrized by the distance s sepa-
rating the myosin anchor from its nearest binding site. The distance between two
consecutive sites is denoted by d. After attachment, the formed cross-bridge is
represented as a spring of length s. (b) The h-model considers the position of the
detached myosin head X relative to the same anchor point. The nearest binding
site is now defined relative to the position of the head and parametrized by the
variable h.

During the contraction, the actin filament slides relative to the myosin filament with an
imposed velocity ẋc(t). In this point of view, the molecular motor produces a force as a response
to an input sliding velocity.

Classical formulation. Let α ∈ {0, 1} denote the attachment state of the myosin head: α = 0
stands for a detached configuration, while α = 1 means the myosin head is attached to the actin
site located at distance s of the myosin anchor point. The original Huxley model was concerned
with the conditional probability Pα(s, t) for the head being in the configuration α knowing the
location s of the closest actin site at time t. At any given s, mass conservation imposes that
P0(s, t) + P1(s, t) = 1, since the state α is either 0 or 1, indeed. It is possible to describe the
population dynamics using a PDE system: the sliding velocity gives a transport term, while the
jump mechanisms with rates f(s) and g(s) are given by linear terms [27]:{

∂tP1(s, t) + ẋc(t)∂sP1(s, t) = −g(s)P1(s, t) + f(s) [1− P1(s, t)] ,

P0(s, t) = 1− P1(s, t).

(1.1)

(1.2)

Notice that the compatibility of the model (1.1) with the principles of thermodynamics is not
guarantied a priori since the rates f and g may not satisfy the detailed balance condition. This
problem was solved in the extension of the model proposed by T.L. Hill and co-workers, see the
next section for more details. Hence, the terminology Huxley–Hill framework.

1.4. Limits of the Huxley formulation

The Huxley–Hill framework suffers from a series of inherent limitations. These limitations are
all consequences of the essential assumption made that a myosin head can interact only with
the nearest binding site located in a fixed window of length d.

In the structural representation of the actin-myosin interaction, the detached myosin head
fluctuates, and therefore the probability to form a cross-bridge with a nearby site depends on
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the capacity for the myosin molecular structure to sufficiently deform to reach this site. Hence,
the assumption that only one site can be bound by the myosin head within a given window
of length d supposes that the maximal extension of the cross-bridge is less than d/2. If the
characteristic length of the fluctuations remains small compared to the inter-site distance, the
probability for a given head to interact with a site that is not the closest to its anchor point can
be neglected, indeed.

This representation has the following consequences on the rates f(s) and g(s) appearing in
(1.1).

(1) Attachment is not permitted on the borders of the interval. Since the deformation of
the protein is assumed to be less than d/2, attachment can’t occur when s equals the
“boundary points” (i.e. −d/2 or equivalently +d/2), imposing that

f(−d/2) = f(+d/2) = 0

It would make sense to consider f(s) being continuous and spiked around s = 0, and
identically being 0 when s is close enough to the borders.

(2) Detachment is compulsory on the borders of the interval. The site can’t be located at
the boundary points during in the attached configuration since this would imply a jump
of the cross-bridge from one side of the window to the other one, which is obviously non-
physical. The distance d being (strictly) larger than the cross-bridge maximal extension,
this situation has to be excluded by enforcing at least

lim
s→−d/2
s>−d/2

g(s) = lim
s→+d/2
s<+d/2

g(s) = +∞

with an imposed discontinuity at the boundary point.

The physiological limitations of the Huxley–Hill framework are thus related to the structural
organization of the system. The actin filament is a double-stranded helix of globular monomers
whose diameter is about 5.5 nm. The long periodicity of actin corresponds to 7 of these monomers
[17]. At rest the regulatory units are covered by a calcium sensitive protein called tropomyosin.
Upon activation, the calcium ions that are released in the cell bind to troponin-tropomyosin
complex, which triggers a conformational change that uncovers the actin monomers, making
them available for attachment by myosin. Experimental studies on single molecules suggested
that only few (possibly 3) monomers are correctly oriented to enable strong attachment, once
every ∼40 nm. Therefore, several models propose that the binding event can occur only on
so-called “target zones” separated by a distance of d ≈ 40 nm [43, 55]. Other models, however,
postulate that the interval between the binding site correspond to the monomer repeat of 5.5 nm,
[47, 2]. While this may not be the case in situ, it is realistic for in vitro acto-myosin preparation
where regulatory proteins are removed [45].

The elastic constant of the attached myosin protein has been evaluated at κ ≈ 1 pN nm−1 [4],

which correspond to thermal fluctuations of about
√
πkbT/κ ≈ 3.6 nm. One also has to consider

that the myosin motor can undergo conformational change as large as 10 nm [25, 50].
From the point of view of the detached state, given the above estimations, one can infer that

with an actin periodicity of d = 40 nm, the probability for a given head to travel d/2 ≈ 20 nm can
indeed be neglected. However, if one considers a periodicity of d = 5.5 nm, then the probability
for a given head to reach a remote site has to be considered. Furthermore, recent studies that
use a non-linear elastic models for the attached motors predict that the cross-bridges can remain
formed along distances up to 50 nm, see [40, 42], which makes the Huxley–Hill framework not
appropriate from the point of view of the attached state. In a nutshell, the Huxley–Hill framework
is reasonable if the assumption d = 40 nm is taken and that long cross-bridge extensions are
prevented but is not adapted otherwise.

To circumvent these issues, the original Huxley model has been extended by Hill and co-
workers to include the possibility to bind multiple sites from the same detached state [22]. This
approach requires defining new rate functions, which makes the calibration of the models more
difficult, and potentially less robust to the variability in the experimental data.
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In this paper, we propose an alternative and less-complex approach to lift the aforemen-
tioned limitations by reconsidering the initial assumptions setting the Huxley–Hill framework to
overcome these limitations, see Figure 2(b). Our h-model is based on the following assumptions.

(1) A myosin head is parametrized by the position x of its head with respect to its anchor
point on the myosin filament.

(2) The position of the nearest actin binding site is not defined with respect to the anchor
point anymore but instead with respect to the position of the head x. This relative
position is denoted by h.

(3) A given myosin head can bind only to the nearest actin site.

We formulate the h-model as a stochastic Markov process involving continuous Langevin
dynamics for the position of the head and a discrete Poisson dynamics for the state (attached
or detached). Throughout the paper, we will use two approaches to describe the system: a
stochastic approach based on Stochastic Differential Equations and a deterministic approach
based on Partial Differential Equations.

The results of this work are presented as follows. In Section 2, we reformulate the Huxley–Hill
model (1.1) in order to introduce both approaches. The h-model itself is presented in Section 3.
For both Huxley–Hill and h-model, we prove the compatibility with the thermodynamic prin-
ciples. We will then show in Section 4 that the Huxley–Hill model can in fact be viewed as an
analog of a reduced version of the h-model – the h-reduced model – obtained by asymptotic
elimination of the variable x and h. Again, both formulations are presented and the compatibil-
ity with the thermodynamic principles is tracked. Finally, numerical illustrations of the h-model
and its reduced version are presented in Section 5, where we compare the steady state properties
of the models with benchmark experimental data characteristic of the mechanical performance
of cardiac cells.

2. SDE formulation of the Huxley–Hill model using random measures

Detached (α = 0)

Attached (α = 1)

k+krev
+k− krev

−

Figure 3. Schematic of the two state actin-myosin interaction cycle.

We start by building a Stochastic Differential Equation (SDE) representation for this system,
defining a stochastic process whose law at given s will satisfy equation (1.1). More than giving a
Lagrangian (particle) interpretation of the Huxley PDE system, this will permit simple Monte-
Carlo simulations of this system (see Appendix A) without using heavy PDE solvers. This
approach also paves the way for the incoming h-model, whose SDE interpretation will be more
natural than its PDE one. The dynamics can be formalized as a càdlàg Markov process

(αt, st) ∈ {0, 1} × Td , t ≥ 0

the actin site being st and the state αt standing for the current configuration (attached: αt = 1,
or detached: αt = 0) of the cross bridge.

The variable st is the location of the nearest actin site, as well as it is the algebraic distance
of this site to the base point, since the window and the coordinate axe originate at the same
base point. It is therefore relevant to consider st as a continuous variable evolving in the one-
dimensional torus Td of center 0 and diameter d, which can be identified to the closed interval
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[−d/2,+d/2] with periodic boundary conditions: in this representation, the base point is the
center 0 of the torus.

The st dynamics is then only translation with speed ẋc(t), while αt describes a jump process
involving two states. The Hill thermodynamic analysis [22] of this model requires to split the
global jump rates f and g appearing in (1.1) into four intermediary rates (see Section 2.1
for details on the purpose of this). They correspond to four Poisson jump events with state-
dependent rates (see Figure 3).

• A direct attachment 0→ 1 with rate k+(s).

• A reverse jump 1→ 0 with rate krev
+ (s).

• A direct detachment 1→ 0 with rate k−(s).

• A reverse jump 0→ 1 with rate krev
− (s).

These rates can be linked to the previous ones appearing in (1.1) by

f(s) = k+(s) + krev
+ (s) g(s) = k−(s) + krev

− (s).

These jumps induce càdlàg (right-continuous with left limit) discontinuities, so that αt = 1−αt−
at the jump time t. This can be formalized using four independent Poisson random mea-
sures (see appendix A for reminders on this notion): N+ (dt,du), N rev

+ (dt,du), N− (dt,du) and
N rev
− (dt,du) on R+ × R+ with intensity measure dt ⊗ du. The u parameter in these measures

accounts for the detachment rates. Finally, the dynamics of (αt, st) can be represented by the
SDE system:

dαt = (1− αt−)
∫

R+
(1− 2αt−)1u≤k+(st)N+ (dt,du) + αt−

∫
R+

(1− 2αt−)1u≤krev+ (st)N− (dt,du)

+αt−
∫

R+
(1− 2αt−)1u≤k−(st)N+ (dt,du) + (1− αt−)

∫
R+

(1− 2αt−)1u≤krev− (st)N− (dt,du) ,

dst = ẋc(t)dt in Td.
(2.1)

The pre-factors αt and 1 − αt alongside the system allow to select which transition occurs or
not depending on the value of αt ∈ {0, 1}; 1αt=1 and 1αt=0 could be written instead. Note that
1− 2αt− is always the jump amplitude when αt jumps from a state to the other one (either for
0 → 1 or 1 → 1). When αt− = 0, the N+ and N rev

− term in the SDE has a non-zero pre-factor,
allowing an increment for αt of 1 − 2αt− = 1. The same holds with an increment −1 when
αt− = 1 with the N− and N rev

+ term.
Well-posedness for the SDE system (2.1) is a simple task (see references in appendix A)

provided xc is C1 and coefficients k+, krev, k− and krev
− are Lipschitz – however this property is

unclear in the Huxley–Hill framework, because rates must explode on the border of the window
(see explanations in introduction).

The pathwise law p of the process belongs to the space P (D (R+, {0, 1} × Td)) of proba-
bility measures on the Skorokhod space D (R+, {0, 1} × Td) of càdlàg trajectories. The related
t-marginal pt ∈ P ({0, 1} × Td) is the joint law of (αt, st) at time t: it is a probability measure
pt (dα,ds) = pt (α,ds) dα on the state space {0, 1} × Td (dα = δ0 + δ1 is the canonical mass
measure on {0,1}). The law pst (ds) of st at time t is the s-marginal of pt (dα,ds) which can be
defined by integrating over α:

pst (ds) = pt (0,ds) + pt (1, ds) . (2.2)

It satisfies the transport equation

∂tp
s
t + ẋc(t)∂sp

s
t = 0. (2.3)

By transport, if s0 is uniformly distributed at time t = 0, it will be the case for st at every time
t ≥ 0. This assumption shall now be made, so that

pt (dα,ds) = Pα(s, t)dα
ds

d
, (2.4)
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where Pα(s, t) is the conditional probability for a myosin motor, whose nearest site is located at
s to be in state α. The α-marginal of pt (dα,ds) conditionally on st = s reads

pt (α, s) dα

pt (0, s) + pt (1, s)
=
Pα(s, t)/d

1/d
dα = Pα(s, t)dα (2.5)

The conditional law Pα(s, t)dα is a probability measure, and the normalization relation holds

P0(s, t) + P1(s, t) = 1, (2.6)

making Pα(s, t) the remaining unknown.

Remark on notations. In the sequel, conditional probabilities will always be written with
capital letters P , while normal case p will denote joint probabilities. Later we will also introduce
reduced probabilities, which will be distinguished from the joint probabilities by a bar p.

The time-evolution of pt can be captured using regular test functions ϕ : {0, 1} × Td → R,
which are called “observables”. The infinitesimal generator (see [35]) L of this Markov process
is an unbounded linear operator defined as

d

dt
E [ϕ(αt, st)] = E [Lϕ(αt, st)]

for regular functions ϕ for which the derivative makes sense. This is the backward Kolmogorov
equation; since (αt, st) solves an SDE, this can be recovered using Ito’s formula. In terms of pt,
this reads for any observable ϕ∫

{0,1}×Td

ϕd (∂tpt) =

∫
{0,1}×Td

Lϕdpt

If L admits an adjoint operator L? on a subdomain of P ({0, 1} × Td), the related dual equation
reads in the measure (weak) sense

∂tpt = L?pt.

This is the forward Kolmogorov equation (or the well-known Fokker-Planck equation in a dif-
fusion setting); this is usually obtained integrating by parts. It is a strong PDE when the law
admits a density pt (dx,dα) = pt (x, α) dxdα.
The generator can be obtained following the derivation in section A. To a jump 0→ 1 correspond
a rate k0→1(α, s) = 1α=0f(s) and a jump law K0→1 ((α, s) , (dα′,ds′)) = δ1−α (dα′) δs (ds′) (δ is
a Dirac measure, the location after jump being chosen here in a deterministic way), adding the
term

k0→1(α, s)

∫
{0,1}×Td

[
ϕ(α′, s′)− ϕ(α, s)

]
K0→1

(
(α, s) ,

(
dα′,ds′

))
= 1α=0f(s) [ϕ(1− α, s)− ϕ(α, s)]

to the total generator (in the rest of this article, jump measures won’t be that much detailed: only
non-deterministic jumps will be written to avoid heavy expressions); the prime variables denote
the new values after jumps. The same holds for the 1→ 0 jumps. Summing these contributions
and the transport term eventually gives

Lϕ (α, s) = ẋc(t)∂sϕ (α, s)

+ 1α=0f(s) [ϕ(1− α, s)− ϕ(α, s)] + 1α=1g(s) [ϕ(1− α, s)− ϕ(α, s)] . (2.7)

Appendix A now provides the dual generator of each jump. The dual of the transport term in
(2.7) is moreover given by straightforward integration by parts. Gathering everything leads to
the dual operator L? and the related equation:

∂tpt (α,ds) + ẋc(t)∂spt (α,ds) = −1α=0f(s)pt (0, ds) + 1α=1f(s)pt (0,ds)

− 1α=1g(s)pt (1, ds) + 1α=0g(s)pt (1, ds) (2.8)

so that {
∂tpt(0, s) + ẋc(t)∂spt(0, s) = −f(s)pt(0, s) + g(s)pt(1, s),

∂tpt(1, s) + ẋc(t)∂spt(1, s) = −g(s)pt(1, s) + f(s)pt(0, s).
(2.9)
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Let us now derive the equation on Pα(s, t) (defined in (2.4)). The s-marginal pst evolution (2.3) is
recovered from (2.2) integrating (2.9) over α. The time-evolution of the conditional law Pα(s, t)dα
is then obtained from 2.5 and (2.9), giving{

∂tP0(s, t) + ẋc(t)∂sP0(s, t) = −f(s)P0(s, t) + g(s)P1(s, t),

∂tP1(s, t) + ẋc(t)∂sP1(s, t) = −g(s)P1(s, t) + f(s)P0(s, t),

which exactly recovers the previous system (1.1): a SDE representation has thus been built.

2.1. Hill’s thermodynamic formalism

Assume an energy function w (α, s) = 1α=0w0(s) + 1α=1w1(s) is associated to the system (wα
is the energy related to the state α). The energy w0 characterizes the detached state, while w1

is the energy of an attached head. The use of a bar notation for the energies w0,1 will become
clear in section 4.1.

Energy balance. The internal energy of the system at time t is the average

U(t) := E [w (αt, st)] =

∫
{0,1}×Td

w (α, s) pt (dα,ds) .

The previous knowledge (2.4) on pt (dα,ds) allows to write

U(t) =
1

d

∫
Td

[w0(s)P0(s, t) + w1(s)P1(s, t)] ds

Moreover, the active force is defined as

τc(t) := E [1αt=1∂sw (αt, st)] =
1

d

∫
Td

dw1(s)

ds
P1(s, t)ds

Using equation (1.1) to take the time-derivative of U(t):

d

dt
U(t) = Ẇ(t)− 1

d

∫
Td

[w1(s)− w0(s)] [g(s)P1(s, t)− f(s)P0(s, t)] ds

The first term

Ẇ(t) := ẋc(t)τc(t) +
ẋc(t)

d

∫
Td

dw0(s)

ds
P0(s, t)ds

being the instantaneous power of external efforts. In sarcomere modelling, the detachment 1→ 0
at st is caused by an external energy input µT , which stands for ATP consumption: µT is a
constant which embodies the necessary energy input for state change. For jumps to occur from
higher energy states to lower energy ones, it is relevant to assume

w1(s) ≤ w0(s) ≤ w1(s) + µT

so that attachment is a natural process which causes a decrease in state energy from w0(s) to
w1(s), and then the external supply of µT allows going back to a state with energy w0(s). Since
ATP is buffered by the metabolic system, µT is a fixed parameter. The related flux term in the
balance reads

Ė(t) :=
1

d

∫
Td

µT [g(s)P1(s, t)− f(s)P0(s, t)] ds.

The fluctuation around this flux of the energy transfer during the detachment is 1αt=0w (αt, st)−
1αt−=1w (αt− , st−)−µT . In the balance, this thermal fluctuation stands for the heat dissipation

Q̇(t) := −1

d

∫
Td

[w1(s) + µT − w0(s)] [g(s)P1(s, t)− f(s)P0(s, t)] ds

so that the energetic balance corresponds to the first principle of thermodynamics

d

dt
U(t) = Ẇ(t) + Ė(t) + Q̇(t). (2.10)

9
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Remark 2.1. There’s no energy left for thermal fluctuation in the case µT = w0(s) − w1(s) (in
this case, no extra energy has to be dissipated as heat). The quantities τc and µT , together with
this balance and the next one will be crucial to perform macroscopic coupling; an additional
dependence of µT on t could be added. Note the term J(s, t) = g(s)P1(s, t) − f(s)P0(s, t)
corresponds to a probability flux which stands for the probability mass transfer 1→ 0.

Free energy balance. Let’s compute the entropy balance. Following Hill’s formalism [22, 24],
the chemical potential of state α at time t is defined as

µt(α, s) := w(α, s) + kBT lnPα (s, t) = 1α=0µ
0
t (s) + 1α=1µ

1
t (s)

with the state chemical potentials at time t

µ0
t (s) = w0 (s) + kBT lnP0 (s, t) µ1

t (s) = w1 (s) + kBT lnP1 (s, t)

Free energy is then defined as

F(t) := E [µt (αt, st)] =
1

d

∫
Td

[
µ0
t (s)P0(s, t) + µ1

t (s)P1(s, t)
]

ds

The time-derivative of F(t) reads

d

dt
F(t) =

1

d

∫
Td

∂tP0 (s, t) [w0 (s) + kBT ln (P0 (s, t)) + 1] ds

+
1

d

∫
Td

∂tP1 (s, t) [w1 (s) + kBT ln (P1 (s, t)) + 1] ds

=
1

d

∫
Td

µ0
t (s) ∂tP0 (s, t) ds+

1

d

∫
Td

µ1
t (s) ∂tP1 (s, t) ds

using the normalization condition (2.6) to simplify. Equation (1.1) now leads to

d

dt
F(t) = Ẇ(t) + Ė(t)− 1

d

∫
Td

[
µ1
t (s) + µT − µ0

t (s)
]

[g(s)P1(s, t)− f(s)P0(s, t)] ds

the last term of this balance should equal −T (t)Ṡprod(t) in order the second principle of ther-

modynamics to hold. To assert this, it is necessary to check that Ṡprod(t) remains non-negative.
For the entropy balance to respect the second law of thermodynamics, appendix B shows that to
every jump must be associated a reverse jump (possibly very rare) whose rate must satisfy the
detailed balance condition (B.1), which involves energy of the system before and after the jump.
In the current case, the detached state has energy w0(s) before attachment and w1(s) after. At
the time of detachment, the energy rises to w1(s) + µT (thanks to the ATP consumption input
µT ) and then goes back to w0(s). Thus, the total attachment rate f(s) can’t be directly com-
pared to g(s) in a detailed balance condition, because the arrival energy w1(s) after attachment
is not the same as the starting energy w1(s) + µT at detachment time. To see this, rates must
be split back as

f(s) = k+(s) + krev
+ (s) g(s) = k−(s) + krev

− (s)

and must satisfy the detailed balance conditions

k+(s) = exp

[
−w1(s)− w0(s)

kBT

]
krev

+ (s)

k−(s) = exp

[
−w0(s)− w1(s)− µT

kBT

]
krev
− (s)

If w1(s) ≤ w0(s) ≤ w1(s) + µT as expected, then one can see that thermodynamics favors the
direct jumps k+(s) and k−(s) with respect to the reverse ones (their rates are all the bigger as
the energy gaps are important). Finally,

d

dt
F(t) = Ẇ(t) + Ė(t)− 1

d

∫
Td

[
µ1
t (s)− µ0

t (s)
] [
krev

+ (s)P1(s, t)− k+(s)P0(s, t)
]

ds

− 1

d

∫
Td

[
µ1
t (s) + µT − µ0

t (s)
] [
k−(s)P1(s, t)− krev

− (s)P0(s, t)
]

ds

10
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both the last terms being now non-positive thanks to the detailed balance conditions. The second
law is now respected, but the definition of Ė(t) has to be adapted for the above equality to hold.
It now reads

Ė(t) :=
1

d

∫
Td

µT
[
k−(s)P1(s, t)− krev

− (s)P0(s, t)
]

ds

The previous first law (2.10) still holds in this framework, but the definition of the heat transfer
must be similarly adapted:

Q̇(t) := −1

d

∫
Td

[w1(s) + µT − w0(s)]
[
k−(s)P1(s, t)− krev

− (s)P0(s, t)
]

ds

leading to a fully consistent thermodynamic system.

3. The h-model

A Langevin like-model is built here such that the chosen site is the closest neighbor to the
myosin head, and no more to the base point, see Fig. 2(b). The head is now introduced as an
explicit variable Xt, which can move on the full real line: it is no more constrained within a
torus, allowing desirable Lipschitz assumptions on rates. In the detached state, the dynamic of
Xt tends to minimize a detached-state confinement potential w0 (for instance a quadratic well,
seeing the cross-bridge as a spring), but is still subjected to thermal fluctuations leading to an
overdamped Langevin diffusion

dXt = −η−1∇w0(Xt)dt+
√

2kBT/η dBt,

the process (Bt)t≥0 being a brownian motion (independent of the considered Poisson random

measures), kB the Boltzmann constant, T the temperature, and η a (high) damping coefficient.
In case of a quadratic w0, this corresponds to a noisy harmonic (Langevin) oscillator in the
high-damping (or low-mass) limit (also known as Ornstein-Uhlenbeck process).

An additional variable is needed to keep track of the closest actin site to Xt. This latter site is
always at most d/2 far from the moving head Xt, so an eulerian parametrization is well-adapted:
let ht be the algebraic distance in the torus Td of Xt to its closest neighbor so that st = Xt + ht
(for a suitable projection h 7→ h of the torus on [−d/2,+d/2) or (−d/2,+d/2]). A moving (Xt-
dependent) referential is used, and the Xt-dynamics shall impinge on the ht-dynamics. Obviously
ht is useless when αt = 1 since then ht = 0 (Xt then corresponds to the actin site location to
which the head is attached). The couple (Xt, ht) then appears as the natural structural variable.

A single jump site is allowed given Xt, which must be less than d/2 far: d/2 is no more
the maximal extension for the cross-bridge, but it is the maximal allowed jump amplitude, i.e.
the biggest instantaneous discontinuity which can be encountered for the position. This can be
considered as a two-state multi-site model, because the myosin head is allowed to explore all the
actin fiber, even if the jump amplitude remains bounded.

3.1. SDE formulation

The variable ht lives in the torus Td: it is the algebraic distance from the myosin head Xt to the
nearest actin site, whose position is

st := Xt + ht,

a representation h in [−d/2,+d/2[ or in ]−d/2,+d/2] being chosen for a variable h in Td. This
latter choice shall not affect the dynamics, as long as attachment rates k+ (x, h) and krev

− (x, h)
vanish when h reaches the “boundary point”. The dynamics can be seen as a Markov process

(Xt, αt, ht) ∈ R× {0, 1} × Td,

the state variable αt indicating whether the head is attached or not. The SDE system for this
relative coordinate model reads

11
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dXt =
[
αtẋc(t)− (1− αt) η−1∂xwαt (Xt)

]
dt+ (1− αt)

√
2kBT
η dBt

+ (1− αt−)
∫

R+
ht−1u≤k+(Xt− ,ht−)N+ (dt,du)

+ αt−
∫

Td×R+
−h1u≤krev+ (Xt− ,h

′)N
rev
+ (dt,dh′, du)

+ αt−
∫

Td×R+
−h1u≤k−(Xt− ,h

′)N− (dt,dh′,du)

+ (1− αt−)
∫

R+
ht−1u≤krev− (Xt− ,ht−)N

rev
− (dt,du)

dαt = (1− αt−)
∫

R+
(1− 2αt−)1u≤k+(Xt− ,ht−)N+ (dt,du)

+ αt−
∫

Td×R+
(1− 2αt−)1u≤krev+ (Xt− ,h

′)N
rev
+ (dt,dh′,du)

+ αt−
∫

Td×R+
(1− 2αt−)1u≤k−(Xt− ,h

′)N− (dt,dh′, du)

+ (1− αt−)
∫

R+
(1− 2αt−)1u≤krev− (Xt− ,ht−)N

rev
− (dt,du)

dht = ẋc(t)dt− dXt in Td

(3.1)

As previously, four jumps have been introduced, see Fig. 3 provided they satisfy some detailed
balance condition (3.4), these jumps will be responsible for the thermodynamics consistency of
the model, as detailed in the next sections. These jumps are associated as previously to four
independent random measures:

• N+ and N rev
− are Poisson random measures on R+ × R+ with intensity dt ⊗ du. They

account for the jumps 0 → 1, where Xt jumps to Xt + ht− (the integrand within the
Poisson integral is indeed the jump amplitude).

• N− and N rev
+ are Poisson random measures on R+×T0

d×R+ with intensity dt⊗dh⊗du.
They account for the jumps 1→ 0, where a new value is chosen at random for ht (the law

of this choice being specified by the kernels k
rev
+ and k−, following the procedure detailed

in appendix A) and Xt jumps to Xt − ht. The assumed link between rates k+, k
rev
− and

krev
+ , k− is a detailed balance condition, which will be specified in the next sections.

Since no explosion has to be imposed on rates, well-posedness is directly obtained for this jump
diffusion process, as an application of [18, Theorem 2.1]. The only condition is that the rates
have to be bounded and Lipschitz on the torus. The Lipschitz condition can be verified on
[−d/2, d/2] and extended to the torus, provided ε > 0 exists such that k+ (x, h) and krev

− (x, h)

vanish for h outside of [−d/2 + ε, d/2− ε].

Remark 3.1 (Role of rates and kernels). Notice that the rates k+ and krev
− behave quite differently

from the kernel k− and k
rev
+ . Indeed, k+ and krev

− are jump rates for jumps 0 → 1 in αt (they

quantify the frequency of these jump events), while k− and k
rev
+ are kernels for the jump 1→ 0,

following the mechanism detailed in remark A.2 of appendix A.2: these kernels both contain the
corresponding jump rates

k−(x) :=

∫
Td

k− (x, h) dh krev
+ (x) :=

∫
Td

k
rev
+ (x, h) dh ,

together with the corresponding jump measures K−(x,dh) and Krev
+ (x,dh) such that

k−
(
x, h′

)
dh′ = k−(x)K−(x,dh′) k

rev
+

(
x, h′

)
dh′ = krev

+ (x)Krev
+ (x, dh′) .

3.2. PDE related system

As in section 2, it is now possible to derive a system of PDE for the joint law pt (dx, dα,dh) of
(Xt, αt, ht) at time t. This relies on computing the adjoint of the infinitesimal generator of the
Markov process ((Xt, αt, ht))t≥0. This generator sums the generators associated to each term of
the SDE, the Xt-diffusion leading to a parabolic term of the kind

− η−1∂xw0.∇+
kBT

η
∆ (3.2)

12
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In the current case of a jump diffusion process, the generator is made explicit in appendix A.
Assume that pt has a density with respect to the Lebesgue measures on R+ and the torus, so
that

pt(dx, 0,dh) = pt(x, 0, h)dxdh

pt(dx, 1,dh) = pt(x, 1)dxδ0(dh)

The second line involves a Dirac measure because ht = 0 as soon as αt = 1. The Fokker-Planck
system on pt eventually reads (note that existence of a density is not required to give a weak
sense to the following system)

∂tpt(x, 0, h) = −ẋc(t)∂hpt(x, 0, h)− 2kBT
η ∂x∂hpt(x, 0, h)

−∂h
[
η−1∂xw0 (x) pt(x, 0, h)− kBT

η ∂hpt(x, 0, h)
]

+∂x

[
η−1∂xw0 (x) pt(x, 0, h) + kBT

η ∂xpt(x, 0, h)
]

−
[
k+ (x, h) + krev

− (x, h)
]
pt(x, 0, h)

+
[
k−(x+ h, h) + k

rev
+ (x+ h, h)

]
pt(x+ h, 1)

∂tpt(x, 1) = −ẋc(t)∂xpt(x, 1)

−pt(x, 1)
∫

Td

[
k−(x, h′) + k

rev
+ (x, h′)

]
dh′

+
∫

Td

[
k+

(
x− h, h

)
+ krev
− (x− h, h)

]
pt
(
x− h, 0, h

)
dh

(3.3)

The second and the third line correspond to the diffusion operator (3.2), which stands for the dif-

fusion which drives dXt, and dht as well through the SDE. The cross differential−2kBT
η ∂x∂hpt(x, 0, h)

comes from the fact the Xt and ht are driven by the same brownian noise. Since the coefficients
of this linear PDE are Lipschitz continuous and bounded, well-posedness stems from the classical
references [36, 44] Integrating and summing both equations gives∫

R×Td

∂tpt(x, 0, h)dxdh+

∫
R
∂tpt(x, 1)dx = 0

which is the expression of mass conservation for the probability measure pt.

3.3. Thermodynamic balances

Thermodynamic balances can now be obtained as in section 2.1. The considered densities
pt(x, 0, h) and pt(x, 1) respectively quantify the probability for the system to be in the states
(x, 0, h) and (x, 1) at time t. They don’t directly correspond to the Huxley densities P0(s, t) and
P1(s, t) which were quantifying the conditional probability of being in state 0 or 1 knowing s.
The energy function of the system is now w (x, α, h) = 1α=0w0(x) + 1α=1w1(x) is associated to
the system (wα is the energy related to the state α).

Energy balance. As previously, the first principle of thermodynamics reads

d

dt
U(t) = Ẇ(t) + Ė(t) + Q̇(t)

where U(t) is the average (internal) energy of the system, the instantaneous power of external
efforts being

Ẇ(t) = ẋc(t)τc(t) := ẋc(t)

∫
R
∂xw1(x)pt(x, 1)dx

The ATP flux supplied by the external medium is

Ė(t) :=

∫
R×Td

[
µTk−(x, h)pt(x, 1)− krev

− (x, h)pt(x, 0, h)
]

dxdh

13
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and the exchanged heat now reads

Q̇(t) =−
∫

R×Td

(∂xw0(x))2 pt (x, 0, h) dxdh+
kBT

η

∫
R×Td

∂2
xxw0(x)pt (x, 0, h) dxdh

+

∫
R×Td

[w0(x)− w1(x)]
[
k

rev
+ (x, h)pt(x, 1)− k+(x, h)pt (x, 0, h)

]
dxdh

+

∫
R×Td

[w1(x) + µT − w0(x)]
[
krev
− (x, h)pt (x, 0, h)− k−(x, h)pt (x, 1)

]
dxdh

Compared to the model in section 2.1, two new terms involving w0 have appeared in the ex-
changed heat, due to the Langevin dynamics on x.

Free energy balance. The chemical state chemical potentials at time t are now

µ0
t (x, h) = w0 (x) + kBT ln pt (x, 0, h) µ1

t (x) = w1 (s) + kBT ln pt (x, 1)

Free energy is then as

F(t) =

∫
R×Td

µ0
t (x)pt (x, 0, h) dxdh+

∫
R
µ1
t (x)pt (x, 1) dx

As previously, using mass conservation

d

dt
F(t) =

∫
R×Td

µ0
t (x)∂tpt (x, 0, h) dxdh+

∫
R
µ1
t (x)∂tpt (x, 1) dx

= Ẇ(t) + Ė(t)− T Ṡprod(t)

where straightforward computations give

T Ṡprod(t) =η−1

∫
R×Td

(
∂xµ

0
t (x, h)− ∂hµ0

t (x)
)2
pt (x, 0, h) dxdh

+

∫
R×Td

[
µ0
t (x, h)− µ1

t (x+ h)
] [
k+(x, h)pt (x, 0, h)− krev

+ (x+ h, h)pt
(
x+ h, y, 1)

)]
dxdh

+

∫
R×Td

[
µ1
t (x) + µT − µ0

t (x− h, h)
] [
k−(x, h)pt (x, 1)− krev

− (x− h, h)pt
(
x− h, 0, h

)]
dxdh

In order the second law of thermodynamics to hold, it is necessary to check that Ṡprod(t) remains
non-negative. Following appendix B, this will be true provided the following detailed balance
conditions hold:

krev
+ (x)Krev

+

(
x, dh′

)
= exp

[
−w0(x− h′)− w1(x)

kBT

]
k+

(
x− h′, h′

)
dh′ (3.4)

k− (x)K−
(
x, dh′

)
= exp

[
−w0(x− h′)− w1(x)− µT

kBT

]
krev
− (x− h′, h′)dh (3.5)

Starting from the attached configuration, the detachment must choose the new ht after the jump
(the new position is then Xt−ht). The law K− (x,dh) is imposed by the above detailed balance
condition. The same holds for the reverse attachment jump and the law Krev

+ (x,dh). These jump
measures being normalized, this imposes

krev
+ (x) =

∫
Td

exp

[
−w0(x− h)− w1(x)

kBT

]
k+

(
x− h, h

)
dh (3.6)

k− (x) =

∫
Td

exp

[
−w0(x− h)− w1(x)− µT

kBT

]
krev
− (x− h, h)dh (3.7)

It is thus sufficient to know the rates k+ (x, h) and krev
− (x, h) to determine all the jump features.
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4. Model reduction

The next section is concerned with model reduction. The first part verifies that this relative
coordinate model recovers back the Huxley model when assuming the head stays in the fixed
window Td. The second part proposes an extension of the Huxley model to the whole real line:
the assumption of restricted window can be removed, up to adding some correction term.

4.1. Recovering the Huxley model back

The previous model is expected to recover in the Huxley system (2.9) in some suitable limit: to
do so, it must be assumed that Xt stays within the torus Td. In particular h is no more needed:
h can be directly considered, since everything now lives in Td. It is easy to introduce back the
closet site s in Td, considering the change of variable s = x+ h and

pt(x, α, s) = pt(x, α, s− x) for s in Td .

This leads
∂xpt(x, α, s) = ∂xpt(x, α, s− x)− ∂hpt(x, α, s− x)

∂2
xxpt(x, α, s) = ∂2

xxpt(x, α, s− x)− 2∂x∂hpt(x, α, s− x) + ∂2
hhpt(x, α, s− x) ,

and so on for the crossed-derivatives. Rewriting the system as

∂tpt(x, 0, s) = −ẋc(t)∂spt(x, 0, s)
+∂x

[
η−1∂xw0 (x) pt(x, 0, s) + kBT

η ∂xpt(x, 0, s)
]

−
[
k+ (x, s− x) + krev

− (x, s− x)
]
pt(x, 0, s)

+
[
k−(s, s− x) + k

rev
+ (s, s− x)

]
pt(s, 1)

∂tpt(s, 1) = −ẋc(t)∂spt(s, 1)

−pt(s, 1)
∫

Td

[
k−(s− h′, h′) + k

rev
+ (s− h′, h′)

]
dh

+
∫

Td

[
k+

(
x− h, h

)
+ krev
− (s− h, h)

]
pt
(
s− h, 0, h

)
dh

Following [7], there are two possible ways to recover from this a closed system like (2.9), which
only depend on s:

• Adiabatic elimination: this approach considers x to be at thermal equilibrium indepen-
dently of s, assuming

pt(x, 0, s) = pth
0 (x) pt(s, 0)

defining the equilibrium probability density pth
0 (x) := Z−1 exp

[
−w0(x)

kBT

]
, Z being the

adequate normalization constant. This suggests to consider the s-dependent rates

f(s) :=

∫
Td

[
k−(s, s− x) + krev

+ (s, s− x)
]
pth

0 (x) dx

g(s) :=

∫
Td

[
k−(s− h, h′) + k

rev
+ (s− h′, h′)

]
dh .

Integrating the above PDE system over s then exactly recovers (2.9).

• Direct elimination: let’s set

f(s) := k−(s, s− x) + k
rev
+ (s, s− x)

g(s) :=

∫
Td

[
k−(s− h, h) + krev

+ (s− h, h)
]

dh ,

assuming that k−(s, s− x) + krev
+ (s, s− x) only depends on s. Considering now

pt(s, 0) :=

∫
Td

pt(x, 0, s)dx

and integrating the PDE system over s then recovers (2.9) too.

Note however that this limit imposes to face the difficulties explained in the introduction, because
Xt has to be constrained to stay within Td.
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4.2. A reduced model which generalizes the Huxley one

The current model allows more general (and physiologically relevant) displacements, since Xt

can now move on the whole real line. The counterpart is the need for two variables Xt, ht in
order to describe the αt = 0 dynamics: the convenient shortcut st is not directly available, since
its domain is now x-dependent. Nonetheless, some simplifications are still possible, allowing to
derive an analog of the Huxley model (parameterized by st only) which would stay valid on the
whole real line. Introducing the Huxley parameter s = x+ h and the related densities

p0
t (s, h) := pt(s− h, 0, h) p1

t (s) := p1
t (s, 1)

For −d/2 < h < +d/2, this change of variable leads to

∂hp
0
t (s, h) = −∂xpt(s− h, 0, h) + ∂hpt(s− h, 0, h) ,

and other derivatives can be computed in the same way, to rewrite the system as

∂tp
0
t (s, h) = −ẋc(t)∂hp0

t (s, h)− ẋc(t)∂sp0
t (s, h)

−∂h
[
η−1∂xw0

(
s− h

)
p0
t (s, h)− kBT

η ∂hp
0
t (s, h)

]
−
[
k+

(
s− h, h

)
+ krev
− (s− h, h)

]
p0
t (s, h)

+
[
k−(s, h) + k

rev
+ (s, h)

]
p1
t (s)

∂tp
1
t (s) = −ẋc(t)∂xp1

t (s)

−p1
t (s)

∫
Td

[
k−(s, h′) + k

rev
+ (s, h′)

]
dh′

+
∫

Td

[
k+ (s− h, h) + krev

− (s− h, h)
]
p0
t (s, h)dh

The density p0
t can now be searched as a continuous function on R× (−d/2, d/2) that solves the

above PDE system adding a “periodic boundary condition”

lim
h→−d/2
h>−d/2

p0
t (s, h) = lim

h→+d/2
h<+d/2

p0
t (s+ d, h)

By continuity, p0
t (s, h) and its derivatives can then be extended to h = ±d/2 such that

p0
t (s,−d/2) = p0

t (s+ d, d/2). (4.1)

This extension accounts for the situation where the actin head x is equally far from two actin
sites: since x = s− h having (s,−d/2) or (s+ d, d/2) corresponds to the same situation and the
same value of x. Integrating over h the equation on p0

t (s) now gives the exact relation∫
Td
∂tp

0
t (s, h)dh = −ẋc(t)

[
p0
t (s, d/2)− p0

t (s,−d/2)
]
− ẋc(t)∂sp0

t (s)

−η−1
[
∂xw0 (s− d/2) p0

t (s, d/2)− ∂xw0 (s+ d/2) p0
t (s,−d/2)

]
+kBT

η

[
∂hp

0
t (s, d/2)− ∂hp0

t (s,−d/2)
]

−
∫

Td

[
k+(s− h, h) + krev

− (s− h, h)
]
p0
t (s, h)dh

+p1
t (s)

∫
Td

[
k−(s, h) + k

rev
+ (s, h′)

]
dh′

(4.2)

and thanks to the periodicity relation (4.1), the first three lines become:

−ẋc(t)
[
p0
t (s, d/2)− p0

t (s+ d, d/2)
]
− ẋc(t)∂sp0

t (s)
−η−1

[
∂xw0 (s− d/2) p0

t (s, d/2)− ∂xw0 (s+ d/2) p0
t (s+ d, d/2)

]
+kBT

η

[
∂hp

0
t (s, d/2)− ∂hp0

t (s+ d, d/2)
] (4.3)

As in section 4.1, a possible way to recover a closed system in the only variable s is now the
adiabatic elimination of h given s, assuming that

p0
t (s, h) = p0

t (s)p
th
0 (h|s) pth

0 (h|s) =
1

Z0(s)
exp

[
−w0 (s− h)

kBT

]
, (4.4)

where the thermalized density pth
0 stands for the conditional law of h given s, whose partition

function is defined as

Z0(s) :=

∫ d/2

−d/2
exp

[
−w0(s− h)

kBT

]
dh . (4.5)
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Note that since this closure assumption is only an approximation, the periodicity relation (4.1)
won’t be verified anymore. Our h-reduced model results from this approximation, which mimics
the dynamics (t, s) 7→ p0

t (s), p
1
t (s). We define moreover

f(s) :=

∫
Td

[
k+(s− h, h) + krev

− (s− h, h)
]
pth

0 (h|s)dh g(s) :=

∫
Td

[
k−(s, h′) + k

rev
+ (s, h′)

]
dh′ .

(4.6)
Considering h to be at thermal equilibrium allows to cancel the diffusion terms in (4.2), leading
to the following system:

∂tp
0
t (s) = −ẋc(t)

[
pth

0 (d/2|s)p0
t (s)− pth

0 (d/2|s+ d)p0
t (s+ d)

]
− ẋc(t)∂sp0

t (s)

−f(s)p0
t (s) + g(s)p1

t (s)

∂tp
1
t (s) = −ẋc(t)∂sp1

t (s)− g(s)p1
t (s) + f(s)p0

t (s),

(4.7)

which is the desired generalization of the Huxley system (2.9) to the full real line.

Remark 4.1 (An alternative direct elimination). Keeping the same g(s), an alternative elimina-
tion analogous to section 4.1 would have been to directly assume that

f(s) := k+ (s, h) + krev
− (s, h)

no more depends on h. Define then the marginal distribution

p0
t (s) :=

∫
Td

p0
t (s, h)dh ,

whose time-evolution is given by (4.2). To turn (4.2) into a closed equation on p0
t (s), values have

to be postulated for p0
t (s, d/2) and ∂hp

0
t (s, d/2). Since p0

t (s, d/2) and ∂hp
0
t (s, d/2) are going to be

replaced by plausible approximate values, the periodicity relation (4.1) won’t be (exactly) veri-
fied anymore. A natural choice here (but others would be possible too) would be at h = ±d/2 to
use the values given by the adiabatic elimination (4.4), giving the same system as (4.7), but with
a slightly different coefficient g(s). Assuming as above, that the whole h-density is thermalized,
seems more consistent though.

Remark 4.2 (Interpretation of the correction term). The terms, which involve p0
t (s, d/2) =

pth
0 (d/2|s) p0

t (s), are reminiscent of the periodicity relation (4.1) and the fact a myosin head
doesn’t discriminate sites which are equally far from it. If a site located at s translates with
positive speed ẋc(t) > 0 (to fix ideas), it is no longer the closest site to myosin heads which
were located at x = s − d/2, hence the loss of the related probability mass and the term
−ẋc(t)p0

t (s, d/2). In the same way, the actin site located at s+ d translates and is no more the
closest site to myosin heads located at x = s+ d/2: for such a site, the closest becomes the one
which was in s, hence a gain of probability mass and the term +ẋc(t)p

0
t (s+ d, d/2).

Remark 4.3 (Loss of the periodicity relation). As explained above, the periodicity relation (4.1) is
now lost, because the obtained system is only an approximation of the exact marginal dynamics
(4.2). If this relation were true, this would read for the closure choice (4.4):

Z−1
0 (s)p0

t (s) = Z−1
0 (s+ d)p0

t (s+ d) (4.8)

The fact this relation is not true will later give insights on the thermodynamic balances.

Remark 4.4 (A jump interpretation for the correction term). As explained in remark 4.2, the
correction term

−ẋc(t)
[
pth

0 (d/2|s)p0
t (s)− pth

0 (d/2|s+ d)p0
t (s+ d)

]
appearing in (4.7) stands for the fact that if a site s translates with positive speed ẋc(t) > 0, it
will no longer be the closest site to myosin heads located at x = s− d/2 (but s− d becomes this
site), hence a loss of a probability mass to the site located at s− d (and a gain from the one at
s + d). To subtract the right probability mass, one needs to know the probability for a myosin
head to be at x = s− d/2, i.e. the probability for h to equal d/2 given an actin site in s. With
the choice (4.4), this quantity is precisely pth

0 (d/2|s), hence the related weight.
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If the energy function w0 is convex, one can check that s 7→ pth
0 (d/2|s) decreases provided s is

large enough: this is reminiscent of the Xt-dynamics. Indeed, the variable s on the real line is not
allowed to escape too far from the origin, since it is the location of the closest site to the myosin
head, and no more a given reference actin site. Although the Xt variable has been eliminated,
the myosin head Xt was evolving in the confinement potential w0, and this feature is recovered
there in the resulting s-dynamics. This will also appear in the detailed balance conditions for
(4.7).
Finally, since the correction term only corresponds to a mass transfer of s to s− d, it is possible
to write a SDE interpretation of this system, using a new Poisson random measure Ncorr(dt,du)
on R+ × R+ with intensity dt⊗ du (independent of the other ones):

dαt = (1− αt−)
∫

R+
(1− 2αt−)1u≤f(st−)N+ (dt,du)

+αt−
∫

R+
(1− 2αt−)1u≤g(st−)N− (dt,du)

dst = ẋc(t)dt− (1− αt−)
∫

R+
d1u≤ẋc(t)pth0 (d/2|st− )Ncorr (dt,du) in R

(4.9)

This additional jump on st stands from this probability mass transfer as long as st translates
with speed ẋc(t) > 0. This provides a SDE representation for the Huxley-like system (4.7).

Remark 4.5 (Case of a negative speed). Assume now that ẋc(t) < 0. The PDE system (4.7) still
makes sense, but the related SDE interpretation (4.9) no longer holds because the jump rate
ẋc(t)p

th
0 (d/2|st−) of the Poisson clock is no longer positive. If one wants to keep this interpretation

(which is useful for numerical simulations), it is possible to write an alternative version of the
model in this case. Going back to (4.2) and using the periodicity relation (4.1), one can write
alternatively to (4.3):

−ẋc(t)
[
p0
t (s− d,−d/2)− p0

t (s,−d/2)
]
− ẋc(t)∂sp0

t (s)
−η−1

[
∂xw0 (s− d/2) p0

t (s− d,−d/2)− ∂xw0 (s+ d/2) p0
t (s,−d/2)

]
+kBT

η

[
∂hp

0
t (s− d,−d/2)− ∂hp0

t (s,−d/2)
]

Applying now the same closure choice (4.4), this suggests an alternative to (4.7) where the
correction term has been replaced by

−ẋc(t)pth
0 (−d/2|s− d)p0

t (s− d) + ẋc(t)p
th
0 (−d/2|s)p0

t (s)

Since the coefficient ẋc(t)p
th
0 (−d/2|s) is now negative, this admits the SDE representation

dαt = (1− αt−)
∫

R+
(1− 2αt−)1u≤f(st−)N+ (dt,du)

+αt−
∫

R+
(1− 2αt−)1u≤g(st−)N− (dt,du)

dst = ẋc(t)dt+ (1− αt−)
∫

R+
d1u≤−ẋc(t)pth0 (−d/2|st− )Ncorr (dt,du) in R

The correction jump s → s − d has thus been replaced by a jump s → s + d. Note that this
approach would be equivalent to the previous one if the periodicity relation (4.8) were true for
the approximated model (4.7).

Remark 4.6 (Conditional Huxley-like densities). The densities p0
t and p1

t respectively quantify
the probability for the system to be in state (0, s) and (1, s): those aren’t the conditional densities
P0(s, t) and P1(s, t) of being in states 0 and 1 when already knowing s. Since the marginal law
pst = p0

t +p1
t of s can’t be determined alone anymore (see (4.10) in the next section), these latter

conditional densities, defined by

P0(s, t) :=
p0
t (s)

pst (s)
P1(s, t) :=

p1
t (s)

pst (s)

become of second interest. It is not directly possible to write an evolution PDE for them (but it
would be possible if the periodicity relation (4.8) was true). However, they can still be computed
from the above relations, after computing p0

t and p1
t .

4.3. Reduced thermodynamic balance

Let us now establish the physical and chemical properties of the reduced model (4.7).
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Mass conservation and s-dynamics. The s-dynamics is no more a pure translation because
of the correction term which induces a jump (s stands for the closest site to the moving myosin
head), and it is given by the s-marginal pst := p0

t + p1
t . Its evolution can be obtained summing

the equations in (4.7):

∂tp
s
t (s) = −ẋc(t)∂spst (s)− ẋc(t)

[
pth

0 (d/2|s)p0
t (s)− pth

0 (d/2|s+ d)p0
t (s+ d)

]
(4.10)

It isn’t a closed equation, and there is no more uniform distribution for s since it now lives in
the whole real line R. The mass conservation∫

R
p0
t +

∫
R
p1
t = 1

can be recovered by integration over s, since∫
R
pth

0 (d/2|s)p0
t (s)ds−

∫
R
pth

0 (d/2|s+ d)p0
t (s+ d)ds = 0 , (4.11)

using a change of variable.

Detailed balance conditions. The energies driving the dynamics (3.1) were w0(x) and w1(s),
w0 being a function of x = s− h. To use the s variable as the only parameter for the dynamics,
w0 has to be replaced by a suitable energy functional w0(s). Since h has been thermalized, s
is considered as the leading reaction coordinate, and it is natural to consider the related free
energy

w0(s) := −kBT lnZ0(s)

together with the attached-state energy w1(s) := w1(s). The energy w0 was involved in the
detailed balance condition for jump rates k+

(
s− h, h

)
and krev

− (s− h, h), together with kernels

k−(s, h) and k
rev
+ (s, h), and the compatibility of w0 with the new jump rates

∫
Td
k+(s, h)pth

0 (h|s)dh,∫
Td
krev
− (s, h)pth

0 (h|s)dh,
∫

Td
k−(s, h)dh and

∫
Td
k

rev
+ (s, h)dh must now be checked. The previous

w0-related detailed balance conditions (3.7) and (3.6) now read

k
rev
+ (s, h) = exp

[
−w0 (s− h)− w1 (s)

kBT

]
k+(s, h)

k−(s, h) = exp

[
−w0 (s− h)− w1 (s)− µT

kBT

]
krev
− (s, h)

To recover the rate (4.6), it is natural to integrate over h. Using the definitions (4.4) and (4.5):∫
Td

k
rev
+ (s, h)dh = Z0(s) exp

[
w1 (s)

kBT

] ∫
Td

k+(s, h)pth
0 (h|s)dh

= exp

[
−w0(s)− w1 (s)

kBT

] ∫
Td

k+(s, h)pth
0 (h|s)dh

and similarly∫
Td

k−(s, h)dh = exp

[
−w0(s)− w1 (s)− µT

kBT

] ∫
Td

krev
− (s, h)pth

0 (h|s)dh

and this gives desired detailed balance conditions with respect to w0, which must be satisfied
by the components of (4.6).

Energy balance. Let’s now compute the time-derivative of the internal energy

U(t) :=

∫
R

[
w0 (s) p0

t (s) + w1 (s) p1
t (s)

]
ds
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to recover the first principle of thermodynamics. The contributions are the same as in section
2.1, except for the contribution due to the correction term, which gives:

−ẋc(t)
∫

R
w0(s)

[
pth

0 (d/2|s)− pth
0 (d/2|s+ d)

]
p0
t (s)ds

=− ẋc(t)
∫

R
w0(s)

[
pth

0 (d/2|s)− pth
0 (−d/2|s)

]
p0
t (s)ds

− ẋc(t)
∫

R
w0(s)

[
pth

0 (−d/2|s)− pth
0 (d/2|s+ d)

]
p0
t (s)ds

=− ẋc(t)
∫

R
−kBT lnZ0(s) [−∂s lnZ0(s)] p0

t (s)ds

− ẋc(t)
∫

R
exp

[
−w0(s− d/2)

kBT

] [
p0
t (s)

Z0(s)
− p0

t (s− d)

Z0(s− d)

]
ds ,

using the identity

∂sZ0(s) =

∫ d/2

−d/2
−∂h exp

[
−w0 (s− h)

kBT

]
= −Z0(s)

[
pth

0 (d/2|s)− pth
0 (−d/2|s)

]
.

Finally, the first principle reads

d

dt
U(t) = ẋc(t)

∫
R
∂s

[
w0(s)− w2

0(s)

2kBT

]
p0
t (s)ds

− ẋc(t)
∫

R
exp

[
−w0(s− d/2)

kBT

] [
p0
t (s)

Z0(s)
− p0

t (s− d)

Z0(s− d)

]
ds

+ ẋc(t)τc(t) + Ė(t)−
∫

R
[w0(s)− w1(s)]

[
k+(s)p0

t (s)− p1
t (s)

∫
Td

k
rev
+ (h′, s)dh

]
ds

−
∫

R
[w1(s) + µT − w0(s)]

[
p1
t (s)

∫
Td

k−(h′, s)dh′ − krev
− (s)p0

t (s)

]
ds

The power of external efforts

Ẇ(t) := ẋc(t)τc(t) +

∫
R
∂s

[
w0(s)− w2

0(s)

2kBT

]
p0
t (s)ds

is the energy required for the displacement of the myosin head in the energy landscape w1(s)
and w0 (the closest site s to head x now appears, and no more x itself, because s is the only left
variable). However, the myosin head x doesn’t energetically behave like an actin site because it
undergoes a spring-like effort which pulls it back to the origin, and this must be recovered in
the dynamics of the closest site s to x. This motivates the quadratic correction to the consumed
energy w0(s): less energy is needed since the correction term prevents the head from escaping
too far from the origin (this due to the weight pth

0 (d/2|s), see remark 4.4). The second line of
the first principle would be zero if the periodicity relation (4.8) were true. However, this not the
case, because of the approximation induced by the closure choice (4.4). This energy contribution
is thus an artificial extra term due to the approximation error.

Free energy balance. As previously, chemical potentials can be defined by

µ0
t (s) = w0(s) + kBT ln p0

t (s) µ1
t (s) = w1 (s) + kBT ln p1

t (s) ,

and free energy reads

F(t) =

∫
R
µ0
t (s)p

0
t (s) + µ1

t (s)p
1
t (s)ds .

Using mass conservation, its time-derivative is

d

dt
F(t) =

∫
R
µ0
t (s) ∂tp

0
t (s) + µ1

t (s) ∂tp
1
t (s)ds .
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All the computations for the Huxley system have been done previously in section 2.1, and the
only difference when using (4.7) comes from the correction term which adds the contribution

−ẋc(t)
∫

R
µ0
t (s)

[
pth

0 (d/2|s)− pth
0 (d/2|s)

]
p0
t (s+ d)ds

Since w0(s) = −kBT lnZ0(s), one gets µ0
t (s) = kBT ln

[
Z−1

0 (s)p0
t (s)

]
and the above term reads

−ẋc(t)kBT
∫

R
exp

[
−w0(s− d/2)

kBT

]
ln

[
p0
t (s)

Z0(s)

(
p0
t (s− d)

Z0(s− d)

)−1
]

ds .

At this point, we see the effect of the approximation which has been made to obtain the closed
system (4.7). If the periodicity relation (4.8) were true, this writing shows that the above contri-
bution would vanish (as expected from this mass re-equilibrium term which is a writing artifact
and doesn’t correspond to any physical jump). However, this relation isn’t true because of the
closure choice (4.4) which only leads to an approximation of (4.2). This approximation intro-
duces an additional entropy contribution, which would be zero in the exact setting (maybe
cleverer closure choices allow to keep this features, but then the authors didn’t manage to find
them). Moreover, the sign of this contribution depends on the one ẋc(t), and this doesn’t permit
a systematical accordance with the Second Law.

Remark 4.7 (Towards a correction of the free energy balance). Although it seems difficult to
remove the term in this balance due to the approximation error, it would be satisfying to make
its sign respect the second Law. To do so, one could think about adding a reverse jump to the
dynamics, which would compensate its effect. Such a possible correction is to consider

∂tp
0
t (s) = −ẋc(t)

[
pth

0 (d/2|s)p0
t (s)− pth

0 (d/2|s+ d)p0
t (s+ d)

]
−ẋc(t)

[
pth

0 (−d/2|s)p0
t (s)− pth

0 (−d/2|s− d)p0
t (s− d)

]
−ẋc(t)∂sp0

t (s)− f(s)p0
t (s) + g(s)p1

t (s)
,

which leads to the entropy contribution in the free energy∫
R

[
µ0
t (s− d)− µ0(s)

] [
pth

0 (d/2|s)p0
t (s)− pth

0 (−d/2|s− d)p0
t (s− d)

]
≤ 0 .

Provided ẋc(t) ≤ 0, this is indeed non-positive because of the detailed balance condition:

p0
t (s)

p0
t (s− d)

=
Z0(s− d)

Z0(s)
= exp

[
−w0(s− d)− w0(s)

kBT

]
.

However, the physical relevance of this ratio remains unclear, because privileging either the jump
s→ s− d or s→ s+ d to re-equilibrate mass seems quite arbitrary.

5. Numerical illustrations

We now present a calibration of our newly introduced hierarchy of models and show its capabil-
ity to reproduce key indicators of the cardiac muscle contraction physiology. Our target for the
calibration is two categories of fundamental physiological modes of contraction: the isometric
contraction – contraction mode in which the relative sliding of the actin and myosin filament is
prevented in the experimental setup – and the steady-state contraction at constant shortening
velocity. More precisely, we target the ratio of attached myosin heads and the force per attached
myosin head during isometric contraction and the force-velocity curve in steady-state conditions
(where the macroscopic force T is normalized that the isometric macroscopic force T0, see Fig-
ure 4). These two modes of contraction have historically been used to characterize the behavior
of muscles [21] and are key features of the physiology at the heart level in the isovolumetric
contraction phase and ejection phase, respectively.

5.1. Model calibration

To calibrate the models, one needs to provide the actin inter-site distance d, the attached and de-
tached state energy potential w1(x) and w0(x) and the attachment rates k+(x, h) and krev− (x, h).
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Figure 4. h-model parameter functions. (a) Attached energy potential w1 and
detached energy potential w0. (b) Attachment rate. (c) Detachment rate. Expres-
sions and parameters values can be found in Table. 2.

Note that the detachment rates k+(x, h) and krev− (x, h) result from the attachment rates and
energy potentials through the detailed balance equations (3.6) and (3.7).

We describe here the main principles that have guided the calibration process. A detailed
presentation of the chosen model elements expressions and the model parameters values is given
in Table 2 and illustrated in Figure 4 for the h-model and in Figure 6 for the h-reduced model.

The actin filament is made of a double helix of actin monomers that is covered by tropomyosin
proteins whose length corresponds to the helix periodicity and which drive the muscle activation
by uncovering the actin sites [34]. This gives rise to two paradigms that are both used in the
literature for the choice of the inter-site distance: the actin filament helix periodicity (∼40 nm)
[15, 52, 54, 38, 8, 31] – this paradigm is selected in this paper – or the size of the actin monomer
(∼5.5 nm) [47, 3].

The chosen isometric indicators – the ratio of attached heads ňa and the force per attached
head τ̌c – bring constraints on the transitions rates and the attached energy potential. These
indicators for the h-model are given by

ňa =

∫
R
p∞(x, 1)dx, and τ̌c =

1

ňa

∫
R
∂xw1(x)p∞(x, 1)dx,

where p∞(x, 1) = limt→∞ pt(x, 1) in isometric conditions (ẋc = 0). On the one hand, the ratio of
attached heads is driven by the attachment-detachment process and thus the associated rates.
On the other hand, as with the Huxley–Hill model family, the model produces a positive active
force τc by having myosin heads attached in a stretched configuration. The force per attached
head thus constraints the choice of the myosin heads attached stiffness and the attachment rate
so that attachment is favored in regions where positive force is generated.

The reduction of macroscopic force with the sliding velocity in a steady-state contraction,
which is summarized by the classical force-velocity curve, results from the competition between
force reduction due to variations of the attached myosins extension and the cycling process.
Indeed, the filament sliding moves the attached myosin heads towards a compression range
where they potentially contribute negatively to the macroscopic force (τc < 0). The detachment
process allows these counter-productive myosin heads to detach and to re-attach in a position
where they now contribute positively to the macroscopic force (τc > 0).

The attachment rate is thus set so that myosin heads can attach when x lies in an interval
of positive values and when they are close to their nearest actin site, i.e. when h belongs to
a limited interval in absolute value, see Figure 4 (b). Following recent works [8, 31, 45], we
choose a regularized double well potential for the attached potential w1, see Figure 4 (a). Few
experimental data are available to guide the calibration of the detached potential w0. We thus
choose the same form as the attached potential and set the energy wells such that the detached
myosin heads are attracted towards the region where they can attach.
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Table 1. Isometric physiological indicators: ratio of attached heads and force
per attached head. The experimental values are obtained from rat cardiac iso-
metric experiments. The ratio of attached head is taken from [4]. The force per
attached head is derived from the data given in [49] considering that the average
macroscopic force scale linearly with the ratio of attached heads.

Isometric indicators Experiments h-model h-reduced model
Ratio of attached heads 0.15 0.150 0.276
Force per attached head 6.14 pN 6.28 pN 5.73 pN

Given the constraints brought by the isometric indicators, the force-velocity curve will mainly
add constraints on the detachment rates imposing that the myosins detach when they operate in
compression. Given the detailed balance relation (3.7), this translates into the definition of krev−
as a non-zero function when h belongs to a limited interval in absolute value and the myosin
head is in compression, see Figure 4(c).

5.2. h-model

We first present the results obtained with the h-model. Equations (3.1) are simulated with
a standard Euler-Maruyama method for the transport, drift and diffusion terms [10] and the
scheme presented in Appendix A for the jump terms. The isometric indicators (obtained with
ẋc = 0) are summarized in Table 1. The force-velocity curve is presented in Figure 5.
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Figure 5. Evaluation of the calibrated h-model prediction against experimental
data. Experimental data are obtained with rat cardiac intact muscles cells around
25 °C, see [33] Figure 4(a) for more details. Note that for low shortening velocities
(ẋc < 0.5 µm s−1), experimental data display instabilities [12, 13, 56, 19], which
are classically the subject of dedicated experimental investigations. Reproducing
this behavior is out of the scope of this paper. Model predictions is this regime
are thus not considered.

The physiological indicators simulated with the h-model show a good agreement with the
experiment data.

5.3. h-reduced model

To assess the impact of the modeling assumptions used to derive the h-reduced model (see Sec-
tion 4.2), we compare the model predictions against that of the h-model. The h-reduced model
parameters functions and parameters – energy potentials, transition rates, ... – are straightfor-
wardly determined through the model reduction process, see Section 4.2. To assess the impact of
the modeling assumptions used to derive the h-reduced model (see Section 4.2), we compare the
model predictions against that of the h-model. The h-reduced model parameters functions and
parameters – energy potentials, transition rates, ... – are straightforwardly determined through
the model reduction process, see Section 4.2. They are presented in Figure 6. One can note that
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the detached energy potential appears naturally in the model reduction process as a flat func-
tion in the range of ”moderate” values of the variable s. This can be related to the Huxley–Hill
models, in which the detached potentials are constants.

The physiological indicators of the h-reduced model are given by

ňa =

∫
R
p∞(s, 1)ds, and τ̌c =

1

ňa

∫
R
∂sw1(s)p1

∞(s)ds,

where p1
∞(s) = limt→∞ p

1
t (s) in isometric conditions (ẋc = 0). Table 1 presents a comparison of

the physiological indicators and Figure 7 of the force-velocity relation.
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Figure 6. h-reduced model parameter functions. (a) Attached energy potential
w̄1 and detached energy potential w̄0. (b) Transitions rates.
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Figure 7. Comparison of the force-velocity for the relative coordinate model
and the Huxley generalized reduced model.

The ratio of attached heads of the h-reduced model displays a 84 % increase in comparison with
the h-model while the forces per attached heads remain close to each other and the normalized
force-velocity curves of the two models also show a good agreement. This means that the reduced
model favors more the attachment of myosin heads but that the behavior of attached heads is
relatively unaffected by the model reduction process. This can be explained by the fact that the
thermalization procedure used to obtain the attachment rate f is a convolution operator that
spreads the support of the function f compared to that of k+ allowing attachment in a region
where the detachment rate g is very low thus favoring the attached configuration compared to
the h-model. The calibration should be fine-tuned so that the detachment rate baseline is higher
in this region.

6. Conclusion

In this work, we introduced a novel modeling framework of the acto-myosin interaction, which
represents an alternative to the seminal Huxley–Hill framework. A jump-diffusion stochastic
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model is proposed. It describes the myosin state by its attachment state, the extension of the
myosin neck and the distance to the nearest actin site relatively to the current myosin tip po-
sition. Unlike Huxley–Hill formulations, which describe the actin site from the anchor position,
no restriction of the myosin extension in the detached state must be imposed. The new frame-
work thus accounts for a wider class of physiological configurations without resorting to a more
complex multi-site framework. A reduced version is derived from an adiabatic elimination of
fast variables. This reduced model can be seen as an extension of the Huxley–Hill framework
to the full real line, independently of the inter-site distance. The compatibility of both newly
introduced models with the thermodynamics principles is established at each step of the models’
derivation.

With its eulerian parametrization being closer to the actual molecular configuration, our novel
framework paves the way to the introduction of modeling bricks that capture refined molecular
features of the actin-myosin interaction.

Appendix A. About jump processes and Poisson random measures

This section provides some (non-rigorous) mathematical reminders: it briefly explains to a reader,
maybe not familiar with these mathematical notions, how to model jump processes using Poisson
random measures, and how their generator can be recovered from them.

A.1. Pure jump process and their numerics

Given a measured (state) space E, a pure Markov, càdlàg (i.e. right-continuous with left-limits),
pure jump process (αt)t≥0 can be built from the specification of:

• A rate function k, which dictates the frequency of jumps.

• A jump probability measure K (x,dx′) which dictates, at a jumps time t, the law of the
(random) choice of the value αt = x′, starting from αt− = x just before the jump.

The convention is adopted here to tag the arrival variables with a prime. Let pt be the law of
αt at time t, i.e. the probability measure on E which quantifies the likelihood of values taken
by αt. For regular test functions ϕ (see e.g. [35] for rigorous definitions and justifications), one
then has

d

dt
E [ϕ (αt)] =

d

dt

∫
E
ϕdpt =

∫
E
Lϕdpt = E [Lϕ (Xt)] , (A.1)

the operator L being the infinitesimal generator of the Markov process (αt)t≥0. It is defined by

Lϕ(x) = k(x)

∫ [
ϕ(x′)− ϕ(x)

]
K(x,dx′)

Using the duality measure-function, one can define a dual operator L? on measures by∫
E
ϕd (L?pt) :=

∫
E
Lϕdpt

Since

E [Lϕ (αt)] =

∫
E
k(x)

∫
E

[
ϕ
(
x′
)
− ϕ (x)

]
K
(
x,dx′

)
pt (dx,dα)

= −
∫
E
ϕ (x) k (x) pt (dx) +

∫
E
ϕ
(
x′
)(∫

E
k(x)K

(
x, dx′

)
pt (dx)

)
one gets

L?pt (dx) = −k (x) pt (dx) +

∫
E
k(x′)K

(
x′, dx

)
pt
(
dx′
)

Equations (A.1) gives the dual master equation

d

dt
pt = L?pt

25



L.-P. Chaintron, M. Caruel, & F. Kimmig

In case E = R, when both pt(dx) = pt(x)dx and K(x,dx′) = K(x, x′)dx′ admit a density with
respect to the Lebesgue measure, this is the integral equation governing the evolution of pt:

∂tpt(x) = −k(x)pt(x) +

∫
E
k(y)K(x′, x)pt(x

′)dx′

Seeing pt(x)dx as the number of individual agents in the state x, this means that during a time
interval dt:

• A fraction k(x)dt of these agents jump to another state.

• For each x′, a fraction k(x′)K(x′, x) of the agents in state x′ jump to the state x.

These behaviours correspond to each term of the evolution equation.
To perform some Monte-Carlo simulation of the density pt, one needs to simulate N indepen-

dent realizations α1
t , . . . , α

N
t of the process αt, to then write

E [ϕ (αt)] '
1

N

N∑
i=1

ϕ
(
αit
)

following the law of large numbers. To build such a realization αit, it is possible to use a Pois-
son clock, which counts the number of occurrences of independent events with exponentially
distributed waiting time (see [10]). Consider indeed a sequence (en)n∈N of independent unit
exponential random variables. The sequence (Tn)n∈N of jump times for the process (Xt)t≥0 is
then defined by induction from this jump clock: initializing at T0 = 0, the (n+ 1)-th jump time
knowing the n-th is given by

Tn+1 = inf {t > Tn , k (αTn) (t− Tn) ≥ en} (A.2)

At the jump time Tn+1, the value of αTn+1 is then chosen according to the jump measure
K (αTn , dx). This algorithm provides numerical simulations for αt, but it doesn’t give a compact
representation of the process by an equation. More precisely, one would like a continuous object
which describes the increment dαt of αt at time t, using its most recent past value αt− . The
adequate tool is the quite theoretical notion of Poisson random measure, whose formal definition
is sketched in next subsection.

A.2. Poisson random measures

Detailed mathematical references for the content of this section can be found in e.g. [29],[?] or
[1]. Let us fix a filtered probability space (Ω,F , (Ft)t,P).

Definition A.1 (Poisson random measure). Let (E,µ) be a measurable Polish with a σ-finite
measure µ on the borelian σ-algebra. A Poisson random measure with intensity µ is a random
variable N on Ω with values in the set of probability measures on E such that:

(1) For each ω ∈ Ω, N(ω, ·) is a finite measure which can be expressed as a countable sum
of Dirac measures.

(2) The mapping ω ∈ Ω 7→ N(ω,A) is measurable for any measurable set A which is µ-finite.

(3) For disjoints measurable and µ-finite sets A1, . . . , Ak, the random variables N(Aj), for
1 ≤ j ≤ k are independent, and N(Aj) obeys a Poisson law on N with parameter µ(Aj).

Let’s only consider the case E = R+ × U and µ(dt,du) = dt ⊗ ν(du), for some parameter
space U . To write stochastic differential equations, the Poisson random measure N is assumed
to be adapted, i.e:

(1) N(A) is Ft-measurable for each measurable set A ⊂ [0, t]× U , for t > 0

(2) The σ-field generated by {N(A), A ⊂ [0, t]× U measurable } is independent of Ft.
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When ν (U) < +∞, (N((0, t]× U))t≥0 is a classical Poisson process with parameter ν(U), and
N can be shown to admit the representation:

N(dt,du) =
M∑
n=1

δ(Tn,un)(dt,du),

where M is the (random) number of jumps in the interval (0, t], and T1, . . . , TM are the jump
times of Nt(U); the ui are moreover i.i.d. variables with common law ν(du)/ν(U). For a mea-
surable function ϕ : R+ × U → R, the integral of ϕ against N is then defined as∫ T

0

∫
U
ϕ(s, u)N(ds, du) :=

M∑
n=1

ϕ(Tn, un).

This integral is thus the sum of the random amplitudes ϕ(Tn, un) at each jumping time Tn, and
this still holds when ϕ is a random function (i.e. ϕ additionally depends on ω). This construc-
tion can be extended to parameter sets U with σ-finite ν-measure, provided some L1 bound
assumption:

E

[∫ t

0

∫
U
|ϕ(s, u)|ν(du)ds

]
< +∞

The natural framework for these measures (and more generally stochastic integration) is a L2

bound assumption, but this goes beyond the scope of what is needed here (see the aforementioned
references for rigorous constructions). A property inherited from the construction is the fact that∫ t

0

∫
U
ϕ(s, u)N(ds, du)−

∫ t

0

∫
U
ϕ(s, u)ν(du)ds,

is a Ft-martingale (in fact, it characterizes N). As a consequence, a process (αt)t≥0 defined by
the stochastic equation

αt =

∫ t

0

∫
U
c(αs− , u)N(ds, du)

is a Markov process with generator

Lϕ(x) =

∫
U

[ϕ(x+ c(x, u))− ϕ(x)] ν(du)

and the definition of αt can be re-written as

dαt =

∫
U
c(αt− , u)N(dt,du) (A.3)

which is a stochastic differential equation(SDE).

Remark A.2 (Case of absolutely continuous jump measures). If instead one wants to build a
Markov process whose generator is given by a kernel (x, y) 7→ k(x, y) such that

Lϕ(x) =

∫
R

[
ϕ(x+ c(x, x′))− ϕ(x)

]
k(x, x′)dx′

it is sufficient to consider a Poisson random measure on R+ × R+ × R with intensity measure
dt⊗ du⊗ dx′. The jump term to consider in the right-hand side of the SDE is then (A.3)∫

R+×R
c(αt− , x

′)1u≤k(Xt− ,x
′)N(dt,du,dx′)

This is used in all the document, and the related instantaneous jump rate is then the normal-
ization constant

k(x) =

∫
R
k(x, x′)dx′

so that in the formalism of the previous subsection, the jump measure is K(x,dx′) = k(x,x′)dx′

k(x) :

the bar notation refers to the fact the kernel k is non-normalized. For numerical purposes, the
adequate description (A.2) of jump times now reads [10]

Tn+1 = inf

{
t > Tn ,

∫ t

Tn

∫
R
c(αs− , x)dx′ds ≥ en

}
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This method will also work for simulating jump-diffusion processes (see next subsection).

A.3. Jump-diffusion processes

Adding the previous jump mechanism on a usual (overdamped Langevin) diffusion leads to SDEs
in Rd of the kind:

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
U
c(Xs− , u)N(ds, du) (A.4)

with c : Rd × U → Rd. Assume the following Lipschitz integrability conditions:

(1) For all x ∈ Rd and T > 0,
∫ T

0

∫
U |α(x, u)|ν(du) < +∞.

(2) There exists C > 0 such that for any x, y ∈ E,

|σ(x)− σ(y)|2 + |b(x)− b(y)|2 ≤ C|x− y|2.

(3) The L1 bound holds ∫
U
|α(x, u)− α(y, u)|ν(du) ≤ C|x− y|

In this L1 setting, strong existence and uniqueness for the SDE (A.4) are proven in [18, Theorem
1.2]. Moreover, the generator of the process is the sum of the two generators

Ldiffusionϕ(x) =

d∑
i=1

b(x) · ∇ϕ(x) +
1

2

d∑
i,j=1

(σσT)ij(x)∂xi∂xjϕ(x),

Ljumpsϕ(x) =

∫
U

{
ϕ
(
x+ c(x, u)

)
− ϕ(x)

}
ν(du)

This well-posedness result is used in Section 3.1 to build the relative coordinate model.

Appendix B. Free energy balance and detailed balance

This section summarizes the general computations which show how detailed balance conditions
guaranty the non-negativity of produced entropy. Assume ((αt, Xt))t≥0 to be a general {0, 1}×E-
valued pure jump process whose marginal law a time t reads

[1α=0pt(x, 0) + 1α=1pt(x, 0)] dαdx ∈ P ({0, 1} × E)

admits a density with respect to dαdx for a given measure dx on E. This process is assumed to
obey two possible jumps:

• A jump 0→ 1 for α which occurs at rate k(x), and causes a jump for x with jump law
K(x, dx′).

• A reverse 1→ 0 for α which occurs at rate krev(x), and causes a jump for x with jump
law Krev(x, dx′).

As in section 2.1, assume an energy function w (α, x) = 1α=0w0(x) +1α=1w1(x) is associated to
the system (wα is the energy related to the state α). The chemical potentials at time t are then
defined as

µt(α, x) := w(α, x) + kBT ln pt(x, α) (x, t) = 1α=0µ
0
t (x) + 1α=1µ

1
t (x)

where the state chemical potentials at time t are

µ0
t (x) = w0 (x) + kBT ln pt(x, 0) (x, t) µ1

t (x) = w1 (x) + kBT ln pt(x, 1) (x, t)

Free energy is then defined as

F(t) :=

∫
E

[
µ0
t (x)pt(x, 0) + µ1

t (x)Pt(x, 1)
]

dx
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Using the formalism of appendix A.1 for pure jump processes, the time-derivative of F(t) reads

d

dt
F(t) =

∫
E
−µ0

t (x) k (x) pt (x, 0) dx+

∫
E
µ0
t (x)

∫
E
krev(x′)Krev

(
x′,dx

)
pt
(
x′, 1

)
dx′

+

∫
E
−µ1

t (x) krev (x) pt (x, 1) dx+

∫
E
µ1
t (x)

∫
E
k(x′)K

(
x′,dx

)
pt
(
x′, 0

)
dx′

Since jump measures are probability measures, the following normalization conditions hold∫
E
K
(
x,dx′

)
= 1

∫
E
Krev

(
x′, dx

)
= 1

Switching names of dumb variables, this leads to

d

dt
F(t) =

∫
E
−µ0

t (x) k (x)

∫
E
K
(
x,dx′

)
pt (x, 0) dx+

∫
E
µ1
t

(
x′
) ∫

E
k(x)K

(
x,dx′

)
pt (x, 0) dx

+

∫
E
−µ1

t

(
x′
)
krev

(
x′
) ∫

E
Krev

(
x′, dx

)
pt
(
x′, 1

)
dx′

+

∫
E
µ0
t (x)

∫
E
krev(x′)Krev

(
x′,dx

)
pt
(
x′, 1

)
dx′

=

∫
E

∫
E

[
µ1
t

(
x′
)
− µ0

t (x)
]
k (x)K

(
x,dx′

)
pt (x, 0) dx

+

∫
E

∫
E

[
µ0
t (x)− µ1

t

(
x′
)]
krev(x′)Krev

(
x′,dx

)
pt
(
x′, 1

)
dx′

=

∫
E

∫
E

[
µ1
t

(
x′
)
− µ0

t (x)
]

·
[
k (x)K

(
x, dx′

)
pt (x, 0) dx− krev(x′)Krev

(
x′,dx

)
pt
(
x′, 1

)
dx′
]

The produced entropy Ṡprod(t) must equal here − 1
T

d
dtF(t). To satisfy the second law of thermo-

dynamics, the following quantity has to be non-negative

T Ṡprod(t) =

∫
E

∫
E

[
µ0
t (x)− µ1

t

(
x′
)]

·
[
k (x)K

(
x,dx′

)
pt (x, 0) dx− krev(x′)Krev

(
x′, dx

)
pt
(
x′, 1

)
dx′
]

If Arrhenius’s law is respected, the detailed balance condition holds (in the weak sense of mea-
sures)

k (x)K
(
x,dx′

)
dx = exp

[
−w1(x′)− w0(x)

kBT

]
krev(x′)Krev

(
x′, dx

)
dx′ (B.1)

for the reaction x → x′. Indeed, the measure k (x)K (x,dx′) dx is exactly the chemical rate
related to the direct sense reaction. At that condition

T Ṡprod(t) =

∫
E

∫
E

[
µ0
t (x)− µ1

t

(
x′
)] [

exp

(
−w1(x′)− w0(x)

kBT

)
− pt (x′, 1)

pt (x, 0)

]
· krev(x′)Krev

(
x′,dx

)
pt (x, 0) dx′.

Note now that

µ0
t (x)− µ1

t

(
x′
)

= w0(x)− w1(x′) + kBT ln

(
pt (x, 0)

pt (x′, 1)

)
= kBT ln

[
exp

(
−w1(x′)− w0(x)

kBT

)
pt (x, 0)

pt (x′, 1)

]
so that T Ṡprod(t) has the sign of the product ln (xy)

[
x− 1

y

]
for positive real numbers x and

y. If x ≥ 1
y then both terms are non-negative since xy ≥ 1. In the same vein, both terms are

negative if x < 1
y . Finally, Ṡprod(t) is always non-negative, and the entropy balance is respected

provided the detailed balance condition (B.1) holds.

Appendix C. Calibration parameters
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Table 2. Calibrated model parameters

Parameter Symbol Value

Energy potentials (see Figure 4(a))

Definition of the potential wα(x) = ŵα(x) + Eα

ŵα(x) =



κα,`/2 (x− x̃α, `)2 + w̃α if x < xα,`,

κα,r/2 (x− x̃α,r)2 if x > xα,r,[
κα,`/2 (xα,` − x̃α,`)2 + w̃α

]
φ1(x)

+ κα,` (xα,` − x̃α,`)φ2(x)

+
(
κα,r/2 (xα,r − x̃α,r)2

)
φ3(x)

+ κα,r (xα,r − x̃α,r)φ4(x)

+ w̌αφ5(x) if x ∈ [xα,`, xα,r]

κ1,` 0.60 pN nm−1

κ1,r 1 pN nm−1

x̃1,` −12.5 nm

x̃1,r −1.5 nm

x1 2 nm

x1,` 2.5 nm

x1,r 1.3 nm

w̌1 5.7 zJ

E1 50 zJ

w̃α = −κα,`/2 (xα − x̃α,`)2 + κα,r/2 (xα − x̃α,r)2 xα,r 2 nm

Interpolation functions

φ1(x) = (x− xα,r)2/(xα,r − xα,`)2

·
(

2(x− xα,`)/(xα,r − xα,`) + 1
)

φ2(x) = (x− xα,r)2/(xα,r − xα,`)2 · (x− xα,`)
φ3(x) = (x− xα,`)2/(xα,r − xα,`)2

·
(

3− 2(x− xα,`)/(xα,r − xα,`)
)

φ4(x) = (x− xα,`)2/(xα,r − xα,`)2 · (x− xα,r)
φ5(x) = φ1(x)φ3(x)/(φ1(xα)φ3(xα))

κ0,` 0.60 pN nm−1

κ0,r 0.99 pN nm−1

x̃0,` −2 nm

x̃0,r 2 nm

x0 −2 nm

x0,` −3.5 nm

x0,r 0.5 nm

w̌0 5.7 zJ

E0 70 zJ

Transitions rates (see Figure 4(b)&(c))

Attachment rate

k+(x, h) = k+
max

[1

2

(
1 + tanh

[
λ+
h (h+ h+

1
2

)
])
1h<0(h)

+
1

2

(
1− tanh

[
λ+
h (h− h+

1
2

)
])
1h≥0(h)

]
·
[1

2

(
1 + tanh

[
λ+
x (x+ x+

` )
])
1x<0(x)

+
1

2

(
1− tanh

[
λ+
x (x− x+

r )
])
1x≥0(x)

]

k+
max 0.206 ms−1

λ+
h 1.6 nm−1

h+
1
2

2.7 nm

λ+
x 1.6 nm−1

x+
` 5 nm

x+
r 10 nm

Reverse detachment rate
krev
− (x, h) = k−,rev

max ·
1

2

(
1− tanh

[
λ−,rev
x (x− x−,rev)

])
·
[1

2

(
1 + tanh

[
λ−,rev
h (h+ h−,rev

1
2

)
])
1h<0(h)

+
1

2

(
1− tanh

[
λh(h− h−,rev

1
2

)
])
1h≥0(h)

]
k−,rev

max 0.60 pN nm−1

λ−,rev
h 0.99 pN nm−1

h−,rev
1
2

−1.5 nm

λ−,rev
x 1.3 nm

x−,rev 5.70 zJ

Thermodynamics

Drag coefficient η 0.097 ms pN nm−1

Temperature T 298 K

ATP chemical potential µT 100 zJ

Geometrical parameters

Actin inter-site distance d 40 nm
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[20] T Guérin, J Prost, and J F Joanny. Dynamical behavior of molecular motor assemblies
in the rigid and crossbridge models. The European Physical Journal E, 34(6):667–21, June
2011.

[21] A.V. Hill. The heat of shortening and the dynamic constants of muscle. 126(843):136–195,
1938. Publisher: The Royal Society.

[22] Terrell L Hill. Theoretical formalism for the sliding filament model of contraction of striated
muscle Part I. Progress in Biophysics and Molecular Biology, 28:267–340, 1974.

[23] Terrell L Hill. Theoretical formalism for the sliding filament model of contraction of striated
muscle part II. Progress in Biophysics and Molecular Biology, 29:105–159, 1976.

[24] Terrell L Hill. Free Energy Transduction in Biology. Academic press, 1977.

[25] Anne Houdusse and H. Lee Sweeney. How Myosin Generates Force on Actin Filaments.
41(12):989–997.

[26] Jonathon Howard and Jonathon Howard. Mechanics of Motor Proteins and the Cytoskele-
ton. Sinauer, Sunderland, MA. Sinauer Associates Incorporated.

[27] A F Huxley. Muscle structure and theories of contraction. 7:255–318.

[28] Andrew F Huxley and R M Simmons. Proposed mechanism of force generation in striated
muscle. Nature, 233(5321):533–538, 1971.

[29] Jean Jacod and Albert Shiryaev. Limit theorems for stochastic processes, volume 288.
Springer Science & Business Media, 2013.
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