
HAL Id: hal-03698968
https://hal.science/hal-03698968v1

Submitted on 19 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling inconsistency in partially preordered
ontologies: the Elect method

Sihem Belabbes, Salem Benferhat, Jan Chomicki

To cite this version:
Sihem Belabbes, Salem Benferhat, Jan Chomicki. Handling inconsistency in partially preordered
ontologies: the Elect method. Journal of Logic and Computation, 2021, 31 (5), pp.1356-1388.
�10.1093/logcom/exab024�. �hal-03698968�

https://hal.science/hal-03698968v1
https://hal.archives-ouvertes.fr

Handling Inconsistency in Partially Preordered
Ontologies: The Elect Method

Sihem Belabbes1, Salem Benferhat2, and Jan Chomicki3

1LIASD, IUT de Montreuil, Université Paris 8, France
2CRIL Université d’Artois & CNRS, Lens, France

3SUNY at Buffalo, Buffalo, NY, USA

Abstract

We focus on the problem of handling inconsistency in light-weight ontologies.
We assume that the terminological knowledge base (TBox) is specified in DL-Lite
and that the set of assertional facts (ABox) is partially preordered and may be in-
consistent with respect to the TBox. One of the main contributions of this paper
is the provision of an efficient and safe method, called Elect, to restore the con-
sistency of the ABox with respect to the TBox. In the case where the assertional
base is flat (i.e., no priorities are associated with the ABox) or totally preordered,
we show that our method collapses with the well-known IAR semantics (Intersec-
tion ABox Repair) and the non-defeated semantics, respectively. The semantic
justification of the Elect method is obtained by first viewing a partially preordered
ABox as a family of totally preordered ABoxes, and then applying non-defeated
inference to each of the totally preordered ABoxes. We introduce the notion of
elected assertions which allows us to provide an equivalent characterization of the
Elect method without explicitly generating all the totally preordered ABoxes. We
show that computing the set of elected assertions is done in polynomial time with
respect to the size of the ABox. The second part of the paper discusses how to
go beyond the Elect method. In particular, we discuss to what extent the Elect
method can be generalized to Description Logics that are more expressive than
DL-Lite.

1 Introduction
In this paper, we are interested in handling inconsistencies arising in ontologies that
are specified in DL-Lite [32], a family of lightweight fragments of Description Logics
(DLs) with good computational properties. In the context of Description Logics, a
knowledge base (KB) consists of two components, namely the TBox which contains
the terminological knowledge, and the ABox which is an assertional base (i.e., a set of
ground facts). The content of the TBox is oftentimes considered as correct and free
of conflicts. Here we adopt such reasonable assumption, therefore we assume that the
elements of the TBox are not questionable in the presence of conflicts. However, the
assertions in the ABox may be questionable when the whole KB is inconsistent.

1

The problem of inconsistency management has received considerable attention in
the literature and has been studied in the context of propositional logic [1,15,16,29,48],
databases [20, 34,39,57,67] alongside Description Logics.

In the context of DL frameworks, anything can be derived from an inconsistent
KB, which trivializes the task of query answering. To circumvent this issue, various
inconsistency-tolerant semantics have been proposed to allow for meaningful reasoning
with inconsistent KBs [9,26–28,31,55,71,72]. For instance, the ABox Repair (AR), the
Intersection ABox Repair (IAR), the Closed ABox Repair (CAR) and the Intersection
Closed ABox Repair (ICAR) semantics [51] are the best known inconsistency-tolerant
semantics. They are based on the notion of a repair, defined as a maximal subset (in
terms of set inclusion) of the ABox that is consistent with the TBox.

The ABox Repair (AR) semantics amounts to repairing the ABox in a minimal way
(in terms of set inclusion) without modifying the TBox. It produces several repairs
for the ABox, and queries are evaluated separately on each of the repairs before inter-
secting the sets of answers. In other words, a query answer is considered as valid if it
follows from each repair of the ABox. The AR semantics is often viewed as a safe and
appropriate way for dealing with conflicts. The Closed ABox Repair (CAR) semantics
proceeds similarly but it starts by performing a deductive closure on the initial ABox
before computing the repairs.

The IAR semantics is more cautious than the AR semantics. It evaluates queries
over one consistent sub-base of the ABox obtained from the intersection of all the
repairs. On the other hand, the ICAR semantics involves a closure operation on the
initial ABox before computing the repairs and intersecting them. Both IAR and ICAR
are tractable, whereas AR and CAR are computationally expensive, even for lightweight
ontology logics such as DL-Lite. It is also known that AR and CAR are more productive,
IAR is more cautious and ICAR may return undesirable results (i.e., obtained from
questionable assertions).

Another line of research has focused on defining inconsistency-tolerant semantics
when a priority relation is applied to ABox assertions. This caters for situations where
information is obtained from various sources with different reliability levels. For in-
stance, the so-called preferred repair semantics [23] introduces variants of the AR and
IAR semantics by applying a total preorder to ABox assertions. It identifies different
types of preferred repairs based on: set cardinality, partitioning the ABox according to
priority levels, and assigning weights to the assertions. Similarly to the AR and CAR
semantics, it produces several repairs for any given ABox but at a high computational
cost, which makes query answering computationally hard.

The so-called non-defeated semantics [13] has also been proposed for ABoxes that
are prioritized (i.e., partitioned into strata) by way of a total preorder. The idea is to
iteratively apply the IAR semantics to a cumulative sequence of strata of the ABox.
Similarly to the IAR and ICAR semantics, it produces a single consistent sub-base
for any given ABox. Furthermore, it has been shown that the non-defeated semantics
generalizes the IAR semantics when the priority relation is flat, and that its computation
is polynomial in the context of DL-Lite [13,68].

In this work, we address the problem of the tractable computation of a single con-
sistent sub-base for an inconsistent DL-Lite knowledge base, with a focus on the case
where the priority relation over ABox assertions is a partial preorder. Namely, some
statements are deemed as more reliable than others and there are statements with in-

2

comparable reliability levels. We provide an efficient and safe method, called Elect, to
restore the consistency of the ABox with respect to the TBox [12]. We show that Elect
generalizes both the IAR semantics and the non-defeated semantics. This is achieved
in the case where the ABox is flat (i.e., no priorities are associated with the assertions)
for the former, and when the ABox is totally preordered for the latter.

The semantic justification of Elect is obtained by first viewing the partial preorder
over the ABox as a family of total preorders, then applying non-defeated inference to
each of the totally preordered ABoxes, and lastly computing their intersection to pro-
duce a single consistent sub-base. The Elect method is safe since there is no arbitrary
choice between the total preorders, thus all of them are taken into account for defining
Elect by means of the intersection operator. We introduce the notion of elected asser-
tions which intuitively correspond to those assertions that are strictly preferred to all
their opponents (in terms of conflict). This allows us to provide an equivalent char-
acterization of Elect, thus a single consistent sub-base is obtained without explicitly
computing all the total preorders. Finally we show that the computation of Elect is
done in polynomial time with respect to the size of the ABox. Therefore Elect main-
tains the tractability of both the IAR semantics and the non-defeated semantics while
scaling the results to the more general case of partially preordered ABoxes.

The second part of the paper briefly shows how to go beyond Elect in three dif-
ferent ways. First, instead of considering the non-defeated semantics as underlying
the definition of Elect, we consider a preferred-repair semantics based on prioritized
set inclusion proposed in [23] (in the spirit of early work on prioritized propositional
logic [29,64]). We call this method PartialPR (where the subscript ‘PR’ stands for Pre-
ferred Repair) [11]. We show that although PartialPR is more productive than Elect
(i.e., it produces a larger base), its computational complexity is no longer polynomial.

Second, we go beyond DL-Lite and consider more expressive DLs [11]. The main
difference in this case is that conflicts between the assertions are not necessarily binary
as it is the case in DL-Lite [31]. We adapt the definitions of the Elect method and
discuss the repercussions on computational complexity.

Third, we introduce a method for computing a larger but safe base, in the context
of DL-Lite. We call this new method CElect and define it over the intersection of the
deductive closure of the bases computed with the non-defeated semantics. We show
that a base computed with Elect is indeed included in the base obtained by the CElect
method.

This paper is structured as follows. Section 2 contains preliminaries on DL-Lite.
Section 3 presents the IAR semantics for non-prioritized ABoxes. Section 4 discusses
the non-defeated semantics for ABoxes prioritized with a total preorder. Section 5
introduces our method Elect for partially preordered ABoxes and Section 6 provides
a characterization for it. In Sections 7 to 9, we introduce the methods PartialPR and
CElect and the adaptation of Elect to DLs in general. In Section 10 we provide an
overview of related work. We then conclude and discuss future work.

2 The Description Logic DL-Lite
Description Logics (DLs) [7] are a family of decidable knowledge representation lan-
guages, based on first-order predicate logic, and meeting many applications, notably in
the formalisation of ontologies. The so-called lightweight fragments of DLs, of which

3

DL-Lite [32] is an example, are particularly interesting since they provide a good trade-
off between expressive power and (data) computational complexity. In fact, DL-Lite
languages have been designed to capture conceptual modeling constructs in applica-
tions with large datasets and where query answering is the most important reasoning
task. Indeed, query answering from a DL-Lite knowledge base can be carried out ef-
ficiently, by reducing the problem to standard database query evaluation using query
rewriting [50].

There are several variants of DL-Lite [6] such as DL-Litecore , DL-LiteR, DL-LiteF ,
DL-LiteA and DL-LiteHorn . In the rest of this paper, we shall focus on DL-LiteR, the
dialect that provides the logical underpinning for the OWL 2 QL profile [58] which is
devoted to query answering.

The DL-LiteR language is built upon a vocabulary consisting of a set C of concept
names, a set R of role names and a set I of individual names, where the sets C, R and I
are countably infinite and pairwise disjoint. Let A ∈ C, P ∈ R, and P− ∈ R is the
inverse of P . Let the negation symbol “¬” encode complement sets (of concepts and
of roles), and the existential quantifier symbol “∃” denote existential restriction. The
DL-LiteR language is defined according to the following rules:

R −→ P | P− E −→ R | ¬R

B −→ A | ∃R C −→ B | ¬B

where R denotes a basic role, while E stands for a complex role. Moreover, B denotes
a basic concept and C is a complex concept.

Next, we describe a domain related to dances in order to introduce the running example
that we shall use throughout the paper.

Example 1. Consider the following sets of concept, role and individual names:

• C = {Dance,MDance,TDance,FDance,WProp,WoProp,Prop}, standing for the
following basic concepts: dance, modern dance, traditional dance, festival dance,
dance with props, dance without props, as well as the props that may be used in
some dances, respectively.

• R = {hasProp, hasInst}, contains two basic roles. The first one links dances to the
props that may be used during the performance. The second one links dances to
the instruments.

• I = {d1, d2, d3, d4, d5, d6, d7, u, h, r,m, c}. Each di (i = 1, . . . , 7) represents a dance.
The elements ‘u’, ‘h’, ‘r’ stand for umbrella, hat, ribbon, respectively, and rep-
resent the props. The elements ‘m’ and ‘c’ stand for drums and cymbals, and
represent the instruments used during the performance.

Some examples of complex concepts are: ¬WProp and ¬∃hasInst.
Examples of complex roles are: ¬hasProp and ¬hasInst−.

The semantics of DL-LiteR is the standard set-theoretic semantics. An interpreta-
tion is a structure I =def 〈∆I , ·I〉, where ∆I is a non-empty set called the domain, and
·I is an interpretation function mapping concept names A to subsets AI of ∆I , role
names P to binary relations P I over ∆I , and individual names a to elements of the

4

domain ∆I . Therefore, AI ⊆ ∆I , P I ⊆ ∆I ×∆I , and aI ∈ ∆I .
We extend the interpretation function ·I to interpret complex concepts and complex
roles of DL-LiteR as follows:

(P−)I =def {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I};
(∃R)I =def {x ∈ ∆I | there is y ∈ ∆I s.t. (x, y) ∈ RI};
(¬B)I =def ∆I \BI ;
(¬R)I =def (∆I ×∆I) \RI .

An inclusion axiom on concepts (resp. on roles) is a statement of the form B v C
(resp. R v E). A concept inclusion of the form ∃P v B (resp. ∃P− v B), which
requires that the domain (resp. the range) of a role P be included in a concept B, is a
“domain restriction” (resp. “range restriction”). Inclusions on concepts (resp. on roles)
of the type B1 v B2 (resp. R1 v R2) are called “positive inclusion axioms”. Inclusions
on concepts (resp. on roles) with the negation symbol “¬” in the right-hand side of the
inclusion, such as B1 v ¬B2 (resp. R1 v ¬R2), are called “negative inclusion axioms”.
In DL-LiteR, negative axioms allow to specify the disjointness of at most two concepts
(resp. two roles) [31].
Examples of negative and positive inclusion axioms on concepts are:

WoProp v ¬WProp
∃hasProp− v Prop

An example of a negative inclusion axiom on roles is:
hasInst v ¬hasProp

A DL-LiteR TBox T is a finite set of positive and negative inclusion axioms on concepts
and on roles.

An assertion is a statement of the form A(a) or P (a, b), with a, b ∈ I.
Examples of assertions are:

MDance(d1)
hasProp(d3, h)

A DL-LiteR ABox A is a finite set of assertions.

A DL-LiteR knowledge base (KB) K is composed of a TBox T and an ABox A. It is
denoted as a tuple K =def 〈T ,A〉.

Example 1. (continued) Assume that we have the following TBox:

T =

1. MDance v Dance 2. TDance v Dance

3. TDance v WProp 4. MDance v WoProp

5. WoProp v ¬WProp 6. WoProp v ¬∃hasProp
7. ∃hasProp v WProp 8. ∃hasProp− v Prop

The first two axioms express that modern dances and traditional dances are dances.
Axiom 3 (resp. 4) means that traditional (resp. modern) dances are dances with (resp.
without) props. Axiom 5 indicates that the set of dances without props and the set of
dances with props are disjoint. Axiom 6 states that a dance without props does not
have props. Axiom 7 requires that anything having props should be a dance with props.
Axiom 8 requires that something used by an element that has props should indeed be a
prop. Axioms 5 and 6 are negative inclusion axioms on concepts.

5

Let us now describe the ABox given by the following assertions:

A =

MDance(d1),MDance(d2),TDance(d2),TDance(d3),

TDance(d4),WProp(d3),WProp(d5),WoProp(d5),

hasProp(d2, u), hasProp(d3, h), hasProp(d4, r)

An interpretation I satisfies an inclusion axiom B v C (resp. R v E), denoted
by I B v C (resp. I R v E), if BI ⊆ CI (resp. RI ⊆ EI). I satisfies an
assertion A(a) (resp. P (a, b)), denoted by I A(a) (resp. I P (a, b)), if aI ∈ AI

(resp. (aI , bI) ∈ P I).

We say that an interpretation I is a model of a TBox T (resp. an ABox A), denoted
by I T (resp. I A), if I α for every α in T (resp. in A). We say that I is a
model of a knowledge base K = 〈T ,A〉 if I T and I A.

A knowledge base K is said to be consistent if it admits at least one model. It is
inconsistent otherwise.
A TBox T is incoherent if there is A ∈ C such that for each interpretation I which is
a model of T , AI = ∅. It is coherent otherwise.

Positive and negative inclusion axioms of a coherent TBox do not play the same
role in the corresponding KB. On the one hand, it is obvious that a KB with only
positive axioms in the TBox is always consistent. This means that positive axioms can
be used to enlarge the ABox by deriving new assertions from the original ones. On the
other hand, the inconsistency of the KB occurs when subsets of the ABox violate some
negative axioms. In other words, negative axioms can be used to check the consistency
of the ABox w.r.t. the TBox. In this work, we focus on the case of a coherent TBox and
assume there is no singleton ABox that violates negative axioms. Hence the disjointness
property of DL-LiteR applies to subsets of the ABox which contain pairs of concepts or
pairs of roles.

For instance, note that the TBox given in Example 1 is coherent whereas the KB
is inconsistent, i.e., the ABox is inconsistent w.r.t. the TBox. For instance, Axiom 5,
namely WoProp v ¬WProp, requires the concepts WoProp and WProp to be disjoint.
However, the individual “d5” belongs to both concepts. The set {WProp(d5),WoProp(d5)}
violates a negative axiom, which means that the two assertions cannot both hold.

For more details on the DL-Lite family of DLs, we refer the reader to the work of
Calvanese et al. [32].

3 IAR Semantics for Flat Assertional Bases
In the rest of this paper, we consider a KB K=〈T ,A〉 that may be inconsistent. We
assume that the TBox T is coherent and reliable (i.e., validated by the ontology’s
designers). Therefore, the axioms in T are not questionable in the presence of conflicts,
unlike the assertions in A which may be questionable. Moreover, in this section we
assume that the ABox A is flat (or non-prioritized), that is, all assertions have the
same priority level. A standard way for dealing with inconsistency proceeds by first
computing the set of maximal subsets of A that are consistent with T , called maximal

6

repairs, then using them to perform inference (i.e., query answering). More formally, a
maximal repair1 is defined as follows [51]:

Definition 1. Let K=〈T ,A〉 be a flat DL-LiteR KB. A sub-base R ⊆ A is a maximal
repair if 〈T ,R〉 is consistent, and for every R′ ⊆ A, R (R′, 〈T ,R′〉 is inconsistent.
Hence, if K is consistent, there is a single maximal repair R = A.

Consequently, when K is inconsistent, given a maximal repair R, adding any as-
sertion f from A \ R to R entails the inconsistency of 〈T ,R ∪ {f}〉. We denote by
MAR(A) (Maximal ABox Repair) the set of maximal repairs of A w.r.t. T .

Using the notion of maximal repairs, handling inconsistency from a flat DL-LiteR
KB can be done by applying standard query answering, using either (i) the whole set of
maximal repairs (e.g. universal entailment or AR entailment [51]), (ii) some maximal
repairs (e.g. cardinality-based repairs) (iii) or only one maximal repair (e.g. brave
entailment [24]). It is well known that the brave semantics is very adventurous and
may return unsafe conclusions, while the AR and cardinality-based repair semantics
are safe but computationally expensive.

An alternative is the IAR semantics [51] which selects one consistent sub-base of A,
denoted by IAR(A). Before introducing the IAR semantics, let us first introduce the no-
tion of an assertional conflict. Basically, it is a minimal inconsistent subset of assertions
that contradicts the TBox.

Definition 2. Let K=〈T ,A〉 be a flat DL-LiteR KB. A sub-base C ⊆ A is said to be
an assertional conflict of K if 〈T , C〉 is inconsistent and for every f ∈ C, 〈T , C \ {f}〉
is consistent.

We denote by Conf(A) the set of all conflicts in K = 〈T ,A〉. From Definition 2, we
see that removing any fact f from C restores the consistency of 〈T , C〉. A nice feature of
DL-LiteR is that computing and generating the conflict set is done in polynomial time
w.r.t. the size of the ABox [28,31]. Namely, there exists an algorithm that takes as input
the knowledge base K = 〈T ,A〉, and generates/produces the set of all the assertional
conflicts of K. The space and time complexity of such algorithm is polynomial w.r.t.
the size of the ABox. Furthermore, any conflict involves at most two assertions [31].
As stated previously, we assume there is no single assertion f ∈ A such that 〈T , {f}〉
is inconsistent, and we also assume the TBox to be coherent. This implies that the
assertional conflicts are binary. In this case, if f and g are two assertions that belong
to a conflict C, we simply denote it as a pair C = {f, g}, and we say that f and g are
conflicting.

Next, we introduce the notion of non-conflicting or free assertions.

Definition 3. Let K=〈T ,A〉 be a flat DL-LiteR. An assertion f ∈ A is free if for
every C ∈ Conf(A), f /∈ C.

Intuitively, free assertions correspond to the assertions that are not involved in any
conflict. The notion of free elements was originally proposed in [14] in the context of
propositional logic.

1In the literature, a repair is often defined as a maximal consistent subset of assertions. Here, we
distinguish between a maximal repair and a repair which is simply a consistent subset of assertions. This
is analogous to the notions of maximal consistent subtheory and consistent subtheory in propositional
logic.

7

Henceforth, we shall denote by IAR(A) (Intersection ABox Repair) the set of free as-
sertions in A. Namely:

IAR(A) = {f | f ∈ A and f is free},
which is an equivalent rewriting of the standard definition of IAR(A) [14, 51]:

IAR(A) =
⋂
{R | R ∈ MAR(A)}.

In other words, the repair IAR(A) is the intersection of all the maximal repairs. Clearly,
since computing the set of assertional conflicts Conf(A) is done in polynomial time w.r.t.
the size of the ABox, then computing the repair IAR(A) is also done in polynomial time
w.r.t. the size of the ABox A.

Query answering in the IAR semantics comes down to performing standard query an-
swering from 〈T , IAR(A)〉 (due to the fact that 〈T , IAR(A)〉 is consistent).

Example 2. Let us consider again Example 1. The conflict set in 〈T ,A〉 is:
Conf(A) = {C1, C2, C3}, where:

C1 = {MDance(d2),TDance(d2)},
C2 = {MDance(d2), hasProp(d2, u)},
C3 = {WProp(d5),WoProp(d5)}.

In order to define IAR(A), it is enough to remove all the assertions of C1, C2 and C3
from A. This yields:

IAR(A) = { MDance(d1),TDance(d3),TDance(d4),WProp(d3), hasProp(d3, h),
hasProp(d4, r)}.

4 Non-defeated Repair for Prioritized Assertional Bases
In this section, we consider prioritized DL-LiteR KBs wherein a total preorder relation≥
is applied only to the ABox component and which we denote by (A,≥). The relation
≥ is reflexive, transitive and satisfies:

For every f ∈ A, for every g ∈ A, either f ≥ g or g ≥ f .

Let > stand for the strict relation and ≡ stand for the equivalence relation associated
with ≥. Intuitively, f ≥ g means that the assertion f is at least as important as the
assertion g.
Moreover, for convenience, we also represent (A,≥) by a well-ordered partition of A
induced by ≥. Namely, given (A,≥), we view A as being partitioned into n non-empty
layers (or strata) of the form A = (S1, . . . ,Sn), such that:

• S1 = {f | for every g ∈ A, f ≥ g}, and

• Si = {f | for every g ∈ A \ (S1 ∪ . . . ∪ Si−1), f ≥ g}, for i = 2, . . . , n.

In other words, the assertions in each layer Si have the same priority level i and they
are considered as more reliable than the ones contained in a layer Sj for j > i. Thus
S1 contains the most important assertions, while Sn contains the least important ones.
Obviously, by construction, A = S1 ∪ . . . ∪ Sn.

8

Several studies consider the notion of priority when querying inconsistent databases
(e.g. [57, 67]) or DL knowledge bases (e.g. [23, 39]). Most of these frameworks extend
the notions of maximal repair and AR semantics, therefore they are computationally
expensive. In particular, the concepts of preferred repairs semantics were introduced
in [23] (in the spirit of what has been done in prioritized propositional logic [29,64]). It
revisits the AR and IAR semantics by replacing the notion of repair by different types
of preferred repairs based on: set cardinality, priority levels on the ABox and weights
on the assertions (see Section 7). However, this formalism often induces an increase in
computational complexity for the proposed semantics. Most notably, the tractability of
the IAR semantics in a flat context (i.e., polynomial time) is lost when a total preorder
is applied to the ABox.

In [13], a particular attention was devoted to approaches that select a single preferred
repair. One of such approaches is the so-called non-defeated repair which is tractable
without being adventurous. Basically, the non-defeated repair consists of iteratively
collecting, layer per layer, the set of free assertions like so:

Definition 4. Let K be a prioritized DL-LiteR KB where the ABox (A,≥) is totally
preordered. Let A = (S1, . . . ,Sn) be the well-ordered partition associated with ≥. The
non-defeated repair of (A,≥) is given by:

nd(A,≥) = S ′1 ∪ . . . ∪ S ′n, such that
S ′i = IAR(S1 ∪ . . . ∪ Si), for i = 1, . . . , n,

where IAR(S1 ∪ . . . ∪ Si) denotes the free elements of the set (S1 ∪ . . . ∪ Si).

The definition of the non-defeated sub-base is an adaptation of the one proposed
in [16] within a propositional logic framework. However, the non-defeated repair is
computed in polynomial time in DL-LiteR while its computation is hard in propositional
logic. Lastly, in [17] a rewriting (similar to that of IAR(A)) is given for nd(A,≥).
Basically, an assertion f ∈ Si is said to be defeated if there is an assertion g ∈ Sj such
that j ≤ i and g conflicts with f . It has been shown in [17] that nd(A,≥) consists of
all the non-defeated assertions.

TDance(d2) ≡ MDance(d1) ≡ TDance(d3) ≡ hasProp(d3, h)

hasProp(d2, u) ≡ WProp(d3) ≡ WProp(d5) ≡ WoProp(d5)

MDance(d2) ≡ TDance(d4) ≡ hasProp(d4, r)

Figure 1: A total preorder ≥ over A. A solid arrow (resp. dotted line) from an
assertion f to an assertion g means that f > g (resp. {f, g} ∈ Conf(A)).

Example 3. We continue our running example and assume that a total preorder ≥ is
applied to the assertions of A, as depicted in Figure 1. Then A = (S1,S2,S3) where:

S1 = {MDance(d1),TDance(d2),TDance(d3), hasProp(d3, h)},
S2 = {hasProp(d2, u),WProp(d3),WProp(d5),WoProp(d5)},
S3 = {MDance(d2),TDance(d4), hasProp(d4, r)}.

9

The non-defeated subclass of A is given by:
nd(A,≥) = IAR(S1) ∪ IAR(S1 ∪ S2) ∪ IAR(S1 ∪ S2 ∪ S3).

The partition S1 is free of conflicts, hence:

IAR(S1) = S1 = {MDance(d1),TDance(d2),TDance(d3), hasProp(d3, h)}.

We remove the conflicting assertions in (S1 ∪ S2) and obtain:

IAR(S1 ∪ S2) = (S1 ∪ S2) \ {WProp(d5),WoProp(d5)}
= {MDance(d1),TDance(d2),TDance(d3),WProp(d3),

hasProp(d2, u), hasProp(d3, h)}.

We do the same for (S1 ∪ S2 ∪ S3) and obtain:

IAR(S1 ∪ S2 ∪ S3) = IAR(A) (given in Example 2).

It follows that the non-defeated repair of A is:

nd(A,≥) = { MDance(d1),TDance(d2),TDance(d3),WProp(d3),TDance(d4),

hasProp(d2, u), hasProp(d3, h), hasProp(d4, r)}.

Since each IAR(S1 ∪ . . . ∪ Si) (with 1 ≤ i ≤ 3) is computed in polynomial time, then
nd(A,≥) is also computed in polynomial time w.r.t. the size of A.

5 Partially Preordered Assertional Bases
A nice feature about the IAR semantics (for a flat ABox) and the non-defeated se-
mantics (for a totally preordered ABox) is their efficiency in dealing with inconsistency
since they produce a single consistent sub-base of the ABox as a repair and they do so
in polynomial time. In this section, we also aim at producing a single repair when only
a partial preorder, denoted by D, is applied to the assertions of the ABox and which
we denote by (A,D).
We denote byB overA the strict order (irreflexive and transitive) associated with (A,D),
and which is defined by:

For every f ∈ A, for every g ∈ A, f B g if f D g holds and g D f does not hold.

We also denote by , over A the equivalence order associated with (A,D), and which
is defined by:

For every f ∈ A, for every g ∈ A, f , g if f D g and g D f both hold.

When neither fDg nor gDf holds, we say that the assertions f and g are incomparable
and denote it by f ./ g.

A natural minimal requirement is to maintain tractability. Namely, we seek a
tractable method that also returns one (preferred) repair for a partially preordered
ABox. We call our method Elect and denote by Elect(A,D) the repair it returns [12].
As we shall see later, Elect extends both the IAR semantics and the non-defeated se-
mantics in the cases where the relation D is flat and totally preordered respectively.
Henceforth, we do not make explicit the TBox T .

10

5.1 From a partial preorder to a family of total preorders

In order to achieve our aim, we first view a partial preorder D as a family of total
preorders, each of which should be a total extension of D defined like so:

Definition 5. A total preorder ≥ over A is a total extension of D over A if for every
f ∈ A and for every g ∈ A:

• if f B g then f > g, and

• if f D g then f ≥ g.

It is trivial that when the partial preorder D is a total preorder, there is only
one total extension which is the relation itself. The situation differs when there are
cases of incomparability between the assertions. Roughly speaking, stating that two
assertions f and g are incomparable means that either f is strictly preferred to g, or g
is strictly preferred to f , or f and g are equally preferred, but we do not know which
case holds. (This makes sense only when the elements can effectively be compared.)
Thus, extending a partial preorder consists in replacing each case where two assertions
are incomparable, such as f ./ g, by the three cases where the two assertions are
comparable, namely f > g, g > f and f ≡ g.

Viewing a partially preordered KB as a family of totally preordered KBs is a nat-
ural representation that has been used in other frameworks such as partially ordered
possibilistic logic [19,69] and credal probabilistic networks [37].

Example 4. We assume a partial preorder D over A such that the assertions are split
up into the following four disjoint subsets:

P1 = {MDance(d1) , TDance(d2) , TDance(d3) , hasProp(d3, h)},
P2 = {hasProp(d2, u) , WProp(d3) , WProp(d5) , WoProp(d5)},
P3 = {MDance(d2)},
P4 = {TDance(d4) , hasProp(d4, r)}.

The relation D is depicted in Figure 2(a). The assertions within the same set are equally
preferred. The assertions of P1 (resp. P4) are the most (resp. the least) preferred. The
preference levels of the assertions of P2 are incomparable to those of P3 and vice versa.
We resolve incomparability by viewing the partial preorder D as a family of three total
preorders ≥1, ≥2 and ≥3 which preserve the strict preferences between the assertions
and such that:

• The relation ≥1 considers that the assertions of the set P2 are strictly preferred
to those of the set P3. Let (A,≥1) be the resulting ABox.

• The relation ≥2 considers that the assertions of the sets P2 and P3 are equally
preferred. Let (A,≥2) be the resulting ABox.

• The relation ≥3 considers that the assertions of the set P3 are strictly preferred
to those of the set P2. Let (A,≥3) be the resulting ABox.

This is depicted in Figure 2(b).

11

P1

P2 P3

P4

(a) A partial preorder D over A.

P1

P2

P3

P4

≥1

P1

P2 ≡ P3

P4

≥2

P1

P3

P2

P4

≥3

(b) The three total extensions of D over A.

Figure 2: In D (resp. each ≥k), a dashed (resp. solid) arrow from Pi to Pj means that
for every f ∈ Pi and for every g ∈ Pj, f B g (resp. f >k g). In D (resp. ≥2), for every
f ∈ P2 and for every g ∈ P3, f ./ g (resp. f ≡ g).

5.2 The Elect method

Once the cases of incomparability in the partially preordered ABox have been resolved,
the question is how to handle the corresponding family of totally preordered ABoxes.
We would like to avoid an arbitrary choice consisting in the selection of one total
preorder over the others. Thus all the total preorders should be equally taken into
account. A safe way to derive a single consistent assertional sub-base from the ABox is
to consider the intersection of all the non-defeated repairs associated with all the total
preorders. Formally:

Definition 6. Let K be a DL-LiteR KB with a partially preordered ABox (A,D).

• Elect(A,D) =
⋂
≥{nd(A,≥) |≥ is a total extension of D}, where nd(A,≥) is given

by Definition 4.

• Let q be a query. Then q is an Elect-consequence of K if q follows from Elect(A,D)
(using standard DL-Lite inference).

We illustrate Definition 6 using our running example.

Example 5. Using Definition 4, one can check that the non-defeated repairs associated
with the totally preordered ABoxes (A,≥1), (A,≥2) and (A,≥3) obtained in Example 4
are:

• nd(A,≥1) = P1 ∪ {WProp(d3), hasProp(d2, u)} ∪ P4

• nd(A,≥2) = P1 ∪ {WProp(d3)} ∪ P4

• nd(A,≥3) = P1 ∪ {WProp(d3)} ∪ P4

Therefore, using Definition 6, we obtain:

Elect(A,D) = nd(A,≥1) ∩ nd(A,≥2) ∩ nd(A,≥3)

= P1 ∪ {WProp(d3)} ∪ P4

= {MDance(d1),TDance(d2),TDance(d3),TDance(d4),WProp(d3),

hasProp(d3, h), hasProp(d4, r)}.

12

An important result stated in Proposition 1 is that the computation of the repair
Elect(A,D) can be achieved in polynomial time. In fact, we shall show later that in
order to compute Elect(A,D), there is no need to exhibit all the possible extensions of
the partial preorder D.

Proposition 1. Computing Elect(A,D) is done in polynomial time (w.r.t. the size of
the ABox).

The next proposition states that, as expected, the KB where the ABox component
is the repair Elect(A,D) is consistent.

Proposition 2. 〈T ,Elect(A,D)〉 is consistent.

Another interesting feature of Elect is that it collapses with the IAR semantics (resp.
non-defeated semantics) when the ABox is flat (resp. totally preordered).

Proposition 3. If the partial preorder D is flat, then Elect(A,D) = IAR(A). If the
partial preorder D is a total preorder, then Elect(A,D) = nd(A,D).

The proofs of Propositions 1 to 3 are established by providing a characterization of
Elect(A,D) and which is presented in the next section.

6 Characterizing Elect(A,D)
In this section, we provide a characterization of Elect(A,D) without having to compute
all total extensions of D. This is done by introducing the notion of elected assertions.
Intuitively, an assertion f is said to be elected in (A,D) if it is strictly preferred to all
the assertions that conflict with it. Formally:

Definition 7. An assertion f ∈ A is said to be elected if for every C ∈ Conf(A) where
C = {f, g}, f 6= g, then f B g (i.e., f is strictly preferred to g).

Note that if an assertion f is free in A then f is elected, since free assertions are not
involved in any conflict. However the converse is false. A simple counterexample is to
consider the TBox with one negative axiom {B1 v ¬B2} and the ABox {B1(a), B2(a)}
with the strict preference B1(a) B B2(a). The assertion B1(a) is elected but it is not
free.
In fact, Definition 7 extends the notion of free assertions given in Definition 3. Indeed,
when the relation D is flat, namely :

For every f ∈ A, for every g ∈ A, f D g and g D f,
then no assertion in A is strictly preferred to another assertion (i.e., for every f ∈ A,
for every g ∈ A, neither f B g nor g B f holds). Then one can easily check that f is
elected in (A,D) if and only if f is free. The converse does not hold when the relation D
is no longer flat. This is due to the fact that an elected assertion may not be a free
assertion, however its reliability is strictly more important than that of its opponents,
as illustrated by the above counterexample.

Definition 7 also extends the notion of non-defeated assertions given for non-defeated
repairs in totally preordered KBs [17]. Lastly, the notion of elected assertions is in the
spirit of the notion of accepted beliefs introduced in uncertainty theories [40]. Note

13

that from Definition 7, it is trivial to see that if 〈T ,A〉 is consistent, then IAR(A) = A
and all the assertions in A are elected.

As shown in Proposition 4, it turns out that the set of elected assertions matches
exactly the set of assertions in Elect(A,D).

Proposition 4. An assertion f ∈ A is elected in (A,D) (using Definition 7) if and
only if f ∈ Elect(A,D), where Elect(A,D) is given by Definition 6.

Proof. Let (A,D) be a partially preordered assertional base.

i) Let f ∈ A be an elected assertion. Let us show that for each total extension
(A,≥) of (A,D), we have f ∈ nd(A,≥). Let ≥ be a total extension of D, and
let (S1, . . . ,Sn) be the well-ordered partition associated with ≥. Let i be the first
stratum where f ∈ Si.
Recall that f is elected in (A,D) means that for every g ∈ A, if {f, g} are conflicting
then fBg (i.e., f is strictly preferred to g w.r.t. D). And since≥ is a total extension
of D, then this also means that f > g. This also means that for every g ∈ A such
that {f, g} are conflicting, g ∈ Sj with j > i. Hence, f ∈ IAR(S1 ∪ . . . ∪ Si).
Therefore f ∈ nd(A,≥).

ii) Let us now show the converse. Assume that f ∈ A is not elected and let us build
a total extension (A,≥) of (A,D) such that f /∈ nd(A,≥).

The assertion f is not elected means that there is g ∈ A such that {f, g} are
conflicting but f B g does not hold. This means that there is a total extension
≥ of D where g ≥ f . If {f, g} are conflicting and (S1, . . . ,Sn) is the well-ordered
partition associated with ≥, then if f ∈ Si it follows that g ∈ Sj with j ≤ i. Hence,
for k = 1, . . . , n, f /∈ IAR(S1 ∪ . . . ∪ Sk) which means that f /∈ nd(A,≥).

Algorithm: ComputeElected

Input: a TBox T , a partially preordered ABox (A,D).
Output: a set of elected assertions Elect(A,D).

1 Compute the conflict set Conf(A)
2 NotElected← ∅
3 foreach {f, g} in Conf(A) do
4 if (f ./ g) or (f , g) then
5 NotElected← NotElected ∪ {f, g}
6 else
7 if (f B g) then
8 NotElected← NotElected ∪ {g}
9 else

10 NotElected← NotElected ∪ {f}

11 return (A \ NotElected)

Thanks to Proposition 4, we can prove Propositions 1, 2 and 3.

14

Proof.

Proof of Proposition 1: Regarding the computational complexity, we first provide
the basic algorithm ComputeElected which computes the set of elected assertions
according to the characterization of Proposition 4. We recall that computing the
conflict set Conf(A) is done in polynomial time w.r.t. the size ofA (e.g. [28]). This
corresponds to Step 1 of our algorithm. Steps 3–10 concern the computation of
Elect(A,D) which is also done in polynomial time. These steps state that checking
if some assertion f ∈ A is elected boils down to parsing all the assertional conflicts
(Step 3) in Conf(A). This is done in linear time w.r.t. the size of Conf(A) (the
size is itself bounded by O(|A|2)).

Proof of Proposition 2: Let us show that Elect(A,D) is consistent w.r.t. T . Assume
that this is not the case. This means that there is f ∈ Elect(A,D) and there is
g ∈ Elect(A,D), g 6= f , such that 〈T , {f, g}〉 are conflicting. Since f and g are
in Elect(A,D), then using Definition 7, this means that f B g and g B f which is
impossible.

Proof of Proposition 3: Lastly, by construction of Elect(A,D), it is easy to check
that when D is a total preorder, then Elect(A,D) collapses with the non-defeated
repair of D. And if D is flat (namely for every f ∈ A, for every g ∈ A,
f D g and g D f), then Elect(A,D) = IAR(A) = {f ∈ A | there is no g ∈
A s.t. {f, g} are conflicting}.

We now apply the algorithm ComputeElected to our running example and obtain the
same set of elected assertions as in Example 5.

Example 6. We recall that Conf(A) contains the following three conflicts:

• C1 = {MDance(d2),TDance(d2)}. Since TDance(d2) BMDance(d2), the assertion
MDance(d2) is not elected.

• C2 = {MDance(d2), hasProp(d2, u)}. Since MDance(d2) ./ hasProp(d2, u), the as-
sertion hasProp(d2, u) is also not elected.

• C3 = {WProp(d5),WoProp(d5)}. Since WProp(d5) , WoProp(d5), neither of the
two assertions is elected.

All the remaining assertions are elected. Namely:

Elect(A,D) = { MDance(d1),TDance(d2),TDance(d3),TDance(d4),WProp(d3),

hasProp(d3, h), hasProp(d4, r)}.
We obtained the same result when we considered all the total extensions of D.

In the rest of this paper, we briefly investigate three possible ways to go beyond the
Elect method while still maintaining the safety of the results. First, we redefine Elect
in terms of a preferred semantics from the literature. Second, we go beyond DL-LiteR
and adapt Elect to more expressive DLs. Third, we introduce a method for producing
larger repairs.

15

7 A Preference-Based Semantics for Elect
The non-defeated semantics [13] underlies the definition of the Elect method when a
partial preorder D is applied to an ABox A. Indeed, the partial preorder is seen as a
family of total preorders for which non-defeated repairs can be computed. Then a single
consistent sub-base (denoted by Elect(A,D)) is obtained from the intersection of the
non-defeated repairs. The question addressed in this section is whether using a strategy
that is more productive than the non-defeated semantics yields a single consistent sub-
base that is larger than Elect(A,D). A candidate strategy is the preference-based
semantics introduced in [23] and which can be used as a basis to redefine the Elect
method. Let us first recall the notion of preferred repairs defined for totally preordered
ABoxes.

Definition 8. Let A = (S1, . . . ,Sn) be a prioritized ABox. Let R1 and R2 be two
consistent sub-bases of S1 ∪ . . . ∪ Sn.

• R1 is equally preferred to R2 if (R1 ∩ Si = R2 ∩ Si) for i = 1, . . . , n.

• R1 is strictly preferred to R2 if (R2 ∩Si (R1 ∩Si) for some i ∈ {1, . . . , n}, and
(R1 ∩ Sj = R2 ∩ Sj) for all j, 1 ≤ j < i.

Then R ⊆ A is a preferred repair of A if there is no R′ ⊆ A s.t. R′ is strictly preferred
to R.

The notion of preferred repairs has been first introduced in the context of proposi-
tional logic [29] (see also [16]).

Example 7. Let us consider the partial preorder D of Example 4 and one of its total
extensions, namely ≥1. Recall that the stratification associated with the relation ≥1 is:
A = (P1,P2,P3,P4). We compute the preferred repairs of (A,≥1) in a constructive
manner from the strata P1 to P4 as follows:

• The set P1 is conflict-free so all its elements can belong to the same repair.

• The set P2 contains WoProp(d5) and WProp(d5) which are conflicting and should
not belong to the same repair. So there are two repairs at this level.

• The only element of the set P3, namely MDance(d2), conflicts with TDance(d2) of
the set P1, hence it should not be included in any repair.

• The set P4 is conflict-free so all its elements can belong to the same repair.

Thus (A,≥1) has exactly two preferred repairs, R1 and R2, as follows:

R1 = P1 ∪ {hasProp(d2, u),WProp(d3),WProp(d5)} ∪ P4

= {MDance(d1),TDance(d2),WProp(d3),TDance(d3),TDance(d4),

WProp(d5), hasProp(d2, u), hasProp(d3, h), hasProp(d4, r)}.
R2 = P1 ∪ {hasProp(d2, u),WProp(d3),WoProp(d5)} ∪ P4

= {MDance(d1),TDance(d2),WProp(d3),TDance(d3),TDance(d4),

WoProp(d5), hasProp(d2, u), hasProp(d3, h), hasProp(d4, r)}.

16

Consider (A,≥2) and (A,≥3) from Example 4, where the associated stratified ABoxes
are A = (P1,P2 ∪ P3,P4) and A = (P1,P3,P2,P4), respectively. Following a similar
reasoning, the preferred repairs associated with (A,≥2), resp. (A,≥3), are by coinci-
dence the same as above, namely R1 and R2.

The notion of preferred repairs, initially defined for total preorders, can then be
used as a basis for defining a repair associated with a partial preorder D. We call the
new setting PartialPR(A,D) (where PR stands for preferred repairs). Like Elect(A,D),
PartialPR(A,D) considers all the total extensions ≥ of D. However, instead of intersect-
ing the non-defeated repairs like in Elect, we consider the intersection of the preferred
repairs, denoted by IPR(A,≥), like so:

Definition 9. Let (A,D) be a partially preordered ABox. Let ≥ be some total extension
of D and (A,≥) be the corresponding totally preordered ABox.
The intersection of the preferred repairs associated with (A,≥) is:

IPR(A,≥) =
⋂
{R | R is a preferred repair of ≥}.

The preferred repair associated with (A,D) is:

PartialPR(A,D) =
⋂
≥

{IPR(A,≥) |≥ is a total extension of D}.

Example 8. We continue Example 7 and compute the intersection of the preferred
repairs associated with ≥1, ≥2 and ≥3.

IPR(A,≥1) = IPR(A,≥2) = IPR(A,≥3) = R1 ∩R2

= P1 ∪ {hasProp(d2, u),WProp(d3)} ∪ P4.

It follows that the preferred repair associated with (A,D) is:

PartialPR(A,D) = P1 ∪ {hasProp(d2, u),WProp(d3)} ∪ P4

= {MDance(d1),TDance(d2),TDance(d3),WProp(d3),

TDance(d4), hasProp(d2, u), hasProp(d3, h), hasProp(d4, r)}.

Notice that: PartialPR(A,D) = Elect(A,D) ∪ {hasProp(d2, u)}. Hence:
Elect(A,D) (PartialPR(A,D).

Obviously, PartialPR(A,D) is consistent, since it is the intersection of some repairs
which are by definition consistent.
Next, we show that the base PartialPR(A,D) is larger than the base Elect(A,D).

Proposition 5. Let (A,D) be a partially preordered ABox.
Then Elect(A,D) ⊆ PartialPR(A,D). The converse is false.

Proof. Consider an assertion f ∈ Elect(A,D) but f /∈ PartialPR(A,D). This means that
there is some extension ≥ of D and some preferred repair R of ≥ s.t. f /∈ R. Let
(S1, . . . ,Sn) be the well-ordered partition associated with ≥.
Assume that f ∈ Si for some i ∈ {1, . . . , n}. Since f is elected, it follows that the set
[(R∩ S1) ∪ . . . ∪ (R∩ Si)] ∪ {f} is consistent. Indeed:

17

i) by the definition of a repair: [(R∩ S1) ∪ . . . ∪ (R∩ Si)] is consistent,

ii) since f is elected, there is no g ∈ [(R∩S1)∪. . .∪(R∩Si)] s.t. {f, g} are conflicting
(since all the elements conflicting with f are in Sj with j > i).

Hence one can construct a repair R′ that contains:
[(R∩S1)∪ . . .∪ (R∩Si)]∪{f}. This, by definition, means that R′ is strictly preferred
to R, which contradicts the fact that R is a preferred repair.

The converse of Proposition 5 does not hold, thus: PartialPR(A,D) 6⊂ Elect(A,D). A
counterexample is given in Example 8.

It is worth mentioning that the method PartialPR for computing a preferred repair for
a partially preordered ABox (A,D) does not compete with Elect in terms of computa-
tional criteria. Indeed, when D is simply a total preorder, PartialPR(A,D) = IPR(A,D),
and it has been shown that the complexity of IPR(A,D) w.r.t. the size of the ABox is
coNP-hard [23].

8 Elect Beyond DL-LiteR
Up until now, we have restricted ourselves to DL-LiteR for its good trade-off between
expressive power and computational complexity. In this section, we take a step further
and propose to generalize the Elect method to partially preordered ABoxes that are
expressed in languages that are more expressive than DL-LiteR. In particular, we may
consider description languages where the assertional conflicts C ∈ Conf(A) need not be
binary (i.e., they involve more than two assertions unlike DL-LiteR).

From a semantic point of view, we see no limitation and the obtained results also
collapse with the IAR-repair (for flat ABoxes) and the non-defeated repair (for totally
preordered ABoxes). Indeed, both the IAR and the non-defeated semantics are defined
independently of the size of the conflicts. In fact, the IAR-repair is simply the intersec-
tion of all the maximal repairs, and the non-defeated repair is expressed in terms of the
IAR-repair. As a result, the definitions of the IAR and non-defeated semantics need no
adaptation. However, the situation may be different regarding computational issues in
the presence of conflicts of arbitrary size. Let us first introduce the DL-Elect method
then discuss its computational properties.

8.1 The DL-Elect method

The DL-Elect method proceeds like the Elect method. The main difference lies in the
notion of elected assertions which needs to be redefined to cater for non-binary conflicts.
Intuitively, an assertion is elected if it is strictly preferred to at least one of its opponents
in every conflict where it is involved. For the sake of readability, we simple re-use the
term ‘elected’ even for non-binary conflicts.

Definition 10. Let K be a DL KB with a partially preordered ABox (A,D). An asser-
tion f ∈ A is elected if for every C ∈ Conf(A) where f ∈ C, there is g ∈ C, g 6= f , s.t.
f B g.

18

Note that when C is a binary conflict, Definition 10 amounts to Definition 7.
Similarly to the definition of the set Elect(A,D) in DL-LiteR, we formally define the

set DL-Elect(A,D) in the case of more expressive DL languages.

Definition 11. Let K be a DL KB with a partially preordered ABox (A,D).

DL-Elect(A,D) =
⋂
≥

{nd(A,≥) |≥ is a total extension of D}.

Let us consider the following modified version of our running example. It is based
on the vocabulary introduced in Example 1. In addition, the symbol u denotes the
conjunction of (complex) concepts and ⊥ denotes the bottom concept, with their well-
known DL semantics.

Example 9. Let K1 = 〈T1,A1〉 be a DL KB, where the TBox is:

T1 = { 1. MDance v Dance, 2. TDance v Dance, 3. ∃hasInst v Dance,
4. MDance v ¬∃hasInst, 5. FDance u ∃hasInst u ∃hasProp v ⊥}.

Axioms 3 to 5 state, in order, that: anything having an instrument is a dance, the sets
of modern dances and those of elements having instruments are disjoint, and an element
may not be at the same time a festival dance, something that has a prop and something
that has an instrument. Notice that Axiom 5 represents a ternary conflict, hence it
cannot be expressed in DL-LiteR. (Recall that disjointness in DL-LiteR concerns only
pairs of concepts or pairs of roles.)

The ABox is:

A1 = {TDance(d6),MDance(d6),FDance(d6), hasProp(d6, r), hasInst(d6, c)}.

The conflict set is given by Conf(A1) = {C11, C12}, where:

C11 = {MDance(d6), hasInst(d6, c)},
C12 = {FDance(d6), hasInst(d6, c), hasProp(d6, r)}.

Assume a partial preorder D1 over A1 such that:
MDance(d6)D1 hasProp(d6, r)B1 hasInst(d6, c), and
TDance(d6)D1 MDance(d6)B1 FDance(d6)B1 hasInst(d6, c).

Using Definition 11, one can check that:

DL-Elect(A1,D1) = {TDance(d6),MDance(d6),FDance(d6), hasProp(d6, r)}.

We now provide a characterization (without computing all the total preorders) for
the set DL-Elect(A,D) and show that it contains all the elected assertions.

Proposition 6.

1. An assertion f ∈ A is elected in (A,D) if and only if f ∈ DL-Elect(A,D).

(The notions of elected assertion and DL-Elect(A,D) are given by Definitions 10
and 11 respectively).

19

2. Furthermore, DL-Elect(A,D) is consistent w.r.t. T .

Proof. Let (A,D) be a partially preordered assertional base.
(1.i) Let f ∈ A be an elected assertion. Let us show that for each total extension ≥

of D, we have f ∈ nd(A,≥). Let (S1, . . . ,Sn) be the well-ordered partition associated
with a total extension ≥. Assume that f ∈ Si for some i ∈ {1, . . . , n}.
Since f is elected in (A,D) and ≥ is a total extension of D, applying Definition 10 entails
that for every C ∈ Conf(A) where f ∈ C, there is g ∈ C, g 6= f , s.t. fBg and also f > g.
This also means that for every C ∈ Conf(A) s.t. f ∈ C, there is g ∈ C s.t. g 6= f and
g ∈ Sj with j > i. Hence, there is no conflict C in S1 ∪ . . . ∪ Si where f ∈ C. (Recall
that a conflict is a minimal inconsistent set of assertions w.r.t. T . Hence, removing
any element from C leads to a consistent set of assertions w.r.t. T .) This means that
f ∈ IAR(S1 ∪ . . . ∪ Si). Therefore f ∈ nd(A,≥). Hence f ∈ DL-Elect(A,D).

(1.ii) Let us show the converse. Assume that f ∈ A is not elected and let us build
a total extension ≥ of D such that f /∈ nd(A,≥).
The fact that f is not elected means that there is C ∈ Conf(A) s.t. f ∈ C and for every
g ∈ C, g 6= f , f B g does not hold. This means that there is a total extension ≥ of D
where for every g ∈ C, g 6= f , g ≥ f . Indeed, it is enough to set the ordering between
elements of C w.r.t. f as follows: for every g ∈ C, g 6= f, g ≥ f , and then complete
the remaining relation in such a way to extend D. Let (S1, . . . ,Sn) be the well-ordered
partition associated with ≥, and let f ∈ Si for some i ∈ {1, . . . , n}. Since for every
g ∈ C, g ≥ f , then for every g ∈ C, if f ∈ Si, g ∈ Sj for some j ≤ i. Hence, for
k = 1, . . . , n, f /∈ IAR(S1 ∪ . . . ∪ Sk) which means that f /∈ nd(A,≥).

(2) To show the consistency of DL-Elect(A,D) w.r.t. T , let us assume the opposite,
so there is a conflict C ⊆ DL-Elect(A,D). Since each element in C is elected, then for
every f ∈ C, there is g ∈ C, g 6= f , s.t. f B g, which is impossible (the strict order B is
irreflexive and transitive).

Next, we apply Proposition 6 to Example 9 and reproduce the same result.

Example 9. (continued) Recall that Conf(A1) = {C11, C12}. hasInst(d6, c) belongs both
to C11 and C12, but it is strictly less preferred than any of its opponents in both conflict,
thus it is not elected. The remaining assertions are elected. Indeed, TDance(d6) is not
involved in any conflict. FDance(d6) and hasProp(d6, r) (resp. MDance(d6)) are strictly
preferred to (at least) one of their opponents in C12 (resp. C11). Thus:

DL-Elect(A1,D1) = {TDance(d6),MDance(d6),FDance(d6), hasProp(d6, r)}.

In the next section, we discuss the properties of the DL-Elect method from a com-
putational point of view.

8.2 Discussion of computational properties

We have defined the DL-Elect method in a similar way to the Elect method. We have
shown that the latter is tractable in DL-LiteR where the conflicts are binary. Thus main-
taining the tractability property for the DL-Elect method may require that the conflicts

20

are handled efficiently. Indeed, the time complexity for computing DL-Elect(A,D) de-
pends on the time complexity for computing and generating/enumerating the conflict
set Conf(A). If the latter complexity is polynomial and the size of the conflicts is poly-
nomial with respect to the size of the ABox, then the whole process is polynomial.
By a polynomial algorithm for computing/generating conflicts, we refer again to the
existence of an algorithm that takes as input the knowledge base K = 〈T ,A〉 and gen-
erates/produces the set of all the assertional conflicts associated with K. The space and
time complexity of such algorithm is polynomial w.r.t. the size of the ABox. Notice
that checking if some assertion f ∈ A is elected simply comes down to: (i) parsing all
the assertional conflicts C ∈ Conf(A), (ii) for each C, checking if there is some assertion
g ∈ C that is strictly less preferred than f . This is done in polynomial time w.r.t.
the size of Conf(A) (i.e., the number of conflicts). However, it may happen that the
number of conflicts may be exponential. We consider an example where the ABox is
highly conflicting with the TBox to aid the discussion.

Example 10. Let K = 〈T ,A〉 be a DL KB in which the TBox has only one negative
axiom:

T = {∃R1 u ∃R2 u . . . u ∃Rn v ⊥},
where Ri, i = 1, . . . , n, are roles.
The unique axiom of the TBox excludes situations in which the same individual belongs
simultaneously to the domain of each role Ri.
Let I = {a} ∪ {b1, b2, . . . , bm} be a set of (m+ 1) individuals.
Let us assume that the ABox is defined as follow:

A = {Ri(a, bji) | i = 1, . . . , n ; ji = 1, . . . ,m},

where a, bji are individuals. Namely, the assertions are obtained by instantiating all
the roles by the same m pairs of individuals, where the first element of each pair is the
individual a, and the second element of each pair is a different individual within the set
{b1, b2, . . . , bm}.
One can check that the conflict set is:

Conf(A) = {R1(a, bj1) | j1 = 1, . . . ,m} × . . .× {Rn(a, bjn) | jn = 1, . . . ,m},
where the operator × denotes the Cartesian product of sets. It follows that any conflict
in Conf(A) is of the form

C = {R1(a, bj1), R2(a, bj2), . . . , Rn(a, bjn)}.

Namely, each conflict contains exactly one element from each role. This is explained
by the fact that the individual a is present in the first component of each couple in each
role.
Assume now that the partial preorder D over A is such that:

R1(a, bj1)BRi(a, bji), for i > 1.
This partial preorder states that each assertion obtained from the role R1 is preferred
to any assertion obtained from another role Ri (with i > 1). The other assertions are
considered by default incomparable.
One can easily check that the only assertions that are elected are those of R1. Indeed, let
R1(a, b1) be an assertion of the role R1. Recall that each conflict that involves R1(a, b1)
is necessarily of the form

C = {R1(a, b1), R2(a, bj2), . . . , Rn(a, bjn)}.

21

Now, by definition of the partial preorder, we have:

R1(a, b1)BRi(a, bji),∀i = 2, . . . , n, ∀ji = 1, . . . ,m.

This means that R1(a, b1) is elected.
Using a similar reasoning, we can also state that none of the assertions obtained from
the other roles (namely, different from R1) is elected. Indeed, when such assertion
is involved in a conflict, it is either strictly less preferred than an assertion obtained
from R1 or is incomparable with an assertion obtained from other roles. Therefore,
applying Proposition 6 to (A,D) and Conf(A) yields:

DL-Elect(A,D) = {R1(a, bj1) | j1 = 1, . . . ,m}.

Namely, DL-Elect(A,D) is composed only of all the assertions obtained from the role R1.

Clearly, applying the DL-Elect method in Example 10 by first computing all the
conflicts is not appropriate, due to their number (i.e., the size of the conflict set).

9 CElect: A Closure-Based Extension of Elect
In this section, we briefly discuss a method for enlarging the consistent sub-base com-
puted by the Elect method while still maintaining the safety of the obtained result. A
natural solution to achieve this aim is to use the notion of positive deductive closure in
which the closure of the ABox is defined with respect to the positive inclusion axioms
of the TBox. This way, the consistency of the derived elements is ensured. Let us first
introduce the closure operator [13, 32]:

Definition 12. Let K = 〈T ,A〉 be a DL KB. Let Tp be the set of all the positive
inclusion axioms of T . The deductive closure of A w.r.t. T is given by:
cl(A) = {B(a) | 〈Tp,A〉 |= B(a) s.t.B is a concept in T , a is an individual of A}
∪{R(a, b) | 〈Tp,A〉 |= R(a, b) s.t.R is a role in T , a and b are individuals of A}.
Here |= is a standard DL inference relation.

There are two possible ways for applying the positive closure, namely, either on the
initial ABox, or on the non-defeated repairs computed for all the total extensions of the
partial preorder (as per Definition 6).

In the first option, applying the positive closure to the initial ABox (in the spirit
of the ICAR semantics for non-prioritized ABoxes [51]) raises two concerns. Indeed,
applying the closure to the initial ABox may be semantically debatable since this may
entail consequences that are derived from questionable assertions. For instance, assume
that we have:

the TBox {B1 v ¬B2, B2 v B4, B1 v B3}, and
the ABox {B1(a), B2(a), B3(a)}, such that the assertion B1(a) is strictly preferred

to the assertion B2(a).
Here, B1(a) is elected but it contradicts B2(a) from which the assertion B4(a) can be
derived. It follows that adding B4(a) to the closed ABox is debatable since it is entailed
from a questionable assertion in the initial ABox.
Furthermore, the reliability of the derived elements can be defined in various ways. For
instance, assume that we have:

22

the TBox: {B1 v B2, B3 v B2}, and
the ABox: {B1(x), B3(x)}, such that the preference levels of B1(x) and B3(x) are

incomparable.
The assertion B2(x) can be derived from B1(x) but also from B3(x). The question is
then where to place B2(x) in terms of preference level. The intuition is to consider that
B2(x) is at least as plausible as B1(x) and B3(x), but this is not straightforward to
define in a general way.

The second option, using the closure operator cl(·), consists in applying the closure
on all non-defeated repairs, which is safer. Indeed, the added conclusions are obtained
only from assertions that are in non-defeated repairs, which are known to only contain-
ing safe assertions. Thus a repair associated with the partial preorder is computed as the
intersection of the closed non-defeated repairs [13] associated with the total extensions
of the partial preorder. We call this method CElect. Formally:

Definition 13. Let (A,D) be a partially preordered ABox, cl(·) be as in Definition 12
and nd(A,≥) be as in Definition 6.

CElect(A,D) =
⋂
≥

{cl(nd(A,≥)) |≥ is a total extension of D}.

Example 11. We recall that the non-defeated repairs of Example 5 are:

• nd(A,≥1) = P1 ∪ {WProp(d3), hasProp(d2, u)} ∪ P4

• nd(A,≥2) = P1 ∪ {WProp(d3)} ∪ P4

• nd(A,≥3) = P1 ∪ {WProp(d3)} ∪ P4

The positive deductive closure of each of the above non-defeated repairs is:

• cl(nd(A,≥1)) = nd(A,≥1) ∪N ∪ {Prop(u)}

• cl(nd(A,≥2)) = nd(A,≥2) ∪N

• cl(nd(A,≥3)) = nd(A,≥3) ∪N

with N = { Dance(d1),WoProp(d1),Dance(d2),WProp(d2),Dance(d3),
Dance(d4),WProp(d4),Prop(h),Prop(r)}.

CElect(A,D) = P1 ∪ {WProp(d3)} ∪ P4 ∪N
= {MDance(d1),TDance(d2),TDance(d3),TDance(d4),

Dance(d1),Dance(d2),Dance(d3),Dance(d4),Prop(h),Prop(r),

WoProp(d1),WProp(d2),WProp(d3),WProp(d4),

hasProp(d3, h), hasProp(d4, r)}.

Notice from Example 5 that: CElect(A,D) = Elect(A,D) ∪N . Therefore:
Elect(A,D) (CElect(A,D).

However, in this particular case: CElect(A,D) = cl(Elect(A,D)).

Furthermore, recall from Example 8 of Section 7 that:
PartialPR(A,D) = Elect(A,D) ∪ {hasProp(d2, u)}.
It follows that: cl(PartialPR(A,D)) = cl(Elect(A,D)) ∪ {Prop(u)}.
Therefore, we conclude that:

cl(Elect(A,D)) (cl(PartialPR(A,D)).

23

In order to show that the closure of the repair computed by the Elect method is
not always equal to the result of the CElect method, we consider this other modified
version of our running example.

Example 12. Let K2 = 〈T2,A2〉 be a DL-LiteR KB, where the TBox is:

T2 = { 1.MDance v Dance, 2.FDance v Dance, 3.∃hasInst v Dance,

4.FDance v ¬MDance, 5. hasInst v ¬hasProp}.

Axiom 5 means that the set of ordered pairs of individuals linked by the role hasInst and
the set of those linked by the role hasProp are disjoint.

The ABox is: A2 = {MDance(d7), FDance(d7), hasProp(d7,m), hasInst(d7,m)}2.
Figure 3(a) depicts the binary conflicts of Conf(A2) (dotted lines) and a partial pre-
order D2 over A2, where the preferences between the assertions are either strict (dashed
arrows) or incomparable (no arrow).

Clearly, none of the assertions MDance(d7), FDance(d7) and hasInst(d7,m) belongs
to Elect(A2,D2), because none of them is strictly preferred to its opponent (see Fig-
ure 3(a)). However, only those three assertions allow to derive Dance(d7) from 〈T2,A2〉.
Therefore: Dance(d7) /∈ cl(Elect(A2,D2)).

On the other hand, FDance(d7) ./2 hasInst(d7,m). Hence, for any total extension ≥
of D2, either the two assertions are equally preferred, or one assertion is strictly pre-
ferred to the other (see Figures 3(b),(c),(d)). Therefore, for any extension ≥, either
FDance(d7) ∈ nd(A2,≥) or hasInst(d7,m) ∈ nd(A2,≥), or both. Hence, Dance(d7) ∈
cl(nd(A2,≥)). This means that Dance(d7) ∈ CElect(A2,D2). It follows that:

cl(Elect(A2,D2)) (CElect(A2,D2).

Interestingly, CElect is still consistent and is equivalent to the closure of IAR (which
is different from ICAR) for non-prioritized ABoxes. And for totally preordered ABoxes,
CElect is equivalent to the closure of the non-defeated repair.

Proposition 7.

1. 〈T ,CElect(A,D)〉 is consistent.

2. CElect(A,D) = cl(IAR(A,D)) when D is non-prioritized (i.e., flat).

3. CElect(A,D) = cl(nd(A,D)) when D is a total preorder.

4. Elect(A,D) ⊆ CElect(A,D) and cl(Elect(A,D)) ⊆ CElect(A,D).
The converse is false for both inclusions.

Proof. The proofs are quite straightforward.
(1) For the consistency property, recall that if ≥ is a total preorder over the ABox A,

then nd(A,≥) is consistent. Hence for each total extension ≥i of D, both nd(A,≥i) and
its closure cl(nd(A,≥i)) are consistent. It follows that CElect(A,D) =

⋂
≥i
{cl(nd(A,≥i

)) |≥i is a total extension of D} is consistent.
2Here the dance d7 is assumed to have drums both as props and instruments.

24

(a) A2, Conf(A2) and D2

hasInst(d7,m) FDance(d7)

MDance(d7) hasProp(d7,m)

(b) FDance(d7) > hasInst(d7,m)

FDance(d7)

hasProp(d7,m) hasInst(d7,m)

MDance(d7)

(c) hasInst(d7,m) > FDance(d7)

hasInst(d7,m)

FDance(d7) MDance(d7)

hasProp(d7,m)

(d) hasInst(d7,m) ≡ FDance(d7)

hasInst(d7,m) FDance(d7)≡

MDance(d7) hasProp(d7,m)

Figure 3: Dotted lines indicate the binary conflicts in Conf(A2). Dashed (resp. solid)
arrows indicate strict preference according to D2 (resp. ≥) over A2.

(2) WhenD is flat (namely: for every f ∈ A, for every g ∈ A, fDg and gDf), there is
a single extension ≥ of D s.t. for every f ∈ A, for every g ∈ A, f ≥ g and g ≥ f , which
means that there is a single partition A = S. Hence nd(A,D) = IAR(S) = IAR(A,D).
Thus by definition, CElect(A,D) = cl(IAR(A,D)).

(3) By construction of CElect(A,D), it is easy to check that when D is a total
preorder, then CElect(A,D) collapses with cl(nd(A,D)).

(4) By definition, Elect(A,D) =
⋂
≥i
{nd(A,≥i) |≥i is a total extension of D}. So for

each total extension ≥i of D, Elect(A,D) ⊆ nd(A,≥i). Hence Elect(A,D) ⊆ cl(nd(A,≥i

)) and consequently cl(Elect(A,D)) ⊆ cl(nd(A,≥i)).
It follows that:
Elect(A,D) ⊆

⋂
≥i
{cl(nd(A,≥i)) |≥i is a total extension of D} = CElect(A,D). Ex-

ample 11 serves as a counterexample to show that the converse is false. Indeed,
since there is at least one case where Elect(A,D) (CElect(A,D), it follows that
CElect(A,D) 6⊂ Elect(A,D).
Similarly, cl(Elect(A,D)) ⊆ CElect(A,D).
Example 12 serves as a counterexample to show that the converse is false. Namely,
CElect(A,D) 6⊂ cl(Elect(A,D)).

The CElect method produces a single repair for an inconsistent ABox that is, as
expected, more productive than a repair computed with the Elect method.

10 Related work
Inconsistency management in knowledge bases is an important task because it is present
in several application fields. Given an inconsistent set of beliefs (e.g. obtained by
merging multiple-source coherent knowledge bases, or due to the presence of exceptional
facts added to a rule base with exceptions), the goal is to answer queries and to provide

25

plausible conclusions.
Different attitudes can be followed in the presence of inconsistency in knowledge bases:

1. Replace first the inconsistent knowledge base by one or several of its consistent
sub-bases, then apply the standard inference machinery of the underlying lan-
guage (e.g. propositional logic, Description Logic, etc).
The difficulty of this approach is to find, on the one hand, the relevant beliefs
that must be kept and, on the other hand, the beliefs that can be removed. To
restore the consistency, it is possible to select either a single coherent sub-base or
several coherent sub-bases.
The selection of a single sub-base is determined thanks to a unique choice of dele-
tion of formulas. The selection of several sub-bases comes from the consideration
of different possible restoration solutions.

2. Accept inconsistency and reason in its presence by modifying the standard in-
ference relation of the considered language. This attitude towards inconsistency
does not allow the application of standard inference relations (such as proposi-
tional logic) and requires to manage inconsistency at a higher level. Paraconsistent
logics [2, 5, 33, 36, 61, 61] and argumentation frameworks [18, 22, 41, 70] are exam-
ples of such approaches. In the argumentation setting, the idea is to construct
arguments (set of pieces of information in favour of a conclusion) and to choose
the most relevant argument.

3. Modify the inconsistent knowledge base, in order to restore consistency, by rewrit-
ing some of its beliefs. This is especially true in the reasoning tolerant of excep-
tions, where the information is incomplete and the system must complement the
knowledge provided to it.

Our work adopts the first attitude in the presence of contradictory information.
Within the framework of propositional logic, this attitude has been followed by

a large body of work (e.g. [10, 15, 42, 44, 64]), where different strategies for restoring
the coherence of the knowledge base have been proposed. They are based on the
notions of maximal consistent sub-bases, in the context where the available pieces of
information all have the same importance level. Associated with these strategies, two
main inference mechanisms have been studied: i) the universal inference mechanism
(also called inevitable [64] or skeptical in Reiter’s default logic [62]) which use all the
maximal consistent sub-bases, and ii) the existential inference mechanism (also called
brave) that uses only a single maximal consistent sub-base. Other inference mechanisms
such as the one based on the intersection of consistent maximal sub-bases [14] have been
proposed.
Note that the notion of maximal consistent sub-bases has been used in other contexts
such as in default reasoning (with the notion of extensions) or in model-based diagnosis
(where a dual notion, called "hitting sets", is used [47,49,63]).

The problem of inconsistency studied in propositional logic frameworks was then
extensively studied in database settings. In this context, databases may be inconsistent
with respect to a set of integrity constraints. In the presence of inconsistent databases,
the counterpart of inconsistent maximal sub-bases is called a repair (e.g. [3,20,43,67]).
When dealing with inconsistent databases, restoring consistency is not always possible.
The effort is then mainly focused on processing queries [4, 21, 34, 35, 73]. In particular,

26

the notion of consistent query answering (CQA) is proposed where only answers to a
query that can be obtained from all the database repairs are taken into account.

The problem of managing inconsistencies has also been dealt with within the frame-
work of ontologies and Description Logics, including within the framework of lightweight
ontologies and lightweight Description Logics. There is a large body of work that stud-
ies both the semantics of inconsistency management approaches (e.g. [45, 46, 51, 66]),
inconsistency-tolerant query answering (e.g. [52,53]) as well as the computational com-
plexity impact induced by the presence of contradictory information (e.g. [25, 65]).

One of the characteristics of databases and Description Logics compared to propo-
sitional logic is the natural separation between the data (databases and ABox) from
the integrity constraints (in the context of databases) and the terminological base, i.e.,
the TBox (in the context of Description Logic). The methods of handling inconsistent
bases written in propositional logic do not distinguish factual elements from generic
elements. In Description Logics, a whole family of inconsistency management calls into
question only the factual elements (that is to say the elements of the ABox). The
notion of repairs (or extensions or even maximal consistent sub-bases) then becomes
assertion repairs to highlight the character of questioning factual assertions and not
generic information (considered stable). Our approach also follows this line of incon-
sistency management because our Elect method is also interested in questioning only
elements of the ABox.

Among the two most famous existing semantics based on assertional repair, we find
the AR semantics and the IAR semantics detailed in Section 3. In [24], an approxima-
tion of the AR semantics, in the framework of DL-Lite logics, has been proposed. This
is done by introducing the notion of k-supporters (and its dual notion k-defeaters) for a
query. Basically, a query is k-supported if there are k consistent subsets Ai (i = 1, . . . , k)
of the ABox, each of them infers the query and each repair R contains at least one of
these consistent subsets Ai. For k = 1, the IAR semnantics is recovered and a more
productive relation (than IAR semantics) is obtained for k greater than one.

Recently, other parameterized strategies have been proposed for the management of
inconsistencies in knowledge bases. These strategies have been defined within frame-
works that encompass DL-Lite logics, namely Datalog ± [30, 38, 55] (see also [56] for
computational complexity analysis) and existential rules [8,9,54,59,60]. Parameterized
inference defined in Datalog ±, called k-lazy semantics, is in the spirit of the k-suppoter
semantics. When k is equal to 0, we find the IAR semantics (just like 1-supporter),
and when k is very large, we tend towards the AR semantics. However, there is still
a difference between the k-lazy semantics and the k-supporter semantics which lies in
the fact that the k-lazy semantics is not an approximation of the AR semantics. In the
framework of existential rules, a general framework for capturing a large spectrum of
inconsistency-tolerant semantics have been proposed. The parameterized semantics is
defined with respect to a set of three basic modifiers of the set of ABoxes (called MBox)
and a set of inference strategies. This parameterized semantics allows to recover the
IAR semantics and many of its extensions.

It is often the case that dealing with inconsistency comes down to choosing among
different possible contradictory options. Achieving this choice is not an easy task. This
is why it is important to have a preference relation between different pieces of infor-
mation of the knowledge base. Taking into account preferences between information
facilitates the handling of inconsistency (e.g. [29]).

27

Preference between the sources can be of different natures. Oftentimes, the inconsistency-
tolerant approaches try to determine a stratification on the knowledge base which in-
duces a total preorder between the different pieces of information. A stratification
allows a more easy management of inconsistencies. However, this also leads to compare
certain pieces of information with others while they are incomparable and independent.
This is why in this paper, partially ordered ABoxes are used. One of the common
point with the parameterized strategies, summarized above, is to go beyond the IAR
semantics and identify situations where this can be done efficiently. The Elect method
proposed in this paper was designed in this spirit, as it provides tractable mechanisms
for handling partially ordered inconsistent knowledge bases that also cover the IAR
semantics.

11 Concluding discussions
We have tackled the problem of restoring consistency of a partially preordered ABox
that may be inconsistent with respect to the TBox in DL-Lite ontologies. We have
proposed a method, called Elect, which generalizes the IAR semantics (flat ABox)
and the non-defeated semantics (totally preordered ABox). Basically, using Elect, a
partial preorder is viewed as a family of total preorders to which non-defeated inference
is applied, thus producing non-defeated repairs which are then intersected to obtain
a single repair. We have introduced the notion of elected assertions that allows for
an equivalent characterization of Elect. Most importantly, we have shown that the
complexity of Elect is polynomial.

Furthermore, we have briefly analyzed three possible ways for going beyond the Elect
method. The first way concerns improving the productivity (i.e., increasing the size of
the repair) by using a preference-based semantics as the backbone of Elect. However
this impacts negatively on the complexity, even in DL-Lite. The second way concerns
increasing the size of the repair by producing only safe assertions. To this end, we have
defined the method CElect that computes a larger repair compared to the result of the
Elect method by using the notion of positive deductive closure.

The third way redefines Elect in the general context of DLs that are more expres-
sive than DL-Lite to accommodate the fact that conflicts may involve more than two
assertions. From a semantic point of view, the characterizations of Elect, that have
been obtained in the context of DL-Lite, have been shown to remain valid for richer
languages. Regarding the computational complexity when considering a richer language
in which the conflicts are no longer binary. If the method for computing/generating
those non-binary conflicts is done in polynomial time and the size of the conflict set is
also polynomial (both are evaluated w.r.t. the size of the ABox), then the extension of
Elect to the richer language can be done in polynomial time. In future work, we plan
to study situations where Elect can be efficiently computed even when the size of the
conflict set (i.e., the number of conflicts) is exponential. In what follows, we briefly dis-
cuss our intuition and reserve more detailed investigations for future work. Recall that
in the DL-Lite family of languages, checking inconsistency and computing the conflict
set of a KB starts by defining the negative closure of the TBox (i.e., the set of all the
negative axioms that can be derived from the TBox). Then in order to check whether
the KB is consistent, it is enough to check whether the ABox is consistent with each
axiom in the negative closure of the TBox. Hence, consistency checking comes down to

28

evaluating a set of Boolean queries (one per negative axiom) over the ABox.
Now, assume that a DL language follows the same consistency checking procedure

as DL-Lite. So starting from the negative closure of the TBox, checking the consistency
of the KB is reduced to answering a set of Boolean queries, associated with each neg-
ative axiom, and posed over the ABox. In this case, we argue that the calculation of
DL-Elect(A,D) can be done in a tractable way.

Recall that an assertion f is said to be elected if for any conflict C ∈ Conf(A) that
involves f , there is an assertion g ∈ C such that f is strictly preferred to g. We suggest
that instead of explicitly computing the whole conflict set, we would first simply need
to exhibit the set of all the assertions to which f is not strictly preferred, namely:
Gt(A, f) = {g | g ∈ A, f 7 g}. The idea is then to check whether there is an assertion
in Gt(A, f) that conflicts with f . If it is the case, then f is not elected, otherwise it
is elected. This can be achieved as follows: For each assertion B(a) (resp. R(a, b))
in A, it suffices to focus on the negative axioms that contain the concept B (resp. the
role R). Then for each of these axioms, the associated query is augmented with the
assertion B(a) (resp. R(a, b)) and posed over the sub-ABox Gt(A, f) ∪ {R(a, b)}. For
instance, let us consider our Example 10 where for sake of simplicity we consider that
there are only three roles. The TBox T contains only the following negative axiom:
T = {∃R1 u ∃R2 u ∃R3 v ⊥}. The consistency test obtained from this axiom is the
Boolean query:

q() = ∃x,∃y1,∃y2,∃y3, (R1(x, y1) ∧R2(x, y2) ∧R3(x, y3)).

Assume that we are interested in checking whether R1(a, b1) is elected. Recall first that
Gt(A, R1(a, b1)) contains all the assertions g of the ABox A such that R1(a, b1)) is not
strictly preferred to g. Namely, Gt(A, R1(a, b1)) = {R1(a, bj1) | j1 = 1, . . . ,m}. Then it
is enough to pose the new query:

q′() = ∃y2,∃y3, (R1(a, b1) ∧R2(a, y2) ∧R3(a, y3))

over Gt(A, R1(a, b1)). The answer is NO, hence R1(a, b1) is elected. Following the
same reasoning as in this small example, we are able to parse all the assertions of the
initial ABox and determine whether they are elected, without having to exhibit all the
conflicts.

In the framework of the AniAge project, an application of the present work is query
answering from ontologies representing Southeast Asian traditional dances. Completion
of a dance ontology is performed by domain experts by annotating dance videos with
respect to the TBox to express the cultural knowledge behind particular dance postures,
costumes, props, etc. Annotations of a given dance video can be translated into an
ABox. Several experts may annotate the same video and they may attach confidence
levels to their annotations. However different experts may not share the same meaning
of confidence scales. This can be captured by applying a partial preorder on assertions of
the ABox. Furthermore different experts may not share the same opinion on particular
elements of a dance, so they may disagree in their annotations. This gives rise to
inconsistencies (conflicts) in the ABox with respect to the TBox, making the whole
KB inconsistent. Standard query answering tools are not appropriate in such a case as
anything can be derived from an inconsistent KB. One way of addressing this issue is
to define strategies for querying inconsistent KBs that also take into account priority
levels to compute the answers.

Acknowledgements: This work has received support from the European Project

29

H2020 Marie Sklodowska- Curie Actions (MSCA), Research and Innovation Staff Ex-
change (RISE): Aniage project (High Dimensional Heterogeneous Data based Anima-
tion Techniques for Southeast Asian Intangible Cultural Heritage Digital Content),
project number 691215. This paper has also been supported by University of Artois
within the project AAP A2U QUID (QUeryIng heterogeneous Data). The authors
would like to thank the reviewers for their useful comments. In particular, Sections 8.2
and 10 have been added upon request from the reviewers.

References
[1] Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial

meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

[2] Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Neccessity, Vol.
I. Princeton University Press (1975)

[3] Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems. pp. 68–79. PODS’99, Association for Computing
Machinery, New York, NY, USA (1999)

[4] Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Logic Programming 3(4), 393–424 (2003)

[5] Arieli, O., Avron, A., Zamansky, A.: Maximal and premaximal paraconsistency in the
framework of three-valued semantics. Studia Logica 97(1), 31–60 (2011)

[6] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and
relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

[7] Baader, F., Calvanese, D., Mcguinness, D., Nardi, D., Patel-Schneider, P.: The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications (2007)

[8] Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables:
Walking the decidability line. Artificial Intelligence 175(9), 1620–1654 (2011)

[9] Baget, J., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M., Papini, O., Rocher, S.,
Tabia, K.: A general modifier-based framework for inconsistency-tolerant query answer-
ing. In: KR, Cape Town, South Africa. pp. 513–516 (2016)

[10] Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases con-
sisting of first-order analysis. Computational Intelligence 8, 45–71 (1992)

[11] Belabbes, S., Benferhat, S.: Inconsistency handling for partially preordered ontologies:
Going beyond elect. In: KSEM (1), Athens, Greece. pp. 15–23 (2019)

[12] Belabbes, S., Benferhat, S., Chomicki, J.: Elect: An inconsistency handling approach for
partially preordered lightweight ontologies. In: LPNMR, Philadelphia, USA. pp. 210–223
(2019)

[13] Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-based
repair from inconsistent and prioritized DL-Lite knowledge bases? In: IJCAI, Buenos
Aires, Argentina. pp. 1450–1456 (2015)

30

[14] Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In:
Knowledge Representation and Reasoning. pp. 673–684 (1992)

[15] Benferhat, S., Dubois, D., Prade, H.: How to infer from inconsistent beliefs without
revising? In: IJCAI, Montréal, Canada. pp. 1449–1457 (1995)

[16] Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of
inconsistent knowledge bases : A comparative study. Part 2 : the prioritized case, vol. 24,
pp. 473–511. Physica-Verlag, Heidelberg (1998)

[17] Benferhat, S., Bouraoui, Z., Chadhry, H., Shafry Bin Mohd Rahim Fc, M., Tabia, K.,
Telli, A.: Characterizing non-defeated repairs in inconsistent lightweight ontologies. In:
SITIS, Naples, Italy. pp. 282–287 (2016)

[18] Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsis-
tent knowledge bases. In: Heckerman, D., Mamdani, E.H. (eds.) UAI ’93: Proceedings of
the Ninth Annual Conference on Uncertainty in Artificial Intelligence, The Catholic Uni-
versity of America, Providence, Washington DC, USA. pp. 411–419. Morgan Kaufmann
(1993)

[19] Benferhat, S., Lagrue, S., Papini, O.: Reasoning with partially ordered information in a
possibilistic logic framework. Fuzzy Sets and Systems 144(1), 25–41 (2004)

[20] Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lectures
on Data Management, Morgan & Claypool Publishers (2011)

[21] Bertossi, L.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76
(2006)

[22] Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)

[23] Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic knowl-
edge bases under preferred repair semantics. In: AAAI, Québec, Canada. pp. 996–1002
(2014)

[24] Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for
robust ontology-based data access. In: IJCAI, Beijing, China. pp. 775–781 (2013)

[25] Bienvenu, M.: On the complexity of consistent query answering in the presence of simple
ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, Toronto, Canada (2012)

[26] Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowl-
edge bases. In: Reasoning Web: Logical Foundation of Knowledge Graph Construction
and Query Answering. vol. 9885, pp. 156–202. LNCS. Springer (2016)

[27] Bienvenu, M., Bourgaux, C., Goasdoué, F.: Query-driven repairing of inconsistent DL-
Lite knowledge bases. In: IJCAI, New York, USA. pp. 957–964 (2016)

[28] Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query answers
over inconsistent DL-Lite knowledge bases. Journal of Artificial Intelligence Research 64,
563–644 (2019)

[29] Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning.
In: IJCAI, Detroit, USA. pp. 1043–1048 (1989)

31

[30] Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable
query answering over ontologies. Journal of Web Semantics 14, 57–83 (2012), special Issue
on Dealing with the Messiness of the Web of Data

[31] Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowl-
edge bases. In: International Semantic Web Conference (1). pp. 112–128 (2010)

[32] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reason-
ing and efficient query answering in description logics: The DL-Lite family. Journal of
Automated Reasoning 39(3), 385–429 (2007)

[33] Carnielli, W., Coniglio, M., Marcos, J.: Logics of Formal Inconsistency, pp. 1–93 (2007)

[34] Chomicki, J.: Consistent query answering: Five easy pieces. In: Database Theory - ICDT
2007. pp. 1–17 (2007)

[35] Chomicki, J., Marcinkowski, J., Staworko, S.: Computing consistent query answers using
conflict hypergraphs. pp. 417–426. CIKM’04, Association for Computing Machinery, New
York, NY, USA (2004)

[36] da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Formal
Logic 15(4), 497–510 (10 1974)

[37] Cozman, F.G.: Credal networks. Artificial Intelligence 120, 199–233 (2000)

[38] Deagustini, C.A.D., Martinez, M.V., Falappa, M.A., Simari, G.R.: Datalog+/- ontology
consolidation. Journal of Artificial Intelligence Research 56, 613–656 (2016)

[39] Du, J., Qi, G., Shen, Y.: Weight-based consistent query answering over inconsistent SHIQ
knowledge bases. Knowledge and Information Systems 34(2), 335–371 (2013)

[40] Dubois, D., Fargier, H., Prade, H.: Ordinal and probabilistic representations of accep-
tance. Journal of Artificial Intelligence Research 22, 23–56 (2004)

[41] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

[42] Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency han-
dling in multi-perspective specifications. In: Sommerville, I., Paul, M. (eds.) Software
Engineering - ESEC ’93, 4th European Software Engineering Conference, Garmisch-
Partenkirchen, Germany. Lecture Notes in Computer Science, vol. 717, pp. 84–99.
Springer (1993)

[43] Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. In:
Database Theory - ICDT 2005, 10th International Conference, Edinburgh, UK. pp. 337–
351 (2005)

[44] Gabbay, D., Hunter, A.: Making inconsistency respectable: A logical framework for
inconsistency in reasoning, part I – a position paper. In: Jorrand, P., Kelemen, J. (eds.)
Fundamentals of Artificial Intelligence Research. pp. 19–32. Springer Berlin Heidelberg
(1991)

[45] Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for
handling inconsistency in changing ontologies. In: The Semantic Web - ISWC 2005, 4th
International Semantic Web Conference, ISWC 2005, Galway, Ireland, November 6-10,
2005, Proceedings. pp. 353–367 (2005)

32

[46] Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, UK. pp. 454–459 (2005)

[47] Ignatiev, A., Morgado, A., Weissenbacher, G., Marques-Silva, J.: Model-based diagnosis
with multiple observations. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China. pp.
1108–1115 (2019)

[48] Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 3(52), 263–294 (1991)

[49] de Kleer, J.: Hitting set algorithms for model-based diagnosis. In: DX Workshop’11. pp.
100–105 (2011)

[50] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined
approach to query answering in DL-Lite. In: 12th International Conference on Principles
of Knowledge Representation and Reasoning (KR), Toronto, Canada. pp. 247–257 (2010)

[51] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: International Conference on Web Reasoning and
Rule Systems, Bressanone, Italy. LNCS, vol. 6333, pp. 103–117 (2010)

[52] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for in-
consistent DL-Lite ontologies. In: Web Reasoning and Rule Systems - 5th International
Conference, RR 2011, Galway, Ireland, August 29-30, 2011. Proceedings. pp. 155–169
(2011)

[53] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query
answering in ontology-based data access. Journal of Web Semantics 33, 3–29 (2015)

[54] Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent
query answering under existential rules. In: Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence 2015. pp. 1546–1552 (2015)

[55] Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in Datalog+/-
ontologies. In: ECAI, Montpellier, France. pp. 558–563 (2012)

[56] Lukasiewicz, T., Malizia, E., Vaicenavičius, A.: Complexity of inconsistency-tolerant
query answering in Datalog+/- under cardinality-based repairs. Proceedings of the AAAI
Conference on Artificial Intelligence 33(01), 2962–2969 (2019)

[57] Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Inconsistency
management policies. In: KRR. pp. 367–377 (2008)

[58] Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology
Language Profiles. W3C Recommendation. 11 December 2012. Available at https://www.
w3.org/TR/owl2-profiles/

[59] Mugnier, M.: Data access with horn ontologies: Where description logics meet existential
rules. Künstliche Intelligenz 34(4), 475–489 (2020)

[60] Mugnier, M., Thomazo, M.: An introduction to ontology-based query answering with ex-
istential rules. In: Reasoning Web. Reasoning on the Web in the Big Data Era - 10th Inter-
national Summer School, Athens, Greece. Lecture Notes in Computer Science, vol. 8714,
pp. 245–278. Springer (2014)

33

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/

[61] Priest, G.: Paraconsistent Logic. In: Handbook of Philosophical Logic, pp. 287–393.
Springer, Dordrecht (2002)

[62] Reiter, R.: A logic for default resoning. Artificial Intelligence 13, 81–132 (1980)

[63] Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95
(1987)

[64] Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory and Decision
1(2), 179–217 (1970)

[65] Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies.
In: IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Spain. pp. 1057–1062 (2011)

[66] Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In: IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003. pp. 355–362
(2003)

[67] Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query
answering in relational databases. AMAI 64(2-3), 209–246 (2012)

[68] Telli, A., Benferhat, S., Bourahla, M., Bouraoui, Z., Tabia, K.: Polynomial algorithms for
computing a single preferred assertional-based repair. Künstliche Intelligenz 31(1), 15–30
(2017)

[69] Touazi, F., Cayrol, C., Dubois, D.: Possibilistic reasoning with partially ordered beliefs.
Journal of Applied Logic 13(4), 770–798 (2015)

[70] Toulmin, S.: The uses of argument. Cambridge University Press (1956)

[71] Trivela, D., Stoilos, G., Vassalos, V.: Querying expressive DL ontologies under the ICAR
semantics. In: Proceedings of the 31st DL workshop. Tempe, USA (2018)

[72] Tsalapati, E., Stoilos, G., Stamou, G., Koletsos, G.: Efficient query answering over ex-
pressive inconsistent description logics. In: IJCAI, New York, USA. pp. 1279–1285 (2016)

[73] Wijsen, J.: Foundations of query answering on inconsistent databases. SIGMOD Record
48(3), 6–16 (2019)

34

	Introduction
	The Description Logic DL-Lite
	IAR Semantics for Flat Assertional Bases
	Non-defeated Repair for Prioritized Assertional Bases
	Partially Preordered Assertional Bases
	From a partial preorder to a family of total preorders
	The Elect method

	Characterizing Elect(A,)
	A Preference-Based Semantics for Elect
	Elect Beyond DL-LiteR
	The DL-Elect method
	Discussion of computational properties

	CElect: A Closure-Based Extension of Elect
	Related work
	Concluding discussions

