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Abstract Collusion occurs when multiple malicious participants of a dis-
tributed protocol work together to sabotage or spy on honest participants.
Decentralized protocols often rely on a subset of participants called workers
for critical operations. Collusion between workers can be particularly harmful
to the security of the protocol. We propose two protocols that select a subset of
workers from the set of participants such that the probability of the workers
colluding together is minimized. Our first solution is a decentralized proto-
col that randomly selects workers in a verifiable manner without any trusted
entities. The second solution is an algorithm that uses a social graph of par-
ticipants and community detection to select workers that are socially distant
in order to reduce the probability of collusion. We present our solutions in the
context of a decentralized voting protocol proposed by Schiedermeier et al. [24]
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that guarantees transparency and verifiability. Enabling collusion-resistance in
order to ensure democratic voting is clearly of paramount importance thus the
voting protocol provides a suitable use case for our solutions.

Keywords Voting · Blockchain · Trust · Collusion-Resistance · Worker
Selection · Random Seed Generation

1 Introduction

Voting is an essential element of a robust democracy. However, traditional
polling site voting, which requires the voters to physically visit designated lo-
cations, poses several problems. For example, in a sanitary context such as
the ongoing COVID-19 pandemic, health concerns of in-person voting are a
major concern. The requirement of in-person voting may also result in low
voter turnout [2]. Mail-in ballots pose their own set of challenges. For exam-
ple, delays and associated controversies [4,5] of the 2020 presidential election
in the United States demonstrated the limitations of mail-in ballots. These
issues show us that we need a more transparent and verifiable method to en-
sure democratic votes, which relies less on a central entity or authority. In
response to this problem, Schiedermeier et al. [24], propose and evaluate a
secure electronic referendum protocol for users that ensures confidentiality,
integrity, transparency, and verifiability.

In this paper, we use this protocol as an example of a decentralized pro-
cess that needs to resist against colluding malicious entities. Collusion attacks
involve multiple protocol participants working together to sabotage that proto-
col or steal information from it. We propose solutions for selecting entities in a
transparent and decentralized manner that reduce the probability of collusion.
Schiedermeier’s protocol[24] indeed operates in a trustless and decentralized
network environment, which implies that the participants involved in the pro-
tocol do not have to trust each other or any third parties. Some steps of the
protocol are carried out by a subset of the participants of the referendum called
workers, chosen by a trusted entity called the initiator. However, we identify
that the initiator may act maliciously and handpick corrupted workers who
can collude together in order to compromise the security of the protocol. This
may include discovering the secret votes, corrupting the final result, or pre-
venting a result altogether. We note that the challenge of worker collusion is
not specific to the protocol by Schiedermeier et al. [24]. Worker collusion is a
general threat to a range of secure decentralized protocols.

In this paper, we propose two approaches to the selection of a set of workers
that minimize the potential of collusion. Firstly, we propose a solution where
workers are designated randomly among a set of participants in a transparent,
verifiable, and decentralized manner. Secondly, given a social graph of the
referendum participants, we use graph analysis and community detection in
order to choose workers amongst them such that the social distance between
them is maximized and thus the potential for collusion is reduced. We use
the protocol by Schiedermeier et al. [24] as the context for the two proposed
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approaches in this paper. However, without loss of generality, the approaches
may be used in other scenarios where a collusion-resistant subset of workers
needs to be chosen from a set of participants.

The outline of the rest of the paper is as follows. In section 2, we intro-
duce the protocol by Schiedermeier et al. [24] as our exposition use-case. We
then discuss previous works related to worker selection, as well as their col-
lusion resistance properties in section 3. Next, in section 4, we describe and
formalize the problem of collusion-resistant worker set selection. Our solutions
are detailed in section 5 for verifiable random worker selection and section 6
for verifiable social graph aware worker selection. In section 7, section 8, and
section 9, we focus on the experimental protocol that we use, the dataset and
tools used, and the analysis of the experimental results, respectively. This is
followed by a discussion of the findings in section 10 and the conclusion in
section 11.

2 Use case – Transparent and Verifiable Voting

In this section, we first describe the transparent and verifiable blockchain-
based voting protocol by Schiedermeier et al. [24]. We use this protocol as
a use-case in this paper for exposition purposes, that is to provide a clear
context to support the objectives of subsequent sections: firstly to analyze and
compare related works (section 3), secondly to highlight risks when selecting
workers (section 4), and finally to present our proposed solutions (sections 5
and 6). Nevertheless, our solutions are not limited to Schiedermeier et al.’s
protocol[24]: they can be applied to other contexts with the need for collusion-
resistant worker set selection. This section provides a brief overview of the
voting protocol, which is sufficient for the purposes of this paper. However,
the reader may take a look at the original paper[24] for complete details.

2.1 Roles

The protocol involves the following roles:

– Initiator: The initiator is an entity that sets up and initiates a referendum.
The initiator defines the parameters necessary for the execution of the
referendum. This includes the set of voters and the set of workers. The
initiation of the referendum is discussed in further detail in Section 2.4.

– Voters: Voters are human users who participate by voting in the referen-
dum. The set of voters participating in an instance of a referendum is given
as: V = {v1, ..., vk}.

– Workers: Workers are users who are a subset of the voters. In addition to
voting, a worker’s device runs the secure multi-party computation phases of
the protocol and contributes to the calculation of the intermediate results
of the protocol. The set of workers, which is a subset of the voters, is given
as: W = {w1, ..., wn},W ⊂ V .
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2.2 Ledger

A blockchain-based ledger L is the unique designated channel of communi-
cation during the protocol. It represents an immutable and publicly accessi-
ble data container. The messages are exchanged by appending and querying
records on this public ledger. Once added in the ledger, a record cannot be
updated or deleted. This is due to the immutability and append-only proper-
ties provided by a blockchain-based ledger. It also provides transparency due
to the public visibility and verification of the blockchain.

2.3 Protocol Phases

The protocol is divided into four distinct phases:

– Initiation: This phase consists of a single broadcast message bid(init) sent
by the initiator to transmit the referendum parameters to all the voters.
This ensures that all the participants share the same referendum context.

– Vote submission: After a voter vi retrieves the initiator’s broadcast message
from the ledger, he then submits his vote. First, he secretly makes his
voting choice which is associated with a specific number value, then he
will generate n shares based on this value. Each share is intended for one
specific worker wj and is encrypted by the voter vi with the wj ’s public
key. At the end of the phase, the voter persists all the encrypted shares
into n messages to the ledger L.

– Intermediate result computation: This phase consists of the computation
of intermediate results by the workers. Each worker will retrieve the en-
crypted shares corresponding to himself from the ledger, decrypt each share
with his private key, and contribute to the homomorphic calculation of in-
termediates results (sum of all votes and sum of all square votes for a later
detection of illegal inputs). Finally the worker will persist these results on
the ledger L.

– Determination and validation of the outcome: In this final phase, each
voter will retrieve the intermediate result shares. While combining all the
results, each voter is able to reconstruct the referendum outcome and the
referendum checksum in order to validate these values and detect potential
illegal inputs.

2.4 Initiation Phase Details

The solutions presented in this paper focus on the initiation phase, as this is
where the selection of workers is carried out. As described by Schiedermeier
et al. [24], the initial broadcast message bid(init) transmitted by the initiator
contains the parameters given below. The message is added to the ledger,
which allows all participants to retrieve the same referendum parameters. As
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we will discuss in section 4, the selection of the workers by the initiator can
lead to collusion issues.

– The identities of the participating voters: V = {id(vi)|vi ∈ V }. Public keys
of the voters are used as their anonymous identities.

– The set of workers: W = {id(wj)|wj ∈ W}.
– The referendum question with a binary response. Yes = +1, No = −1.
– The subsequent phases of the protocol transition at specified time-stamps:

q1−2, q2−3, q3−4. All required input data for a given phase is expected to
be submitted to the ledger before the corresponding timestamp.

3 Related work

We now describe related work dealing with worker selection and collusion-
resistance, and discuss to what extent they could be integrated to the voting
protocol presented above, or, more generally, to collusion-resistant worker se-
lection use cases. Following categories of works are presented in the order of
decreasing needed insight about participants, ending with random selection
of workers. The first works are based on monitoring participant behavior and
their interactions, while the next two categories use the network topology of
participants. Finally, work on random selection of workers is presented.

3.1 Reputation-Based Witness Selection

Fighting potential colluding workers through decentralized reputation systems
as mentioned in [22] could be an interesting idea. There are however two main
limitations to this approach given our use-case.

First, participants are pseudo-anonymized for a vote, and that pseudo-
identity changes between each voting event. This prevents using past behaviour
of participants to choose workers among them, like it is done by Aral et al[11].
In their work, in the context of decentralized cloud computing, they detect
patterns of workers that tend to fail together (accidentally or maliciously),
in order to choose a worker set that maximizes the probability of success.
Because we cannot link pseudo-identities between distinct voting events, we
cannot use their approach. Even without pseudo-identities, the rarity of voting
events and even rarer selections of a given participant as a worker mean few
events when its reputation could be evaluated. This reduces the meaningfulness
of computing a reputation score.

Second, an important requirement for any reputation system used in the
scenario of voting would be strong privacy preservation. Given a real person,
the secrecy of whether that person voted in a given event, and more impor-
tantly the content of the vote should be preserved. These security concerns
regarding the voting phase are discussed by Schiedermeier et al.[24], while
our work focuses on a transparent and verifiable setup before that vote. That
setup is designed to tolerate malicious participants, meaning it does not seek
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to identify them (e.g. for prosecution purposes). In some cases, it is indeed
difficult to differentiate between accidental and malicious actions, for example
with crashes. Therefore, as did the original protocol, we do not need to breach
participant privacy.

3.2 Leader Election

Leader (s)election, for example developed in [28] and [17], uses the network
topology of participants in the system to select a subset of them as leaders.
However, such schemes are not viable solutions for collusion resistance in our
specific use case. Indeed, the purpose of these works is to choose some nodes as
leaders, so as to minimize the distance between each graph node and its closest
leader. Rather than distributing voters around leaders (in our case workers),
we would prefer to distance workers from one another, which is not the same
goal. Moreover, in order to preserve the confidentiality of the vote protocol,
the heuristic for such leader selection would focus on the node IDs, which is
the only known attribute known about participants. Again, if the initiator is
responsible for the input data (i.e. the social graph needed and IDs), it could
easily manipulate these IDs to make sure malicious agents are elected.

3.3 Community detection in graphs

Instead, given a network of participants, we want to distance chosen workers
from one another. We use community detection notably to reduce the com-
plexity of the algorithm in practice (further detailed in section 6). Community
detection partitions a graph based on its structure into one or more communi-
ties, in some cases using edge or node attributes (which is not the case in our
work). The objective is to form groups of nodes that are well connected with
each other, which form a community, while these nodes are less connected to
other nodes outside their community.

Many algorithms have been proposed to perform this task. In our work, we
used the Python igraph[7] library for computations on graphs, which proposes
most of the recent and leading algorithms in community detection. This library
notably includes:

– Rosvall and Bergstrom’s InfoMap[23]. It performs a random walk on the
edges of a given graph, based on the intuition that a random walker is
likely to stay in a well-connected subgraph (i.e. a community), once it has
entered it;

– Clauset et al’s Fast greedy modularity optimization[15]. It optimizes the
Newman and Girvan modularity metric[20], which compares the structure
of a partitioned graph with a graph generated randomly.

– Blondel et al.’s multilevel algorithm[14]. As described by Lancichinetti and
Fortunato[19], it locally optimizes modularity, such that it yields a better
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estimate than Clauset et al.’s[15], while running on a near-linear complexity
on the number of edges.

For the purposes of our experiments, we used Blondel et al’s multilevel
algorithm[14], because it is deterministic and because of its properties pre-
sented before. Moreover, based on Lancichinetti and Fortunato’s analyses[19],
it also performs well compared to other approaches. Subsection 6.3 goes in fur-
ther detail as to why we chose the multilevel algorithm for our experiments.

3.4 Decentralized random number generation and worker selection

Our first proposed solution relies on random selection of a set of workers
among participants. We use a blockchain as an immutable and transparent
messaging hub for participants, so they can generate a random seed number in
a decentralized manner in a single phase, which determines the set of workers.

A work close to our problem is Nguyen-Van et al.’s[21], who propose a
decentralized multi-step protocol based on Homomorphic Encryption, Verifi-
able Random Functions (VRF) and distributed ledgers (e.g. blockchains) to
generate random numbers. Homomorphic encryption enables adding (or mul-
tiplying) values while they are encrypted. VRFs generate random numbers as
well as proofs that these numbers were obtained by running that VRF. The
initiator in Schiedermeier et al.’s work[24] could request a random number to
be generated and would also obtain a proof of correct execution through the
pipeline. However, a limitation is that the initiator must not share the private
key it uses for requesting the number, otherwise voiding tamper-resistance on
the result. As the initiator is not trusted in our case, this method cannot be
used.

Alternatively, their protocol includes a step where each candidate in the
random number generation runs a VRF: if the returned value is higher than
a given threshold, they will indeed participate in generating the number. This
is in fact a random worker set selection. The difference with our approach is
that their set size follows a binomial distribution, whereas in our solution the
size is predetermined. A deterministic size may be preferable in our use-case,
so the vote does not run a probabilistic risk of having too few workers to be
resistant to attacks.

Simic et al.[26] reviewed mechanisms, including those presented above, for
generating random numbers in decentralized environments, in particular in
blockchains.

4 Problem Statement

4.1 Adversary Model

We will call malicious all potential workers as well as the initiator likely to
work together in order to form a coalition with the intention of disrupting
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the expected behavior of the referendum. We can distinguish three malicious
behaviors resulting from workers’ collusion:

– Discovery of the secret votes of the honest participants from the interme-
diate values.

– Manipulation of intermediate values in order to corrupt the final result.
– Prevention of the computation of the final result due to inactivity from the

malicious workers.

The initial list of participants in the voting event is trusted. Notably, each
pseudo-identity in the list corresponds to a unique and real participant, for
example an officially registered citizen. This means that a malicious entity
cannot create multiple fake pseudo-identities to sway the vote, namely, Sybil
attacks are not possible. Similarly, people expected to participate in the vote
are present in the list. We accept both assumptions for the following reasons:

1. An expected participant whose pseudo-identity is missing in the list can
easily detect and report it, as the list is publicly available;

2. Reason (1) also means that for a list size equal to the expected number of
real participants, malicious entities cannot replace the identities of other
participants by theirs;

3. A list containing more pseudo-identities than expected real participants is
likewise detectable and shows the presence of malicious fake participants,
given reasons (1) and (2);

Note however that this does not prevent some other actions by malicious
entities that increase their power in the vote, like:

– bribing a real participant;
– obtaining control over a pseudo-identity (e.g. through phishing). This non-

consensual loss of control by the honest participant may be reported and
fixed before the voting event takes place, canceling the malicious action.

The effect of such actions is an increased number of malicious entities in
the protocol. In this work, we simply count m maliciously controlled pseudo-
identities in the participant list during an execution of the protocol.

4.2 Collusion-Resistant Worker Selection

An arbitrary selection of workers by a single entity (the initiator in the case of
Schiedermeier et al.’s protocol[24]) can lead to collusion if the entity perform-
ing the selection is malicious. This is why we propose to remove this arbitrary
choice, replacing it with a more neutral and secure process.

We will now define which constraints need to be upheld by our solutions
to successfully achieve this task. Let m be the number of malicious workers
among all n workers. We place ourselves in the context of a t − n threshold-
based Shamir secret sharing scheme [25], which allows splitting up a secret into
n shares (each held by one of the n workers) in such a way that any t of them
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suffice to reconstruct the secret. Malicious agents cannot gain any information
about the secret if they possess strictly less than t shares.

1. To ensure the secrecy through Shamir’s threshold system-based secret shar-
ing scheme [25], the number of malicious workers m shall not be more than
t;

2. If there are less than t honest active workers, then a coalition of malicious
workers can prevent reconstructing the value by being inactive. Therefore,
m shall not surpass n − t workers. Like the first constraint, this rule con-
siders the presence of m malicious agents in a t− n threshold system;

3. A checksum is computed at the same time as the referendum’s result. Its
purpose is to count the total number of votes. This prevents participants
from voting illegal referendum values. For the referendum’s checksum re-
construction, m must be less than n − t2 workers (again against inactiv-
ity) [16].

Therefore we have:

n ≥ t > m ≥ 0 (1a)

n− t > m ≥ 0 (1b)

n− t2 > m ≥ 0 (1c)

The collusion limit is when m = t − 1, i.e., when the malicious coalition
is missing one worker to be able to discover the secret. Replacing m = t − 1
into (3) gives us: t2 + t− 1− n < 0 and t > 0. Given n workers, the maximal
t is therefore given by tmax = ⌊(−1 +

√
5 + 4n)/2⌋, based on verifiability

constraints presented above.

5 Proposal 1: Verifiable Random Worker Selection

Replacing arbitrary worker selection with a verifiable random selection enables
quantifying the probability of collusion. For example, in section 9, we show
that even with a third of the participants as workers in the sampled social
graph, the probability of collusion is less than 2.5%. Before, that probability
was unknown, because the initiator was a trusted entity. Now, however, the
probability P(X = m) of having sampled m malicious workers among M
malicious participants knowing n total workers were sampled among P total
participants follows a hypergeometric lawH(n, M

P , P ). This probability is given
by:

P(X = m) =

(
M
m

)(
P−M
n−m

)(
P
n

) (2)

For example, let us assume that we want to have a probability of collusion
of less than 5% and expect to have M malicious participants out of the total
P participants. Plotting the hypergeometric law’s Cumulative Distribution
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Fig. 1: Process diagram of the initial protocol (in the center), with proposed
solution protocols integrated onto it on the sides. qi−j lines represent phase
transitions as defined in [24], q0−1 is a new transition used only in vote-order-
based worker selection (right-hand side). Rectangles represent process phases,
“document”-shapes represent messages on the ledger. Document-shapes con-
tain data items used in the protocol. Bold items are changes compared to the
initial protocol.
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Function CDF (n,m), for given values of M and P , and taking the intersection
with the plane of probability 95%, gives us the curve C(n) such that there is
95% probability that there are less or equal than m malicious workers in a
sample of n participants.

Our protocol computes a random number in a decentralized fashion. This
number is used as a seed to randomly select workers among participants. This
seed will be known by all. Therefore, the whole procedure can be verified by
any participant. This solution introduces an additional phase in the voting
protocol. This phase harnesses the immutability and ordering properties of
messages committed on the ledger to generate a verifiable seed. Indeed, we
can use these properties to generate a number in a decentralized manner by
soliciting the participation of voters, who will deposit a message on the ledger.
Our number is generated by comparing the order in which a subset of partic-
ipants committed a message on the ledger, as well as the composition of that
subset, to the ordered complete list of participants. Given the number genera-
tion algorithm and the messages on the ledger, any participant can verify the
outcome of that phase.

The public ledger on the blockchain has the particularity to be immutable.
It means that malicious entities cannot interfere with the ordering of messages
on the ledger nor can they interfere with whether messages are published or
not on the ledger. Blocks are appended sequentially to the blockchain, and
each block contains a list of transactions (in our case our messages). We can
use this sequential data structure to define an order of participant IDs.

5.1 Context

Underlying blockchain characteristics: Our solution relies on blockchain archi-
tectures that meet the following specifications:

– Consensus algorithm: should be so the malicious coalition lacks the nec-
essary resources to manipulate or control it. For example, it can be based
on hardware resources, like Proof-of-Work, or cryptocurrency assets, like
Proof-of-Stake or its Delegated Proof-of-Stake variant.

– Openness/Access control: the blockchain system may either be public or
permissioned. However, public blockchains are useful to have a large num-
ber of nodes maintaining them, which enables high decentralization of the
consensus algorithm. The voting application logic would run on top of this
consensus layer. Indeed, participants in the vote can be registered and iden-
tified in the vote’s participant list by their public blockchain account ad-
dresses, or their corresponding public keys (for example with Ethereum[1],
the account address is derived from a user’s public key). Participants are
therefore registered at the application-level (or smart contract-level, if
present), while the underlying blockchain is open to the general public.
This mechanism makes it easy to distinguish real from fake vote partic-
ipants, in the context where the voting application coexists with other
services (and their respective users) on the same blockchain. Because of
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the extended blockchain user base, which includes nodes maintaining the
network, it also means participants are only required to be able to send
transactions (containing the protocol messages) to the blockchain using
their account. In turn, this means participants do not need to run a full
blockchain node in order to participate in the voting protocol. For example,
with Ethereum[1], light clients enable to verify the validity of blocks and
transactions, without requiring the storage of the whole blockchain historic
data.

– Smart contracts: the protocol only needs the blockchain as a messaging
hub. As such, advanced features like smart contracts are not required.
Nonetheless, smart contracts are useful to enable decentralized and easier
enforcement of the protocol (e.g. for phase-switches, for considering only a
voter’s latest vote submission).

Inputs: Let P be an ordered list of P participant IDs, obtained through a
trusted process (e.g. voter registration by government entities). Let n be the
size of the subset of participants to select in P. Furthermore, let M ⊂ P be
the set of malicious participants. Malicious participants are a priori indistin-
guishable from honest participants, i.e. no ID in P can be proven to be in M
before the protocol starts. M = |M| ≥ 0 the number of malicious participants
is unknown as well.

Outputs: Let W ⊂ P be the set of selected workers.

Objective: Select n = |W| workers out of P, such that the procedure is ver-
ifiable by all participants in P and all malicious participants in M cannot
increase their chances of being chosen as workers to more than random chance
(i.e. the probability of m malicious participants being selected as workers fol-
lows a hypergeometric law H(n, M

P , P )).

Hypotheses:

(h1) Malicious entities cannot interfere with the block-/transaction-ordering on
the ledger. Rationale: Property guaranteed by the Blockchain;

(h2) Malicious entities cannot interfere with whether transactions are published
or not on the ledger. Rationale: It is assumed that the coalition of malicious
entities does not have the resources to take control over the blockchain’s con-
sensus algorithm (as required by blockchain characteristics defined before);

(h3) If a Cryptographically Secure Pseudo-Random-Number Generator1 (CSPRNG),
a high entropy generator, and a numbering method with a large output
space are used to generate the list of workers, malicious participants can-
not increase their chances of being chosen as workers by choosing particular
IDs. Rationale: Property guaranteed by CSPRNGs.

1 Cryptographically Secure Pseudo-Random-Number Generator: high entropy generator
which resists reverse-engineering, cryptanalysis and passes statistical randomness tests
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5.2 Algorithm

A new phase is added between the referendum’s initiation and the referendum
vote. Initiation commits a list of P participants and a number n of workers
to select. This new phase will consist of the participants choosing to deposit
a message on the ledger or not. This creates a sublist of participant IDs on
the ledger which will be used to generate a seed number for a CSPRNG.
This CSPRNG will in turn sample n workers among the P participants. It
is important to note that these committed messages are distinct from the
participants’ actual votes, which happen in a later phase.

This protocol proceeds as follows (see Figure 1 above for reference):

1. The phase begins when the phase-switching deadline q0−1 after the ref-
erendum’s initiation is reached. This happens when the initiator commits
the referendum’s information on the ledger. These information include:
– IDs of participants able to vote in the referendum;
– Number nworkers of workers to select;
– Unaffected share affiliations between participants and workers used in

Shamir’s Secret Sharing Scheme (i.e. a participant x will divide its secret
referendum-vote in the next phase and respectively give each share to
the kth, lth, ... selected workers);

– Context and semantics for the referendum;
– Phase-switching timestamps {q1−2, q2−3, q3−4}.

2. Each participant decides to commit a message on the ledger or not;
3. The phase ends when the phase-switching deadline q1−2 is reached;
4. An ordered list of messages V will then be present on the ledger. A number

is computed from V and the ordered list of all referendum participants
P . Three main computations can be used to generate this number: the
permutation, combination and arrangement numbers of V in regard to P .
The first computation uses only the message-list V as randomness input,
while both V and P are used for combination and arrangement number
generation. Mathematical expressions and output spaces are presented in
Table 1.
– The computed number is used as a seed for a CSPRNG. Then, w work-

ers are sampled in the list of participants with this generator;
– Shamir’s Secret Sharing Scheme’s shares affiliations between partici-

pants and workers for the referendum-vote are then attributed to each
selected worker;

– The protocol can then proceed to the next phase (referendum vote).

Remarks:

– On multiple committed messages: only the first message deposited by each
participant (if they deposited any) is considered. This prevents seed value
manipulations from malicious participants as the phase goes on.

– On merging worker selection with the voting phase: as said earlier, the
workers are selected during a distinct phase preceding the actual vote. For
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simplicity, and given worker selection is based on an order of messages,
one would intuitively want to perform worker selection during the vote
itself. However, this is impossible due to an incompatibility with the vot-
ing protocol mechanisms as proposed by Schiedermeier et al.[24]. Indeed,
participants vote by committing n distinct shares, encrypted with each
worker’s public key (so that only that worker can decrypt it with its pri-
vate key). This means that all workers must be identified prior to the voting
phase. Moreover, from a security standpoint, merging the phases reduces
the entropy of the number generation, because its entropy comes from both
the number of messages and their order. Indeed, honest participants are
likely to actually vote, which ultimately reduces the space from which the
number is generated.

– In the absence of committed messages: a number is generated however
many participants commit a message, in particular even when the ordered
list of committed messages is empty. In that scenario, using the proposed
numbering functions (see Table 1), the obtained value would be zero. The
absence of commits is therefore not problematic as long as the hypothesis
(h2) defined above holds. If (h2) is compromised, then the participant list,
trusted by the protocol, could be maliciously designed such that no com-
mits (or only malicious commits) make it so enough malicious workers are
selected. This would be done by giving malicious participants specific IDs.

– Message list traversal: In the expressions of Table 1, the list of committed
messages is traversed in the anti-chronological order (i.e. the latest message
corresponds to index i = 0) for additional security. This prevents malicious
participants from progressively computing the updates of the seed value as
messages are committed. Indeed, using that direction for list traversal, all
indices point to a different value each time a new message is committed.

5.3 Discussion

Malicious entities cannot interfere with the presence and order of honest mes-
sage deposits (h1, h2). Therefore, a favorable condition for them is to wait until
all honest participants have most likely made their choice whether to deposit a
message on the ledger. From the malicious perspective, these honest messages
constitute a sort of nonce for the seed number. If the initiator is malicious, it
might also try to give specific IDs to some malicious participants, in order to
have them chosen. Note that in the case of Schiedermeier’s protocol[24], IDs
are public keys. This renders it complicated to generate a key-pair such that
it favors malicious participants. Moreover, ID assignment happens before this
protocol’s execution, therefore it is only possible to try to maximize chances
of being selected given a set of nonces. The greater the numbering function’s
output space, the lower these chances. Enabling participants to cancel their
previous message by committing a new one gives more freedom for malicious
entities to adapt to the order of honest participant messages. The security of
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Table 1: Three methods to attribute a number to a list V of comparable non-
reoccurring elements (integers, character strings,...) knowing its superlist P.

Numbering Method Expression Output Space

Permutation
PN : V → N

∑|V |−1
i=0 (i!

∑i−1
k=0 1xk<xi ) J0; |V |!J

Combination
CN : V, P → N

∑j(0)−1
k=0

(|P |−j(0)+k
|V |−1

)
+

∑|V |−1
i=1

∑j(i)−j(i−1)−2
k=0

(|P |−j(i)+k
|V |−i−1

) J0;
(|P |
|V |

)
J

Arrangement
AN : V, P → N

∑|V |−1
i=0 (

|P |!
(|P |−i)!

+ CN(V, P ) ∗ |V |! + PN(V )) J0;
∑|P |

v=0 A
v
|P |J

With: 1F =

{
0, F is False

1, F is True
, F a boolean expression. P = [x0, .., xp−1] a list of elements

in ascending order, p the number of participants. xk is the ID of the k-th participant in the
referendum. V = [y0, .., yv−1] ordered by the order of messages in the ledger, V a sublist of
P , v the number of messages. j : N→ N a function such that: j(i) = k iff yi = xk, i.e. for

an ID in V of index i, returns its index in P . Ak
n = n!

(n−k)!
is the amount of distinct

arrangements of k among n non-reoccurring elements, also called k-permutations of n.

the seed generation is given by the size of the output space, meaning the pos-
sible entropy of the number generation, coupled with mechanisms to hinder
malicious behavior adapting as the protocol advances.

Our seed generation method’s output space depends on the number of

participants (J0;
∑|P |

v=0 A
v
|P |J). Therefore, for low participant numbers, entropy

might be too low to guarantee pseudo-randomness. A solution to this problem
would be to introduce entropy into the system, by considering a value posted in
each participant’s message. However, this approach introduces possibilities for
malicious entities to manipulate the seed value. One must keep in mind that
the size of the output space is a sum of factorials depending on the number
of participants: for 10 participants, there are 106 possibilities, but 10158 for
100 participants. To boost the number of possibilities for a low number of
participants, multiple message commits per participant can be handled for
number generation. If n message commits are allowed per participant, then
each message (containing a number between 1 and n) would be considered as
that of an artificial participant in a list of P ′ = n ∗ P participants. Note that
the actual proportion of malicious participants (real and artificial) remains
unchanged, but the output space for generating numbers greatly increases
with P ′ (see the AN function’s output space in Table 1).

6 Proposal 2: Verifiable Social-Graph-Aware Worker Selection

Instead of randomly choosing the workers among the voters, this next solution
uses social graph data in order to select them. This process is done with a com-
munity detection algorithm. First, we compute the communities of the graph.
We then decide how many workers will be selected from each community. Fi-
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nally, we select the workers from the communities whilst trying to maximize
their distances to other workers.

If we are able to distinguish several communities in a social graph repre-
senting interactions between the candidates of the protocol, we can gather new
information to achieve worker selection. Indeed, two participants close to each
other in the same community are likely to know each other and have social
interactions[18], in other words, should they also be malicious, they are likely
to collude. This assertion leads us to a new algorithm: maximizing distances
between workers inside each community and in the whole graph to minimize
interactions.

We assume that the participants have access to an anonymized social graph
of the participants. This is a simplification of the context for experimental
purposes, where privacy of participants is not required. Indeed, a main purpose
of this solution is to compare our random worker selection to a selection taking
advantage of the social structure of participants. If this graph is available and
the number of workers to be selected is known, then this protocol is verifiable
by all participants. If such a graph is not available, we propose to use our first
solution (section 5), which is fully decentralized. In section 10, we also discuss
some potential alternatives to the centralized availability of the social graph.

In any case, like our first solution, this approach is independent from the
voting protocol that we use to contextualize them. Therefore, it can be useful
in other contexts, where such a graph is available and privacy is not a concern.
For example, in the context of a referendum in a company, the organization
chart, which is open and not privacy-sensitive information inside the com-
pany, can be used as an approximation of the interactions between employees,
and as such, as an approximation of the social graph inside the company. In
this specific context, an ability to punish detected malicious activities may be
wanted. Otherwise, the organization chart may be modified to reduce infor-
mation identifying specific employees. Note that it is possible to enable linking
workers to real identities, while preserving voter secrecy, by maintaining two
lists of participant identities, one for voting and one for (potentially) working.
Geographical clustering of voters, such that a sufficient k-anonymity is guar-
anteed (for example, with the U.S.A.: federal, state, county or municipality
levels), could also be used to approximate the overall social graph from which
workers can be selected.

6.1 Context

Consider the existence of a “real” social graph representing the relationships
between vote participants in real life. This abstract structure is to be dis-
tinguished with graphs obtained from social networks like Facebook, which
are created based on user interactions on that service. As such, the latter are
an approximated representation of the complete and theoretical “real” graph,
with missing or added nodes and edges. Nonetheless, experimentally, we will
tolerate this approximation and use Facebook social graphs as datasets (see
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section 8). In our context of collusion-resistance, the proximity between nodes
is considered to represent their likeliness of complicity, meaning workers are
more likely to collude together if they are close in the social graph. Therefore,
in that context, selecting workers such that they are distant from each other
in the social graph would reduce the probability of collusion.

Inputs: Let G be an undirected unweighted social graph with G = (V,E).
The same reasoning can be applied to a weighted graph. V a set of vertices
representing each referendum participant. Each vertex v possesses an attribute
which is the participant’s ID. Let E be a set of edges, two vertices are connected
with an edge e if the corresponding participants mutually and directly know
each other. Let nworkers be the number of workers which shall be designated
among the participants.

Output: Let W be a set of participant IDs which shall act as workers in sub-
sequent phases.

Objective: Choose W such that workers don’t know each other well enough
to form a coalition capable of invalidating the results of the referendum. This
means determiningW a subset of V , such thatW contains less than tmutually
cooperating malicious nodes out of nworkers nodes, i.e. maximize the social
distance between all workers.

Hypotheses: Concerning community detection, we consider the following hy-
potheses:

– Two participants know each other less the longer the shortest path between
their respective vertices is. This hypothesis is based on heuristics used
in topology methods for link prediction problems in (social) graphs, e.g.
common neighbors[18];

– Participants from distinct communities know each other less, even more so
if those communities don’t communicate directly with each other (paths
between members of the two communities go through other communities).

6.2 Algorithm

Our main Algorithm 1 can be divided in three steps:

1. Community Detection: From a social graph, we apply a clustering algo-
rithm to find groups of nodes (see subsection 6.3);

2. Quantifying the number of workers to be selected in each community: De-
pending on the number of communities ncommunities and total number of
workers nworkers, we will compute the number of workers ni to be selected
in each community ci (see Algorithm 2):
→ ncommunities = nworkers: one worker per community;
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Algorithm 1: Social-graph-aware worker selection

Data: G: unoriented graph (V,E), with V a set of vertices representing each
participant, E a set of edges such that vi and vj are adjacent if participants
i and j know each other; nw: amount of workers to place in G

Result: W : subset of vertices W ⊆ V , the set of chosen workers
1 P,C ← detectCommunities(G);

/* P partitions G in nc clusters and attributes a cluster ID

ck ∈ VC = {i ∈ J1;ncK|ci} to each vertex in V , such that

P : P (v ∈ V ) = ck ∈ VC */

/* C = (VC , EC) an undirected graph of nc communities. ci and cj are

connected with an edge eci,j ∈ EC if one or more vertices in

{v ∈ V |P (v) = ci} are adjacent in G to one or more vertices in

{v ∈ V |P (v) = cj}. */

2 N ← quantifyWorkersPerCommunity(G,P,C, nw);
/* N = {i ∈ J1;ncK|ni = number of workers in ci} */

3 W ← empty set;
4 for ci ∈ VC do
5 Wi ← selectWorkers(G,P, ci, ni);
6 W ←W ∪Wi;

7 end
8 return W ;

→ ncommunities > nworkers: one worker per community in distant commu-
nities;

→ ncommunities < nworkers: distribute multiple workers amongst commu-
nities using a criterion.

3. Selection of workers: According to the number of worker ni, we will then
choose which participants will become workers for each community and
maximize their distances to each other (see Algorithm 3).

6.3 Step 1: Community Detection

The choice of the community detection method will greatly impact the worker
selection algorithm and the collusion resistance. Indeed, our main hypotheses
for workers selection and assignment are based on inter- and intra-communities
interactions. We distinguished several criteria to choose our clustering algo-
rithm:

– deterministic outcome (no random operations to generate clusters) required
for reproducibility and verifiability by participants;

– linear or near-linear time-complexity on the number of vertices or edges;
– each vertex is assigned to a unique cluster (i.e. no multi-community detec-

tion);
– the number of detected communities depends only on the graph structure

(i.e. no need of parameters to set or vary the number of communities found).

Considering the above criteria as a filter for algorithms already imple-
mented in the graph library that we use (igraph[7]), we retain the multi-level
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community detection by Blondel et al.[14] as our community detection algo-
rithm.

6.4 Step 2: Quantifying the Number of Workers to be Selected in Each
Community

This step consists of determining the number of workers which shall be selected
in each community in Step 3 (subsection 6.5), considering the total number of
workers nworkers, the number of communities nc, and a distribution criterion.

6.4.1 Hypotheses

We consider the following hypotheses:

1. Given a shortest path length d in the graph, two participants in the same
community distanced by d know each other more than two participants
from distinct communities with that same distance d between them.

2. Sparse graphs are better suited to house more workers than dense one.
Rationale: there are more shortest paths with values of 2 or more, meaning
participants of that same cluster know each other in varying degrees of
separation.

3. Placing workers evenly across the graph (i.e. all workers distant by 3 more
edges versus creating small clusters of less than t workers) gives better guar-
antees for non-collusion. Rationale: each worker does not know its nearest
worker-neighbors that well.

6.4.2 Algorithm

If the ratio nworkers

nc
is less than one, then workers should be placed in com-

munities distant from each other. Otherwise, all communities shall contain a
worker before assigning multiple workers to a community (to take advantage
of hypothesis 1). If there are more workers than communities, the graph struc-
ture should be used to infer how many workers should be contained in each
community (see algorithm 2). In this last case, the number of workers in each
community is given by the pro-rata of the number of vertices in a community
to the total number of vertices in the graph, e.g. a community comprising 10%
of the vertices will receive 10% of the workers.

6.5 Step 3: Worker Selection

Once the number of workers per community has been determined, those num-
bers must be selected from each community’s subgraph (see algorithm 3).
Finding the optimal solution to maximize the distances between worker nodes
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Algorithm 2: Quantifying the number of workers to be selected in
each community

Data: G, P , C, nw as defined in algorithm 1
Result: N = {i ∈ J1;ncK|ni = number of workers in ci ∈ C}, nc the number of

communities in C
1 N ← {i ∈ J1;ncK|ni = 0};
2 if nc = nworkers then
3 N ← {i ∈ J1;ncK|ni = 1};
4 else if nc > nw then
5 Cw ← spreadV ertices(C, nw); /* Algorithm 3, Cw ⊂ C */

6 N ← {i ∈ J1;ncK|ni

{
0, ci /∈ Cw

1, ci ∈ Cw
};

7 else
8 N ← criterionDistrib(G,P,C, nw);
9 end

10 return N ;

Algorithm 3: Select spread out vertices in a graph

Data: G: unoriented graph (V,E), V the set of vertices, E the set of edges; n:
amount of vertices in V to select; Vav : Vav ⊂ V , Vav ≤ |V | − n, a set of
vertices to avoid (empty by default)

Result: VS ⊆ V, |VS | = n, the set of selected vertices
1 nr ← n; /* remaining vertices to select */

2 if |Vav | = 0 then
3 VS ← {selectInitialVertex(G)};
4 else
5 VS ← Vav ;
6 nr ← nr − 1;

7 end
8 Msp ← BFS(VS , V ); /* Breadth-first-search distances from vertices in VS

to vertices in V into a (|VS |, |V |) matrix. If the graph is weighted,

then BFS can be replaced with an adequate algorithm. */

9 for i ∈ J1;nrK do
10 vs ← selectV ertex(V,Msp);
11 VS ← VS ∪ {vs};
12 Msp ← (Msp|BFS({vs}, V )) ;

13 end
14 VS ← VS − Vav ;
15 return VS ;

is time-exponential in the number of nodes. We approximate this solution by it-
eratively adding nodes to the output set, using breadth first searches and max-
imizing different selection criteria. Time-complexity achieves O(n2

i ∗n+ni ∗ e)
this way, with n nodes and e edges in the community ci’s subgraph, ni the
number of workers to place in ci.
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6.5.1 Distancing Criteria

The main criterion for worker selection is maximizing the distance with the
nearest worker. In case of multiple choices, a secondary criterion is used to
decide: (MSR) Maximizing the Sum of a Reward function r : d → reward:

r : d →


0, d ∈ J0; 1K
1, d = 2

2, d ∈ J3;+∞J

MSR’s heuristic takes into account the fact that the primary criterion (maxi-
mizing the distance to the closest worker) has operated a pre-selection on the
candidate nodes. After the primary criterion, we know that there will be some
workers who are close to the candidate. Knowing that, what we seek is to have
the highest number of faraway workers (distances of 3 or more). Which is why
workers distant by 3 or more yield the reward of 2, while those distant by 2
yield half, and adjacent workers give no reward.

Random choice of the next worker among candidate nodes also gives good
results in spreading workers on the graph. However, we require using deter-
ministic methods for verifiability purposes.

7 Experimental Protocol

We will now present the experimental protocol which we will use to evaluate
the implementation of our worker selection methods: verifiable random worker
selection (section 5) and community detection-based worker selection (sec-
tion 6). The objective of this protocol is to build an environment to quantify
and analyze collusion resistance in the protocols that we proposed.

7.1 Context

Given an execution of either method placing n workers on a social graph,
the probability of collusion will be quantified by the size of the largest clique
of workers, distant from each other by at most k ≥ 1. This metric is time-
exponential on n, which means experiments on high n values will have to be
done with fewer protocol executions. We assume for our experiments that this
largest clique of workers of size m will try to collude. We could have chosen to
tag a subset of graph nodes as malicious, then measure the size of the largest
clique of malicious workers. However, this second technique requires additional
assumptions on how malicious workers are distributed on social graphs, which
we have chosen to avoid.

We have defined in section 4 the threshold tmax(n) = ⌊(1 +
√
5 + 4n)/2⌋

under which a number of m colluding malicious workers still upholds our
protocol’s security properties.
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Given this metric m and n workers placed on a graph, we consider that
collusion is possible ifm ≥ tmax(n). Given a set of protocol executions selecting
a number of n workers, we also compute a confidence interval [0;mmax] on the
distribution of obtained m values. A protocol is defined as collusion-resistant
with a confidence c for a given number of workers n, if the probability that
tmax(n) /∈ [0;mmax] is c.

Our experimental protocol aims to answer the following question: does
random sampling of workers among participants give a high enough confidence
that no collusion will be possible between those workers?

We will fix the confidence level for our experiments to 95%. An alternative
would have been to compute a p-value of each set of executions for n selected
workers. In our case, this p-value would correspond to the probability that we
erroneously consider that there is a collusion attack, meaning the probability
that no collusion takes place. A high p-value would mean a low probability of
collusion. However, due to the reduced number of executions for high n values,
this p-value would not be significant, given the low number of considered
experiments.

Figure 2 describes our experimental protocol’s workflow.
The effective parameters which are the number of workers to select were

chosen based on 10 points of an exponential growth from 10 workers to 1
5 of the

size of the graph (in the case of facebook combined2: 807 out of 4039 nodes)
with the logspace method from the Python NumPy library3. These parameters
will be tested on 100 executions. Due to the time-exponential complexity on
the number of workers, experiments for n ∈ {1000 + 200 ∗ k|k ∈ J0; 10K} will
be run on 5 executions.

Table 2: Problem instances or Experimentation inputs

Problem Variables Values

nworkers {10, 16, 43, 70, 114, 186, 304, 495, 807}⋃
{1000 + 200 ∗ k|k ∈ J0; 10K}

7.2 Randomly Sampling Nodes on a Graph: Verifiable Random Worker
Selection Simulation

We substitute the Verifiable Random Worker Selection with a simulation pro-
tocol for the experiment’s purpose. This does not have an impact on the results
since the simulation keeps the same concept of randomness and the output re-
mains an ordered list of participant IDs.

2 See section 8 for the dataset introduction
3 Python NumPy logspace function documentation at

https://numpy.org/doc/stable/reference/generated/numpy.logspace.html
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Fig. 2: Process diagram for the experimental protocol, given a set of problem
variables comprising social graphs and amounts of workers to place.
Experimentation is divided into a solutions-processing phase followed by met-
rics computation and evaluation. On the sides of the solution phase, factors
for a given algorithm are presented. Our main metric is emphasized in bold.
This process is fully automated until ”cross executions analysis” excluded.
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In lieu of this specific approach, the more general problem of random sam-
pling of workers in a given graph will be evaluated. This gives us an expectable
behavior and feasibility approximation for our random number generator pro-
tocol. Those solutions being non-deterministic, they will be considered feasible
in practice for a given graph and a number of workers n, if the executions’
largest clique-size 95%-confidence intervals satisfy the problem’s constraints.

In practical terms, this considers a scenario where all P participants are
potentially malicious, but a subset of workers can only successfully collude
together if they form a clique larger than the security threshold t in the graph.

7.3 Graph & worker selection metrics

Our main metric is the size of the largest cliques of workers distant of at most
k, k in J1; 3K. It gets computationally too expensive for k > 3, for less added
insight, as 93% of communities found in the graph have diameters of 5 or
less for the multilevel algorithm, the facebook combined graph itself being of
diameter 8. The best method should minimize the size of the largest clique
given nworkers.

For behavior analysis purposes, additional metrics will be measured:

– Community subgraph diameter and radius;
– Number of nodes in communities;
– Number of workers in communities;
– Distances between workers (intra- and inter-community), mainly on inter-

worker distances less or equal to 2. The best method should minimize the
amount of workers directly adjacent or separated by one other participant.

8 Chosen Dataset and Tools

8.1 Dataset

We used the facebook combined [9] dataset for the experimental evaluation.
This dataset from Facebook’s social network graph is available through the
Stanford network datasets [8]. Some of the properties of the facebook combined
dataset are listed below.

– Undirected edges (symmetrical relationships).
– Comprises 4,039 nodes and 88,234 edges.
– “Community detection friendly”: most clusters should be detectable by

humans on the graph. Most members of these clusters should be adjacent
to multiple other members of the same cluster. Counter-example: stream-
ing website Twitch’s network [10], where some individuals have very high
degrees, while their adjacent nodes are mostly not connected to each other.
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8.2 Tools

We used the tools listed below for the experimental evaluation.

– Graphing tools: igraph (data structures and graph methods) [7]; graph-tool
(visualization) [3].

– Exploration and experimentation: Python Jupyter [6].
– Workflow and reproducibility management: A framework developed by

Matthieu Bettinger [12] (provided with the rest of the source code [13]);
Python Jupyter [6].

9 Evaluation and Analysis

This part aims to present and analyze the results from the execution of the
workflow presented in Figure 2, i.e. the step “cross-executions analysis” in the
process diagram.

9.1 Random Nodes Sampling on a Graph

We plot the lower and upper bounds for t in the t− n Shamir Secret Sharing
Scheme in Figures 3 and 4. The inequalities 1a through 1c from section 4 give
the maximum values tmax given n. Meanwhile, the metric we evaluate empiri-
cally, that is the size of the largest clique of workers distant of at most k (with
k increasing from 1 to 3 in Figures 3, 4.a and 4.b), gives the lower bound tmin.
This is done for our ArrangementNumbering and SizeProRata/ML (Multi-
Level) worker selection algorithms, presented respectively in sections 5 and 6.
A solution is viable for a given n if tmax > tmin. ArrangementNumbering’s
curve is given with a 95% confidence interval (error bars). For n ≤ 807, 100 ex-
ecutions were done for each point on ArrangementNumbering, 5 executions
for n > 807, due to the metric’s exponential complexity on n. No error bars
are necessary for SizeProRata/ML, as the algorithm is deterministic.

Intuitively, a method which has access to the information upon which a
metric is computed will perform better on that metric than a method with-
out that information. In our case, the metric being the size of the largest
clique of workers, our graph-aware proposed solution should perform better
than our random worker selection protocol. This observation can be confirmed
by the graph representing the cliques’ size threshold for the t − n Shamir
Secret Sharing Scheme (see Figure 3). Undeniably, the SizeProRata/ML
curve (“ML” stands for multi-level community detection), our graph-aware
solution, shows considerably better results than the random selection with
ArrangementNumbering. Until 45% of participants are workers,ArrangementNumbering
is closely under the maximal threshold curve : there is a confidence of 97.5%
that the size of largest cliques is under tmax until 1800 workers. SizeProRata/ML
is remarkably more efficient and its heuristics only begin to lose efficiency at
around half of the voters as workers. When the number of workers reaches the
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Fig. 3: Lower and upper bounds for t in t-n Shamir Secret Sharing Scheme
tmax(n) is determined with the problem’s strictest constraint on t (Equa-
tion 1c, see also section 4).

number of voters, the ArrangementNumbering and SizeProRata/ML curves
will intersect in a final point. This intersection corresponds to the largest clique
size (in this case 69 for 4039 nodes) when all the voters are workers. Compu-
tations for over 3000 workers were not executed, because of the largest clique
search algorithm’s time-complexity. Only the final intersection point was com-
puted. Dotted lines show the expected evolution of both curves between 3000
workers and the endpoint.

However, considering a worker threshold of 1
5 of the participants (here 807

among 4039), which is already a high number of workers, the two workers
selection methods stay under the tmax curve determined by our problem’s
constraints.

9.2 Results under relaxed constraints

As defined in section 4, our main constraint on the upper bound of the security
threshold t is due to the checksum verification which implies n − t2 > m
(Inequality 1c). Should the constraint of Inequality 1c be removed or be absent
(i.e. in another protocol without this checksum mechanism), only constraints
linked to Shamir’s Secret sharing scheme would remain (Inequalities 1a and 1b,
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(a) Size of largest cliques of workers distant of at most 2

(b) Size of largest cliques of workers distant of at most 3

Fig. 4: Lower and upper bounds for t in t-n Shamir Secret Sharing Scheme
tmax(n) is obtained when removing the problem’s strictest constraint on t
(Equation 1c, see also section 4).
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namely t > m and n− t > m), which give an upper bound for t: tmax = ⌊n
2 ⌋.

In practical terms, as n − t ≥ n − t2 > m for t ∈ N∗, removing Inequality
1c enables tolerating a greater proportion of malicious workers, for a given
number n of chosen workers.

If we were to consider this new upper bound, we could compare curve
behaviors of both our selection methods with that new boundary curve, for
cliques of workers distant of at most 2 (see Figure 4.a), resp. 3 (see Figure 4.b).
These methods’ curves greatly surpass the more constrained version of tmax.
In case of a maximal distance of 2 resp. 3, we can see that both methods repre-
senting tmin grow linearly with a slighter slope than the boundary curve rep-
resenting tmax (SizeProRata/ML: 0.23 resp. 0.41; ArrangementNumbering:
0.26 resp. 0.43; tmax(n): 0.5). Therefore, should the n− t2 > m constraint be
lifted whilst maintaining the protocol’s properties, better collusion-resistance
insights can be obtained. Indeed, we would know that under these new con-
straints, it is unlikely that a clique of workers distant of at most 3 would be
larger than tmax.

10 Discussion

10.1 Clique Sizes in Social Graphs

When a social graph increases in size, how do graph properties like the size
and the number of the largest cliques scale?

The denser a given graph, the larger the probable size of the largest clique
and the number of cliques of a given size. If the proportion of nodes in big
cliques compared to the global graph gets higher, random sampling of nodes
will more and more likely occur in those cliques. The same reasoning holds true
for big communities, a relaxed concept of cliques of nodes. Johan Ugander et
al. described the structure of Facebook’s social graph in 2011[27]. For both
the U.S. and global friends networks on Facebook, around 90% of users had
less than 500 friends and 1% had more than a thousand friends (maximum
number at around 5000 friends). They used the degeneracy metric in their
analyses, which corresponds in ”an undirected graph G [to] the largest k for
which G has a non-empty k-core. Meanwhile, the k-core of a graph G is the
maximal subgraph of G in which all vertices have degree at least k”. A k-core
corresponds to a k+1-clique if its size is k+1. This also means that k-cores are
sets of nodes which may contain cliques of size less or equal to k+1. Therefore,
degeneracy provides an upper bound for the size of the largest clique in the
graph. Their findings use the degeneracy for nodes of a certain degree, i.e. for
a given person, the maximum k friends which also know k− 1 other friends of
that same person. Degeneracy grew monotonously with the node degree. The
maximal degeneracy for the 95th percentile was of around 200 for a degree
of 5000. This would mean that 200 friends of that person knew 199 other
friends of that person. What interests us more is that a clique containing that
person would be of size lower than 200. Their analysis was carried out on
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active Facebook users (users, with at least one friend, who logged in at least
once in the last month prior to the analysis), representing a graph with 721
million nodes. This result on such a large graph gives us reassurance on the
evolution of the size of the largest clique as the graph gets larger. Indeed, for
such a graph size, tmax = 26851, which is two orders of magnitude bigger than
the upper bound for the largest clique’s size. In fact, a graph of size 39,799
(10x the size of the graph we used) would still tolerate a largest clique of 200
nodes whilst ensuring collusion-resistance.

10.2 On the Feasibility of Random Worker Selection

A determining factor on whether random selection of workers is feasible with
a low collusion probability in a given graph is the size of the graph’s largest
clique (see Figure 3 for reference). If that size is significantly lower than the
upper bound for the t − n Shamir Secret Sharing Scheme’s t value obtained
through the problem’s constraints, then there is a low collusion probability,
i.e. high collusion resistance, for any number of workers. However, if the size of
the largest clique is close to or greater than tmax(P ), with P the total number
of nodes in the graph, then there exists an upper bound nmax for n where, for
n ≥ nmax, P (|Clqmax| > tmax) > 5%, with Clqmax the largest clique’s set of
nodes for n workers.

If the graph is unknown or unavailable, then this upper bound nmax can
be approximated through other approaches. Insights about the voting popu-
lation’s social structure, for example insights on its density, the (expected or
known) size of some communities among participants, can help in estimating
nmax. Without such graph knowledge, then one can use system constraints
(Inequalities 1a-c) and the hypergeometric distribution followed by this ran-
dom selection (as presented in section 5). By estimating a certain proportion
of M malicious participants among the total P , one can get all numbers of
workers n such that system constraints are verified.

10.3 On the Feasibility of Relaxed Graph-Aware Methods

Would less informed knowledge about the graph be sufficient in order to give
high collusion-resistance confidence?

For low values of nworkers/nparticipants, the size of the largest clique of
workers seems to increase linearly with the number of workers (see Figure 3).
That function’s slope is initially steeper than the one of the linear function
passing through the point corresponding to the largest clique in the graph,
then the slope gets slighter in order to end on that same point. It would be of
interest to investigate if that observation still holds on other social graphs. In
that case, because tmax follows a square root-shaped function, there exists a
range of low values of n, where tmax is greater than tmin (size of largest clique
with 95% confidence).
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Other criteria altogether, not using a graph, could be used to help deter-
mine a number of workers n:

– Using the curve obtained by intersecting the hypergeometric law’s Cumula-
tive Distribution Function P (n,m) with a plane of probability p (e.g. 95%)
as defined in subsection 5.3. This method requires quantifying an expected
total number of malicious participants M ;

– Optimizing n on the criterion of the amount of needed messages. Indeed
Shamir’s Secret Sharing Scheme requires dividing each one of the P par-
ticipant’s vote in n shares, one per worker. This means there will be n ∗ P
messages placed on the distributed ledger during the referendum-vote. For
scalability purposes, the number of workers should be kept as low as secu-
rity criteria permit it.

10.4 On the Feasibility of Graph-Aware Methods

Should a social graph of participants be available for a given referendum, where
should it be stored?

If only the referendum initiator has access to it, should they be malicious,
nothing prevents them from not using it altogether in designating workers.
Forcing him to use it could be done by forcing him to provide a proof that the
result was obtained through the algorithm.

Let us now consider a graph annotated with participant IDs on nodes.
The initiator can use it or transmit it to other malicious entities to violate
participant anonymity, through graph inference re-identification.

However, knowing only the unannotated graph may provide lower and
upper bounds for n in the same way our experiments did (see Figure 3).
Anonymity could be maintained in this case.

If the graph is public, then it becomes easier to ascertain whether the initia-
tor used the algorithm, for example through Smart Contracts (Ethereum)[1].
However, an annotated graph would again be at risk of participant re-identification.
If we were to divide the graph among participants in order to decentralize
tasks, we would need workers and would therefore have the same problem to
select those.

Another variant would be to use a decentralized social graph, with par-
ticipants knowing only their “friends” on the now implicit social graph (plus
some strangers to avoid re-identification if some nodes have a low degree). A
decentralized algorithm should then be designed to select workers under those
constraints.

11 Conclusion

In this paper, we proposed two solutions to provide better collusion-resistance
in distributed protocols where a subset of workers needs to be selected from
the set of participants. The referendum voting protocol of Schiedermeier et al.



Collusion-Resistant Worker Set Selection 31

[24] serves as a use-case for our solutions. In this protocol, which is based on
blockchain and Secure Multi-Party Computation, a subpopulation of partici-
pants is arbitrarily chosen by an initiator entity to compute the referendum’s
calculations. In this referendum use-case, worker collusion can lead to corrup-
tion of the final result. The referendum could also be rendered void by massive
malicious worker inactivity. It is desirable to prevent these types of behaviors
and to avoid relying on single entities in our use-case but also in the more
general context of decentralized or multi-party systems.

In order to prevent collusion, we introduced two worker selection protocols:
a verifiable random worker selection based on decentralized computation of a
random seed, as well as a selection based on community detection in social
graphs. Firstly, we used the blockchain’s immutability and ordering to design
a collusion-resistant decentralized protocol to randomly select workers. Sec-
ondly, we considered a social graph representing participants and proposed an
algorithm to distance workers from each other in the graph.

Based on a social graph and our problem’s constraints, we computed the
size of the largest clique of workers to evaluate the number of workers’ bounds
for which our solutions were resistant to collusion with high confidence.

Both approaches provided ranges of numbers of workers satisfying the con-
straints (see Figure 3). The decentralized random worker selection works from
low numbers of workers to an upper limit which depends on the size of the
graph’s largest clique. As expected, the method taking advantage of the graph’s
structure provides better results: it distances workers better for a wider range
of numbers of workers.

As discussed, an interesting topic for future work would be to analyze in
depth the impact of the social graph structure on the protocol’s resistance
to collusion. An equally important topic would be to fully decentralize the
method based on the graph structure and community detection. This solution
should ensure privacy for participants, be transparent to all and verifiable by
all, whilst preserving the demonstrated collusion-resistance properties.
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