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Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly
different from those of classical fluids. Here, we show that a rather extreme regime of quantum
hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for
light, and its generalization, named after the celebrated mathematician Riemann, where the piston
acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring
optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly
the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the
light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The
transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive
to any other quantum fluid system. Our full-fibre setup used to observe this phenomenon in temporal
domain proves to be a versatile alternative to other platforms currently employed to investigate the
hydrodynamical properties of quantum fluids of light.

INTRODUCTION

The flow of light can exhibit hydrodynamic-like prop-
erties which are characteristic of the collective behavior
of quantum many-body systems (e.g. liquid helium or ul-
tracold atomic gases [1]), hence showing properties which
are characteristics of superfluids rather than conventional
classical fluids (water, gases) [2]. This requires photons
to be significantly interacting through medium nonlin-
earities. To date many fascinating achievements in this
area have exploited two main platforms, both based on
spatial effects. The first one relies on light confined in
a cavity [3], and exploits polariton fluids in semiconduc-
tors [2, 4–6]. The second one exploits cavityless parax-
ial propagation, with photon-photon interactions medi-
ated by the repulsive (or defocusing) nonlinearity of the
medium [7, 8], which have permitted the observation of
hydrodynamic phenomena such as dispersive shock waves
(DSWs) [9–13] (a hallmark of dispersive hydrodynamics
observed in other superfluids [14–16]), Bogoliubov ex-
citations and their interference [17–19], superfluid flow
around an obstacle [20], order-disorder topological tran-
sitions [21], and blast waves [22]. In this regime, the
mathematical framework is the fully conservative nonlin-
ear Schrödinger equation (NLSE), which implies a hydro-
dynamical description with intensity and phase gradient
of the light field playing the role of density and velocity
of a standard fluid, in full analogy with Gross-Pitaevskii
mean-field description of cold gases [1].

In this paper, we show that a different fibre-based plat-
form, where temporal nonlinear dynamics with normal
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dispersion is akin to paraxial propagation in defocusing
media, can be successfully employed to detect a rather
extreme hydrodynamic state of light. This regime orig-
inates from the investigation of the photonic analogue
of the generalized piston problem in gas dynamics. In
particular, we experimentally address the problem of the
flow of a photon fluid initially prepared to present a step-
like variation in both velocity and density which realizes
the canonical problem named after Riemann (i.e. a well-
known building block for the mathematical description
of any flow [23, 24], but never implemented experimen-
tally). The velocity jump mimics all-optically a piston
set impulsively into motion, which acts either on a con-
stant density photon fluid (thus realizing the standard
piston problem of gas dynamics [25, 26]) or in conjunc-
tion with a step density change (most general Riemann
problem). In both cases, we demonstrate a transition
from a regime reminiscent of piston dynamics in standard
gases to a regime that shows no similarity whatsoever in
standard fluids [27–29] and has never been observed in
other quantum fluids [30]. The former regime occurs at
relatively low piston velocities and is characterized by the
formation of expanding rarefaction wave pairs (retract-
ing piston) or DSW pairs (pushing piston), the naturally
dispersive counterpart of classical shock waves in ideal
gases. Conversely, above a critical velocity marked by
the onset of cavitation in the DSW pairs, the photon fluid
is observed to undergo a transition to an extreme state
where the shocks become smoothly connected through a
fully nonlinear periodic wave of large contrast instead of
a constant density state. This regime can be regarded
as the manifestation of the fully developed dispersive hy-
drodynamic character of superfluid-type of flow, and we
show its onset to be in quantitative agreement with pre-
dictions from Whitham modulation theory of the NLSE
[27–29]. We emphasize that, in spite of a recent growing
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interest in Riemann problems in different contexts of dis-
persive hydrodynamics [31–39], to date the experimental
observations are limited to simpler discontinuous jumps
in the density (see [31, 32] in the defocusing case, and also
[35–37] for the focusing unstable case). Conversely, ob-
serving the wave regimes emerging from the piston prob-
lem and its generalization requires to face the twofold
challenge of engineering a high degree of control over the
input phase gradient of the field, while operating in a
truly nonlinear dispersive setting where even weak dis-
sipation is suppressed. Our experiment, which achieves
both goals, proves that fibre-based platforms allow to
measure the DSW dynamics with unprecedented preci-
sion [31, 40–47]. Moreover, they constitute, due to their
advantages (ultra-long propagation lengths, fine tuning
of initial conditions and fiber parameters, loss compen-
sation to achieve truly conservative dynamics), a mature
alternative to paraxial fluids of light to detect the full
richness of superfluid-like transitions, which are other-
wise challenging to observe in other quantum fluids.

RESULTS

Overview of the piston problem

In the framework of gas dynamics and classical shock
waves (CSWs) theory [23, 48–52], the piston problem has
the canonical solution (see [25, 26]) schematically illus-
trated in Fig. 1(a,d). When the piston compresses the
gas at rest on its right (Fig. 1 (a)), a CSW emerges that
travels ahead of the piston with supersonic velocity (dic-
tated by so-called Rankine-Hugoniot condition [53], see
Supplementary Information note 1), whereas a retracting
piston (Fig. 1 (d)) produces a smooth rarefaction wave
(RW). Our aim is to implement the analog problem for a
photon fluid. To this end, we exploit its conceptual iden-
tity with a Riemann problem (see Supplementary Infor-
mation note 1 for mathematical details), where the phys-
ical piston is replaced by a suitably prepared initial con-
dition characterized by a stepwise variation of the fluid
velocity over a constant density. In gases, the latter ide-
ally produces a bi-directional replica of the piston-driven
CSW or RW, as sketched in Fig. 1(b,e). In the disper-
sive regime characteristic of the photon fluid, according
to modulation theory (or Whitham averaging [27, 29, 54–
58]) for the NLSE, the RWs remain essentially unaltered
due to their smoothness (Fig. 1(f)), whereas the CSWs
are turned into expanding DSWs (Fig. 1(c)). The for-
mation of the two DSWs, however, is expected to exhibit
critical behavior [27, 29, 56]. Indeed above a critical am-
plitude of the velocity jump where the two DSWs start to
cavitate, they become connected by a nonlinear periodic
wave instead of a constant background (as it is always
the case in gases). This marks a dynamic transition to
a regime which is unique to the photon fluid. We report
here the observation of such a dispersive hydrodynamic
transition.

(a)

(b)

(c)

(d)

(e)

(f)

Compressing piston Retracting piston

FIG. 1. Schematic of the physics and typical evolu-
tions of classic vs. dispersive piston problems. a,b,c:
Shock wave dynamics for ”pushing” piston (white curves show
qualitatively the density): (a) compressing piston producing a
shock wave in an ideal (non-dispersive) fluid; (b) shock-shock
produced via step-wise initial velocity profile (Riemann prob-
lem); (c) DSW-DSW via Riemann problem in a dispersive
photon fluid; d,e,f: Rarefaction wave dynamics for ”retract-
ing” pistons: (d) single RW; (e) RW-RW from the Riemann
problem; (f) similar RW-RW in a dispersive photon fluid.

Theoretical developments from the Riemann
problem

Our experiment is concerned with the implementa-
tion of the Riemann problem for the following defocus-
ing NLSE, which governs the propagation along an opti-
cal fiber of the electric field envelope E = E(Z, T ) that
modulates the light at the optical carrier pulsation ω0

[59]

i
∂E

∂Z
− k′′

2

∂2E

∂T 2
+ γ |E|2E = 0, (1)

where Z is the propagation distance along the fiber
and T stands for the retarded time (in a frame mov-
ing at the group velocity Vg = dk/dω|−1ω0

, k = k(ω) be-
ing the fiber mode wavenumber [59]). The parameters
k′′ = d2k/dω2|ω0 and γ stand for the group-velocity (or
second-order) dispersion and the fiber nonlinear coeffi-
cient due to the Kerr effect, respectively [59]. Hence-
forth, we make use of the values that characterize our
experiment: k′′ = 170 ps2/km and γ = 3 (W km)−1. In
these units |E(Z, T )|2 gives directly the optical power in
Watts.

We operate in the defocusing regime of the NLSE
(γk′′ > 0), where a clear connection to CSWs of gas dy-
namics (or hydraulic jumps [60]) does exist. It becomes
manifest by applying the so-called Madelung transform

E(T,Z) =
√
P0

√
ρ(t, z) exp

(
−i
∫ t

−∞ u(t′, z)dt′
)

, which
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allows to formulate the NLSE in fluid dynamics form:

ρz + (ρu)t = 0 ; (2)

uz +

(
u2

2
+ ρ

)
t

=
1

4

[
ρtt
ρ
− (ρt)

2

2ρ2

]
t

, (3)

where we set z = Z/Z0, t = T/T0 with Z0 ≡ (γP0)−1 and

T0 ≡
√
k′′/(γP0), P0 being a reference power. In the fol-

lowing we fix P0 to be the power of left (t < 0) side of
the input step. By neglecting the right hand side con-
taining higher-order derivatives arising from dispersion
(also known as quantum pressure term [9]), Eqs. (2-3)
are identical to the dispersionless vector Eulerian conser-
vation law that rules the dynamics of the one-dimensional
flow in an isentropic gas with pressure law p ∼ ρ2 [23].
Here, the normalized power ρ(t, z) = |E(T,Z)|2/P0 plays
the role of local gas density, whereas the normalized in-
stantaneous frequency deviation from the carrier (usually
denoted as chirp) u(t, z) = ∆ω(T,Z)T0 is equivalent to
gas velocity. Here ∆ω(T,Z) = −dφ/dT is the dimen-
sional chirp, expressed in terms of the envelope phase
φ = Arg[E(Z, T )]. In this limit, which henceforth will
be referred to as the dispersionless NLSE, the resulting
system is hyperbolic, thereby admitting weak solutions
known as CSWs, which describe traveling jumps in den-
sity and velocity.

In particular, the step-like initial condition shown in
Fig. 1(b), i.e. a decreasing jump in velocity (chirp), pro-
duces, in the dispersionless limit, two CSWs propagating
in opposite directions as illustrated by the black solid
lines in Fig. 2(a,b). As shown in Fig. 2, the CSWs fea-
ture two fronts that connect either the initial left (ρ, u0)
or the right (ρ,−u0) quiescent state, to a plateau or inter-
mediate state of constant density ρi > ρ and zero velocity
(ui = 0), which emerges spontaneously and turns out to
be expanding as the two shocks propagate. The explicit
expression of the intermediate density

ρi =
(u0

2
+
√
ρ
)2

(4)

follows from a simple-wave approach for hyperbolic equa-
tions, which allows also to express the velocities of the
shocks from the well-known Rankine-Hugoniot condition
[23, 53]. In terms of the self-similar variable τ = t/z,
such velocities reads

τ±CSW = ∓
(u0

4
−√ρ

)
. (5)

In Fig. 2(a-c), we also contrast this gas dynamics
scenario with the corresponding dispersive dynamics ob-
tained by numerical integration of the full NLSE. As
shown, in the latter case, the two shocks become indeed
dispersive, being characterized by expanding fans (see
Fig. 2(c)) where fast oscillations spontaneously appear,
connecting the upper and lower quiescient states. The
wavetrains that constitute the left (DSW-L) and right
(DSW-R) dispersive shocks reflect their nature of peri-
odic nonlinear waves (dn-oidal waves) with strongly mod-
ulated parameters [29]. The modulated wavetrain in each
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FIG. 2. Formation of two DSWs ruled by the
full NLSE (with parameters of the experiment) con-
trasted with the CSWs of the dispersionless (isen-
tropic gas-dynamic) case. Snapshot of chirp ∆f(T,Z) =
u(t, z)/(2πT0) (a) and power |E(Z, T )|2 = ρ(z, t)P0 (b) at the
output Z = 15 km (blue solid line). The input (dashed red)
is a frequency step ∆f(z = 0) = ±10 GHz (see also Methods)
on a constant power P0 = 200 mW. (c) Evolution of power in
T−Z plane showing the expansion fans of the two left (DSW-
L) and right (DSW-R) shocks delimited by edge velocities in
Eq. (6); The CSWs are the solid black lines in (a,b), while
their velocities [Eq. (5)] are given by the oblique black lines
in (c).

DSW spans a temporal interval that ranges from a soliton
edge (the inner deep end of the wavetrain) to a harmonic
edge (where oscillations become shallower, i.e. quasi lin-
ear). These two edges travel with different velocities, say
τ1,2 for the DSW-R, which can be predicted by means of
Whitham modulation theory (details in Supplementary
information note 2) and reads as:

τ1 =
u20 + 3u0

√
ρ+ ρ

√
ρ+ u0

; τ2 =
√
ρ− u0

2
. (6)

It is also clear from Fig. 2(c) that the edge velocities of
the DSW-L are τ4 = −τ1 and τ3 = −τ2 due to symme-
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FIG. 3. The Riemann problem of the NLSE. (c) Dynamic transition diagram : domains in the plane of input parameters
(ρ0, u0) of the step, giving rise to different wave-pair compositions of rarefaction (RW) and dispersive shock (DSW). The two
waves in the pair can be connected through a constant state (-c-), zero density (vacuum state -0-); or an unmodulated nonlinear
periodic wave (-per-). Above the red (gray) dashed lines, a vacuum is predicted to appear in the DSW-R (DSW-L). (a)-(b) and
(d)-(e) are typical examples of output (normalized length zL = 20) from Whitham modulation theory marked with green circles
in panel (c). Experimental results are marked with blue crosses. See also Supplementary information for a video illustrating
the transitions between all the cases along the (ρ0 = 1) vertical line and for an extended version of this figure where, for
completeness, we also report former experimental results from [31].

try, whereas the CSW are slightly faster than the DSW
soliton edges.

The case illustrated above is actually a particular case
of the most general Riemann problem such that the
initial condition is step-like in both chirp and power.
Without loss of generality (see Methods), we can as-
sume initial conditions characterised by only two param-
eters (ρ0, u0) which describe a left (t < 0, uL, ρL ) to
right (t > 0, uR, ρR) symmetric jump in velocity, from
uL = u0 to uR = −u0, accompanied by a power jump
from ρ = ρL = 1 to ρ = ρR = ρ0. The decay of the step
initial data ruled by the NLSE generates a pair of fun-
damental waves, each being of the shock or rarefaction
type, separated by a constant state or periodic state (see
[27, 56] and Supplementary information note 2). Five
different regimes are possible, which are highlighted by
domains of homogeneous color in Fig. 3(c). When the
parameters of the stepwise input (ρ0, u0) are changed in
such a way to cross the border between domains of dif-
ferent colors in Fig. 3(c), a qualitative change occurs in
the dynamical appearance of the two wave constituents.
In the following, we refer to this change as a dynamic
phase transition, due to its reminiscence of the changes
of state driven by conventional (e.g. thermodynamic)
phase transitions.

Let us briefly examine the different domains in Fig.
3(c). The white regions in Fig. 3(c) correspond to decay
into a DSW and a RW connected by a constant power,
which we indicate as DSW-c-RW. Experimental evidence
for such scenario has been recently reported in fiber op-
tics [31] and spin waves [32], for initial data lying on the

horizontal line u0 = 0. Arguably, this is the most com-
mon situation which leads to the formation of a shock
wave, which is also known as dam breaking problem in
hydrodynamics [61].

In this paper, however, we are rather interested in the
piston problem, that is a jump in velocity over a homo-
geneous density, which is described in Fig. 3(c) by the
vertical dotted line ρ0 = 1. Typical theoretical examples
(green circles) are shown in Figs. 3(a,b,d,e). Let us con-
sider such line, starting from negative values u0 < 0,
which is equivalent to have two retracting pistons as
sketched in Fig. 1(e). As shown by the snapshots de-
picted in Figs. 3(a) and (b), the two RWs smoothly con-
nect the quiescent input state ρ = ρ0 = 1 to a “rarefied”
state of lesser power ρi = (1− |u0|/2)2 and zero velocity
ui = 0, consistently with Eq. (4). The expansion of the
right RW is determined by the velocity τ1 of the faster
edge connecting the RW to the input higher density state
ρ = 1 and the velocity τ2 of the slower edge where the
RW connects to the rarefied state ρi. We obtain for these
velocities (for −2 < u0 < 0)

τ1 = 1 + |u0|; τ2 = 1− |u0|
2
, (7)

whereas the left RW expands with symmetric velocities
τ4 = −τ1 and τ3 = −τ2. Furthermore, when the two
retracting pistons are fast enough, i.e. for u0 < −2, the
intermediate state becomes a zero density state or vac-
uum (see Fig. 3(a)) and the velocity of the slower edge
in Eq. (7) becomes τ2 = |u0| − 2.

When |u0| decreases the RWs become progressively



5

-1 0 1
Time (ns)

0

0.5

Po
w

er
 (a

rb
. u

ni
ts

)

-10

0

10

Fr
eq

ue
nc

y 
(G

H
z)

-10

0

10

Fr
eq

ue
nc

y 
(G

H
z)

-1 0 1
Time (ns)

0

0.5

1

Po
w

er
 (a

rb
. u

ni
ts

)(d) (e)

(b)(a)

D
C
F

CW laser 1

CW laser 2

EDFA

EDFAEOM

EOM

AWG 1

AWG 2

Filter

HNLF
90/10

Filter

Filter

PC

Raman Pump
1480 nm

Clock sync

OSA

OSO

Phase modulation branch

Square branch

10%

90%

t

Po
w

er
ch

ir
p

t

tt

Po
w

er
Po

w
er

(c)

1

FIG. 4. Sketch of the experimental setup and characterization of the initial condition. (a) EOM: electro-optic
modulator; EDFA: erbium-doped fiber amplifier; AWG: Arbitrary wave generator; OSO: optical sampling oscilloscope; OSA:
Optical Spectrum Analyser; HNLF: highly nonlinear fiber, LH = 500 m; DCF: dispersion compensating fiber, L = 15 km; PC:
polarization controller. The choice of intensity modulation (M- or triangularly-shaped sketched in red and green, respectively)
in the upper block (Phase modulation branch) is transformed into a stepwise chirp (either descending or ascending) of the
beam at λ2, which is also intensity modulated to produce square pulses in the bottom block named Square branch, to compose
the input of the DCF. (b-e) Experimental characterisation of the input to the DCF: (b,c) spectrograms ∆f vs time T (dark red
and blue stands for the maximum and minimum power density, respectively); (d,e) Power profile of the frequency modulated
rectangular pulse. Left column (b,d) and right column (c,e) refer to the case of descending and ascending step-like frequency
variation mimicking a pushing or retracting pair of pistons, respectively.

shallower up to the limit u0 → 0 for which ρi → 1
and the density remains obviously flat upon evolution.
However, when u0 crosses the line u0 = 0 becoming pos-
itive, the behavior drastically changes because now the
virtual pistons are pushing the fluid as in Fig. 1(b,c).
As a result, two DSWs appear, being separated by a
flat plateau with density ρi which becomes, in this case,
larger than the quiescent density ρ = 1. This is the
case shown in dimensionless form in the example in Fig.
3(d) and discussed above in more detail with reference
to Fig. 2(a-c). At the critical value (threshold) uth0 = 2,
the amplitude of the oscillations in the DSW reach its
maximum and the DSWs start to cavitate (the bottom
of the oscillations touches zero power), while the plateau
shrinks to zero (i.e. the DSWs are glued back to back).
Increasing u0 further above this threshold, a phase tran-
sition to a peculiar regime occurs. This pattern features
two DSWs connected by an unmodulated nonlinear pe-
riodic wave (DSW-per-DSW), as displayed in Fig. 3(e)
(more theoretical details are given in Supplementary in-
formation note 2). This regime, which was firstly pointed
out by Bikbaev [56], is a hallmark of the dispersive hy-
drodynamic behavior of the photon fluid, which bears
absolutely no similarity in gas dynamics. Importantly
the transition from a DSW-c-DSW to a DSW-per-DSW
(cyan to green domain in Fig. 3(c)) is not a prerogative
of the vertical line ρ0 = 1, which describes the canonical
piston problem. For generic Riemann step-initial data
the threshold reads as (for ρ0 < 1)

uth0 = 1 +
√
ρ0, (8)

which correctly reduces to uth0 = 2 for the pure piston
problem (ρ0 → 1).

Experimental results

In order to observe the physics described above, we
designed a full fiber set-up which exploits state of the art
telecommunication technology as sketched in Fig. 4(a).
The main idea behind the preparation of the Riemann-
like input is to use two laser sources at slightly different
wavelengths suitably modulated in amplitude, which are
combined and injected in a first highly nonlinear fiber
(HNLF). The HNLF has the key role of transforming
the amplitude modulation (M- or triangular shape) of
one of the laser sources into the frequency modulation
of the other source via cross-phase modulation (XPM).
A detailed description of the experimental apparatus can
be found in the Methods section.

In Fig. 4(b-e) we display the results of the experimen-
tal characterisation of the input, i.e. the Riemann initial
condition, before they are launched into the main fiber,
namely a dispersion compensating fiber (DCF), which
features normal dispersion k′′ > 0, so to operate in the
defocusing regime. Futhermore, linear loss are almost
perfectly compensated with a counter-propagative Ra-
man pump in the DCF which allows to investigate the
dynamics predicted by the integrable NLSE. The case
of descending step-like variation produced via the M-
shaped modulation is shown Figs. 4(b,d) (pushing piston
in Fig. 1). In particular, Fig. 4(b) shows the measured
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spectrogram, i.e. the frequency deviation ∆f = ∆ω/2π
from the input carrier frequency as a function of time T
(see Supplemental information note 4 for further details).
The pulse clearly exhibits an abrupt jump in frequency
around T = 0, with chirp excursion between ±∆f0 with
∆f0 = 9.4 GHz, and an estimated rise time (10 to 90%)
Tr = 50 ps.

Being symmetric around ∆f = 0, this frequency
modulation realises the step-like variation from u0 to
−u0 formerly introduced in Figs. 1,3, with u0 =
2π∆f0

√
k′′/(γP0).

The same type of measurements performed for the
choice of triangular driving signal is reported in Fig.
4(c,e) (pulling piston in Fig. 1). The spectrogram in
Fig. 4(c) clearly show the ascending nature of the fre-
quency jump. In this case, however, in order to have
tolerable distortion of the plateau of the square pulses,
the achievable frequency jump is limited to a lower ex-
cursion ∆f0 = 5.4 GHz.

The outcome of the experiment is summarized in Figs.
5-7. Importantly, in all regimes, we find that the most
stable and repeatable configuration is to operate at the
fixed maximum achievable ∆f0 (i.e., the values illus-
trated in Fig. 4(b,c) or Fig. 7(a)) and tune the effective
velocity of the piston u0 by changing the power of the
modulated square pulse in input to the DCF, recalling
that u0 scales like u0 ∝ ∆f0/

√
P0. Let us start with the

case of negative u0, which corresponds to the retracting
piston producing the RW-c-RW case (pink area in Fig.
3(c)). The output power profiles in Fig. 5(a,b) clearly
show the formation in the center of the nearly square
pulse of a wide hole or dark region.

The smooth edges of this hole constitute two optical
RWs, that are driven by the initial condition that acts
like a pair of retracting pistons. In Fig. 5(c,d) the cor-
responding output profiles obtained from numerical inte-
gration of the NLSE (1) show a good qualitative agree-
ment with the experiment. The experimental trace show
a distortion, which is due to the non-perfectly flat plateau
of the injected modulated pulse (see Fig. 4(e)). The hole
is progressively dug during propagation until, in the case
at power P0 = 165 mW, the bottom of the RWs touches
on the intermediate or rarefied state at constant power
ρiP0 predicted by the dispersionless NLSE (see dashed
green horizontal line in Fig. 5(c)). Conversely, at lower
power P0 = 35 mW, which corresponds to more negative
u0, while the intermediate state becomes considerably
lower (dashed green in Fig. 5(d)), both the experiment
and the simulation exhibit only a slightly darker hole
compared with previous case. This is due to the fact
that, lowering the power results also in a slower dynam-
ics and a shorter effective length (zL = LγP0). As a
result, the two RWs are expected to finally dig to the
constant rarefied state at power ρiP0 only at distances
which far exceed the actual fiber length L = 15 km.

Conversely, when u0 increases above zero, a transition
to the state DSW-c-DSW occurs (cyan area in Fig. 3(c)).
In our experiment, such transition can be observed by
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FIG. 5. Retracting piston experiment. Rarefaction
wave pair produced by an increasing input jump in frequency
with ±∆f0 = 5.4 GHz, and power: (a) P0 = 165 mW
(u0 = −0.63); (b) P0 = 35 mW (u0 = −1.37). (c,d) Sim-
ulations based on the NLSE. The dashed vertical lines stand
for edge hydrodynamic velocities calculated from Eq. (7).
The horizontal green line stands for ρiP0, with ρi from Eq.
(4). The blue curves stand for the input super-Gaussian pulse
profile on which we superimpose the stepwise chirp jump (see
Methods for details).

reversing the step in frequency to become descending as
in Fig. 4(b). The relative output traces obtained for
two different powers (or normalised velocities) are shown
in Fig. 6(a,b). We clearly observe the formation of
two nearly symmetric DSWs connected by a constant in-
termediate state, which, in contrast with previous case,
marks the highest power of the waveform. The experi-
mental traces compare well with the corresponding sim-
ulations of the full NLSE (1) reported in Fig. 6(e,f), and
performed with ideal input (modulated super-Gaussian
pulses, see Methods). We also point out that the loca-
tion of the linear and soliton edges of the DSWs exhibit a
satisfactory agreement with the predictions of Whitham
theory (Eqs. (6), vertical dashed lines in Fig. 6(e,f)).

Importantly, when the intermediate state shrinks to
zero the state DSW-c-DSW is no longer sustainable.
According to Whitham theory this occurs at threshold
uth0 = 2, above which the two DSWs are connected
through a periodic nonlinear wave (see Supplementary
information note 2 for more technical details). We have
checked quantitatively that this phase transition, which
possess no analogy in the realm of classical non-dispersive
fluids, can be observed by decreasing further the power in
order to increase u0 above threshold. The output traces
relative to P0 = 27 mW and P0 = 8 mW (u0 = 2.71
and u0 = 4.97) are reported in Fig 6(c,d). They clearly
show the DSWs to be connected through a periodic wave
instead of a constant state, in good agreement with the
corresponding simulations displayed in Fig. 6(g,h). Note
that, in this case, the DSWs no longer possess soliton
edges, but rather connect smoothly to the periodic wave
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FIG. 6. Pushing piston experiment. Shock formation: DSW-c-DSW (a,b) and their phase transition to DSW-per-DSW
(c,d), observed for ∆f0 = 9.4 GHz, and power: (a) P0 = 220 mW (u0 = 0.95); (b) P0 = 72 mW (u0 = 1.66); (c) P0 = 27 mW
(u0 = 2.71); (d) P0 = 8 mW (u0 = 4.97). (e-h) Output profiles obtained from numerical simulation of the NLSE (1). Vertical
dashed lines arise from modulation theory: linear DSW edges (orange) and soliton edges in (a,b) or periodic wave edges in
(c,d) (magenta). In (a,b) the horizontal green line stands for ρiP0, with ρi from Eq. (4).

at temporal locations that can be calculated by Whitham
modulation theory (magenta dashed lines in Fig. 6(g,h);
technical details in Supplementary information note 2).

Finally, we have also tested the peculiar transition
DSW-c-DSW to DSW-per-DSW (cyan and green areas
in Fig. 3(c)) in the more general case where the Riemann
initial data involve a jump both in frequency and power.
We refer to this regime as the asymmetric case since this
type of initial condition breaks the symmetry between
the left-going and right-going DSWs. In terms of analogy
with gas dynamics this initial datum would correspond
to a mixed case where two canonical initial conditions of
the piston type (pure jump in velocity) and shock tube
type (pure jump in density) are combined together. How-
ever, in common facilities for standard fluids, such as gas
dynamics tube experiments or shallow water tanks, this
is a very challenging task, and we are not aware of ex-
perimental results obtained for such case. The result of
the experimental characterization of the input is shown
in Fig. 7(a,b). In this case, it is clear that the positively
and negatively chirped portions have strongly different
intensity. As shown, we illustrate the regime character-
ized by a large extinction ratio ρ0 = PR/PL = 0.15,
because this guarantee that cavitation takes place. Fig-
ures 7(c,d) report the temporal power profiles observed
at the output of the DCF, when operating at constant
jump in frequency (±9.7 GHz), constant extinction ra-
tio ρ0 = 0.15, and a variable power P0 in order to vary
the normalized chirp u0. At P0 = 240 mW, which corre-
sponds to a normalized chirp u0 = 0.94 < uth0 = 1.39 the
evolution is expected to give rise to DSW-c-DSW. This

is shown in Fig. 7(c), where we clearly observe the con-
stant state (plateau) separating two strongly asymmetric
DSWs. In particular the right DSW exhibits a cavitation
point falling within its envelope. When the power is de-
creased to P0 = 90 mW, which correspond to the above
threshold value u0 = 1.52 > uth0 the constant state dis-
appears and the two DSWs appear to be connected by a
periodic wave, as shown in Fig. 7(d).

In Fig. 7(e,f), we report the corresponding NLSE sim-
ulations with ideal initial data (blue curves in the figure).
The agreement with the observed profiles is reasonably
good. We attribute the discrepancies to the imperfect
flatness of the input power states displayed in Fig. 7(b),
and to small deviations from the perfect temporal syn-
chronization of the chirp and power steps, which is diffi-
cult to quantify. Importantly note that Whitham theory
allows to predict with very good accuracy the location of
the vacuum point in both regimes. Conversely, since the
DSWs become strongly asymmetric, modulation theory
allows to predict with good accuracy the temporal loca-
tion of the edges (see orange and purple dashed vertical
lines in Fig. 7(e,f)) of the DSW-R which is quite extended
in time, whereas it is less accurate for the DSW-L, which
is substantially narrower.

DISCUSSION

In summary, we have fully characterized the phase
transitions associated with the Riemann problem in a



8

-0.5 0 0.5
Time (ns)

0

0.5

1

Po
w

er
 (a

rb
. u

ni
ts

)

-0.5 0 0.5
Time (ns)

0

0.5

1

Po
w

er
 (a

rb
. u

ni
ts

)

-0.5 0 0.5
Time (ns)

0

0.5

1

Po
w

er
 (a

rb
. u

ni
ts

)

-1 0 1
Time (ns)

-10

0

10
Fr

eq
ue

nc
y 

(G
H

z) (a)

(c) (d)

(b)

-0.5 0 0.5
Time (ns)

0

0.1

0.2

0.3

po
w

er
 (W

)

(e)

-0.5 0 0.5
Time (ns)

0

0.1

0.2

po
w

er
 (W

)

(f)

FIG. 7. Mixed piston - shock tube problem. Transition
from DSW-c-DSW to DSW-per-DSW in the asymmetric case,
with fixed ∆f = 9.7 GHz and additional jump in power with
nominal extinction ratio PR/PL = 0.15: (a) spectrogram of
the input; (b) profile of input power jump; (c,d) output power
profiles: (c) P0 = 240 mW (u0 = 0.94), below threshold;
(d) P0 = 90 mW (u0 = 1.52), above threshold. (e,f) Out-
put profiles obtained from numerical simulation of the NLSE
(1).The vertical dashed lines stand for the vacuum point of
the R-DSW (red), and the edge velocities of the DSWs (or-
ange and cyan for linear edges, blue and purple for soliton or
inner edges). In (e) the horizontal green dashed line stands
for ρiP0.

fluid of light whose behavior is ruled by the universal
NLSE. The physical piston is replaced by a stepwise op-
tical pulse over which a quasi-instantaneous frequency
chirp is imprinted, allowing to reproduce any velocity-
density pair input conditions which mimic problems that
span from the pure piston problem to its mix with the
shock tube problem. These specially designed pulses
are launched in a defocusing optical fiber with actively
compensated losses. In this way, the system is modeled
by integrable NLSE and quantitative comparisons with
theoretical developments from the Whitham modulation
theory can directly be performed with experiments. We
have been able to report (i) a comprehensive study of
the phase transitions that occur in the dispersive piston
problem ruled by the defocusing NLSE; (ii) the observa-
tion of a regime, which has no similarity in gas dynamics,
featuring two DSWs connected through an unmodulated
periodic wave; (iii) the observation of asymmetric DSWs

and their critical transition to the fully undulatory solu-
tion that follows from the most general Riemann problem
involving a simultaneous jump both in power and chirp.
All these observations are in very good agreement with
theoretical predictions and numerics. This confirms that
fiber-based optical systems are peerless testbeds to inves-
tigate the extension of gas dynamics problems to super-
fluid regimes by taking benefit of the analogy between
optics and fluid-dynamics supported by the universality
of the NLSE.

METHODS

The dispersive Riemann problem

A step input in power (density) and velocity (chirp)
ruled by the NLSE evolves into several different combi-
nations of RWs and DSWs connected by constant or pe-
riodic states. In real world units, the classification of the
dynamics depends on four arbitrary parameters, namely
the boundary values across the chirp and power jumps.
However, using normalized variables ρ and u, without
loss of generality, we can assume, initial conditions char-
acterised by only two parameters (ρ0, u0):

ρ(t, 0) = 1 + (ρ0 − 1)θ(t); u(t, 0) = u0 − 2u0θ(t), (9)

where θ(t) = [1 + sign(t)]/2 is the Heaviside unit step
function. Equation (9) implies a left to right symmetric
jump in velocity, from uL = u0 to uR = −u0, accompa-
nied by a power jump from ρ = ρL = 1 to ρ = ρR = ρ0.
Non-symmetric input jump in u only introduces a net
drift in the problem, whereas the step in ρ can always
be normalized to have ρ = 1 over one of the boundaries,
that we choose to be the left side. This allows us to
classify all the possible evolution scenarios in a simple
parameter plane (ρ0, u0). According to the general the-
ory of 2× 2 conservation laws [23], the decay of the step
initial data ruled by the dispersionless NLSE can occur
through the generation of a pair of fundamental waves,
each being of the shock or rarefaction type, separated by
a constant state. Therefore, three possible combinations
can emerge: (i) CSW-CSW, (ii) CSW-RW, (iii) RW-RW,
depending on the value of the initial data (ρ0, u0).

In the dispersive regime ruled by the NLSE, however,
the solution of the same problem becomes more challeng-
ing since it requires to resort to Whitham modulation
theory, which describes a potentially more rich dynamics.
Following pioneering results [27, 55, 56] and our calcula-
tions outlined in Supplementary information note 3, the
result of such an approach is conveniently summarized in
Fig. 3, where we report in the plane (ρ0, u0) the domains
where different wave pairs are expected to emerge. Five
different regimes are highlighted by domains of homoge-
neous color in Fig. 3(c), whereas curves that separate the
domains denote dynamic transitions among the different
regimes. We also display in Figs. 3(a-b) and (d-e), typi-
cal output power profiles of the different decay scenarios,
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as obtained from Whitham modulation theory. The pa-
rameter values of such examples, as well as those of the
experimental data are highlited in the parameter plane in
Fig. 3(c) by green circles and blue crosses, respectively.

We also emphasize that the left (ρ0 < 1) and right
(ρ0 > 1) white domains describe exactly the same
physics, differing only for the direction of expansion of
the DSW and RW pair. More precisely, the results in
the semi-plane ρ0 > 1 can be mapped in the semi-plane
ρ0 < 1 with the transposition ρ0 → 1/ρ0 and t → −t.
For completeness, in Supplementary information, Sup-
plementary figure 5 reproduces Fig. 3 with additional
results from Ref. [31], which has allowed for a quantita-
tively accurate characterization of the cavitation which
appears along the DSW when crossing above the dashed
gray curve.

Numerical simulations

The numerical simulations in Fig. 5-7 as well as in
Fig. 2(a-c), are performed by integrating the NLSE
with the pseudo-spectral split-step (Fourier) method. We
modelled the stepwise input variation of the chirp as
∆ω(T ) = ±T−10 u0 tanh(T/W0), where the upper (lower)
sign stands for ascending (descending) step, yielding the
RW (DSW) pair. In all simulations we set W0 = 20 psec,
which is representative of the estimated rise time Tr ∼ 50
ps (10 to 90 % of the final state) in the experiment.
This chirp is imprinted on a flat-top pulse with super-
Gaussian power profile Ppulse(T ) = P0 exp[−(T/WG)10]
(blue curves in Fig. 5-7), with duration WG = 700
ps. In the asymmetriic case shown in Fig. 7, we
further embed in the flat-top pulse (around T = 0)
a stepwise variation of power modelled as Pstep(T ) =
P0

[
ρ0 + (1− ρ0) 1

2 [1− tanh(T/W0)]
]
, where W0 = 20 ps,

and the extinction ratio is fixed to ρ0 = 0.15. We remark
few points concerning the simulations: (i) first, we did
not make use of any adjustable (fitting) parameter in the
numerics; (ii) second, the additional Riemann-like prob-
lems associated with the sharp edges of the flat-top pulses
do not interfere with the dynamics discussed in the pa-
per. Indeed such initially abrupt tails only smooth out
upon propagation (as observed in the numerics), while
they cannot produce shocks due to their decay to zero,
as discussed in detail in [31]; (iii) the overshoot and the
tiny oscillations around the upper edges of the RWs in
Fig. 5(a,b) are not a numerical artifact, but rather a
manifestation of Gibbs phenomenon [31, 63]. The exper-
imental observation of these very small-scale oscillations,
however, is hampered by the insufficient uniformity of
the modulated flat-top pulses visible in Fig. 4(e).

Experimental setup

The setup has been specifically designed to face two
key challenges: (i) to impress a consistent and rapid fre-

quency modulation on the input signal; and (ii) to com-
pensate for the fiber loss in the main fiber (DCF). The
frequency modulation should be strong enough to pro-
duce frequency shifts which are as large as ∆f0 ∼ ±10
GHz (though, relative to the carrier f0 = 192.18 THz,
the variation |∆f0|/f0 ∼ 5 · 10−5 remains small, as usual
in optics), over relatively long duration (about 0.5 ns,
which is long enough to observe the full development of
DSW envelopes typically made of tens of modulation pe-
riods). Moreover, the transition to switch from negative
to positive values of frequency and vice versa, must be
ultra-fast (typical rise time ∼ 50 ps) so to approximate
the ideally instantaneous stepwise variation. To this end
we resort to an all-optical method based on cross-phase
modulation (XPM) as in Ref. [62] in order to be able to
generate these large frequency chirps. This corresponds
to a maximum phase value of 10π, well above the typical
π rad., the characteristic maximum value accessible with
standard phase modulators used in telecom applications.
The main idea behind the preparation of the Riemann-
like input (point (i)) is to use two laser sources at slightly
different wavelengths suitably modulated in amplitude,
which are combined and injected in a first fiber, namely
a highly nonlinear fiber (HNLF). The HNLF has the key
role of transforming the amplitude modulation of one of
the laser sources into the frequency modulation of the
other source via XPM. The two lasers are independently
modulated as sketched by the two main blocks denoted
in Fig. 4 as “Phase modulation branch” and “Square
branch”, respectively. In particular, in the lower block
(Square branch) we make use of a continuous laser diode
emitting at λ2 = 1561 nm (which fixes the carrier pulsa-
tion introduced in the text to ω0 = 2πc/λ2), which is in-
tensity modulated by an electro-optic modulator (EOM)
driven by an arbitrary waveform generator (AWG2), am-
plified in an Erbium doped fiber amplifier (EDFA) and
spectrally filtered to remove the amplified spontaneous
emission in excess. The intensity modulation produces a
train of square pulses with 25 MHz repetition rate. The
pulses provide constant power (density) over 2 ns dura-
tion, which is expected to be a sufficiently wide temporal
window for the DSWs to develop in the piston-like ex-
periment. Conversely, the upper block (Phase mdulation
branch) is devoted to impress a proper phase modulation
to the beam at λ2. To this end we start from a continuous
laser diode emitting at λ1 = 1539 nm, and impress an in-
tensity modulation via a second EOM driven by AWG1,
after which the signal is again amplified and filtered. The
modulation is synchronous with that of the other block,
whereas the intensity waveform can be chosen to be either
M-shaped (sketched in red in Fig. 4(a)) or triangularly
shaped (sketched in green in Fig. 4(a)). The output of
the two blocks are combined through a 90:10 coupler, so
that we launch in the HNLF a dual wavelength signal
constituted by square pulses with flat phase with typi-
cal peak power P2 = 40 mW superimposed to a more
powerful beam (peak P1(T )max = 7 W) of different color
and suitable temporal shape (either M-like or triangular).
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The linear polarization of the two beams is controlled to
be parallel in order to maximize the effect of XPM. Dur-
ing propagation in the HNLF, the beam at λ1 induces via
XPM an output phase modulation φ2(t) = 2γHLHP1(T )
over the beam at λ2, γH = 12 (W km)−1 and LH = 500
m being the nonlinear Kerr coefficient and the length
of the HNLF, respectively. This corresponds to a chirp
∆ω(T ) = −dφ2(T )/dt = −2γHLHdP1(T )/dT , and in
turn to a profile of the equivalent initial gas velocity
u(t) = ∆ω(T )T0 = 2π∆f(T )

√
k′′/(γP0). The abrupt

change of slope in the M-shaped or triangular intensity
modulation is converted, due to the derivative that links
the frequency to the phase, into a step-like variation of
the chirp or equivalent fluid velocity, which is either de-
scending (for the M-shaped case) or ascending (for the
triangular shape), as sketched in Fig. 4(a). At the output
of the HNLF the beam at λ1, as well as the multiple side-
bands produced by four-wave mixing of the input beating
between λ1 and λ2, are filtered out through a bandpass
filter. The remaining, strongly chirped beam at λ2 con-

stitutes the Riemann-like input which is injected in the
main fiber, i.e. the L = 15 km long DCF. In such fiber
it becomes crucial to compensate the losses (point (ii))
which amounts to 0.5 dB/km or nearly 80% total loss.
This is performed by exploiting the Raman gain from a
counterpropagating pump at λ2 = 1480 nm (for more
details see Ref. [31]). Finally, the output of the DCF is
monitored both spectrally, by means of an optical spec-
trum analyzer (OSA) and in time domain by means of
an optical sampling oscilloscope (OSO) synchronized by
the clock of the two AWGs.

DATA AVAILABILITY

Most of the relevant data used in this paper are con-
tained in the Supplementary Information while further
data are available from the corresponding authors upon
reasonable request.
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[22] M. Abuzarli, T. Bienaimé, S. Pigeon, E. Giacobino, A.
Bramati, & Q. Glorieux, Blast waves in a paraxial fluid
of light, EPL 134, 24001 (2021).

[23] R. J. Leveque, Finite-Volume methods for Hyperbolic
Problems (Cambrige, 2004).

[24] E. F. Toro, The Riemann Problem, in Riemann Solvers
and Numerical Methods for Fluid Dynamics, 3ª ed.,
(Berlin, Springer, 2009), pp. 49-50.

[25] C.A. Coulson & A. Jeffrey, Waves. A mathematical ap-
proach to the common types of wave motion, (Longman,
London, 1977), p. 202.

[26] J. Kevorkian, Partial Differential Equations, Analytical
Solution Techniques, (Springer, New York, 2000), 2nd
ed., p. 364.

[27] G. El, V. Geogjaev, A. Gurevich, & A. Krylov, Decay of
an initial discontinuity in the defocusing NLS hydrody-
namics, Physica D 87, 186 (1995).

[28] M. A. Hoefer, M. J. Ablowitz, & P. Engels, Piston disper-
sive shock wave problem, Phys. Rev. Lett. 100, 084504
(2008).

[29] G. A. El & M. A. Hoefer, Dispersive shock waves and
modulation theory, Physica D 333, 11 (2016).

[30] M. E. Mossman, M. A. Hoefer, K. Julien, P. G.
Kevrekidis, & P. Engels, Dissipative Shock Waves Gen-
erated by a Quantum Mechanical Piston, Nat. Commun.
9, 4665 (2018).

[31] G. Xu, M. Conforti, A. Kudlinski, A. Mussot, & S. Trillo,
Dispersive dam-break flow of a photon fluid, Phys. Rev.
Lett. 118, 254101 (2017).

[32] P. A. P. Janantha, P. Sprenger, M. A. Hoefer, & M. Wu,
Observation of self-cavitating envelope dispersive shock
waves in Yttrium Iron Garnet thin films, Phys. Rev. Lett.
119, 024101 (2017).

[33] G. A. El, E. G. Khamis, & A. Tovbis, Dam break problem
for the focusing nonlinear Schrödinger equation and the
genertion of rogue waves, Nonlinearity 29, 2798 (2016).

[34] G. Biondini, Riemann problems and dispersive shocks in
self-focusing media Phys. Rev. E 98, 052220 (2018).

[35] F. Audo, B. Kibler, J. Fatome, & C. Finot, Experimental
observation of the emergence of Peregrine-like events in
focusing dam break flows, Opt. Lett. 43 2864-2867 (2018).

[36] G. Marcucci, D. Pierangeli,A. J. Agranat, R-K. Lee, E.
Del Re, & C. Conti, Topological control of extreme events,
Nat. Commun. 10, 5090 (2019).

[37] F. Bonnefoy, A. Tikan, F. Copie, P. Suret, G. Ducrozet,
G. Prabhudesai, G. Michel, A. Cazaubiel, E. Falcon, G.
El, & S. Randoux, From modulational instability to fo-
cusing dam breaks in water waves, Phys. Rev. Fluids 5,
034802 (2020).

[38] M. Hu, E. Iacocca, & M. Hoefer, Spin-injection-generated
shock waves and solitons in a ferromagnetic thin film: the
spin piston problem, arXiV 2112.15301 (2022).

[39] Dubessy, R., Polo, J., Perrin, H., Minguzzi, A. & Ol-
shanii, M. Universal shock-wave propagation in one-
dimensional Bose fluids. Phys. Rev. Res. 3, 013098
(2021).

[40] S. Trillo & M. Conforti in Handbook of Optical fibers 373–
419 (ed G-D. Peng) (Springer, Singapore, 2019).

[41] J. Fatome, C. Finot, G. Millot, A. Armaroli & S. Trillo,
Observation of optical undular bores in multiple four-
wave mixing, Phys. Rev. X 4, 021022 (2014).

[42] G. Xu, A. Mussot, A. Kudlinski, S. Trillo, F. Copie, &
M. Conforti, Shock wave generation triggered by a weak
background in optical fibers Opt. Lett. 41, 2656 (2016).

[43] B. Wetzel, D. Bongiovanni, M. Kues, Y. Hu, Z. Chen,
J. M. Dudley, S. Trillo, S. Wabnitz, & R. Morandotti,
Experimental Generation of Riemann Waves in Optics:
A Route to Shock Wave Control, Phys. Rev. Lett. 117,
073902 (2016).

[44] D. Bongiovanni, B. Wetzel, Z. Li, Y. Hu, S. Wabnitz, R.
Morandotti & Z. Chen, Third-order Riemann pulses in
optical fibers, Opt. Express 28, 39827–39840 (2020).

[45] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Ben-
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FIGURE LEGENDS/CAPTIONS

FIG. 1. Schematic of the physics and typical evolutions of classic vs. dispersive piston problems. a,b,c: Shock
wave dynamics for ”pushing” piston (white curves show qualitatively the density): (a) compressing piston producing a shock
wave in an ideal (non-dispersive) fluid; (b) shock-shock produced via step-wise initial velocity profile (Riemann problem); (c)
DSW-DSW via Riemann problem in a dispersive photon fluid; d,e,f: Rarefaction wave dynamics for ”retracting” pistons: (d)
single RW; (e) RW-RW from the Riemann problem; (f) similar RW-RW in a dispersive photon fluid.

FIG. 2. Formation of two DSWs ruled by the full NLSE (with parameters of the experiment) contrasted with
the CSWs of the dispersionless (isentropic gas-dynamic) case. Snapshot of chirp ∆f(T,Z) = u(t, z)/(2πT0) (a)
and power |E(Z, T )|2 = ρ(z, t)P0 (b) at the output Z = 15 km (blue solid line). The input (dashed red) is a frequency step
∆f(z = 0) = ±10 GHz (see also Methods) on a constant power P0 = 200 mW. (c) Evolution of power in T − Z plane showing
the expansion fans of the two left (DSW-L) and right (DSW-R) shocks delimited by edge velocities in Eq. (6); The CSWs are
the solid black lines in (a,b), while their velocities [Eq. (5)] are given by the oblique black lines in (c).

FIG. 3. The Riemann problem of the NLSE. (c) Dynamic transition diagram : domains in the plane of input parameters
(ρ0, u0) of the step, giving rise to different wave-pair compositions of rarefaction (RW) and dispersive shock (DSW). The two
waves in the pair can be connected through a constant state (-c-), zero density (vacuum state -0-); or an unmodulated nonlinear
periodic wave (-per-). Above the red (gray) dashed lines, a vacuum is predicted to appear in the DSW-R (DSW-L). (a)-(b) and
(d)-(e) are typical examples of output (normalized length zL = 20) from Whitham modulation theory marked with green circles
in panel (c). Experimental results are marked with blue crosses. See also Supplementary information for a video illustrating
the transitions between all the cases along the (ρ0 = 1) vertical line and for an extended version of this figure where, for
completeness, we also report former experimental results from [31].

FIG. 4. Sketch of the experimental setup and characterization of the initial condition. (a) EOM: electro-optic
modulator; EDFA: erbium-doped fiber amplifier; AWG: Arbitrary wave generator; OSO: optical sampling oscilloscope; OSA:
Optical Spectrum Analyser; HNLF: highly nonlinear fiber, LH = 500 m; DCF: dispersion compensating fiber, L = 15 km; PC:
polarization controller. The choice of intensity modulation (M- or triangularly-shaped sketched in red and green, respectively)
in the upper block (Phase modulation branch) is transformed into a stepwise chirp (either descending or ascending) of the
beam at λ2, which is also intensity modulated to produce square pulses in the bottom block named Square branch, to compose
the input of the DCF. (b-e) Experimental characterisation of the input to the DCF: (b,c) spectrograms ∆f vs time T (dark red
and blue stands for the maximum and minimum power density, respectively); (d,e) Power profile of the frequency modulated
rectangular pulse. Left column (b,d) and right column (c,e) refer to the case of descending and ascending step-like frequency
variation mimicking a pushing or retracting pair of pistons, respectively.

FIG. 5. Retracting piston experiment. Rarefaction wave pair produced by an increasing input jump in frequency with
±∆f0 = 5.4 GHz, and power: (a) P0 = 165 mW (u0 = −0.63); (b) P0 = 35 mW (u0 = −1.37). (c,d) Simulations based on
the NLSE. The dashed vertical lines stand for edge hydrodynamic velocities calculated from Eq. (7). The horizontal green
line stands for ρiP0, with ρi from Eq. (4). The blue curves stand for the input super-Gaussian pulse profile on which we
superimpose the stepwise chirp jump (see Methods for details).

FIG. 6. Pushing piston experiment. Shock formation: DSW-c-DSW (a,b) and their phase transition to DSW-per-DSW
(c,d), observed for ∆f0 = 9.4 GHz, and power: (a) P0 = 220 mW (u0 = 0.95); (b) P0 = 72 mW (u0 = 1.66); (c) P0 = 27 mW
(u0 = 2.71); (d) P0 = 8 mW (u0 = 4.97). (e-g) Output profiles obtained from numerical simulation of the NLSE (1). Vertical
dashed lines arise from modulation theory: linear DSW edges (orange) and soliton edges in (a,b) or periodic wave edges in
(c,d) (magenta). In (a,b) the horizontal green line stands for ρiP0, with ρi from Eq. (4).
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FIG. 7. Mixed piston - shock tube problem. Transition from DSW-c-DSW to DSW-per-DSW in the asymmetric case,
with fixed ∆f = 9.7 GHz and additional jump in power with nominal extinction ratio PR/PL = 0.15: (a) spectrogram of the
input; (b) profile of input power jump; (c,d) output power profiles: (c) P0 = 240 mW (u0 = 0.94), below threshold; (d) P0 = 90
mW (u0 = 1.52), above threshold. (e,f) Output profiles obtained from numerical simulation of the NLSE (1).The vertical
dashed lines stand for the vacuum point of the R-DSW (red), and the edge velocities of the DSWs (orange and cyan for linear
edges, blue and purple for soliton or inner edges). In (e) the horizontal green dashed line stands for ρiP0.
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