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Abstract
HPC systems are composed of multiple tiers of storage, from
the top high performance tier (high speed SSDs) to the bot-
tom capacitive one (tapes). File placement in such architec-
ture is managed through prefetchers (bottom-up) and evic-
tion policies (top-down). Most state-of-the-art work focus
on the former while using algorithm flavors of LRU, LFU
and FIFO for the latter. LRU was for long considered the best
choice. However, recent studies has shown that the simplic-
ity of FIFO could make it more scalable than LRU because of
metadata management, and thus more adequate in several
cases. In this paper, we propose a new eviction policy based
on predicted files lifetimes. It is comparable to FIFO in terms
of metadata overhead and simplicity (thus scalability), while
giving a hit ratio comparable to LRU (or even 10% better
for some tested traces). We also propose a naive multi-tier
heterogeneous storage simulator implementation to evaluate
such policies.

CCSConcepts: • Information systems→ Information stor-
age systems; Storage management; Hierarchical storage
management; Information lifecycle management;
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1 Introduction
HPC storage systems have to meet increasingly high per-
formance and storage requirements [30][39][21]. To do so,
they have multiple storage technologies at their disposal.
Technologies such as NVM [16][5] and SSDs[4] offer high
performance but their high cost in currency per gigabyte
and thus low capacity prevent them from being used as the
only form of storage (in most cases). Instead, companies are
using HDD [25] for their moderate cost and higher capacity,
with a smaller amount of faster SSD or NVM being used as
a cache or as a complementary storage (horizontal integra-
tion) [4]. These storage devices are eventually completed
with tapes [20], offering long-term low-cost but high-latency
technologies as a third storage tier.
To move files from capacitive tiers to high performance

tiers, the systems used generally rely on prefetchers [33]
[38] [37]. Several policies were introduced in state-of-the-
art studies. They mainly rely on monitoring I/Os [24] [3],
analyzing patterns and classifying file/objects/blocks before
prefetching them to higher tier memories.

However, even if those prefetching algorithms are very so-
phisticated, the focus is not on how files should be removed
from the efficient tiers to capacitive ones when they are get-
ting full. Indeed, traditional cache eviction strategies such as
LRU (or LFU) and FIFO are used in this case, with LRU being
considered as the most efficient one. However, a recent work
by IBM Research [13] observed that LRU was not necessarily
the best for modern I/O traces (for instance object stores).
This is because the metadata management complexity that
grows very high with modern I/O workloads. While from a
hit rate point of view LRU-like algorithms are still a good
choice, it can be beaten by FIFO when considering cost. In-
deed, FIFO is very simple and does not necessitate complex
meta data management.

https://doi.org/10.1145/3503646.3524297
https://doi.org/10.1145/3503646.3524297
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In this paper, we propose SLRL, a Simple LeastRemaining
Lifetime file eviction policy. SLRL hits a middle ground be-
tween FIFO and LRU. Indeed, it is as simple as FIFO in terms
of metadata usage, while being comparable to LRU in terms
of hit rate. SLRL uses file lifetimes predicted based on the
study in [34]. The different components of file paths were
used in order to predict file lifetimes at their creation. SLRL
simply evicts the files according to the predicted lifetimes in
a queue. As such, like FIFO and unlike LRU, there is no need
to update a queue at every I/O with timestamps, and the pol-
icy requires a minimal amount of memory and monitoring
to run.
We evaluated the performance of the proposed eviction

policy on an open-source simple multi-tier heterogeneous
discrete event storage simulator which represents the second
contribution of this paper 1. This simulator was inspired
from StorageSIM [32], but it has been fully redesigned from
the ground up in a way that makes adding new policies
and datasets for workload generation easier. Results show
that SLRL efficiency varies depending on the trace used.
We observed a performance slightly lower than LRU and
FIFO for traces showing a very low locality. However, SLRL
performed better than both FIFO (40%) and LRU (10%) when
the locality is higher.
This paper is organized as follows. Section 2 gives some

background. Section 3 describes our contribution. Section 4
discusses experimental results. Section 5 gives some related
work and Section 6 concludes the paper.

2 Background
2.1 HPC storage hierarchies
Scientific applications such as atomic and weather simula-
tions, geoscience and genome sequencing generate petabytes
of data. While the computing power of HPC servers is grow-
ing higher, main memory performance is hardly keeping
the pace [28], not to mention storage systems. Indeed, the
performance gap between the main memory and the non-
volatile storage memory widens. Cache and CPU registers
are several orders of magnitude faster than the main memory
(DRAM), which itself is up to several orders of magnitude
faster than the main storage (usually HDD) [17].

Caching and prefetching strategies have the common ob-
jective to bridge part of this performance gap. For instance,
one may use Flash-based drives (SSD) as cache between a
slower type of storage (HDD) and a faster type of memory
(DRAM) [40] [4]. In this case, there is a need for a prefetcher
to select data to move from the HDD tier to the SSD one.
Moreover, there is a need for an eviction policy whose re-
sponsibility is to move, when necessary, unneeded data from
the SSD tier to the HDD one.

1https://github.com/ShinySilver/Storage_Simulation_for_File_Placement_in_HPC

2.2 File lifetime prediction
In previous work [34], the authors used the access path of
a file to accurately predict when a file will last be accessed.
They used a single Convolutional Neural Network with a
custom loss function in order to reduce the computing power
necessary for a prediction. To achieve this, they designed the
custom loss function to optimize the ratio between accuracy
and under-estimations. The intuition behind the design of
the custom loss function stems from multi task learning[14],
they used theweighted average of the two loss functions used
in another previous work [27]. By doing so, they increased
the accuracy of file lifetime predictions while maintaining a
low level of under-estimations.

As one can see in Figure 1, the parallel distributed filesys-
tem Lustre [10] instances have 2 storage servers which con-
tain different media types. Applications are connected to the
Lustre Storage Server through the High Performance Data
Network. The metadata server contains metadata about the
other Lustre file systems and is connected to them with a
specific management network with lower latency and band-
width. The Robinhood Policy Engine [22] represents the
software solution used to create migration policies between
the different tiers. It reads metadata changes from the meta-
data server with the changelog reader. An administrator can
then create a policy by periodically checking the state of the
file system through the Robinhood database.
The file lifetime prediction module was integrated into

Robinhood and filters only the "File creation" events. The
paths of the files are processed to generate a prediction of
their lifetimes. These lifetime values are used by our eviction
policy presented in the next Section.

Figure 1. File lifetime prediction module [34]

3 SLRL: a Simple Least Remaining
Lifetime Policy for File Eviction

In this section, we first present SLRL, the new eviction policy.
Then, we describe a simple multi-tier heterogeneous discrete
event storage simulator as a tool to easily implement and
compare eviction policies.



SLRL: A Simple Least Remaining Lifetime File Evicition policy for HPC multi-tier storage systems CHEOPS ’22, April 5, 2022, RENNES, France

3.1 SLRL policy
In this paper, the term lifetime refers to the time elapsed
between the creation of a file and its last access. As described
earlier, SLRL is based on a file lifetime prediction model
that was described in a previous work. This model is able to
predict the lifetime of a file based on its absolute path [34]
with an 98% accuracy.

Since an absolute path is known at the creation of a file,
SLRL needs only to monitor file creation events, and has, at
a given time, at its disposal a predicted remaining lifetime,
positive or negative, for every stored file. The remaining
lifetime is positive when it is still expected that the file will
be accessed in the future, while a negative lifetimemeans that
the file will no longer be accessed. A lifetime can be negative
if the file has expired but there is still space in the storage
tier (so eviction has not been performed). As such, SLRL
policy places newly created file identifiers in a queue at a
position that depends on their remaining lifetime prediction.
File identifiers are placed in this queue once and for all, until
the storage tiers are full and the policy starts evicting files
from this queue in order, that is the least remaining lifetime
first.
SLRL is comparable to FIFO in the sense that files are

placed in a queue at their creation time (the only metric
monitored for both algorithms). However, the main differ-
ence is that in SLRL, files are not necessarily inserted at the
last position but at varying positions depending on their
predicted remaining lifetime.

Compared to LRU, the main difference is that the queue of
SLRL does not need to be updated every time a file is accessed:
the only events to monitor are the file creations. This trait is
shared with FIFO, and the fact that the queue does not need
to be updated every time a file is accessed is a reason why
FIFO was preferred over LRU for some workloads in the IBM
study [13]. Moreover, our policy shares with FIFO the fact
that it does not need to monitor every time a file is used,
which is a strong point since thismonitoring can bring a huge
performance impact [29]. Finally, SLRL shares with LRU the
fact that it considers file properties in the queuemanagement.
For LRU, this is done through access monitoring and queue
update, and for SLRL this is done thanks to the information
extracted from the file path (lifetime).

3.2 Simple multi-tier heterogeneous storage
discrete event simulator

In addition to our SLRL policy and in order to easily compare
it with other policies of the state-of-the-art, we designed a
naive multi-tier storage simulator for file placement policy
evaluation. It is inspired from state-of-the-art work [32],
with a code base remade from the ground up to enable easier
prototyping and modification of file placement policies.
Our storage simulator relies on the Simpy framework.

That is a process-based discrete-event simulation framework

Figure 2. Simple storage simulator

based on standard Python 2. It takes two sets of inputs. First
the description of the storage tiers configuration in terms
of throughput, size and latency. Second, it takes a file-level
system trace containing file creation, deletion, reads and
writes, with sizes and offsets (see Figure 2 for an example).

The simulator then parses the trace line by line, updating
a storage model keeping track of the number of reads, of
writes and the free space on each tier, and eventually firing
events, namely "file creation event", "file removal event", "file
read event", "file write event" and "tier nearly full event". As
such, file placement policies can easily be implemented as
event listeners of the storage model events.
When a policy calls for a file migration, the storage tiers

model is updated with the new files location while maintain-
ing the number of reads and writes for every tier.

At the end of a simulation, the simulator outputs, for each
tier, the number of reads, writes, migrations from this tier,
migrations to this tier, execution times for read and write
operations. All these stats can be produced optionally while
taking into account migration operations.
One way to compare the efficiency of eviction policies

is to compare the amount of I/Os done on the high perfor-
mance tier (without taking into account I/Os related to migra-
tions). Indeed, the best policy should be able to maximize the
amount of I/Os achieved on the high performance tier, and
minimize the ones realized on the capacitive tier. This was
the objective of the performance evaluation methodology
described in the next Section.

4 Experimental Evaluation
4.1 Methodology
IBM Research released a 7 day object-store trace on the SNIA
IOTTA repository 3 with the intention of making it a public
testing ground for HPC eviction policies. We decided to
use their dataset to compare our policy with FIFO and LRU.
Prefetching policies are out of the scope of this paper, so

2https://simpy.readthedocs.io/en/latest/
3http://iotta.snia.org/
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we did not use them in this study. When a file is created,
it is stored on the high performance tier, and once this tier
is overloaded the eviction policy is ran. When a file is read
on a lower performance tier, it is re-loaded into the high
performance tier.

4.1.1 Metrics evaluated. In this context, our comparison
is simply based on the number of I/Os performed on the
HDD tier (2nd tier). The lowest is the better as this means
that most I/Os were done successfully on the SSD tier (1st
tier). Thus we measured the miss rate on the SSD (hits on
the HDD). When the number of I/Os on the HDD is high, it
means that a lot of I/O operations targeted files that were
evicted while still active.

4.1.2 Experiments performed. Likemost large size open
access traces, there were no path names available in the IBM
trace. This can be justified by anonymization issues. As such,
we could not run the lifetime prediction model in [34]. How-
ever, evaluating such a model is out of the scope of this paper,
here we focus on the eviction policy. As a consequence, we
evaluated the eviction policies by using real file lifetimes
as inferred from the traces. We injected errors to these life-
times to simulate lifetime prediction accuracy. As a reminder,
in our previous work our models managed to predict life-
times with an accuracy of 98% of the time meaning that this
proportion of lifetimes were predicted in the right order of
magnitude [34].

Experiment 1: We first evaluated the eviction policies
with the original IBM trace on a half day basis. During this
evaluation, we measured that most files in our trace subset
were created once and never used again. This trace, while
being a real use case, did not prove to show a high access
locality. In order to test a more exhaustive set of traces, we
have performed a second set of experiment.

Experiment 2: In a second part of our evaluation, we
modified the IBM trace so that more files would be reused
after their creation. To do so, we added randomly 20% "read"
operations on already existing files to increase data locality.
For each experiment, we made two different runs with

SLRL for each trace: one with the real lifetimes (no error in
the prediction, named SLRL perfect lifetime prediction), and
one where real lifetimes were replaced with a value picked
randomly in one order of magnitude around the real value
(to simulate an error in the prediction as estimated in [34],
it was named SLRL noisy prediction in the Figures).
We also used 3 different sizes for the high performance

tier to evaluate the effect of the pressure on the SSD tier
according to the eviction policy.

4.2 Results
Experiment 1: As one can observe in Figure 3, FIFO and
LRU show similar performance as the number of reads per-
formed on the HDD tier are similar. This confirms the conclu-
sions in [13] about the performance of FIFO for this particular

trace. We also observe that SLRL performance is comparable
to LRU and FIFO even it performs slightly more reads on the
HDD tier. SLRL with a perfect prediction 4.8% less efficient
than LRU and FIFO in case the prediction is perfect, while
it is 7% less good in case of noisy prediction. The main rea-
son behind such similar performance for the three strategies
is the lack of locality. Indeed, after analyzing the trace, we
have observed that most of the files were created and never
accessed again, which makes the cache eviction strategy
having a too small impact on the overall performance. This
does not mean that the cache is inefficient, but that the per-
formance does not depend highly on the eviction policy (a
cache acting more as a buffer). Finally, we also observe that
the difference between the 4 strategies decreases when the
pressure on the SSD tier increases (its size decreases). This
means that a correct dimensioning of the high performance
tier is crucial to make profit of good eviction strategies.

SSD tier size
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Figure 3. Number of reads on the HDD tier, the lower the
better: SLRL vs LRU and FIFO for the original IBM trace

Experiment 2: In the second experiment (see Figure 4), as
explained in the previous section, we have inserted additional
read operations to the trace in order to increase the locality
and rerun the trace with all policies. This made the cache
more efficient as files are re accessed. That is why we have
used larger sizes for the SSD tier (see Figure 4) in order
to emphasize the cache effect. We can observe that for the
three tier configurations used, SLRL with perfect predictions
performed better than both FIFO and LRU. Compared to FIFO,
SLRL with perfect prediction was 40% better while it was
10% better than LRU on average for the tested configurations.
One can also observe that SLRL with a noisy prediction hits
a middle ground between LRU and FIFO. This means that
even if the predictions are not that good, this strategy could
still perform better than FIFO for this workload as it presents
more locality than in experiment 1 (modeling the efficiency of
SLRL with regards to the accuracy of the lifetime prediction
is a work we will perform in the future).

Even if the subset of traces used is not extremely exhaus-
tive, one can see that LSRL is at least comparable to LRU
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Figure 4. Number of reads on the HDD tier, the lower the
better: SLRL vs LRU and FIFO for the modified IBM trace

and FIFO and behaves some times better. This makes it an
interesting alternative to consider when one would like a
strategy as simple as FIFO but still that could behave well in
case of high locality.

5 Related work
Cache eviction policies are a central point in system design
and more particularly in HPC storage hierarchy. While the
objective of those policies is to decide about the cache con-
tent (to keep), it was mainly evaluated through cache hits
comparisons. FIFO and LRU were the main opponents for
some time and several papers evaluated their relevance. In
early studies, LRU was the ultimate winner by far thanks
to its efficiency [2, 6, 9, 11, 36]. Most cache eviction policies
are based on LRU, and some times LFU for frequency, or
a combination of both [1, 12, 18, 26, 31]. When it comes to
managing large caches, several studies tried to cope with the
high cost of managing LRU eviction policy metadata by ap-
proximating them [8, 35]. However, in several cases, falling
back to FIFO could be a relevant solution as demonstrated
in [13] thanks to its simplicity. In this paper, we argue that
there is a middle ground between efficient but costly LRU
versus simple but scalable FIFO. We explore the use of file
lifetimes inferred thanks to some frugal monitoring [34] as
a third alternative.
Several storage system simulators exist in state-of-the-

art work such as DiskSim [7], PFSSim [23], Flashsim[19]
or OGSim[15]. While the first one is a detailed reference
simulator for HDD-based storage systems, PFSsim focuses
on I/O schedulers for parallel file systems and FlashSim is
specific to flash-based devices. OGSsim is a heterogeneous
storage system simulator in which one can mix different
technologies. The objective of StorageSim[32] is to simulate
two-tiers storage systems with very simple configurations.
We have tried first to upgrade this simulator in order to
consider several tiers and different types of input traces.
However, as it was difficult to operate the upgrade because

of somemodularity issues, we have decided to design a brand
new Open Source multi-tier storage simulator presented in
this paper.

6 Conclusions and Future Work
In this paper we propose a simple eviction policy based
on file lifetimes predictions. SLRL evicts files according to
their learnt life time and reuses state-of-the-art work to get
those lifetime. Lifetime measures were extracted thanks to
a very low monitoring overhead procedure. SLRL manages
as little metadata as FIFO which makes it as scalable while
considering the file properties making it approaching LRU
in efficiency. It operates a middle ground between those
policies. We would like to carry on the experimentation to
evaluate the relevance of SLRL according to the types of
workload used. We will also work towards the use of file
lifetimes per time window (for instance per day) for the
sets of files that are reused periodically. This period could
be learned and set with different granularities per file for a
more refined lifetime model. Also, we will investigate the use
of continuous learning for updating file lifetimes according
to their usage. We hope this first work towards using file
lifetimes will open the way for more sophisticated strategies
based on that criteria.

References
[1] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017.

Hyperbolic Caching: Flexible Caching for Web Applications. In Pro-
ceedings of the 2017 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX Associ-
ation, USA, 499–511.

[2] Allan Borodin, Prabhakar Raghavan, Sandy Irani, and Baruch Schieber.
1991. Competitive Paging with Locality of Reference. In Proceedings
of the Twenty-Third Annual ACM Symposium on Theory of Computing
(New Orleans, Louisiana, USA) (STOC ’91). Association for Computing
Machinery, New York, NY, USA, 249–259. https://doi.org/10.1145/
103418.103422

[3] Djillali Boukhelef, Jalil Boukhobza, Kamel Boukhalfa, Hamza
Ouarnoughi, and Laurent Lemarchand. 2019. Optimizing the cost
of DBaaS object placement in hybrid storage systems. Future Genera-
tion Computer Systems 93 (apr 2019), 176–187. https://doi.org/10.1016/
j.future.2018.10.030

[4] Jalil Boukhobza and Pierre Olivier. 2017. Flash Memory Integration (1st
ed.). ISTE Press - Elsevier.

[5] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. 2017.
Emerging NVM: A Survey on Architectural Integration and Research
Challenges. ACM Trans. Des. Autom. Electron. Syst. 23, 2, Article 14
(nov 2017), 32 pages. https://doi.org/10.1145/3131848

[6] Joan Boyar, Sushmita Gupta, and Kim S. Larsen. 2012. Access Graphs
Results for LRU versus FIFO under Relative Worst Order Analysis.
arXiv:1204.4047 [cs.DS]

[7] John S Bucy, Gregory R Ganger, et al. 2003. The DiskSim simulation
environment version 3.0 reference manual. School of Computer Science,
Carnegie Mellon University.

[8] Zhiguang Chen, Nong Xiao, Yutong Lu, and Fang Liu. 2016. Me-
CLOCK:A Memory-Efficient Framework to Implement Replacement
Policies for Large Caches. IEEE Trans. Comput. 65, 8 (2016), 2665–2671.
https://doi.org/10.1109/TC.2015.2495182

https://doi.org/10.1145/103418.103422
https://doi.org/10.1145/103418.103422
https://doi.org/10.1016/j.future.2018.10.030
https://doi.org/10.1016/j.future.2018.10.030
https://doi.org/10.1145/3131848
https://arxiv.org/abs/1204.4047
https://doi.org/10.1109/TC.2015.2495182


CHEOPS ’22, April 5, 2022, RENNES, France Louis-Marie Nicolas, Luis Thomas, Yassine Hadjadj-Aoul, and Jalil Boukhobza

[9] Marek Chrobak and John Noga. 1999. LRU is better than FIFO. Algo-
rithmica 23 (02 1999), 180–185. https://doi.org/10.1007/PL00009255

[10] Sean Cochrane, Ken Kutzer, and LMcIntosh. 2009. Solving the HPC I/O
bottleneck: Sun™ Lustre™ storage system. Sun BluePrints™ Online 820
(2009). http://nz11-agh1.ifj.edu.pl/public_users/b14olsze/Lustre.pdf

[11] Asit Dan and Don Towsley. 1990. An Approximate Analysis of the LRU
and FIFO Buffer Replacement Schemes. SIGMETRICS Perform. Eval.
Rev. 18, 1 (apr 1990), 143–152. https://doi.org/10.1145/98460.98525

[12] Gil Einziger and Roy Friedman. 2014. TinyLFU: A Highly Efficient
Cache Admission Policy. In 2014 22nd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing. 146–153.
https://doi.org/10.1109/PDP.2014.34

[13] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat.
2020. It’s Time to Revisit LRU vs. FIFO. In 12th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 20). USENIX Associ-
ation. https://www.usenix.org/conference/hotstorage20/presentation/
eytan

[14] Ting Gong, Tyler Lee, Cory Stephenson, Venkata Renduchintala,
Suchismita Padhy, Anthony Ndirango, Gokce Keskin, and Oguz Elibol.
2019. A Comparison of Loss Weighting Strategies for Multi task Learn-
ing in Deep Neural Networks. IEEE Access 7 (2019), 141627–141632.
https://doi.org/10.1109/ACCESS.2019.2943604

[15] Sebastien Gougeaud, Soraya Zertal, Jacques-Charles Lafoucriere, and
Philippe Deniel. 2015. OGSSim: Open Generic data Storage systems
Simulation tool. In Eighth EAI International Conference on Simulation
Tools and Techniques. ACM, Athens, Greece. https://doi.org/10.4108/
eai.24-8-2015.2261023

[16] Takahiro Hirofuchi and Ryousei Takano. 2020. A Prompt Report on
the Performance of Intel Optane DC Persistent Memory Module. IEICE
Transactions on Information and Systems E103.D, 5 (May 2020), 1168–
1172. https://doi.org/10.1587/transinf.2019EDL8141 arXiv: 2002.06018.

[17] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[18] Song Jiang and Xiaodong Zhang. 2002. LIRS: An Efficient Low Inter-
Reference Recency Set Replacement Policy to Improve Buffer Cache
Performance. In Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (Marina
Del Rey, California) (SIGMETRICS ’02). Association for Computing
Machinery, New York, NY, USA, 31–42. https://doi.org/10.1145/511334.
511340

[19] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar.
2009. FlashSim: A Simulator for NAND Flash-Based Solid-State Drives.
In 2009 First International Conference on Advances in System Simulation.
125–131. https://doi.org/10.1109/SIMUL.2009.17

[20] Kathy Kincade. 2019. UniviStor: Next-Generation Data Stor-
age for Heterogeneous HPC. Retrieved 2021-02-23 from
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-
generation-data-storage-tool-for-heterogeneous-hpc-storage/

[21] S Klasky, Hasan Abbasi, M Ainsworth, Jong Youl Choi, Matthew Curry,
T Kurc, Q Liu, Jay Lofstead, Carlos Maltzahn, Manish Parashar, Norbert
Podhorszki, Eric Suchyta, F Wang, M Wolf, C.S. Chang, R. Churchill,
and Stéphane Ethier. 2016. Exascale Storage Systems the SIRIUS Way.
Journal of Physics: Conference Series 759 (Oct. 2016), 012095. https:
//doi.org/10.1088/1742-6596/759/1/012095

[22] Thomas Leibovici. 2015. Taking back control of HPC file systems
with Robinhood Policy Engine. International Workshop on the Lustre
Ecosystem: Challenges and Opportunities (2015). arXiv:1505.01448 http:
//arxiv.org/abs/1505.01448

[23] Yonggang Liu, Renato Figueiredo, Yiqi Xu, and Ming Zhao. 2013. On
the design and implementation of a simulator for parallel file system
research. In 2013 IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, Long Beach, CA, USA, 1–5. https://doi.
org/10.1109/MSST.2013.6558438

[24] Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright,
Shane Snyder, Kevin Harms, Zachary Nault, and Philip Carns. 2017.
UMAMI: A recipe for generating meaningful metrics through holistic
I/O performance analysis. In Proceedings of PDSW-DISCS 2017 - 2nd
Joint InternationalWorkshop on Parallel Data Storage and Data Intensive
Scalable Computing Systems - Held in conjunction with SC 2017: The
International Conference for High Performance Computing, Networking,
Storage a. 55–60. https://doi.org/10.1145/3149393.3149395

[25] Jakob Lüttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen
Betke, Julian Kunkel, and Thomas Ludwig. 2018. Survey of Storage
Systems for High-Performance Computing. Supercomputing Frontiers
and Innovations 5, 1 (April 2018), 31–58–58. https://doi.org/10.14529/
jsfi180103 Number: 1.

[26] NimrodMegiddo andDharmendra S.Modha. 2003. ARC: A Self-Tuning,
Low Overhead Replacement Cache (FAST ’03). USENIX Association,
USA, 115–130.

[27] Florent Monjalet and Thomas Leibovici. 2019. Predicting File Lifetimes
with Machine Learning. In High Performance Computing, Vol. 11887
LNCS. Springer, 288–299. https://doi.org/10.1007/978-3-030-34356-
9_23

[28] OnurMutlu. 2013. Memory scaling: A systems architecture perspective.
2013 5th IEEE International MemoryWorkshop, IMW 2013, 21–25. https:
//doi.org/10.1109/IMW.2013.6582088

[29] Mohammed Islam Naas, François Trahay, Alexis Colin, Pierre Olivier,
Stéphane Rubini, Frank Singhoff, and Jalil Boukhobza. 2021. EZIO-
Tracer: Unifying Kernel and User Space I/O Tracing for Data-Intensive
Applications. In Proceedings of the Workshop on Challenges and Op-
portunities of Efficient and Performant Storage Systems (Online Event,
United Kingdom) (CHEOPS ’21). Association for Computing Machin-
ery, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/
3439839.3458731

[30] John K Ousterhout. 1990. Why Aren’t Operating Systems Getting
Faster As Fast as Hardware? 1990 Summer USENIX Annual Technical
Conference (1990), 247–256.

[31] Sejin Park and Chanik Park. 2017. FRD: A filtering based buffer cache
algorithm that considers both frequency and reuse distance. In Proc.
of the 33rd IEEE International Conference on Massive Storage Systems
and Technology (MSST).

[32] César San-Lucas and Cristina L. Abad. 2016. Towards a fast multi-tier
storage system simulator. In 2016 IEEE Ecuador Technical Chapters
Meeting (ETCM). 1–5. https://doi.org/10.1109/ETCM.2016.7750836

[33] Woong Shin, Christopher Brumgard, Bing Xie, Sudharshan Vazhkudai,
Devarshi Ghoshal, Sarp Oral, and Lavanya Ramakrishnan. 2019. Data
Jockey: Automatic Data Management for HPC Multi-tiered Storage
Systems. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 511–522. https://doi.org/10.1109/IPDPS.2019.
00061 ISSN: 1530-2075.

[34] Luis Thomas, Sebastien Gougeaud, Stéphane Rubini, Philippe Deniel,
and Jalil Boukhobza. 2021. Predicting File Lifetimes for Data Place-
ment in Multi-Tiered Storage Systems for HPC. In Proceedings of the
Workshop on Challenges and Opportunities of Efficient and Performant
Storage Systems (Online Event, United Kingdom) (CHEOPS ’21). As-
sociation for Computing Machinery, New York, NY, USA, Article 2,
9 pages. https://doi.org/10.1145/3439839.3458733

[35] Cristian Ungureanu, Biplob Debnath, Stephen Rago, and Akshat
Aranya. 2013. TBF: A memory-efficient replacement policy for flash-
based caches. In 2013 IEEE 29th International Conference on Data Engi-
neering (ICDE). 1117–1128. https://doi.org/10.1109/ICDE.2013.6544902

[36] J. van den Berg and A. Gandolfi. 1992. LRU is better than FIFO under
the independent reference model. Journal of Applied Probability 29, 1
(1992), 239–243. https://doi.org/10.2307/3214811

[37] Bharti Wadhwa, Surendra Byna, and Ali Butt. 2018. Toward Trans-
parent Data Management in Multi-Layer Storage Hierarchy of HPC
Systems. In 2018 IEEE International Conference on Cloud Engineering

https://doi.org/10.1007/PL00009255
http://nz11-agh1.ifj.edu.pl/public_users/b14olsze/Lustre.pdf
https://doi.org/10.1145/98460.98525
https://doi.org/10.1109/PDP.2014.34
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://doi.org/10.1109/ACCESS.2019.2943604
https://doi.org/10.4108/eai.24-8-2015.2261023
https://doi.org/10.4108/eai.24-8-2015.2261023
https://doi.org/10.1587/transinf.2019EDL8141
https://doi.org/10.1145/511334.511340
https://doi.org/10.1145/511334.511340
https://doi.org/10.1109/SIMUL.2009.17
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-generation-data-storage-tool-for-heterogeneous-hpc-storage/
https://cs.lbl.gov/news-media/news/2019/univistor-a-next-generation-data-storage-tool-for-heterogeneous-hpc-storage/
https://doi.org/10.1088/1742-6596/759/1/012095
https://doi.org/10.1088/1742-6596/759/1/012095
https://arxiv.org/abs/1505.01448
http://arxiv.org/abs/1505.01448
http://arxiv.org/abs/1505.01448
https://doi.org/10.1109/MSST.2013.6558438
https://doi.org/10.1109/MSST.2013.6558438
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.14529/jsfi180103
https://doi.org/10.14529/jsfi180103
https://doi.org/10.1007/978-3-030-34356-9_23
https://doi.org/10.1007/978-3-030-34356-9_23
https://doi.org/10.1109/IMW.2013.6582088
https://doi.org/10.1109/IMW.2013.6582088
https://doi.org/10.1145/3439839.3458731
https://doi.org/10.1145/3439839.3458731
https://doi.org/10.1109/ETCM.2016.7750836
https://doi.org/10.1109/IPDPS.2019.00061
https://doi.org/10.1109/IPDPS.2019.00061
https://doi.org/10.1145/3439839.3458733
https://doi.org/10.1109/ICDE.2013.6544902
https://doi.org/10.2307/3214811


SLRL: A Simple Least Remaining Lifetime File Evicition policy for HPC multi-tier storage systems CHEOPS ’22, April 5, 2022, RENNES, France

(IC2E). 211–217. https://doi.org/10.1109/IC2E.2018.00046
[38] Lipeng Wan, Zheng Lu, Qing Cao, Feiyi Wang, Sarp Oral, and Bradley

Settlemyer. 2014. SSD-optimized workload placement with adap-
tive learning and classification in HPC environments. In 2014 30th
Symposium on Mass Storage Systems and Technologies (MSST). 1–6.
https://doi.org/10.1109/MSST.2014.6855552

[39] Wenguang Wang. 2004. Storage Management for Large Scale Sys-
tems. Ph.D. Dissertation. CAN. https://doi.org/10.5555/1123838
AAINR06171.

[40] Orcun Yildiz, Amelie Zhou, and Shadi Ibrahim. 2017. Eley: On the
Effectiveness of Burst Buffers for Big Data Processing in HPC Systems.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER).
87–91. https://doi.org/10.1109/CLUSTER.2017.73

https://doi.org/10.1109/IC2E.2018.00046
https://doi.org/10.1109/MSST.2014.6855552
https://doi.org/10.5555/1123838
https://doi.org/10.1109/CLUSTER.2017.73

	Abstract
	1 Introduction
	2 Background
	2.1 HPC storage hierarchies
	2.2 File lifetime prediction

	3 SLRL: a Simple Least Remaining Lifetime Policy for File Eviction
	3.1 SLRL policy
	3.2 Simple multi-tier heterogeneous storage discrete event simulator

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Results

	5 Related work
	6 Conclusions and Future Work
	References

