
HAL Id: hal-03699248
https://hal.science/hal-03699248

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A One-Pass Tree-Shaped Tableau for Defeasible LTL
Anasse Chafik, Fahima Cheikh-Alili, Jean-François Condotta, Ivan Varzinczak

To cite this version:
Anasse Chafik, Fahima Cheikh-Alili, Jean-François Condotta, Ivan Varzinczak. A One-Pass Tree-
Shaped Tableau for Defeasible LTL. 28th International Symposium on Temporal Representation and
Reasoning (TIME 2021), Alpen-Adria-Universität Klagenfurt, Sep 2021, Klagenfurt, Austria. pp.16:1-
16:18, �10.4230/LIPIcs.TIME.2021.16�. �hal-03699248�

https://hal.science/hal-03699248
https://hal.archives-ouvertes.fr

A one-pass tree-shaped tableau for defeasible LT L1

Anasse Chafik !2

CRIL, Univ Artois & CNRS, France3

Fahima Cheikh-Alili !4

CRIL, Univ Artois & CNRS, France5

Jean-François Condotta !6

CRIL, Univ Artois & CNRS, France7

Ivan Varzinczak !8

CRIL, Univ Artois & CNRS, France9

Abstract10

Defeasible Linear Temporal Logic is a defeasible temporal formalism for representing and verifying11

exception-tolerant systems. It is based on Linear Temporal Logic (LTL) and builds on the preferential12

approach of Kraus et al. for non-monotonic reasoning, which allows us to formalize and reason with13

exceptions. In this paper, we tackle the satisfiability checking problem for defeasible LTL. One of the14

methods for satisfiability checking in LTL is the one-pass tree shaped analytic tableau proposed by15

Reynolds. We adapt his tableau to defeasible LTL by integrating the preferential semantics to the16

method. The novelty of this work is in showing how the preferential semantics works in a tableau17

method for defeasible linear temporal logic. We introduce a sound and complete tableau method for18

a fragment that can serve as the basis for further exploring tableau methods for this logic.19

2012 ACM Subject Classification Theory of computation → Modal and temporal logics20

Keywords and phrases Temporal logic, Non-monotonic reasoning, Tableau Calculi21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

Acknowledgements The open access publication of this article was supported by the Alpen-Adria-23

Universität Klagenfurt, Austria.24

1 Introduction25

Linear temporal logic (LTL) was introduced by Pnueli [13] as a formal tool for reasoning26

about programs execution. Many properties that an execution can be expressed elegantly27

using this formalism. The logic LTL is used for systems verification [16]. With advances28

in technologies, systems became more and more complex, displaying new features and29

behaviours. One of these behaviours is tolerating exceptions. In more general terms, if an30

error occurs, within an execution of a program, at certain points of time where it is tolerated,31

the program can still function properly.32

Let us say, for the sake of argument, that there is an execution of a program in which a33

parameter cannot have a certain value. We notice that, at some given points of time, the34

execution produces the invalid value in the aforementioned parameter. Nevertheless, we do35

not mind that the program produces the error at these time points deemed to be harmless.36

The crucial point is that this behaviour is not present in other, more important, points37

of time. We want to be sure that the execution still continues and the program functions38

properly even in the presence of such benign time points.39

We want a formalism for verifying properties of executions that can, on one hand, be40

strictly required at some points of time, and on the other hand, be missing in other points41

of time. That is why we introduced an extended formalism of LTL, called defeasible42

linear temporal logic (LTL˜) [6]. It uses the preferential approach of Kraus et al. to43

non-monotonic reasoning [11] (a.k.a. the KLM approach). The defeasible aspect of LTL˜44

© Anasse Chafik, Fahima Cheikh Alili, Jean-François Condotta, Ivan Varzinczak;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chafik@cril.fr
mailto:cheikh@cril.fr
mailto:condotta@cril.fr
mailto:varzinczak@cril.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

adds a new dimension to the verification of a program’s execution. We can order time points45

from the important ones, which we call normal, to the lesser and lesser ones. Normality in46

LTL indicates the importance of a time point within an execution compared to others.47

We also introduced defeasible versions of the modalities always and eventually. With48

these defeasible modalities, we can express properties similar to their classical counterparts,49

targeting the most normal time points within the execution.50

The main goal of this paper is to establish a satisfiability checking method for our logic, in51

particular, for a fragment thereof. In the case of LTL, many tableau methods were proposed52

in the literature. There are two types of tableau methods: multi-pass and one-pass tableaux.53

Multi-pass tableau methods [22, 12, 10] go through an initial phase of building a tree-shaped54

structure by putting the sentence in the root node and expanding the tableau via a systematic55

application of a set of rules. The second phase is a culling phase, which uses an auxiliary56

structure built from the tableau, and checks for the satisfiability of the input sentence in57

this structure. Whereas in one-pass tableau methods [17, 14], the construction and the58

verification are done simultaneously. Reynolds’ tableau for LTL [15, 14] is a tree-shaped59

one-pass tableau where each branch is independent from the others. Moreover, each successful60

branch by itself is a representation of an interpretation that satisfies the sentence.61

As for the KLM approach, tableau methods were developed for the preferential approach62

of Kraus et al. logic [11] and formalisms extending the preferential approach [9, 4, 5]. In the63

case of preferential modal logic, Britz and Varzinczak [4] proposed a tree-shaped tableau64

that builds the ordering relation on worlds at the same time as the tableau is expanded. The65

tableau method in this paper is based on both the one-pass tableau of Reynolds [14] and the66

tableau for preferential modal logic by Britz and Varzinczak [4]. The novelty of this paper is67

in showing how preferential semantics works in a tableau for a fragment of LTL˜.68

The plan of this paper goes the following way: We talk briefly about LTL and LTL˜ in69

Section 2. We then describe a tableau method for a fragment of LTL˜ in Section 3. We show70

soundness, and completeness of our method in Section 4. Section 5 concludes the paper.71

2 Preliminaries72

Linear Temporal Logic [1] is a modal logic in which modalities are considered to be temporal73

operators that describe events happening in different time points over a linearly ordered time-74

line. Let P be a finite set of propositional atoms. The set of operators in LTL can be split into75

two parts: the set of Boolean connectives (¬, ∧, ∨), and that of temporal operators (□,♢, ⃝),76

where □ reads as always, ♢ as eventually, and ⃝ as next. Let p ∈ P, sentences in LTL are77

built up according to the following grammar: α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α.78

Standard abbreviations are included in LTL, such as: ⊤def=p∨¬p, ⊥def=p∧¬p, α → β def=¬α∨β79

and α ↔ β def= (α → β) ∧ (β → α). There are other temporal operators such as U (until80

operator) and R (release operator) in LTL, but we chose to omit them in this paper.81

The temporal semantics structure is a chronological linear succession of time points.82

We use the set of natural numbers in order to label each of these time points i.e., (N, <).83

Hence, a temporal interpretation associates each time point t with a truth assignment of all84

propositional atoms. A temporal interpretation is defined as follows:85

▶ Definition 1 (Temporal interpretation). A temporal interpretation I is a mapping function86

V : N −→ 2P which associates each time point t ∈ N with a set of propositional atoms V (t)87

corresponding to the set of propositions that are true in t. (Propositions not belonging to V (t)88

are assumed to be false at the given time point.)89

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:3

The truth value of a sentence in an interpretation I at a time point t ∈ N, denoted by90

I, t |= α, is recursively defined as follows:91

I, t |= p if p ∈ V (t); I, t |= ¬α if I, t ̸|= α;92

I, t |= α ∧ α′ if I, t |= α and I, t |= α′; I, t |= α ∨ α′ if I, t |= α or I, t |= α′;93

I, t |= □α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t; I, t |= ♢α if I, t′ |= α for some t′ ∈ N s.t.94

t′ ≥ t;95

I, t |= ⃝α if I, t + 1 |= α.96

In previous work [6], we introduced a new formalism called preferential linear temporal97

logic. The motivation is to provide a formalism for the specification and verification of98

systems where exceptions can be tolerated.99

Let p ∈ P, sentences of the logic LTL˜ are built up according to the following grammar:100

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α | □∼α | ♢∼α101

The intuition behind the new temporal operators is the following: □∼ reads as non-102

monotonic always and ♢∼ reads as non-monotonic eventually. The set of all well-formed103

LTL˜ sentences is denoted by L .̃ It is worth to mention that any well-formed sentence α in104

LTL is a sentence of L .̃105

A sentence such as □∼α reads as: in all normal future time points, α is true. A sentence106

of the form ♢∼α reads as: in some normal future time point, α is true. We can even express107

properties using a mix of classical and non-monotonic operators. A sentence □♢∼α reads as:108

always, there is a normal future time point where α is true.109

The preferential component of the interpretation of our language is directly inspired by110

the preferential semantics proposed by Shoham [19] and used in the KLM approach [11].111

The ordering relation, denoted by ⋎ , is a strict partial order on points of time. Following112

Kraus et al. [11], t ⋎ t′ means that t is more preferred than t′. We use the pair notation113

(t, t′) ∈ ⋎ to indicate that t is more normal than t′ w.r.t. ⋎ .114

▶ Definition 2 (Minimality w.r.t. ⋎). Let ⋎ be a strict partial order on a set N and115

N ⊆ N. The set of the minimal elements of N w.r.t. ⋎ , denoted by min ⋎ (N), is defined by116

min ⋎ (N) def= {t ∈ N | there is no t′ ∈ N such that (t′, t) ∈ ⋎ }.117

▶ Definition 3 (Well-founded set). Let ⋎ be a strict partial order on a set N. We say N118

is well-founded w.r.t. ⋎ iff min ⋎ (N) ̸= ∅ for every ∅ ≠ N ⊆ N.119

In what follows, given a relation ⋎ and a time point t ∈ N, the set of preferred time points120

relative to t is the set min ⋎ ([t, ∞[) which is denoted in short by min ⋎ (t).121

▶ Definition 4 (Preferential temporal interpretation). An LTL˜ interpretation on a122

set of propositional atoms P, also called preferential temporal interpretation on P, is a pair123

I def= (V, ⋎) where V is a mapping function V : N −→ 2P , and ⋎ ⊆ N × N is a strict partial124

order on N such that N is well-founded w.r.t. ⋎ . We denote the set of preferential temporal125

interpretations by I.126

Preferential temporal interpretations provide us with an intuitive way of interpreting127

sentences of L .̃ Let α ∈ L ,̃ let I = (V, ⋎) be a preferential temporal interpretation, and let t128

be a time point in I in N. Satisfaction of α at t in I, denoted I, t |= α, is defined as follows:129

The truth values of Boolean connectives and classical modalities are defined as in LTL.130

I, t |= □∼α if I, t′ |= α for all t′ ∈ min ⋎ (t);131

I, t |= ♢∼α if I, t′ |= α for some t′ ∈ min ⋎ (t).132

CVIT 2016

23:4

We say α ∈ L˜ is satisfiable if there is a preferential temporal interpretation I and a133

time point t in N such that I, t |= α. We can show that α ∈ L˜ is satisfiable iff there is a134

preferential temporal interpretation I s.t. I, 0 |= α.135

3 A one-pass tableau for LTL˜136

In this paper, we address the computational task of satisfiability checking in LTL˜. That137

is, given a sentence α in LTL˜, decide whether or not there is an interpretation I that138

satisfies the sentence α. As mentioned in the Introduction, we propose a one-pass tree-shaped139

tableau for a fragment of LTL˜ based on Reynolds’ tableau [15] and inspired by the semantic140

rules for defeasible modalities in modal logic proposed by Britz and Varzinczak [4]. This141

fragment, denoted by L1, serves as a starting point for showing how the ordering ⋎ is built142

for preferential interpretations in LTL˜.143

3.1 The fragment L1144

The fragment L1 considers that sentences are in NNF (negation is only allowed on the level145

of atomic propositions). On the other hand, the non-monotonic operator □∼ is omitted from146

L1. Furthermore, only Boolean sentences are permitted within the scope of □ sentences.147

In what follows, we define formally well formed sentences of L1. In order to do that, we148

introduce first the set of Boolean sentences Lbool. Let p ∈ P, sentences αbool ∈ Lbool are149

defined recursively as such:150

αbool ::= p | ¬p | αbool ∧ αbool | αbool ∨ αbool151

Next, let αbool ∈ Lbool, sentences in L1 are recursively defined as such:152

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ⃝α | ♢∼α153

Sentences of the form ♢α are called eventualities, because its truth depends on α being154

true in the future. Similarly, sentences of the form ♢∼α are called non-monotonic eventualities.155

Their truth depends not only on α being true in some future, but it depends also on this156

future being preferred to the other future time points. Sentences of the form ⃝♢α are called157

⃝-eventuality.158

3.2 Tableau method for L1159

A tableau for α ∈ L1 is a tree of nodes. Each node has a positive integer n as a label. It160

has also two sets of sentences: one we denote as Γ and the other as une (which stands for161

unfulfilled non-monotonic eventualities, a notion to be detailed below). The set Γ is a subset162

of L1 which contains the sentences in the node. The set une is a set of pairs (nk,♢∼αk), where163

nk is a label and ♢∼αk is a non-monotonic eventuality.164

▶ Definition 5 (Labelled node). A labelled node is a triple of the form n : (Γ, une) where165

n ∈ N, Γ ⊆ L1 and une ⊆ [0, n] × L1.166

It is worth to mention that different nodes can have the same label. Intuitively, the nodes167

labelled by a same integer n represent the set of sentences that are satisfied at the time point168

associated with n. Hence, these nodes correspond with a given temporal state.169

A branch B is a sequence of nodes, we introduce also a strict partial ordering relation170

⋎ B on the labels of the nodes within the branch. The branch B has also a set of pairs of171

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:5

labels denoted by minB . The relation ⋎ B represents a preference relation on the temporal172

states of the branch B. On the other hand, the set minB represents some constraints that173

the final preference relation issued from B must satisfy. More precisely, each pair (n, n′) in174

minB indicates that n′ represents a preferred temporal state compared to all n′′ ≥ n.175

▶ Definition 6 (Branch). A branch is a tuple B def= (⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) where the176

first element is a sequence of labelled nodes xi := ni : (Γi, unei), ⋎ B is a strict partial order177

(⋎ B⊆ N×N) on labels within the branch, and minB is a set of pairs of labels (minB ⊆ N×N).178

Let B := (⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) be a branch, xn, xm be two labelled nodes in B. If179

xm comes after xn in the sequence, then xm is a successor of xn, and xn is a predecessor of180

xm. We denote it by xn ≤ xm. Moreover, if xm is not the same labelled node as xn, we say181

that xm is a proper successor of xn (same goes for a proper predecessor). We denote it by182

xn < xm. The last node of a branch is called a leaf node. When a leaf node is ticked with183

✓, we say that the branch is a successful branch. On the other hand, when a leaf node is184

crossed with ✗, we say that the branch is a failed branch.185

A tree is a set of branches T def= {B0, B1, B2, B3, . . . , Bk} where k ≥ 0. A tableau T for186

α is the limit of a sequence of trees ⟨T 0, T 1, T 2, . . . ⟩ where the initial tree is T 0 := {(⟨0 :187

(α, ∅)⟩, ∅, ∅)} and every T i+1 is obtained from T i by applying a rule on one of its branches.188

We say that a tableau T for α is saturated if no more rules can be applied after a tree T .189

We have two types of rules, static and dynamic rules. We introduce static rules first. Let190

T be a tree, and let B be a branch of T that has a leaf n : (Γ, une). We say that a static191

rule (ρ) is applicable at the leaf n : (Γ, une) if a sentence in Γ or a pair in une instantiates192

the pattern ρ. A static rule is a rule of the form:193

(ρ) n : (Γ, une), ⋎ B , minB

n : (Γ1, une1), ⋎ B1 , minB1 | . . . | n : (Γk, unek), ⋎ Bk
, minBk

194

In a tree T i, after applying the static rule (ρ), we obtain the tree T i+1 by repla-195

cing the branch B := (⟨x0, x1, x2, . . . , n : (Γ, une)⟩, ⋎ B , minB) by the branches B1 :=196

(⟨x0, x1, x2, . . . , n : (Γ, une), n : (Γ1, une1)⟩, ⋎ B1 , minB1), B2 := (⟨x0, x1, x2, . . . , n : (Γ, une), n :197

(Γ2, une2)⟩, ⋎ B2 , minB2), and so on. The symbol ‘|’ indicates the occurrence of a split in198

the branch, i.e., a non-deterministic choice of possible outcomes, each of which needs to be199

explored. It is worth to mention that after applying a static rule on n : (Γ, une), the leaf200

nodes of all the new branches keep the same label n.201

In what follows, we show the rules for Boolean and the operators (□,♢). We also show202

two stopping conditions, namely, Empty and Contradiction. We chose to omit ⋎ B and203

minB to lighten these rules. The crucial detail to remember is that they do not change after204

applying the rules below, i.e., ⋎ Bi
= ⋎ B and minBi

= minB for all resulting branches. The205

symbol ∪ is the union of two sets. The symbol ⊎ represents the union between disjoint sets.206

(Contradiction)
n : ({α, ¬α} ⊎ Σ, une)

(✗)
(Empty)

n : (∅, ∅)
(✓)

(∧)
n : ({α1 ∧ α2} ⊎ Σ, une)
n : ({α1, α2} ∪ Σ, une)

(∨)
n : ({α1 ∨ α2} ⊎ Σ, une)

n : ({α1} ∪ Σ, une) | n : ({α2} ∪ Σ, une)

(□)
n : ({□α1} ⊎ Σ, une)

n : ({α1, ⃝□α1} ∪ Σ, une)
(♢)

n : ({♢α1} ⊎ Σ, une)
n : ({α1} ∪ Σ, une) | n : ({⃝♢α1} ∪ Σ, une)

207

Before introducing the rule for the non-monotonic operator ♢∼, we discuss firsthand the208

notion of fulfillment for classical and non-monotonic eventualities. Following Reynolds’209

tableau, let an eventuality ♢α be in a node with a label n. If the sentence α appears in a210

CVIT 2016

23:6

proper successor node x with the label m ≥ n, we say that ♢β at the position n is fulfilled in211

m. In a similar fashion, we define the fulfillment for non-monotonic eventualities as follows:212

▶ Definition 7 (Fulfillment of non-monotonic eventualities). Let a non-monotonic eventuality213

♢∼α be in a node with a label n in a branch B. If α appears in a proper successor node x with214

a label m ≥ n, and (n, m) ∈ minB, we say ♢∼α at the position n is fulfilled in m.215

The truth value ♢∼α in a temporal state n depends on α being true on a future temporal216

state m and m being minimal to all temporal states that come after n w.r.t. ⋎ B . We say m217

is minimal to n as shorter way to say that m is minimal to all temporal states that come218

after n. Unfulfilled non-monotonic eventualities in a node x with the label n are represented219

by the set une def= {(n1,♢∼α1), (n2,♢∼α2), . . . }, each pair (nk,♢∼αk) represents a non-monotonic220

eventuality ♢∼αk at a position nk that needs to be fulfilled. Therefore each node x has three221

components: n is a label indicating the temporal state, Γ is the set of sentences within the222

node and une is the set of non-monotonic eventualities at x that need to be fulfilled. With223

all of our notions introduced, here is the rule for the ♢∼ operator:224

(♢∼)
n : ({♢∼α1} ⊎ Σ, une), ⋎ B , minB

n : ({α1} ∪ Σ, une), ⋎ B , minB ∪ {(n, n)} | n : (Σ, une ∪ {(n,♢∼α1)}), ⋎ B , minB

225

For the rule (♢∼), we explore two outcomes. The first outcome is when the non-monotonic226

eventuality ♢∼α1 at n is fulfilled in n. We then add α1 to the set of sentences Γ of the leaf227

node and add (n, n) ∈ min of the branch. The second outcome is when ♢∼α1 is not fulfilled in228

n, then we add the pair to (n,♢∼α1) to une of the leaf node as a non-monotonic eventuality229

that needs to be fulfilled. Example 8 shows the application of [♢∼] rule.230

▶ Example 8. Let a branch B have ⋎ B, minB and a leaf node 5 : ({p, q,□(p ∧ q),♢∼r}, ∅).231

After applying (♢∼) rule on ♢∼r, we have two new branches B1 and B2. The branch B1 has a232

leaf node where the sentence r is in Γ of the leaf node and (5, 5) ∈ minB1 . The branch B2233

has (5,♢∼r) in une of the leaf node.

5 : ({p, q,□(p ∧ q),♢∼r}, ∅), ⋎ B , minB

5 : ({p, q,□(p ∧ q), r}, ∅), ⋎ B , minB ∪ {(5, 5)} 5 : ({p, q,□(p ∧ q)}, {(5,♢∼r)}), ⋎ B , minB

234

The next static rule we discuss is the rule (une). Let n, n′ be two labels such that n′ < n,235

for each label n and a pair (n′,♢∼α1), the rule (une) is applied one and only one time. The236

rule goes as follows:237

(une)
n : (Γ, {(n′,♢∼α1)} ⊎ U), ⋎ B , minB

n : ({α1} ∪ Γ, U), ⋎ B , minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B , minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B ∪{(n′, n)}, minB

238

For the rule (une), we explore three outcomes. The first outcome is when ♢∼α1 at the239

position n′ is fulfilled at n. We remove (n′,♢∼α1) from une, then we add α in Γ of the leaf240

node and (n′, n) in min of the branch. In the second and third branches, we explore the241

outcome of ♢∼α1 not being fulfilled yet in n, we keep the pair (n′,♢∼α1) on the leaves of two242

branches. The second branch explore the outcome of n being minimal to n′ w.r.t. to ⋎ of243

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:7

the branch. We then add (n′, n) to the min of the branch. In the third branch, we explore244

the outcome of n not being minimal to n′ w.r.t. ⋎ of the branch. It means that there exists245

a temporal state m′ that come after n′ where m′ is preferred to n w.r.t. to ⋎ of the branch,246

we add the pair (n′, n) in ⋎ of the branch to represent this case. It is worth to mention that247

the rule (une) does not apply when the label of the node n is the same as (n,♢∼α1). The248

reason behind this is that we have already explored the case when the eventuality is fulfilled249

in n thanks to (♢∼) rule. Example 9 shows the application of (une) rule.250

▶ Example 9. Let a branch B have ⋎ B, minB and a leaf node 5 : ({□(p ∧ q)}, {(2,♢∼s)}).251

After the application of une on (2,♢∼s), we have three branches B1, B2 and B3. B1 has the252

sentence s in Γ of its leaf node, it has also (2, 5) in minB1 . B2 keeps (2,♢∼s) in the une of its253

leaf node, with (2, 5) ∈ minB2 . B3 keeps also (2,♢∼s) in une of its leaf node, with (2, 5) ∈ ⋎ B3 .254

5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B , minB

5 : ({□(p ∧ q), s}, ∅), ⋎ B , minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B , minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B ∪{(2, 5)}, minB

255

With the (une) and (♢∼) introduced, we need to check the consistency of ⋎ of all the256

new branches. We apply this check each time we apply (une) or (♢∼) rule. Let B :=257

(⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) be a branch, the rule goes as follows:258

[⋎ -inconsistency] If (n, n′) ∈ minB and there exists n′′ ≥ n s.t. (n′′, n′) ∈ ⋎ B , then the259

branch is crossed (✗).260

In a branch B, if (n, n′) ∈ minB, then we are currently exploring a branch where n′ is261

minimal to n w.r.t. ⋎ B . Therefore there should be no n′′ ≥ n where (n′′, n) ∈ ⋎ B . Each time262

we explore a branch where this inconsistency arises, we close the branch.263

▶ Example 10. Let B be a branch where ⋎ B is empty, minB has (1, 5) in it, and a leaf node264

5 : (Γ, {(2,♢∼s)}). After applying une rule on (2,♢∼s), we have three branches B1, B2 and B3.265

The relation ⋎ B1 is empty, and minB1 has the pairs (1, 5) and (2, 5). In this case, there is no266

inconsistency w.r.t. ⋎ B1 so far. The same goes for B2. However, we add (2, 5) to ⋎ B3 . Since267

we already have (1, 5) ∈ minB3 , we then cannot have (2, 5) ∈ ⋎ B3 . We close B3.

5 : (Γ, {(2,♢∼s)}), ∅, {(1, 5)}

. 5 : (Γ, {(2,♢∼s)}), {(2, 5)}, {(1, 5)}

(✗)

268

In a branch B of a tree T with a leaf node xi, after applying every static rule aforemen-269

tioned (the order of application these rules is non-deterministic) that can be applied, all leaf270

nodes of the generated branches contain only sentences of the form p, ¬p or ⃝α in their Γ.271

When no more static rules can be applied in a node, this node is called a state-labelled node.272

State-labelled nodes mark the full expansion of all sentences that hold in a state n.273

Once we are in a state-labelled node, in order to go from a temporal state to the next, we274

need a transition rule (a rule to go from a temporal state n to the next n + 1). In a branch275

B with a leaf state-labelled node, the rule transition goes the following way:276

(Transition)
n : ({⃝α1, ⃝α2, ⃝α3, . . . , ⃝αk} ⊎ Σ, une), ⋎ B , minB

n + 1 : ({α1, α2, α3, . . . , αk}, une), ⋎ B , minB

277

CVIT 2016

23:8

After the transition rule is applied to a state-labelled node n : (Γ, une), we add a node278

with the label n + 1. It marks the start of a new temporal state n + 1. We carry over to n + 1279

only sentences within the scope of ⃝αi sentences. The set une gets transferred as well to the280

next temporal state. Any pair (n′,♢∼α1) ∈ une remaining in the state node with the label n281

indicates that the rule (une) was applied on the temporal state n and the current branch282

explores an outcome where ♢∼α1 is not yet fulfilled in n. Therefore, these non-monotonic283

eventualities need to be fulfilled in n′′ ≥ n + 1.284

Before applying the transition rule, we need to add a set of checks to prevent branches285

from expanding indefinitely. These checks are called loop and prune rules. These rules,286

together with the transition rule, are called dynamic rules.287

Let B := (⟨x0, x1, x2, . . . , v⟩, ⋎ B , minB) be a branch where v is a state-labelled node288

n : (Γv, unev). Let u be the last state-labelled node n − 1 : (Γu, uneu) that comes before v in289

the branch B. Before applying the transition rule on v, we check for these rules:290

[Loop] Let v be a state-labelled node such that it has at least one sentence of the form291

⃝□αbool in Γv but has no ⃝αbool, ⃝♢β, ⃝♢∼β in Γv and unev = ∅. If for all ⃝□αbool in Γv,292

there exists u < s ≤ v such that □αbool ∈ Γs, then the branch B is ticked (✓).293

Notice that once an eventuality is fulfilled, it does not appear any longer in the successors294

of the node. In this case, we say that the sentence is consumed. On the other hand, sentences295

of the form □αbool never get consumed and get replicated indefinitely. Once a branch has296

no eventuality left, □αbool sentences give rise to an infinite tableau with repetitive nodes.297

Nevertheless, we can represent this by looping nodes of the last temporal state. We can, in298

this case, stop the branch from ever going infinite. The loop rule states that when the leaf299

state node v has no eventualities (classical or non-monotonic), has only ⃝□αbool as sentences300

with the pattern ⃝, and each ⃝□αbool is a result from applying the □ rule to a node in B301

with label n, the branch is ticked and marked as a successful branch.302

[Prune] Let u < v be two consecutive state-labelled nodes s.t. Γv = Γu and unev = uneu303

and that there is at least one eventuality in xu (either ⃝♢β ∈ Γu or (n′,♢∼β) ∈ uneu),304

then the branch is crossed (✗).305

The prune rule states that when the last two state nodes u and v have the same set of306

classical and non-monotonic eventualities that need to be fulfilled, and there is at least one307

eventuality in u, the branch is then crossed and marked as an unsuccessful branch. Any308

branch that does not fulfill at least one eventuality between the current and the last temporal309

state is closed, to prioritize the exploration of branches that fulfill one or more eventuality of310

the last temporal state. If neither prune or loop apply on v, we apply the transition rule311

on the node v. Note that the loop and prune rules are fundamentally different from the312

ones proposed in Reynolds’ tableau [14]. These rules are tailored to the restrictions of the313

fragment L1, in particular, the restriction of not allowing temporal sentences inside the □314

operator. We argue in this paper that when eventualities (either classical or non-monotonic)315

are not infinitely replicated inside globally operators, we only need to check the current state316

node with the last one that comes beforehand. It is the reason why we also omit also the317

operator U , since the right part of a U-sentence can also replicate eventualities.318

Once we are in a state-labelled node, we check for the loop and prune within the branch319

before applying the transition rule. If the transition rule is applied on a state node with a320

label n, we obtain a new node with the label n + 1. We can then expand the tree from this321

node by applying static rules until we find ticked branches (thanks to the empty rule), closed322

branches (thanks to the contradiction or ⋎ -inconsistency rules), or branches with a state323

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:9

node that has the label n + 1. We then repeat the cycle between static and dynamic rules.324

We can see that the tableau method does not go indefinitely. Thanks to prune rule, we close325

any branch (✗) that does not fulfill any eventuality in the current temporal state. Anytime326

we apply a transition rule (from n to n + 1), we need to fulfill at least one eventuality in n.327

Therefore, as long as a branch is not closed with prune rule, eventuality sentences (either328

classical or non-monotonic) get consumed one by one over the execution of the method. Thus329

any branch that is not closed with prune has no eventualities left to fulfill. Note that if a330

branch contains at least one sentence of the form □αbool, it is then ticked thanks to the loop331

rule (□αbool sentences do not get consumed). Otherwise, it is ticked thanks to the empty332

rule. Therefore any tableau T for a sentence in L1 is a saturated tableau.333

4 Soundness and completeness334

4.1 Soundness335

Here we prove that the tableau method is sound, that is, when a tableau T of a sentence α ∈336

L1 has a successful branch, then α is satisfiable. As a first step, we show that we can extract337

an interpretation I ∈ I from the successful branch. Let B := (⟨x0, x1, x2, . . . , xn, (✓)⟩, ⋎ B338

, minB) be a successful branch of a tableau T for α, the sequence of nodes contains normal339

and state-labelled nodes. Each state-labelled node, denoted by xji , within this sequence has340

a distinct label i. Figure 1 shows an example of the branch B.341

xj0

0

. . . xj1

1

. . . xj2

2

. . .x0 x1 . . .
B :

xjk−1

k − 1

. . . xjk

k

Figure 1 Illustration of the branch B.

From the aforementioned branch B, we can build an interpretation IB = (V, ⋎). In this342

section, k denotes the label of the last state node. The function V is defined as follows:343

V (i) :=
{

{p ∈ P | p ∈ Γxji
}, if 0 ≤ i ≤ k;

V (k), otherwise.
344

The ordering relation ⋎ is defined as follows ⋎ := {(n, n′) | (n, n′) ∈ ⋎ B}. We can see that345

⋎ is irreflexive, since there is no (n, n) ∈ ⋎ B. The relation ⋎ is also transitive, since for all346

(n1, n2) and (n2, n3) in ⋎ B, there is no (n3, n1) ∈ ⋎ B. Finally, since ⋎ B has no infinitely347

descending chains, then we can conclude that ⋎ preserves the well-foundness condition over348

N. Therefore the interpretation IB ∈ I.349

With the model construction introduced, we can move on to the second part of the proof350

of soundness. We need to show that the model I satisfies the sentence α. In order to do so,351

we introduce a mapping function, denoted by ∆B , that links each time point i ∈ N to a set352

of sentences that are true in said i. These sentences come from the branch B. Depending on353

how the branch is ticked, the function ∆B is defined in the following way.354

If the branch was ticked with the empty rule:355

∆B(i) :=

⋃

x0≤x≤xj0
Γx, if i = 0;⋃

xji−1 <x≤xji
Γx, if 1 ≤ i ≤ k − 1;

{}, otherwise.

356

CVIT 2016

23:10

If the branch was ticked with the loop rule:357

∆B(i) :=

⋃

x0≤x≤xj0
Γx, if i = 0;⋃

xji−1 <x≤xji
Γx, if 1 ≤ i ≤ k;

∆B(k), otherwise.

358

For a time point 0 ≤ i ≤ k, ∆B(i) contains the set of all sentences in Γ of the node359

between the two consecutive state nodes xji−1 and xji
, xji−1 not included. If B is ticked360

thanks to the empty rule, then ∆B(i) is empty for all i ≥ k. If B is ticked thanks to the361

loop rule, then ∆B(i) has the same set of sentences as ∆B(k) for all i ≥ k. We can show362

next that if a sentence α1 is in ∆B(i), then IB , i |= α1. In what follows, let B be a successful363

branch of a tableau T , let k be the label of the last state node in B, and let IB , ∆B be the364

interpretation and the mapping function of sentences extracted from B.365

▶ Lemma 11. Let B be a successful branch, and i ∈ N. If ⃝α1 ∈ ∆B(i), then α1 ∈ ∆B(i+1).366

▶ Lemma 12. Let B be a successful branch, and i ∈ N. If □α1 ∈ ∆B(i), then for all f ≥ i,367

we have {α1,□α1, ⃝□α1} ⊆ ∆B(f).368

▶ Lemma 13. Let B be a successful branch, and i ∈ N. If ♢α1 ∈ ∆B(i), then there exists369

d ≥ i s.t. α1 ∈ ∆B(d) and for all i ≤ f < d, we have {♢α1, ⃝♢α1} ⊆ ∆B(f).370

Lemma 11 to 13 are analogous to Reynolds’ method [14]. Their proof are in Appendix A.371

▶ Proposition 14. Let B be a successful branch. If (i, i′) ∈ minB, then there is no i ≤ i′′
372

where (i′′, i′) ∈ ⋎ B.373

Proof. Let B be a successful branch s.t. (i, i′) ∈ minB . Since the branch is successful, then374

it is not closed with ⋎ -inconsistency and therefore there is no i ≤ i′′ where (i′′, i′) ∈ ⋎ B . ◀375

▶ Lemma 15. Let B be a successful branch and 0 ≤ i ≤ k. If ♢∼α1 ∈ ∆B(i), then there exists376

d ≥ i s.t. (i, d) ∈ minB and α1 ∈ ∆B(d).377

Proof. Let B be a ticked branch of the tableau, k be the label of the last state node and378

i ∈ N. We discuss two possibilities:379

When the branch B is ticked with empty rule, whenever ♢∼α1 ∈ ∆B(i), then we have380

0 ≤ i ≤ k − 1. Since ♢∼α1 ∈ ∆B(i), then ♢∼α1 ∈ Γx where xji−1 < x ≤ xji
. Let x be381

the node where we apply the rule (♢∼) on ♢∼α1, then we either have α1 in Γ of the next382

node with (i, i) ∈ minB or we have (i,♢∼α1) ∈ une of the next node. If α1 is in Γ of383

the next node, then the lemma holds. If (i,♢∼α1) ∈ une of the next node, then we find384

(i,♢∼α1) ∈ unexji
. Thanks to the transition rule, we have (i,♢∼α1) ∈ unexji+1 . By applying385

the rule une on a node with the label i + 1,then we either have α1 in Γ of the next node386

with (i, i + 1) ∈ minB or we have (i,♢∼α1) ∈ une (the two remaining branches) of the387

next node. In a similar way as in i, we can conclude that either α1 ∈ ∆B(i + 1) with388

(i, i + 1) ∈ minB (the lemma holds) or (i,♢∼α1) ∈ unexji+1
. Without loss of generality,389

(i,♢∼α1) is in unexjf
for i ≤ f ≤ k − 1 unless we find i ≤ d ≤ f with α1 ∈ ∆B(d)390

and (i, d) ∈ minB. Since the branch is closed thanks to the empty rule, it means that391

(i,♢∼α1) ̸∈ unexjk−1
. Therefore, there is a state i ≤ d ≤ k − 1 where α1 ∈ ∆B(d) with392

(i, d) ∈ minB .393

When the branch B is ticked with loop rule, the proof is analogous to the case of the394

empty rule (notice that we also have (i,♢∼α1) ̸∈ unexjk
).395

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:11

◀396

▶ Theorem 16. Let B be a ticked branch from a saturated tableau, and IB = (V, ⋎) be the397

model built from the branch B. For all α ∈ L1, for all i ≥ 0, if α ∈ ∆B(i) then IB , i |= α.398

Proof. We prove this lemma using structural induction on the size of the sentence α. Let B399

be a successful branch for a tableau T , and IB = (V, ⋎) be the model built from B.400

α = p. Let p ∈ ∆B(i). By construction of the model IB, we have p ∈ V (i). Therefore,401

we have IB , i |= p.402

α = ¬p. Let ¬p ∈ ∆B(i). Since B is a ticked branch, then it was not closed with the403

contradiction rule, therefore we have p ̸∈ V (i). Therefore, we have IB , i |= ¬p.404

α = α1 ∧ α2. Let α1 ∧ α2 ∈ ∆B(i). By ∧-rule, we have α1, α2 ∈ ∆B(i). By induction405

hypothesis on α1, α2, we have IB , i |= α1 and IB , i |= α2. Thus, we have IB , i |= α1 ∧ α2.406

α = α1 ∨ α2. Let α1 ∨ α2 ∈ ∆B(i). By ∨-rule, we either have α1 or α2 in ∆B(i). Suppose407

that α1 ∈ ∆B(i), by induction hypothesis on α1, we have IB , i |= α1. Therefore, we have408

IB , i |= α1 ∨ α2. Same reasoning applies when α2 ∈ ∆B(i).409

α = ⃝α1. Let ⃝α1 ∈ ∆B(i). Thanks to Lemma 11, we have α1 ∈ ∆B(i+1). By induction410

hypothesis on α1, we have IB , i + 1 |= α1. Therefore, we have IB , i |= ⃝α1.411

α = □α1. Let □α1 ∈ ∆B(i). Thanks to Lemma 12, we have α1 ∈ ∆B(f) for all f ≥ i.412

By induction hypothesis on α1, we have IB , f |= α1 for all f ≥ i. Therefore, we have413

IB , i |= □α1.414

α = ♢α1. Let ♢α1 ∈ ∆B(i). Thanks to Lemma 13, we have α1 ∈ ∆B(d) for some d ≥ i.415

By induction hypothesis on α1, we have IB , d |= α1. Therefore, we have IB , i |= ♢α1.416

α = ♢∼α1. Let ♢∼α1 ∈ ∆B(i). Depending on where i is, we have two cases:417

In the case of i > k, since ♢∼α1 ∈ ∆B(i), then we have ♢∼α1 ∈ ∆B(k). Furthermore,418

since the branch is ticked with loop rule, we know that (i,♢∼α1) ̸∈ unexjk
. Therefore419

α1 ∈ ∆B(k), thus α1 ∈ ∆B(i). Furthermore, since ⋎ := ⋎ B , and there is no f ≥ i such420

(f, i) ∈ ⋎ B , then i ∈ min ⋎ (i), and therefore, IB , i |= ♢∼α1.421

0 ≤ i ≤ k. Thanks to Lemma 15, there exists d ≥ i s.t. α1 ∈ ∆B(d) and (i, d) ∈ minB .422

By induction hypothesis on α1, we have IB , d |= α1. Thanks to Proposition 14, there423

is no i ≤ f ≤ k where (f, d) ∈ ⋎ B and therefore there is no i ≤ f ≤ k where (f, d) ∈ ⋎ .424

Furthermore, by the construction of the model IB , there is no f ≥ k where (f, d) ∈ ⋎ .425

Therefore, we have d ∈ min ⋎ (i). Thus, we have IB , i |= ♢∼α1.426

◀427

Let α ∈ L1, B be a ticked branch from a saturated tableau for α, IB = (V, ⋎) be a model428

built from B. Since we have α ∈ ∆B(0), then we have IB , 0 |= α.429

4.2 Completeness430

We conclude this paper by proving the completeness of the tableau method for sentences431

in L1 i.e., if a sentence α is satisfiable, then any tableau for α has a successful branch, no432

matter the order of applying the rules. We use a model I for α to find a ticked node.433

▶ Theorem 17. Let α ∈ L1 be a satisfiable sentence of LTL˜ . Then any tableau for α has434

a successful branch.435

The idea behind this proof is to have an intermediate sequence s that serves as a link436

between an interpretation I that satisfies the sentence α and a tableau T for α. The sequence437

s is a tuple s := (⟨x0, x1, x2, . . . ⟩, ⋎ s, mins) where each xi is a pair (Γ, une), ⋎ s, mins are438

the set of constraints that the sequence s must follow in order to be coherent with ⋎ of439

CVIT 2016

23:12

the interpretation. The set ⋎ s is not an ordering relation, it records instances of points of440

time not being minimal to other points of time w.r.t. the ordering relation ⋎ . Remember441

that each when we apply the une rule, we add a pair (n′, n) to ⋎ in order to symbolize the442

outcome of n not being minimal to n′. The set of mins records the instances of points of443

points of time being minimal to other points of time w.r.t. the ordering relation ⋎ .444

We link each node of the sequence xi to a time point J(xi) of the interpretation I and a445

labelled node f(xi) of the tableau T . Depending on I, we can build the sequence s using the446

tableau, we then show the sequence s ends up with a tick (✓). We make sure that for each447

node xi with the index time point J(xi) of the sequence, we have the following invariant:448

Inv(xi, J(xi))

For each α ∈ Γxi
, we have I, J(xi) |= α;

For each (J1,♢∼α1) ∈ unexi , there exists J2 ≥ J(xi) where
J2 ∈ min ⋎ (J1) and I, J2 |= α1;

For each (J1, J2) ∈ mins, we have J2 ∈ min ⋎ (J1);

For each (J1, J2) ∈ ⋎ s, there exists J3 ≥ J1 s.t. (J3, J2) ∈ ⋎
(in other words J2 ̸∈ min ⋎ (J1)).

449

We start by putting the root node 0 : ({α}, ∅) with the index time point J(x0) := 0 at the450

start of the sequence. For the first node x0 with the index time point 0 (since there is no rule451

applied before the root node, the sets mins and ⋎ s are empty at the start), we have I, 0 |= α.452

Therefore the invariant Inv(x0, 0) holds. Suppose that the invariant holds up to xi, and a453

rule was applied to xi, we then add a new node xi+1 to the sequence depending on which454

outcome of the rule represents the interpretation I. We then move to the outcome node in455

the tableau, and see which rule is applied to it, and so on and so forth. Each time we add a456

new node xi+1 to the sequence s, we need to make sure that the invariant Inv(xi+1, J(xi+1))457

holds. In general, the sequence will head from the parent node to a child node but it might458

occasionally jump backwards (only in the case of the parent being a prune node, more on459

that later). It is worth to point out that since we might be jumping back and forth between460

nodes of T , each time we are add a new node xi+1 to the sequence s, we are going to rename461

labels within the sets unex, ⋎ B and minB by their respective indexed time points J . The462

function f links each node xi of the sequence s to a labelled node f(xi) of the tableau T .463

It is worth to mention that, since we are only renaming labels of other sets, then we have464

Γxi = Γf(xi). In Appendix B, we discuss the case of each rule that is applied to xi.465

5 Conclusion466

We introduced the basis for a tableau method for LTL˜. We showed how preferential467

semantics work in a one-pass tree-shaped tableau. We also established semantic rules for the468

♢∼ operator. We showed how to handle non-monotonic eventualities using une, ⋎ B and minB .469

In the end, we proved that our method is sound and complete. The loop/prune checkers470

proposed in this paper are specific to L1, and work well under these restrictions.471

With the foundation laid in this work, the next step is to establish semantic rules for472

the □∼ operator. The next fragment of LTL˜ that we are investigating is the sub-language473

that allows only Boolean sentences within □ and □∼. We conjecture that the satisfiability of474

this fragment is decidable and has an upper bound model property similar to one that we475

published in [6].476

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:13

References477

1 M. Ben-Ari. Mathematical Logic for Computer Science, third edition. Springer, 2012.478

2 K. Britz, T. Meyer, and I. Varzinczak. Preferential reasoning for modal logics. Electronic479

Notes in Theoretical Computer Science, 278:55 – 69, 2011. doi:https://doi.org/10.1016/j.480

entcs.2011.10.006.481

3 K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation for preferential description logics.482

In AI 2011: Advances in Artificial Intelligence, pages 491–500, Berlin, Heidelberg, 2011.483

Springer Berlin Heidelberg.484

4 K. Britz and I. Varzinczak. From KLM-style conditionals to defeasible modalities, and back.485

Journal of Applied Non-Classical Logics, 28(1):92–121, 2018. doi:10.1080/11663081.2017.486

1397325.487

5 K. Britz and I. Varzinczak. Preferential tableaux for contextual defeasible ALC. In Proceedings488

of the 28th International Conference on Automated Reasoning with Analytic Tableaux and489

Related Methods (TABLEAUX), number 11714 in LNCS, pages 39–57, 2019.490

6 A. Chafik, F. Cheikh Alili, J.-F. Condotta, and I. Varzinczak. On the decidability of a491

fragment of preferential LTL. In 27th International Symposium on Temporal Representation492

and Reasoning, TIME 2020, volume 178 of LIPIcs, pages 19:1–19:19, 2020. doi:10.4230/493

LIPIcs.TIME.2020.19.494

7 D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for495

interactive systems. In Temporal Logic in Specification, Altrincham, UK, April 8-10, 1987,496

Proceedings, volume 398 of Lecture Notes in Computer Science, pages 409–448. Springer, 1987.497

doi:10.1007/3-540-51803-7_36.498

8 L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. Preferential description logics. In499

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), number 4790 in LNAI,500

pages 257–272. Springer, 2007.501

9 L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. Analytic tableaux calculi for KLM logics502

of nonmonotonic reasoning. ACM Transactions on Computational Logic, 10(3):18:1–18:47,503

2009.504

10 Y. Kesten, Z. Manna, H. Mcguire, and A. Pnueli. A decision algorithm for full propositional505

temporal logic. LNCS, 697, 04 1999.506

11 S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and507

cumulative logics. Artificial Intelligence, 44:167–207, 1990.508

12 Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety. Springer, 1995.509

13 A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of510

Computer Science (SFCS 1977), pages 46–57, Oct 1977. doi:10.1109/SFCS.1977.32.511

14 M. Reynolds. A new rule for LTL tableaux. Electronic Proceedings in Theoretical Computer512

Science, 226:287–301, Sep 2016. URL: http://dx.doi.org/10.4204/EPTCS.226.20, doi:513

10.4204/eptcs.226.20.514

15 M. Reynolds. A traditional tree-style tableau for LTL, 2016. arXiv:1604.03962.515

16 K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. In Model Checking Software, pages516

149–167, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.517

17 S. Schwendimann. A new one-pass tableau calculus for PLTL. In Automated Reasoning with518

Analytic Tableaux and Related Methods, pages 277–291. Springer Berlin Heidelberg, 1998.519

18 Y. Shoham. A Semantical Approach to Nonmonotonic Logics, page 227–250. Morgan Kaufmann520

Publishers Inc., San Francisco, CA, USA, 1987.521

19 Y. Shoham. Reasoning about Change: Time and Causation from the Standpoint of Artificial522

Intelligence. MIT Press, 1988.523

20 A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM,524

32(3):733–749, July 1985. doi:10.1145/3828.3837.525

21 P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1):72 – 99,526

1983. doi:https://doi.org/10.1016/S0019-9958(83)80051-5.527

22 P. Wolper. The tableau method for temporal logic. Logique Et Analyse, 28:110–111, 01 1985.528

CVIT 2016

https://doi.org/https://doi.org/10.1016/j.entcs.2011.10.006
https://doi.org/https://doi.org/10.1016/j.entcs.2011.10.006
https://doi.org/https://doi.org/10.1016/j.entcs.2011.10.006
https://doi.org/10.1080/11663081.2017.1397325
https://doi.org/10.1080/11663081.2017.1397325
https://doi.org/10.1080/11663081.2017.1397325
https://doi.org/10.4230/LIPIcs.TIME.2020.19
https://doi.org/10.4230/LIPIcs.TIME.2020.19
https://doi.org/10.4230/LIPIcs.TIME.2020.19
https://doi.org/10.1007/3-540-51803-7_36
https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.4204/EPTCS.226.20
https://doi.org/10.4204/eptcs.226.20
https://doi.org/10.4204/eptcs.226.20
https://doi.org/10.4204/eptcs.226.20
http://arxiv.org/abs/1604.03962
https://doi.org/10.1145/3828.3837
https://doi.org/https://doi.org/10.1016/S0019-9958(83)80051-5

23:14

A Soundness proof529

▶ Lemma 11. Let B be a successful branch, and i ∈ N. If ⃝α1 ∈ ∆B(i), then α1 ∈ ∆B(i+1).530

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.531

We discuss two possibilities:532

When the branch B is ticked with empty rule. We can see that when i ≥ k, ∆B(i) = {}533

and therefore ⃝α1 ̸∈ ∆B(i). We also know that since ∆B(k) = {}, then there is no534

⃝α1 ∈ Γxjk−1
. Furthermore, there is no static rule that removes ⃝α1, we can conclude535

that there is no ⃝α1 ∈ ∆B(k − 1).536

Otherwise, in the case of 0 ≤ i < k − 1, if ⃝α1 ∈ ∆B(i), then ⃝α1 ∈ Γx where537

xji−1 < x ≤ xji
. Since there is no static rule that removes ⃝α1, we have ⃝α1 ∈ Γxji

.538

Furthermore, after applying the transition rule on the node xji , we have α1 ∈ Γxji+1 .539

Thus, we have α1 ∈ ∆B(i + 1).540

When the branch B is ticked with loop rule. In the case of 0 ≤ i < k, the proof is analogous541

to the case of empty rule. When i = k, if ⃝α1 ∈ ∆B(k), then ⃝α1 is subsequently in Γxjk
.542

Since B is ticked with loop, then α1 is a sentence of the form □αbool and □αbool ∈ Γx543

(xjk−1 < x ≤ xjk
) and therefore □αbool ∈ ∆B(k). Moreover, we have ∆B(k) = ∆B(k + 1).544

Therefore, we have □αbool ∈ ∆B(k + 1) and thus α1 ∈ ∆B(k + 1).545

In the case where i ≥ k. If ⃝α1 ∈ ∆B(i), then ⃝α1 ∈ ∆B(k − 1). As mentioned before,546

since ⃝α1 ∈ ∆B(k − 1), then α1 is □α2 and □α2 ∈ ∆B(k − 1). Since □α2 ∈ ∆B(k − 1),547

then □α2 ∈ ∆B(i + 1) and therefore α1 ∈ ∆B(i + 1).548

◀549

▶ Lemma 12. Let B be a successful branch, and i ∈ N. If □α1 ∈ ∆B(i), then for all f ≥ i,550

we have {α1,□α1, ⃝□α1} ⊆ ∆B(f).551

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.552

For all 0 ≤ i ≤ k, whenever □α1 ∈ ∆B(i), then both α1 and ⃝□α1 is in ∆B(i). By553

Lemma 11, since ⃝□α1 ∈ ∆B(i), then we have □α1 ∈ ∆B(i + 1). By successive applications554

of Lemma 11, we have {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all i ≤ f ≤ k. Note that in the case555

of a branch ticked with empty rule, since ∆B(k) = {}, □α1 cannot be in any ∆B(i) where556

0 ≤ i ≤ k. In other words, if a branch contains □α1, it can only be ticked with loop rule.557

Since {α1,□α1, ⃝□α1} ⊆ ∆B(k), and for all f ≥ k, we have ∆B(f) = ∆B(k), then558

{α1,□α1, ⃝□α1} ⊆ ∆B(f). Thus, the lemma holds when 0 ≤ i ≤ k.559

In the case of i > k, since □α1 ∈ ∆B(i) and ∆B(i) = ∆B(k − 1). Thanks to □-rule,560

{α1,□α1, ⃝□α1} ⊆ ∆B(k − 1). Thus, we have {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all f ≥ k and561

subsequently {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all f ≥ i. ◀562

▶ Lemma 13. Let B be a successful branch, and i ∈ N. If ♢α1 ∈ ∆B(i), then there exists563

d ≥ i s.t. α1 ∈ ∆B(d) and for all i ≤ f < d, we have {♢α1, ⃝♢α1} ⊆ ∆B(f).564

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.565

We discuss two possibilities:566

When the branch B is ticked with empty rule. In the case of 0 ≤ i ≤ k − 1, whenever567

♢α1 ∈ ∆B(i), then either α1 is in ∆B(i) or ⃝♢α1 is in ∆B(i). If α1 ∈ ∆B(i), the lemma568

holds. Otherwise, by Lemma 11, if ⃝♢α1 ∈ ∆B(i) then ♢α1 ∈ ∆B(i + 1). By successive569

applications of Lemma 11, {♢α1, ⃝♢α1} is in ∆B(f) for i ≤ f ≤ k − 1, unless we find570

i ≤ d ≤ f with α1 ∈ ∆B(d).571

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:15

It remains to show that there is a time point d where α1 ∈ ∆B(d). Since the branch is572

closed thanks to the empty rule, it means that ⃝♢α1 ̸∈ ∆B(k − 1). Therefore, there is a573

state i ≤ d ≤ k − 1 where α1 ∈ ∆B(d).574

When the branch B is ticked with loop rule and in the case of 0 ≤ i ≤ k, the proof575

is analogous to the case of empty rule (notice that ⃝♢α1 ̸∈ ∆B(k) also in the case of576

branches ticked with loop).577

In the case of i > k, since ♢α1 ∈ ∆B(i), then we have ♢α1 ∈ ∆B(k − 1). Furthermore,578

since the branch is ticked with loop rule, we know that ⃝♢α1 ̸∈ ∆B(k). Therefore579

α1 ∈ ∆B(k), thus α1 ∈ ∆B(i).580

◀581

B Completeness proof582

Proof. In this section, suppose that we build the sequence s up to xi and the invariant holds583

for all the nodes in the sequence.584

[Empty, Loop]: If we end up with a ticked node in the sequence s, the theorem holds.585

[Contradiction]: If the sequence s is closed, then we have p and ¬p in Γxi . Since we586

have Inv(xi, J(xi)), then we I, J(xi) |= p and I, J(xi) |= ¬p. This cannot happen in a587

interpretation I ∈ I.588

[∧]: Suppose that the rule ∧ is applied to the sentence α1 ∧ α2 on the node f(xi)589

of the tableau T . Let y be the child node of the node f(xi) in the branch. We have590

Γy = (Γf(xi) \ {α1 ∧ α2}) ∪ {α1, α2}. We define the next node in the sequence xi+1 with591

Γxi+1 = Γy, unexi+1 = unexi , and the sets mins, ⋎ s remain unchanged. Since we have592

Inv(xi, J(xi)) and α1 ∧ α2 ∈ Γxi
, then I, J(xi) |= α1 and I, J(xi) |= α2. For the node xi+1,593

we have Γxi+1 = (Γxi \ {α1 ∧ α2}) ∪ {α1, α2} and unexi+1 = unexi . Therefore the first and594

second conditions of Inv(xi+1, J(xi)) are met. Moreover, since mins, ⋎ s remain unchanged595

and we have Inv(xi, J(xi)), then the third and forth conditions of Inv(xi+1, J(xi)) are met.596

Consider that J(xi+1) = J(xi), the invariant Inv(xi+1, J(xi)) holds.597

We can see that by applying a static rule of the from (∧, ∨,□,♢) on the node f(xi), we do598

not add in either une, ⋎ B or minB while applying these rules nor add a new non-monotonic599

eventuality to be fulfilled in the outcome nodes. In order to lighten the proof, we skip the600

check for the second, third and fourth conditions of Inv up until ♢∼ and une rules.601

[∨]: Suppose that the rule ∨ is applied to the sentence α1 ∨ α2 on the node f(xi) of602

the tableau T . We obtain two children nodes y and z of f(xi). We have Γy = (Γf(xi) \603

{α1 ∨ α2}) ∪ {α1} and Γz = (Γf(xi) \ {α1 ∨ α2}) ∪ {α2}. Since we have Inv(xi, J(xi)),604

and α1 ∨ α2 ∈ Γxi
, then we either have I, J(xi) |= α1 or I, J(xi) |= α2. Consider that605

J(xi+1) = J(xi), we discuss two cases:606

Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and607

unexi+1 = unexi
. We know that Γxi+1 = (Γxi

\ {α1 ∨ α2}) ∪ {α1}. Therefore for all608

γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.609

Case 2: Otherwise, when I, J(xi) |= α2, then we define the node xi+1 with Γxi+1 = Γz610

and unexi+1 = unexi
. We know that Γxi+1 = (Γxi

\ {α1 ∨ α2}) ∪ {α2}. Therefore for all611

γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.612

[♢]: Suppose that the rule ♢ is applied to the sentence ♢α1 on the node f(xi) of the tableau613

T . We obtain two children nodes y and z of f(xi). We have Γy = (Γf(xi) \ {♢α1}) ∪ {α1}614

and Γz = (Γf(xi) \ {♢α1}) ∪ {⃝♢α1}. Since we have Inv(xi, J(xi)), and I, J(xi) |= ♢α1, then615

CVIT 2016

23:16

we have I, J(xi) |= α1 ∨ ⃝♢α1. Therefore, we either have I, J(xi) |= α1 or I, J(xi) |= ⃝♢α1.616

Consider that J(xi+1) = J(xi), we discuss two cases:617

Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and618

unexi+1 = unexi
. We know that Γxi+1 = (Γxi

\{♢α1})∪{α1}. Therefore for all γ ∈ Γxi+1 ,619

we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.620

Case 2: When I, J(xi) |= ⃝♢α1, then we define the next node xi+1 with Γxi+1 = Γz621

and unexi+1 = unexi . We know that Γxi+1 = (Γxi \ {♢α1}) ∪ {⃝♢α1}. Therefore for all622

γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.623

[□]: Suppose that the rule □ is applied to the sentence □α1 on the node f(xi) of the624

tableau T . Let y be the child node of the node f(xi) in the branch. We have Γy = (Γf(xi) \625

{□α1}) ∪ {α1, ⃝□α1}. We define the next node xi+1 with Γxi+1 = Γy and unexi+1 = unexi626

and I, J(xi) |= □α1, then we have I, J(xi) |= α1 ∧ ⃝□α1. Therefore, we have I, J(xi) |= α1627

and I, J(xi) |= ⃝□α1. We know that Γxi+1 = (Γxi
\ {□α1}) ∪ {α1, ⃝□α1}. Therefore628

for all γ ∈ Γxi+1 , we have I, J(xi) |= γ. Consider that J(xi+1) = J(xi), the invariant629

Inv(xi+1, J(xi)) holds.630

[♢∼]: When the rule [♢∼] is applied to ♢∼α1 on the node f(xi) of T , we explore two outcomes.631

Let n be the label of the node f(xi) in the branch. In the first outcome, we have a child y632

with Γy = (Γf(xi) \ {♢∼α1}) ∪ {α1} and (n, n) in min of the branch. In the second outcome,633

we have a child node z with Γz = (Γf(xi) \ {♢∼α1}) and unez = unef(xi) ∪ (n,♢∼α1). Since634

we have Inv(xi, J(xi)), and ♢∼α1 ∈ Γxi
, then we have I, J(xi) |= ♢∼α1. It means that there635

exists J1 ≥ J(xi) s.t. J1 ∈ min ⋎ (J(xi)) and I, J1 |= α1. Consider that J(xi+1) = J(xi), we636

discuss two cases:637

Case 1: If J1 = J(xi), then we have I, J(xi) |= α1 and J(xi) ∈ min ⋎ (J(xi)). We then638

define the next node xi+1 of the sequence with Γxi+1 = Γy, unexi+1 = unexi
and add the639

pair (J(xi), J(xi)) to mins. Notice that we swap the labels of nodes with the position of640

their indexed time point J(xi), we will be using indexed time point J instead of labels641

throughout this proof. We know that Γxi+1 = (Γxi
\ {♢∼α1}) ∪ {α1} with I, J(xi) |= α1.642

Additionally, we have mins := mins ∪ {(J(xi), J(xi))} with J(xi) ∈ min ⋎ (J(xi)). The643

sets unexi+1 , ⋎ s remains unchanged. Therefore, the invariant Inv(xi+1, J(xi)) holds.644

Case 2: when J1 > J(xi), then we define the next node xi+1 of the sequence with645

Γxi+1 = Γz, unexi+1 = unexi
∪ {(J(xi),♢∼α1)}. We also know that J1 > J(xi) and646

J1 ∈ min ⋎ (J(xi)) and I, J1 |= α1. Therefore, the second condition of Inv(xi+1, J(xi))647

holds on the pair (J(xi),♢∼α1). The sets mins and ⋎ s remain unchanged. The invariant648

Inv(xi+1, J(xi)) holds.649

[une]: When the rule [une] is applied on a pair (n1,♢∼α1) in une of f(xi). Let n be the650

label of the node f(xi). Let x be the predecessor of xi in s where the rule [♢∼] was applied on651

♢∼α1, let J(x) be the indexed time point of x. Note that the label of f(x) is n1. In the first652

outcome, we have a child y where Γy = Γf(xi) ∪ {α1}, uney = unef(xi) \ {(n1,♢∼α1)} and653

(n1, n) in min of the branch. In the second outcome, we have a child z where Γz = Γf(xi),654

unez = unef(xi) and (n1, n) in min of the branch. In the third outcome, we have a child v655

where Γv = Γf(xi), unev = unef(xi) and (n1, n) in ⋎ of the branch.656

On the other hand, since x is a predecessor of xi in s, then we have Inv(x, J(x)).657

Furthermore, since we have (n1,♢∼α1) ∈ unef(xi), it means that when the rule [♢∼] is applied658

on the node f(x), the branch where (n1,♢∼α1) ∈ unef(x+1) is the path that corresponds with659

the interpretation I. By [♢∼] rule, since we have Inv(x + 1, J(x + 1)), (n1,♢∼α1) ∈ unef(x+1)660

and we know that J(x + 1) = J(x), then we have (J(x),♢∼α1) ∈ unex+1. Furthermore, since661

no rule application consumed (n1,♢∼α1) up to f(xi), then the pair (J(x),♢∼α1) remains also662

A. Chafik, F. Cheikh Alili, J.-F. Condotta and I. Varzinczak 23:17

in unexi . Also, we have Inv(xi, J(xi)), then there is J ′ ≥ J(xi) where J ′ ∈ min ⋎ (J(x)) and663

I, J ′ |= α1. Consider that J(xi+1) = J(xi), we discuss all possibilities below:664

Case 1: If J ′ = J(xi), then we have J(xi) ∈ min ⋎ (J(x)) and I, J(xi) |= α1. We665

define the next node xi+1 with Γxi+1 = Γy, unexi+1 = unexi
\ {(J(x),♢∼α1)} and add666

(J(x), J(xi)) to mins. We have Γxi+1 = Γxi
∪ {α1} with I, J(xi) |= α1. Additionally, we667

have (J(x), J(xi)) ∈ mins with J(xi) ∈ min ⋎ (J(x)). The set ⋎ s remains unchanged.668

Thus, the invariant Inv(xi+1, J(xi)) holds.669

Case 2: when J ′ > J(xi), we have two possibilities:670

Case 2.1: If J(xi) ∈ min ⋎ (J(x)), then we define the next node xi+1 with Γxi+1 = Γz,671

unexi+1 = unexi
and add (J(x), J(xi)) to mins. We have (J(x), J(xi)) ∈ mins with672

J(xi) ∈ min ⋎ (J(x)). The sets Γxi+1 , unexi+1 and ⋎ s remain unchanged. Thus, the673

invariant Inv(xi+1, J(xi)) holds.674

Case 2.2: If J(xi) ̸∈ min ⋎ (n1), then there exists J ′′ ≥ J(x) s.t. (J ′′, J(xi)) ∈ ⋎ . We675

define the next node xi+1 with Γxi+1 = Γv, unexi+1 = unexi and add (J(x), J(xi)) to676

⋎ s. We have (J(x), J(xi)) ∈ ⋎ s with J(xi) ̸∈ min ⋎ (n1). The sets Γxi+1 , unexi+1 and677

mins remain unchanged. Thus, the invariant Inv(xi+1, J(xi)) holds.678

[Transition]: Suppose that the transition rule is applied on the state node f(xi). Let679

y be the child node of the node xi in the branch. We have Γy = {α1 | ⃝α1 ∈ Γf(xi)} and680

uney = unef(xi). We define the next node xi+1 in s with Γxi+1 = Γy and unexi+1 = unexi .681

We consider that J(xi+1) = J(xi) + 1.682

Since we have Inv(xi, J(xi)), then for all ⃝α1 ∈ Γxi
, we have I, J(xi) |= ⃝α1 and683

therefore I, J(xi) + 1 |= α1. The first condition of the invariant Inv(xi+1, J(xi) + 1) is met.684

Secondly, since xi is a state node, then for each remaining (n1,♢∼α1) ∈ unef(xi), either the685

rule [♢∼] or [une] was applied to a node f(x′
i) with the index J(x′

i) = J(xi) and (n1,♢∼α1) was686

carried over to f(xi). In both rules, for each (n1,♢∼α1) ∈ unef(xi), we have (J(x1),♢∼α1) ∈687

unexi
s.t. f(x1) is the node where the rule [♢∼] was applied to ♢∼α1 (see Case 2 for [♢∼] and688

[une] rules). Furthermore, since we have Inv(xi, J(xi)) and f(xi) is a state node, then for689

each (J(x1),♢∼α1) ∈ unexi
, there exists J2 > J(xi) where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1.690

Without loss of generality, there exists J2 ≥ J(xi)+1 where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1.691

The second condition of the invariant Inv(xi+1, J(xi) + 1) is met. Since mins and ⋎ s remain692

unchanged, the invariant Inv(xi+1, J(xi) + 1) holds.693

[⋎ -inconsistency]: Suppose that the ⋎ -inconsistency rise on the node f(xi), and let n694

be the label of the f(xi) on the branch B. If this inconsistency rises, we have (n1, n) in minB695

and (n2, n) in ⋎ B where n1 ≤ n2 ≤ n. These two pairs come from applying [♢∼] or [une] rule696

on two predecessors f(x), f(x′) of f(xi) with the same label n and the same indexed time697

point J(x) = J(x′) = J(xi).698

Let J1 be the time point corresponding to the node f(x1) with the label n1, and let699

J2 be the time point corresponding to the node f(x2) with the label n2. It is worth to700

mention that J1 ≤ J2 ≤ J(xi). Since x, x′ are predecessors of x, we have Inv(x, J(x)),701

Inv(x′, J(x′)) and Inv(xi, J(xi)). Therefore, we the rules are applied on x and x′, we end702

up with (J1, J(xi)) ∈ mins and (J2, J(xi)) ∈ ⋎ s. Since (J1, J(xi)) ∈ mins, then we have703

J(xi) ∈ min ⋎ (J1). On the other hand, since (J2, J(xi)) ∈ ⋎ s, then there exists J3 ≥ J2704

s.t. (J3, J(xi)) ∈ ⋎ . Moreover, we have J1 ≤ J2, this entails that there exists J3 ≥ J1 s.t.705

(J3, J(xi)) ∈ ⋎ . This contradicts Definition 4 of minimality w.r.t. to the relation ⋎ . Therefore706

this cannot happen in a interpretation I ∈ I.707

[Prune]: Let f(xi) be a state node where the prune condition is met. There is a sequence708

within s that goes the following way, xh = u, xh+1, xh+2, . . . , v = xi. The node u or xh is709

CVIT 2016

23:18

the state node that comes before xi and the node v is the current state node. Since v is a710

prune node, we have Γv = Γu and uneu = unev. We can see that if we apply the transition711

rule to the node xi, we will have Γxi+1 = Γxh+1 and unexi+1 = unexh+1 . Therefore, we can712

proceed with the construction of s as if xi was linked to f(u) instead of f(v). Thanks to the713

transition, since we have Inv(xu, J(xu)), then we have Inv(xi+1, J(xi) + 1).714

Each time we find a pair (u, v) in the sequence s, we call it a jump. These jumps may715

occur once or many times (and it may go infinite) in s. In a sequence s, if a pair (u, v) jumps716

repeatedly in succession, we call the pair a recurring jump. It is worth to point out that,717

each time we jump backwards because of a node closed with prune, we return to the state718

labelled node that comes before. In general, the sequence s explores one branch B of T , and719

it deviates sometime to a prune node and goes back to B. Furthermore, since no eventuality720

is fulfilled within a prune loop, eventualities and their fulfillment are in the same branch B.721

What we showed so far is that for an interpretation I and its corresponding sequence s,722

we have Inv(xi, J(xi)) for each i ≥ 0. Going back to the start of the proof, we need to prove723

that the sequence finishes with a ticked node (such is the case when we end up in [loop] or724

[empty] node). We can see that if the sequence s is on a [prune] node, we jump back to the725

state node that comes before it. Theoretically, this jump can recur infinitely many times.726

This means that sequence goes infinite on this case (and never find a ticked node). We need727

to prove that this case cannot happen in the sequence s of I. Suppose that is the case, that728

means the last jump (uk, vk) in the sequence s is a recurring jump that goes infinitely many729

times. The jumps (uj , vj) that come before may recur many times but not infinitely many730

times (otherwise, (uk, vk) would not be the last jump). In the recurring jump (uk, vk), no731

eventuality is fulfilled (whether it is classical or non-monotonic). This entails that when we732

are in a parent node uk < xl < vk that applies either [♢] or [une] rule, we move to the child733

node that delays the propagation of the eventuality (we are in Case 2 for both rules).734

It is worth to point out that we have at least one eventuality in uk. Let us take ⃝♢α1 ∈ Γuk
735

for example, since we have Inv(uk, J(uk)), that means that I, J(uk) |= ⃝♢α1. Thus, we take736

the first time point Jα1 > J(uk) s.t. I, Jα1 |= α1. We also have I, Jα1 |= ♢α1. On the other737

hand, for all J(uk) < J < Jα1 , we have I, J |= ♢α1 I, J |= ⃝♢α1. In other words, each time738

we encounter ♢α1 ∈ Γxl−1 within our jumps (keep in mind we have Inv(xl−1, J)), we pick739

the node in Case 2 of the [♢] rule i.e., ⃝♢α1 ∈ Γxl
. However, in the node indexed with Jα1 ,740

when we encounter ♢α1 ∈ Γxl′−1 (keep in mind we have Inv(xl′−1, Jα1)), we pick the node741

in Case 1 of the [♢] rule i.e., α1 ∈ Γx′
l
. This raises a contradiction, because the node xl′ is742

not present within the jump (uk, vk). Thus breaking the infinite recurring jump (uk, vk).743

If the eventuality is a non-monotonic one, namely (J1,♢∼α1) ∈ uneuk
. Since we have744

Inv(uk, J(uk)) with uk being a state node, there exists J ′ > J(uk) s.t. J ′ ∈ min ⋎ (J1)745

and I, J ′ |= α1. Let Jα1 be the first time point that met these criteria. For all J(uk) <746

J < Jα1 , each time we encounter (J1,♢∼α1) ∈ unexl−1 with the index J , we have Jα1 > J ,747

Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1. Therefore, we pick Case 2 of [une] rule i.e., (J1,♢∼α1) ∈748

unexl
. However, when we encounter (J1,♢∼α1) ∈ unexl′−1 with the index Jα1 , we have749

Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1, then we pick the node in Case 1 of [une] rule i.e., α1 ∈ xl′ .750

This raises a contradiction, because the node xl′ is not present within the jump (uk, vk).751

We proved that since I, 0 |= α, then the corresponding sequence s cannot finish on a752

contradiction, ⋎ -inconsistency or a prune jump. Therefore it must finish with a ticked node.753

Hence, the tableau T of α has a ticked node and therefore a successful branch.754

◀755

	1 Introduction
	2 Preliminaries
	3 A one-pass tableau for LTL
	3.1 The fragment L1
	3.2 Tableau method for L1

	4 Soundness and completeness
	4.1 Soundness
	4.2 Completeness

	5 Conclusion
	A Soundness proof
	B Completeness proof

