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Abstract

We address the problem of handling inconsistency in uncertain knowledge bases
that are specified in the lightweight fragments of Description Logics DL-Lite. More
specifically, we assume that the TBox component is coherent, stable and fully re-
liable. However, the ABox component may be inconsistent with respect to the
TBox, partially preordered and uncertain. Uncertainty is encoded in the frame-
work of possibility theory. In this context, we propose an extension of standard
possibilistic DL-Lite. We represent the ABox as a symbolic weighted base, where
the weights attached to the assertions are ordered according to a strict partial
order. We define a tractable method for computing a single possibilistic repair
for a partially preordered weighted ABox. The idea is to consider the possibilis-
tic compatible bases of such an ABox, which intuitively encode all the possible
extensions of a partial order, and compute the possibilistic repair of each com-
patible base. We then compute the intersection of all these possibilistic repairs to
obtain a single repair for the initial ABox. We also provide an equivalent charac-
terization by introducing the notion of π-accepted assertions. This ensures that
the computation of the partially preordered possibilistic repair can be achieved in
polynomial time in DL-Lite.

1 Introduction
Possibility theory has been widely studied since the seminal work of Zadeh [50]. Ba-
sically, it is an uncertainty theory that handles incomplete, uncertain, qualitative and
prioritized information and supports reasoning in the presence of inconsistency [30,32].
Possibility theory has strong connections with ordinal conditional functions [43] as well
as with consonant belief functions [22,31,40].

Standard Possibilistic Logic [26], an extension of propositional logic, provides a
natural logic-based framework for reasoning with inconsistent and uncertain information
that is prioritized by way of a total preorder. In fact, Standard Possibilistic Logic is
a weighted logic where formulas are encoded in propositional logic and are assigned
weights in the unit interval [0, 1] (which may be seen as an ordinal scale). The higher
the weight attached to a formula, the more important or certain the formula. A weight
(or degree) is considered as a lower bound on the formula’s certainty (or priority) level.
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An important problem in knowledge representation is how to deal with and rea-
son from inconsistent information. A research domain that has gained considerable
interest is that of inconsistency management in formal ontologies, in particular those
specified in the lightweight fragments of Description Logics known as DL-Lite. For in-
stance, fuzzy extensions have been proposed for Description Logics [16,18,45] and also
for DL-Lite [38, 44]. Other research efforts have focused on possibilistic extensions of
Description Logics [24,39] alongside probabilistic extensions [1, 17, 36].

Furthermore, a framework for possibilistic DL-Lite has been proposed [10]. In
essence, the assertions in the ABox are assigned weights to reflect the fact that some
pieces of information are considered as more reliable than others. A nice feature of
possibilistic DL-Lite is that query answering is tractable. This means that applying
a total preorder over the assertions enhances the expressiveness of standard DL-Lite
without incurring an additional computational cost.

Nonetheless, in several applications and notably in ontology engineering, the pieces
of information can potentially be heterogeneous, large-scale, multi-source, outdated,
erroneous and contradictory. In this respect, one may not be able to compare the
reliability of the assertions. This requires the application of a strict partial order to
the weights that are attached to the assertions. This means that ties or equalities
between the weights are not allowed. On the other hand, the resulting order relation
over the assertions is a partial preorder, since the same weight could be attached to
more than one assertion (i.e., ties between the assertions are allowed). In this case, the
corresponding ABox may be partially preordered.

Extensions of Standard Possibilistic Logic have been proposed to support reasoning
with partially preordered information, mainly using the notion of compatible bases.
The core notions of Standard Possibilistic Logic such as possibilistic inference have
been revisited in [12]. Propositional logic formulas are assigned degrees belonging to a
partially ordered uncertainty scale instead of the unit interval [0, 1]. The idea of assign-
ing partially ordered symbolic weights to beliefs has also been studied in the context
of weighted propositional logics [8, 48]. However, these approaches are computation-
ally expensive (∆2

p-hard). This makes them unsuitable for applications where query
answering is the most important reasoning task.

In order to mitigate this issue, we are interested in extending the framework of
standard possibilistic DL-Lite [10] to cater for partially preordered knowledge bases,
without increasing the computational complexity of query answering.

Recently, an efficient method, called “Elect”, has been proposed for handling inconsis-
tency in partially preordered lightweight ontologies [6]. The Elect method encompasses
both the well-known IAR semantics [35] (if the ABox is flat) as well as the so-called
non-defeated semantics [7,9] (if the ABox is totally preordered). The intuition consists
in interpreting the partially preordered ABox as a family of totally preordered ABoxes.
Consistent sub-bases of the total ABoxes are computed. Their intersection yields a
single consistent sub-base for the initial ABox.

The present paper investigates whether the tractability of possibilistic DL-Lite can
be maintained when the expressiveness is enriched to represent partially preordered
weighted ABoxes. We show that this can be achieved by first considering a family of
compatible ABoxes (which amount to a family of possibilistic DL-Lite ABoxes), then
computing the possibilistic repair of each compatible ABox, followed by intersecting
those repairs. The result is a single consistent sub-base for the initial partially pre-
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ordered weighted ABox.
Our main contribution is the provision of an equivalent characterization that iden-

tifies all the accepted assertions, called π-accepted. We show that they constitute
a consistent (w.r.t. the TBox) sub-base which can be computed in polynomial time
(w.r.t. the size of the initial ABox), without explicitly computing all the compatible
ABoxes of the initial ABox. Moreover, we show that when the comparative relation
between the symbolic weights of the assertions is a total order, the produced sub-base
amounts to the possibilistic repair, as computed in standard possibilistic DL-Lite.

This paper is a revised and extended version of the conference paper [4] and the
French conference paper [5]. We start by briefly recalling the underpinnings of DL-
Lite in Description Logic, followed by its extension to a possibilistic logic framework.
We introduce our tractable method for computing a consistent sub-base for a partially
preordered weighted ABox. We discuss future work before concluding.

2 The Description Logic DL-Lite
The Description Logic DL-Lite [21] is a family of knowledge representation languages
that have gained popularity in several application domains such as formalizing lightweight
ontologies, thanks to their expressive power and good computational properties. For
instance, query answering from a DL-Lite knowledge base can be carried out efficiently
using query rewriting [34]. Broadly speaking, the task of computing answers is reduced
to a set of standard database query evaluations.

In this paper, we present DL-LiteR, one of the most popular DL-Lite dialects, which
provides the logical underpinning for the OWL 2 QL profile designed for query answer-
ing [37].

A Knowledge Base (KB) is built upon three countably infinite and mutually disjoint
sets, C, R and I, containing respectively concept names, role names, and individual
names.

The DL-LiteR language is recursively defined according to the following grammar:

• R := P | P− denotes a basic role, with P ∈ R and P− ∈ R is the inverse of P .

• E := R | ¬R denotes a complex role.

• B := A | ∃R, with A ∈ C, stands for a basic concept.

• C := B | ¬B represents a complex concept.

In terms of semantics, an interpretation is a tuple I = 〈∆I , ·I〉, where ∆I 6= ∅ and ·I
is an interpretation function mapping concept names A to AI ⊆ ∆I , role names P to
P I ⊆ (∆I ×∆I), and individual names a to aI ∈ ∆I .

We extend the interpretation function ·I to interpret complex concepts and roles of
DL-LiteR as follows:

(P−)I = {(y, x) ∈ (∆I ×∆I) | (x, y) ∈ P I};
(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I s.t. (x, y) ∈ RI};
(¬B)I = ∆I \BI ;
(¬R)I = (∆I ×∆I) \RI .
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An inclusion axiom on concepts (resp. on roles) is a statement of the form B v C
(resp. R v E). Concept inclusions with (resp. without) the negation symbol to the
right of the inclusion symbol are called negative (resp. positive) inclusion axioms. An
assertion (or ground fact) is a statement of the form A(a) or P (a, b), where a, b ∈ I.

An interpretation I satisfies an inclusion axiom B v C (resp. R v E), denoted by
I 
 B v C (resp. I 
 R v E), if BI ⊆ CI (resp. RI ⊆ EI). Similarly, I satisfies
an assertion A(a) (resp. P (a, b)), denoted by I 
 A(a) (resp. I 
 P (a, b)), if aI ∈ AI
(resp. (aI , bI) ∈ P I).

A DL-LiteR knowledge base is a pair K = 〈T ,A〉, where T is a finite set of inclusion
axioms, a.k.a. TBox, and A is a finite set of assertions, a.k.a. ABox.

An interpretation I is a model of a TBox T (resp. an ABox A), denoted by I 
 T
(resp. I 
 A), if I 
 α for every α in T (resp. in A). We say that I is a model of a
KB K = 〈T ,A〉 if I 
 T and I 
 A.

A knowledge base K is said to be consistent if it admits at least one model, otherwise
it is inconsistent.

A TBox T is said to be incoherent if there is A ∈ C such that AI = ∅ for each
interpretation I that is a model of T . Otherwise, T is coherent.

In the rest of this paper, we shall refer to the DL-LiteR dialect simply as DL-Lite.

Example 1. Consider the following sets of concept names, role names and individuals:

• C = {Tradi,Modern,WProp,WoProp, Prop}. They represent: traditional dance, mod-
ern dance, dance with props, dance without props, and the props used in dance
performances.

• R = {hasProp}. This role links a dance to the prop used in the performance.

• I = {d1, d2, d3, r}. Each element di ∈ I represents a dance. The element “r”
represents a ribbon.

Let K = 〈T ,A〉 be a DL-Lite KB built from the vocabulary introduced above. The
TBox is given by:

T =


1. Tradi v ¬Modern 2. WProp v ¬WoProp
3. Modern v ¬WProp 4. ∃hasProp v WProp
5. ∃hasProp− v Prop


Axioms 1, 2 and 3 are negative inclusion axioms. They express pairwise disjointness
between the concepts: traditional and modern dances, dances with props and without
props, modern dances and dances with props. Axiom 4 requires that an element using
a prop is a dance with props. Axiom 5 requires that an element used by a dance with
props is indeed a prop.
Consider a flat ABox (assertions without weights):

A =


Tradi(d1),Modern(d1),WoProp(d1),
Tradi(d2),WProp(d2),WoProp(d2), hasProp(d2, r),
Modern(d3),WProp(d3), Prop(r)


One can easily check that the KB K is inconsistent. For instance, the individual “d2”
is an instance of both the concepts “WProp” and “WoProp”, which contradicts Axiom 2.
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Anything can be derived from an inconsistent knowledge base, hence it is pointless
to reason with it (i.e., evaluate queries over it). One way to tackle this problem is to
compute repairs for the inconsistent ABox. A (maximal) repair is usually defined as a
maximal (w.r.t. set inclusion) subset of the ABox that is consistent w.r.t. the TBox.1

Example 2. In the ABox A, it can be seen that:

• Tradi(d1) and Modern(d1) contradict Axiom 1.

• WProp(d2) and WoProp(d2) contradict Axiom 2.

• hasProp(d2, r) and WoProp(d2) contradict Axiom 2, under Axiom 4.

• Modern(d3) and WProp(d3) contradict Axiom 3.

Since repairs are free of conflicts, the assertions that contradict some axiom may not
belong to the same repair. It follows that A admits eight maximal repairs, R1, . . . ,R8.
This is summarized as follows:

R1 R2 R3 R4 R5 R6 R7 R8

Tradi(d1) X X X X
Modern(d1) X X X X
WoProp(d1) X X X X X X X X
Tradi(d2) X X X X X X X X
WProp(d2) X X X X
WoProp(d2) X X X X
hasProp(d2, r) X X X X
Modern(d3) X X X X
WProp(d3) X X X X
Prop(r) X X X X X X X X

Given an ABox that is inconsistent w.r.t. the TBox and its set of maximal repairs.
Various strategies, known as inconsistency-tolerant semantics, have been proposed to
perform meaningful query answering. The idea is to reason over the repairs instead of
the initial inconsistent ABox.

Amongst the most well-known semantics, one can cite the ABox Repair (AR) se-
mantics [35] in which a query is considered to be valid if it follows from all the maximal
repairs of the inconsistent ABox. However, the computational cost of the AR semantics
is expensive, even in DL-Lite.

The Intersection ABox Repair (IAR) semantics [35] is a tractable under-approximation
of the AR semantics. Using the IAR semantics, queries are evaluated over one consistent
sub-base of the ABox obtained from the intersection of all the maximal repairs.

These strategies have been extended to the case where the assertions of the ABox
are totally preordered. For instance, the so-called non-defeated repair semantics [7]
amounts to a prioritized version of the IAR semantics. Similarly, the so-called preferred
sub-theories [14,19] amount to an extended version of the AR semantics. Several other
strategies can also be found in the literature (see for example [2, 15,20,49]).

1In the literature, a repair is a maximal and consistent subset of assertions. In this paper, we use
the term repair to refer to a subset of assertions that is consistent, even if it is not maximal.
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In this work, we consider the case of a partially preordered inconsistent knowledge
base. We address the difficult problem of computing a possibilistic repair in a tractable
way. We first recall the underpinnings of standard possibilistic DL-Lite.

3 Possibilistic DL-Lite Knowledge Base
Possibilistic logic and possibility theory [3,25,28] are important frameworks for reason-
ing under uncertainty. Uncertain information can either be represented in extension by
means of the so-called possibility distributions, or in a compact way by means of the
so-called weighted logics or graphical models.

3.1 Possibility distributions

The semantics of a possibility theory is based on the concept of a possibility distribu-
tion. Let I be an interpretation (either a propositional logic interpretation in standard
possibilistic logic, or a DL-Lite one in DL-Lite logics). A possibility distribution is a
function π from the set of interpretations Ω (of the considered language) to the unit
interval [0, 1]. A possibility degree π(I) represents the consistency degree of I, given
the available pieces of information.

If π(I) = 1, then I is the most preferred (or the most normal, fully consistent,
fully possible) interpretation. A possibility distribution π is normalized if it admits a
fully possible interpretation. This reflects the fact that the set of available information
is consistent. If there is no interpretation I ∈ Ω such that π(I) = 1, then π is sub-
normalized. In this case, the normalization degree of π which is obtained by:

h(π) = maxI∈Ωπ(I) . . . (∗)

measures to what extent the available pieces of information represented by π are con-
sistent.

If π(I) < 1, then I is not a solution to the problem and it violates some available
piece of information. More generally, for two interpretations I and I ′, if π(I) > π(I ′),
then I is more preferred (or more plausible) than I ′. Finally, when π(I) = 0, it is
impossible for I to be a solution as it falsifies a fully certain information.

A possibility theory can be of two major forms: min-based and product-based [23].
Both forms share the same definitions of possibility distributions, possibility measures
and normalized possibility distributions. However, they differ on the meaning of the
uncertainty scale [0, 1] and also on the definition of conditioning. In product-based
possibility theory, possibility degrees may represent degrees of surprise, in the spirit of
Spohn’s Ordinal Conditional Functions (OCF) [41, 42], or the result of transforming
a probability distribution into a possibility distribution [13, 27, 29, 46]. In min-based
possibility theory, the uncertainty scale is used as an ordinal scale, thus only the order
induced by the uncertainty degrees is used.

This paper falls within the framework of min-based possibility theory, where the
focus is mainly on the relative plausibility relations between the formulas (here ABox
assertions). Thus, possibility distributions are a means to rank-order the interpretations
of a language (here DL-Lite interpretations).
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3.2 Possibilistic DL-Lite

In what follows, we focus on compact representations of possibility distributions and
describe possibilistic DL-Lite.

Possibilistic Description Logics [24,33] are extensions of standard Description Logic
frameworks based on possibility theory that support reasoning and query answering
with inconsistent and uncertain knowledge. Possibilistic DL-Lite [10] is an extension
of the lightweight fragments DL-Lite. Similarly to standard possibilistic logic, the
main idea consists in assigning priority degrees (or weights) to TBox axioms and ABox
assertions to express their relative certainty (or confidence) in an inconsistent knowledge
base. The inconsistency degree of the knowledge base can then be computed from those
weights, making provision for possibilistic inference.

In the rest of this paper, we assume that the axioms in the TBox are fully certain
(or fully reliable), thus uncertainty concerns only the assertions in the ABox.

Definition 1. A possibilistic DL-Lite knowledge base is a weighted KB defined as a
tuple WK = 〈T ,WA〉, where:

• T is a TBox in which all the axioms are fully certain.

• WA is a weighted ABox, i.e., the assertions are equipped with priority degrees from
the unit interval ]0, 1], s.t.: WA = {(f, α) | f is a DL-Lite assertion, α ∈]0, 1]}

We assume that a unique priority degree α is assigned to each assertion f ∈ WA.
Nonetheless, this uniqueness hypothesis is not restrictive. Indeed, if some assertion f is
assigned two different weights, say (f, α1) and (f, α2), then it is equivalent to consider
only the assertion (f,max(α1, α2)).

Furthermore, we do not explicitly assign weights to TBox axioms since they are
considered as fully certain. The assertions in WA with a priority degree α = 1 are
considered to be fully certain and cannot be questioned, whereas the assertions with a
priority degree α ∈]0, 1[ are said to be somewhat certain. The assertions with higher
priority degrees are more certain than those with lower priority degrees. We ignore the
assertions with α = 0, thus only the assertions that are somewhat or fully certain are
stated explicitly.

In Definition 1, the uncertainty associated with the assertions is defined over the unit
interval. In some situations, a total preorder relation is defined over all the available
information (here the ABox) instead of weights in the unit interval (e.g. [47]). A total
preorder relation can be represented with well-ordered partitions (or stratifications) of
an ABox A of the form A = (S1, S2, . . . , Sn), where:

• S1 ∪ S2 ∪ . . . ∪ Sn = A,

• ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n}, Si ∩ Sj = ∅ for i 6= j,

• the assertions of a stratum Si are of equal priority and have a higher priority than
any assertion in Sj with j < i.

In this paper, we choose to follow the standard representation of the uncertainty scale
(namely, the unit interval [0, 1]).
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Example 3. We continue Example 1 and equip the flat ABox A with weights. Let
WK = 〈T ,WA〉 be the corresponding weighted KB. The TBox remains unchanged. The
weighted ABox is given by:

WA =


(Tradi(d1), .9), (WoProp(d1), .8),
(Modern(d3), .7), (WProp(d2), .6),
(Prop(r), .5), (hasProp(d2, r), .4),
(Modern(d1), .3), (WProp(d3), .3),
(WoProp(d2), .2), (Tradi(d2), .1)


As in standard possibilistic logic, weighted or possibilistic DL-Lite knowledge bases

are compact representations of possibility distributions. Indeed, each possibilistic DL-
Lite knowledge base WK = 〈T ,WA〉 induces a unique possibility distribution, denoted
by πWK, over DL-Lite interpretations.

Let I be a DL-Lite interpretation. If I is not a model of T , then I is impossible and
its possibility degree is πWK(I) = 0. Indeed, in this paper, we assume that the TBox is
stable, fully certain and coherent. Similarly, an interpretation is impossible if it falsifies
some fully certain assertion in WA.

Now, if I is a model (in the sense of standard DL-Lite) of both T and WA, then
πWK(I) = 1. This indicates that I is fully compatible with the information given in the
KB.

Lastly, interpretations that are models of T but falsify somewhat certain assertions
are compared according to the most important assertions that they falsify. For two
interpretations I and I ′, we have πWK(I) > πWK(I ′) if the certainty degree of the most
important assertion falsified by I is lower than its counterpart in I ′. In this case, I is
said to be more compatible with the KB than I ′.

The above explanations are captured as follows:

Definition 2. Let WK = 〈T ,WA〉 be a possibilistic DL-Lite KB. The possibility dis-
tribution induced by WK is given by:

πWK(I) =


1 if ∀φi ∈ T , I 
 φi and

∀(fi, αi) ∈ WA, I 
 fi
0 if ∃φi ∈ T , s.t. I 6
 φi
min{(1− αi)|(fi, αi) ∈ WA, I 6
 fi} otherwise

where 
 is the satisfaction relation between a DL-Lite interpretation and a DL-Lite
formula.

Example 4. Consider T of Example 1 and WA of Example 3. Let {d1, d2, d3, r} be a
domain and consider three interpretations I1, I2 and I3 defined over it, such that:

• TradiI1 = {d1}, ModernI1 = {d1}.

• TradiI2 = {d1, d2}, ModernI2 = {d3}, WPropI2 = {d2}, WoPropI2 = {d1}, PropI2 =
{r}, hasPropI2 = {(d2, r)}.

• TradiI3 = {d2}, ModernI3 = {d3}, hasPropI3 = {(d2, r)}, WPropI3 = WoPropI3 =
PropI3 = ∅.
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For each Ii above, we assume that (aIi = a) for every individual name a ∈ I.
Here, I1 is impossible because it falsifies the fully certain axiom Tradi v ¬Modern.

So, πWK(I1) = 0, since
As for I2, it satisfies all the axioms of T but it falsifies the assertions (Modern(d1), .3),

(WProp(d3), .3) and (WoProp(d2), .2). Hence, πWK(I2) = .7.
Lastly, I3 is also a model of T but it falsifies seven assertions in WA. The highest

falsified assertion is (Tradi(d1), .9). Hence, πWK(I3) = .1.
None of I1, I2 or I3 is a model ofWK. One can also check that there is no interpretation
that satisfies both T and WA. Hence, πWK is sub-normalized. Its normalization degree,
given by equation (∗) in Section 3.1, is h(πWK) = .7.

3.3 Inconsistency degree and possibilistic repair

In the rest of this paper, for any given weighted assertional base WB, we shall denote
by WB∗ the corresponding set of assertions after removing the priority degrees. For
instance, if WB = {(A(a), .9), (A(b), .8)}, then WB∗ = {A(a), A(b)}.

We also assume that the weighted KB WK may be inconsistent. Furthermore, we
assume the TBox to be coherent and stable, thus the inconsistency of WK is caused by
conflicts between the assertions of WA w.r.t. the axioms of T .

An assertional conflict is defined as a minimal (w.r.t. set inclusion) subset of as-
sertions that is inconsistent with the TBox, where inconsistency is understood in the
sense of standard DL-Lite. Formally:

Definition 3. Let WK = 〈T ,WA〉 be a weighted KB. A sub-base C ⊆ WA is an
assertional conflict in WK if:

• 〈T , C∗〉 is inconsistent, and

• ∀f ∈ C∗, 〈T , C∗ \ {f}〉 is consistent.

We denote by Cf(WA) the set of all the assertional conflicts of WA. It is important to
note that computing the set of conflicts of an inconsistent KB is done in polynomial
time in DL-Lite [20].

Furthermore, we assume that there is no assertion f ∈ WA∗ such that 〈T , {f}〉 is
inconsistent. Since the TBox is coherent, any conflict C in Cf(WA) involves two asser-
tions [20]. We denote a conflict by a pair: Cij = {(fi, αi), (fj, αj)}, where (fi, αi), (fj, αj) ∈
WA. We say that the assertions fi, fj ∈ WA∗ are conflicting w.r.t. T . Indeed, conflicts
are actually between the assertions, no matter their weights. However, in this paper,
we also keep the weights in the definition of the conflicts in order to better illustrate
the subsequent definitions and results.

Example 5. We continue Example 3. The set of assertional conflicts of WA is given
by:

Cf(WA) =


{(Tradi(d1), .9), (Modern(d1), .3)},
{(Modern(d3), .7), (WProp(d3), .3)},
{(WProp(d2), .6), (WoProp(d2), .2)},
{(hasProp(d2, r), .4), (WoProp(d2), .2)}


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As it shall be made clear later, we are interested in the highest priority degree
where inconsistency is met in the ABox, known as the inconsistency degree. Let us first
introduce the notion of β-cut of a weighted ABox.

Definition 4. Let WK = 〈T ,WA〉 be a weighted KB. Consider a weight β ∈]0, 1].

• The β-cut of WA is:

A≥β = {f | (f, α) ∈ WA, α ≥ β}.

• The strict β-cut of WA is:

A>β = {f | (f, α) ∈ WA, α > β}.

The inconsistency degree is formally defined as follows:

Definition 5. Let WK = 〈T ,WA〉 be a weighted KB.
The inconsistency degree of WA, denoted by Inc(WA), is defined as:

Inc(WA) =


0 if 〈T ,WA∗〉 is consistent
β if 〈T ,A≥β〉 is inconsistent and

〈T ,A>β〉 is consistent

We illustrate this notion on our running example.

Example 6. Consider T of Example 1 and WA of Example 3. It is easy to check that:

A>.3 = {Tradi(d1),WoProp(d1),Modern(d3),WProp(d2), hasProp(d2, r),
Prop(r)} is consistent with T .

Besides, one can also check that:

A≥.3 = A>.3 ∪ {Modern(d1),WProp(d3)} is inconsistent with T .

Thus, Inc(WA) = .3.

The inconsistency degree serves as a means for restoring the consistency of an ABox
w.r.t. the TBox. Indeed, only the assertions with a certainty degree that is strictly
higher than the inconsistency degree are included in the possibilistic repair. This ensures
the safety of the results and has the advantage of being efficient. Basically, for a weighted
ABox WA equipped with n different weights, the inconsistency degree Inc(WA) can
be computed in a tractable way using log2(n) consistency checks of a classical ABox
(without the weights) w.r.t. the TBox. Since checking the consistency of a standard
DL-Lite ABox is tractable, it follows that computing the inconsistency degree Inc(WA)
is also tractable.

The possibilistic repair, also referred to as the π-repair, is formally defined as follows:

Definition 6. Let WK = 〈T ,WA〉 be a weighted KB. Let Inc(WA) be the inconsistency
degree of WA. The π-repair (possibilistic repair) of WA, denoted by Rπ(WA), is:

Rπ(WA) = {f | (f, α) ∈ WA, α > Inc(WA)}.

10



Note that all the assertions contained in Rπ(WA) have a priority degree that is
strictly higher than Inc(WA). Hence by Definition 5, the π-repair Rπ(WA) is consistent
with T .

Moreover, when WK is consistent (i.e., Inc(WA) = 0), then the π-repair Rπ(WA)
amounts to WA∗ (i.e., the assertions of WA without the priority degrees).

Example 6. (continued) The π-repair of WA is:
Rπ(WA) = {Tradi(d1),WoProp(d1),Modern(d3),WProp(d2), Prop(r),

hasProp(d2, r)}.

Let πWK be the possibility distribution associated with a weighted possibilistic DL-Lite
KB WK = 〈T ,WA〉. Then one can check that:

• The normalisation degree of πWK (see equation (∗) in Section 3.1) and the incon-
sistency degree of WA (see Definition 5) are related by:

h(πWK) = Inc(WA).

• Let I be a DL-Lite interpretation. Then I is a model of Rπ(WA) iff πWK(I) =
h(πWK).

So far, we have considered the case of a weighted ABox such that a total preorder can
be induced from the weights attached to the assertions. In the next section, we scale
the results to the case where the priority degrees are partially ordered.

4 Partially Preordered Knowledge Base
In this section, we continue to assume that the TBox axioms are fully reliable. However,
the priority degrees associated with the ABox assertions are partially ordered, i.e., the
reliability levels associated with some assertions may be incomparable to each other.
This is often the case when the pieces of information are obtained from multiple sources.
Thus we may not be able to decide on a clear preference between two assertions fi and fj.
For instance, according to one source, the assertion fi should be preferred to fj, whereas
according to another source, it should be the opposite.
Let us introduce the notion of partially ordered uncertainty scale L = (U,B), defined
over:

• a non-empty set of elements U = {u1, . . . , un}, called a partially ordered set
(POS), and

• a strict partial order B (i.e., an irreflexive and transitive relation).

Intuitively, the elements of a POS denoted by U represent priority degrees applied to
the ABox assertions. We assume that U contains a special element denoted by 1 and
representing full certainty, such that: ∀ui ∈ U \ {1}, 1B ui.
Moreover, if ui 7 uj and uj 7 ui, we say that ui and uj are incomparable and we denote
it by ui ./ uj.
In this context, a partially preordered DL-Lite KB is a triple KB = 〈T ,AB,L〉 with:

• AB = {(fi, ui) | fi is a DL-Lite assertion, ui ∈ U}, where a unique weight ui is
assigned to each assertion fi.
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(b) The total extensions of B

Figure 1: A partial order B over U and its total extensions.

• L = (U,B).

Given two assertions (fi, ui), (fj, uj) ∈ AB, we shall sometimes abuse the notation and
simply write fiBfj to mean uiBuj (i.e., fi is strictly preferred to fj), and write fi ./ fj
to mean ui ./ uj (i.e., fi and fj are incomparable). 2

4.1 Compatible bases

A natural way for representing a partially preordered ABox is to consider the set of
all the compatible ABoxes. Namely, these are the ABoxes that preserve the strict
preference ordering between the assertions, in the spirit of the proposals made in the
context of propositional possibilistic logic [12] or interval-based possibilistic logic [11].
Formally:

Definition 7. Let L = (U,B) be a partially ordered uncertainty scale. Let KB =
〈T ,AB,L〉 be a partially preordered DL-Lite KB. Let WK = 〈T ,WA〉 be a weighted KB,
obtained from KB by replacing each symbolic weight u ∈ U by a real number in the unit
interval ]0, 1], where:

WA = {(f, α) | (f, u) ∈ AB, α ∈]0, 1]}.

The weighted ABox WA is compatible with AB if:

∀(fi, αi) ∈ WA,∀(fj, αj) ∈ WA, if fi B fj then αi > αj.

Note that the compatible bases are not unique, actually there is an infinite number
thereof. In fact, the actual values of the weights do not really matter, only the ordering
between the assertions matters, as it shall be shown later.

Example 7. Let L = (U,B) be an uncertainty scale defined over the set U = {u1, u2, u3, u4},
and the partial order B is depicted by Figure 1.(a). Namely:

(u4 B u3 B u1) and (u4 B u2 B u1) and (u2 ./ u3).
Let KB = 〈T ,AB,L〉 be a partially preordered KB, where T is from Example 1, and AB
is given by:

AB =


(Tradi(d1), u4), (WoProp(d1), u4), (Modern(d3), u4),

(WProp(d2), u3), (hasProp(d2, r), u3), (Prop(r), u3),

(Modern(d1), u2), (WProp(d3), u2),

(WoProp(d2), u1), (Tradi(d2), u1)


2The relation B on U is a strict partial order. Namely, ∀ui ∈ U, ∀uj ∈ U, if ui B uj holds, then

uj B ui does not hold. However the ABox AB is partially preordered since a given weight could be
assigned to several assertions.
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Let {.2, .4, .6, .8} be a set of weights. The bases WA1,WA2 and WA3 below are compat-
ible with AB:

WA1 =


(Tradi(d1), .8), (WoProp(d1), .8), (Modern(d3), .8),

(WProp(d2), .6), (hasProp(d2, r), .6), (Prop(r), .6),
(Modern(d1), .4), (WProp(d3), .4),

(WoProp(d2), .2), (Tradi(d2), .2)



WA2 =


(Tradi(d1), .8), (WoProp(d1), .8), (Modern(d3), .8),

(Modern(d1), .6), (WProp(d3), .6),

(WProp(d2), .4), (hasProp(d2, r), .4), (Prop(r), .4),
(WoProp(d2), .2), (Tradi(d2), .2)


WA3 =


(Tradi(d1), .8), (WoProp(d1), .8), (Modern(d3), .8),

(WProp(d2), .6), (hasProp(d2, r), .6), (Prop(r), .6),
(Modern(d1), .6), (WProp(d3), .6),

(WoProp(d2), .4), (Tradi(d2), .4)


For WA3, any subset of three weights chosen among {.2, .4, .6, .8} and which preserve
the priority order between the assertions is suitable. The bases WA1,WA2 and WA3

are represented by Figure 2.

(a) The assertions of WA1

.8 n1 n2 n3

.6 n4 n5 n6

.4 n7 n8

.2 n9 n10

(b) The assertions of WA2

.8 n1 n2 n3

.6 n7 n8

.4 n4 n5 n6

.2 n9 n10

(c) The assertions of WA3

.8 n1 n2 n3

.6 n4 n5 n6 n7 n8

.4 n9 n10

n1: Tradi(d1), n2: WoProp(d1), n3: Modern(d3)

n4: WProp(d2), n5: hasProp(d2, r), n6: Prop(r)

n7: Modern(d1), n8: WProp(d3)

n9: WoProp(d2), n10: Tradi(d2)

Figure 2: The compatible bases of AB: the assertions (grouped by certainty degree),
and the conflicts (dotted lines).

The following result establishes that the notion of inconsistency degree (Definition 5)
can be defined equivalently using the notion of assertional conflict (Definition 3).

Proposition 1. Let WK = 〈T ,WA〉 be a weighted KB. Let Cf(WA) be the set of
assertional conflicts. Then:

Inc(WA) = maxC∈Cf(WA)min{α | (f, α) ∈ C}

with max(∅) = 0.
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Proof.
(i) Assume that 〈T ,WA∗〉 is consistent, then Cf(WA) = ∅. Therefore, Inc(WA) = 0 is
vacuously true.
(ii) Assume that Inc(WA) = β. Let C12 = {(f1, α1), (f2, α2)} be any conflict of Cf(WA).
By Definition 5, 〈T ,A>β〉 is consistent means that α1 ≤ β or α2 ≤ β, i.e., min(α1, α2) ≤
β. Hence:

maxC∈Cf(WA)min{α | (f, α) ∈ C} ≤ β = Inc(WA) . . . (1)

Since 〈T ,A≥β〉 is inconsistent, then there is a conflict C34 = {(f3, α3), (f4, α4)} in Cf(WA)
such that α3 = β or α4 = β, namely: min(α3, α4) = β . . . (2)
From equations (1) and (2) we have:

maxC∈Cf(WA)min{α | (f, α) ∈ C} = β = Inc(WA).

(iii) The other direction is shown in a similar way. Assume:

maxC∈Cf(WA)min{α | (f, α) ∈ C} = β . . . (3)

This means:
∀C ∈ Cf(WA),min{α | (f, α) ∈ C} ≤ β . . . (4)

Hence A>β = {f | (f, α) ∈ WA, α > β} is consistent . . . (5)
Statement (5) holds, otherwise there is some C in Cf(WA) s.t. min{α | (f, α) ∈ C} > β,
which contradicts equation (4).
Equation (3) also means that there is some C in Cf(WA) s.t. min{α | (f, α) ∈ C} = β.
This means:

A≥β = {f | (f, α) ∈ WA, α ≥ β} is inconsistent . . . (6)

Applying Definition 5 to statements (5) and (6), we obtain Inc(WA) = β.

Example 8. Consider WA of Example 3 and its set of conflicts Cf(WA) of Example 5.
The inconsistency degree is:

Inc(WA) = max

{
min{.9, .3},min{.7, .3},
min{.6, .2},min{.4, .2}

}
= .3.

This is the same result obtained in Example 6.

4.2 Computing the partially preordered possibilistic repair

We are interested in computing a single repair for a partially preordered ABox. However,
the family of compatible ABoxes is infinite, which means that selecting one compatible
ABox over others would be arbitrary. A better approach for computing the partially
preordered possibilistic repair consists in:

(i) defining the compatible ABoxes (Definition 7) with weights defined over ]0, 1],

(ii) computing the π-repair associated with each compatible ABox (Definition 6), and
finally

(iii) intersecting all the π-repairs.
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This approach ensures the safety of the results since all the compatible ABoxes are
taken into account.

Definition 8. Consider L = (U,B) and KB = 〈T ,AB,L〉. Consider the set of π-repairs
associated with all the compatible bases of AB:

F(AB) = {Rπ(WA) | WA is compatible with AB}.

The partially preordered possibilistic repair of AB, denoted by RB

π(AB), is given by:

RB

π(AB) =
⋂
{Rπ(WA) | Rπ(WA) ∈ F(AB)}.

Namely: RB

π(AB) = {f | (f, u) ∈ AB, ∀WA compatible with AB and f ∈ Rπ(WA)}.

The set F(AB) is infinite because there are infinitely many weighted ABoxes that are
compatible with AB. However, in order to compute RB

π(AB), we do not need to consider
all the compatible bases of AB. We consider only the bases (and their associated π-
repairs) that define a different ordering between the assertions. This is captured by the
following lemma.

Lemma 1. Let WA1 be a weighted ABox such that the weights belong to the set S =
{α | (f, α) ∈ WA1}. Consider an assignment function ω : S −→]0, 1] s.t.:

• ∀α ∈ S, ω(α) = 1 iff α = 1.

• ∀α1 ∈ S,∀α2 ∈ S, α1 6= 1, α2 6= 1 we have:
α1 ≥ α2 iff ω(α1) ≥ ω(α2).

Let WA2 = {(f, ω(α)) | (f, α) ∈ WA1} be a weighted ABox obtained by applying the
assignment function ω(·) to the weights in WA1. Then: Rπ(WA1) = Rπ(WA2).

Proof. Let us show that Inc(WA1) = β iff Inc(WA2) = ω(β).
First, observe that given a conflict Cij = {(fi, αi), (fj, αj)} of WA1, then obviously
C ′ij = {(fi, ω(αi)), (fj, ω(αj))} is a conflict of WA2. Consider C12 and C34 two conflicts
of WA1, and C ′12 and C ′34 two conflicts of WA2. By the definition of ω(·), if we have
min{α | (f, α) ∈ C12} = α1 (resp. α2), then we also have min{ω(α) | (f, ω(α)) ∈ C ′12}
= ω(α1) (resp. ω(α2)). Similarly, if min{α | (f, α) ∈ C12} > min{α | (f, α) ∈ C34},
then min{ω(α) | (f, ω(α)) ∈ C ′12} > min{ω(α) | (f, ω(α)) ∈ C ′34}.
Hence, if: Inc(WA1) = β, then trivially Inc(WA2) = ω(β).
Assume that Inc(WA1) = β. Let (f, α) ∈ WA1 such that α > β. Then by the definition
of the π-repair, we have f ∈ Rπ(WA1). By applying ω(·), we get ω(α) > ω(β) =
Inc(WA2). This means f ∈ Rπ(WA2).
Similarly, let (f, α) ∈ WA1 such that α ≤ β. Then f /∈ Rπ(WA1). By applying ω(·),
we get ω(α) ≤ ω(β) = Inc(WA2). This means that f /∈ Rπ(WA2).
Therefore we conclude that Rπ(WA1) = Rπ(WA2).

In Lemma 1, although WA2 is different from WA1, the former ABox preserves the
ordering on the assertions of the latter. ThusWA2 is said to be order-preserving and in
this case, the two weighted bases generate the same π-repairs, as shown in the following
example.
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Example 8. (continued) Consider the weighted ABox:

WA4 =


(Tradi(d1), .9), (WoProp(d1), .9), (Modern(d3), .9),

(WProp(d2), .7), (hasProp(d2, r), .7), (Prop(r), .7),

(Modern(d1), .5), (WProp(d3), .5),

(WoProp(d2), .3), (Tradi(d2), .3)


The inconsistency degree is: Inc(WA4) = .5.
Note that despite the fact that Inc(WA4) 6= Inc(WA1), both basesWA1 andWA4 have the
same ordering over the assertions, hence they both admit the same π-repair. Indeed, one
can check that: Rπ(WA4) = Rπ(WA1) = {Tradi(d1),WoProp(d1), Modern(d3),WProp(d2),
hasProp(d2, r), Prop(r)}.

The next example illustrates the computation of the partially preordered possibilistic
repair.

Example 9. Thanks to Lemma 1, the repair RB

π(AB) can be computed by considering
only the three bases WA1, WA2 and WA3 of Example 7 as the compatible bases of AB.
Using Figure 2, it is easy to check that the inconsistency degree of each base is:

• Inc(WA1) = .4.

• Inc(WA2) = .6.

• Inc(WA3) = .6.

Their associated π-repairs are given by:

• Rπ(WA1) = {Tradi(d1),WoProp(d1),Modern(d3),WProp(d2), Prop(r), hasProp(d2, r)}.

• Rπ(WA2) = {Tradi(d1),WoProp(d1),Modern(d3)}.

• Rπ(WA3) = {Tradi(d1),WoProp(d1),Modern(d3)}.

The partially preordered possibilistic repair of AB is:
RB

π(AB) = Rπ(WA1) ∩Rπ(WA2) ∩Rπ(WA3).
= {Tradi(d1),WoProp(d1),Modern(d3)}.

We do not need to consider any other compatible base since the partial order B (Fig-
ure 1.(a)) admits only three total extensions (Figure 1.(b)), where an arrow represents
a strict preference between the elements of the set U.

The next section deals with the issue of how to compute the partially preordered pos-
sibilistic repair RB

π(AB) without enumerating all the compatible bases.

5 Characterization and Properties of the Partially Pre-
ordered Possibilistic Repair

5.1 Characterizing the partially preordered possibilistic repair

We have shown that computing the repair of a partially preordered ABox AB requires
the enumeration of the order-preserving compatible bases of AB (see Definition 8 and
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Lemma 1). However, this method can be impractical. In this section, we provide an
equivalent characterization by introducing the notion of π-accepted assertions. Intu-
itively, an assertion is π-accepted if it is strictly preferred to at least one assertion of
each conflict of AB.

Definition 9. Consider L = (U,B) and KB = 〈T ,AB,L〉. Let Cf(AB) denote the set of
assertional conflicts of AB. An assertion (fi, ui) ∈ AB is π-accepted if:

∀C ∈ Cf(AB),∃(fj, uj) ∈ C, fi 6= fj, s.t. fi B fj (i.e., ui B uj).

Note that the set of assertional conflicts Cf(AB) is obtained by using Definition 3, where
the weighted KB WK and the weighted ABox WA are replaced with the partially
preordered knowledge base KB and the partially preordered ABox AB.

Example 10. Consider AB of Example 7. The conflict set Cf(AB) is the same as in
Example 3, but the assertions are equipped with the symbolic weights in {u1, . . . , u4}.
It is easy to check that (Tradi(d1), u4), (WoProp(d1), u4) and (Modern(d3), u4) are strictly
preferred to at least one assertion of each conflict, since u4 is the most preferred sym-
bolic weight in AB. Hence, these three assertions are all π-accepted and: RB

π(AB) =
{Tradi(d1),WoProp(d1),Modern(d3)}.
This is the same result obtained in Example 9 by considering the compatible bases of AB.

An important result of this paper is that the set of π-accepted assertions corre-
sponds exactly to the repair of the partially preordered ABox AB (where the weights
are omitted).

Proposition 2. Consider RB

π(AB) given by Definition 8. Recall that the notion of
π-accepted is given by Definition 9. Then an assertion (f, u) ∈ AB is π-accepted iff
f ∈ RB

π(AB).

Proof.
(i) Assume that (f, u) ∈ AB is π-accepted but f /∈ RB

π(AB). This means that there is
a compatible base WA of AB and a weight α ∈]0, 1] such that: (f, α) ∈ WA and f /∈
Rπ(WA). Let Inc(WA) = β. By Definition 5, the sub-base A≥β is inconsistent but the
base A>β is consistent. Consider a conflict

Cij = {(fi, αi), (fj, αj)} ∈ Cf(WA)
where the assertions fi, fj are such that fi ∈ A≥β and fj ∈ A≥β, and αi, αj ∈]0, 1].
There is always such a conflict since A≥β is inconsistent. Namely, the assertions of the
conflict Cij are selected from the sub-base A>β ∪ {f |(f, β) ∈ WA}. Thus, necessarily
αi ≥ β and αj ≥ β. By Definition 6, f /∈ Rπ(WA) means that α ≤ β. Hence αi ≥ α
and αj ≥ α. But this contradicts the fact that (f, u) is π-accepted, which ensures that
f B fi or f B fj, in other words, α > αi or α > αj.

(ii) Assume that (f, u) is not π-accepted but f ∈ RB

π(AB). Since (f, u) is not π-accepted,
then there is a conflict {(fi, ui), (fj, uj)} ∈ Cf(AB) s.t. f 7 fi and f 7 fj, i.e., u 7 ui
and u 7 uj. There are three distinct cases to consider:

(a) Both fiB f and fj B f hold, i.e., uiB u and uj B u. In other words, fi and fj are
strictly preferred to f . This means that in all the compatible bases of AB, both fi
and fj are preferred to f . LetWA be a compatible base containing (f, α), (fi, αi)
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and (fj, αj), with α, αi, αj ∈]0, 1], and where αi > α and αj > α. By convention,
the numerical weights α, αi and αj are associated with the symbolic weights u, ui
and uj respectively. Since fi and fj are conflicting, then Inc(WA) ≥ min(αi, αj).
Hence Inc(WA) ≥ α, thus f /∈ Rπ(WA). But this contradicts the fact that
f ∈ RB

π(AB).

(b) Both fi ./ f and fj B f hold, i.e., ui ./ u and uj Bu. In other words, fi and f are
incomparable and fj is strictly preferred to f . In this case, it is enough to have
a compatible base WA containing (f, α), (g, αi) and (h, αj), with α, αi, αj ∈]0, 1],
αi > α and αj > α. There is always such a compatible base. Clearly, with
this compatible base, f /∈ Rπ(WA), and this contradicts the assumption that
f ∈ RB

π(AB). Note that the case where fi B f but fj ./ f (i.e., fi is strictly
preferred to f while fj and f are incomparable) is also valid by symmetry.

(c) Both fi ./ f and fj ./ f hold, i.e., ui ./ u and uj ./ u. In other words, fi and f
are incomparable and fj and f are also incomparable. Then it is enough to have
a compatible base WA containing (f, α), (fi, αi) and (fj, αj) where αi > α and
αj > α. This amounts to case (a) above.

Example 11. From Examples 9 and 10, one can check that the π-accepted asser-
tions (without the weights) are exactly those of RB

π(AB), namely: {Tradi(d1), WoProp(d1),
Modern(d3)}.

5.2 Properties of the partially preordered possibilistic repair

Using the characterization of the partially preordered possibilistic repair provided in
Definition 9 and Proposition 2, we are able to state the following two results.

Proposition 3. Consider RB

π(AB) given by Definition 8. Then:

(1) The base RB

π(AB) is consistent w.r.t. the TBox.

(2) The time complexity for its computation is polynomial w.r.t. the size of the ABox.

Proof.
(1) The consistency of RB

π(AB) is straightforward. For each compatible baseWA of AB,
the π-repair Rπ(WA) is consistent. So the intersection of all the π-repairs is also con-
sistent.
(2) Regarding the computational complexity, we recall that computing the set of as-
sertional conflicts Cf(AB) is done in polynomial time w.r.t. the size of AB in DL-Lite.
Hence, computing the set of π-accepted assertions RB

π(AB) is also done in polynomial
time. Indeed, checking if some assertion (f, u) ∈ AB is π-accepted amounts to parsing
all the conflicts in Cf(AB). This is done in linear time w.r.t. the size of Cf(AB) (the size
is itself bounded by O(|AB|2)).

Note that by the construction of RB

π(AB), when the relation B is a total order, then
the partially preordered possibilistic repair RB

π(AB) collapses with the π-repair Rπ(AB)
(Definition 6). In this case, all the compatible bases have exactly the same π-repair,
thanks to Lemma 1.
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Furthermore, for a weighted ABox WA, recall that the π-repair is: Rπ(WA) =
{f | (f, α) ∈ WA, α > Inc(WA)} (Definition 6). From Proposition 1, if fi ∈ Rπ(WA)
where (fi, αi) ∈ WA, then αi > maxC∈Cf(WA)min{α | (f, α) ∈ C}. This is equivalent to:
∀C ∈ Cf(WA), αi > min{α | (f, α) ∈ C}. In other words: ∀C ∈ Cf(WA),∃(fj, αj) ∈ C
such that αi > αj. This corresponds to the notion of π-accepted assertion (Definition 9).

We conclude that answering queries from a partially preordered inconsistent KB
amounts to replacing the initial ABox AB with its partial possibilistic repair RB

π(AB).
Indeed, we established the consistency of the repair w.r.t. the TBox, but also the
tractability of its computation. Furthermore, we showed that when the preference
relation is a total order, our method amounts to computing a standard possibilistic
repair.

6 Conclusion
In this paper, we proposed an extension of possibilistic DL-Lite to handle inconsistency
in partially preordered knowledge bases. We introduced a method for computing a
single repair on which queries can be posed. The method first interprets a partially
preordered ABox as a family of compatible weighted ABoxes, then it computes the
possibilistic repair of each compatible base, and finally it intersects all the possibilistic
repairs. This produces a single repair for the partially preordered ABox. We proposed
an equivalent characterization and introduced the notion of π-accepted assertions. We
showed that the partially preordered possibilistic repair amounts to computing the set
of π-accepted assertions. Most notably, as an important result, we showed that this
computation can be achieved in polynomial time in DL-Lite.

In future work, we plan to investigate methods for enhancing the productivity of the
partial repair. For instance, one could consider the closure of the possibilistic repairs
associated with the compatible ABoxes. A crucial question is whether the computation
of the closed partial possibilistic repair can be achieved in polynomial time in DL-Lite.
We expect to show that this is indeed the case by reducing the problem to answering
an instance checking query. More generally, we plan to investigate whether methods
for computing repairs that are polynomial in the flat and prioritized cases are also
polynomial in the presence of a partial order for description logic languages that are
more expressive than DL-Lite. Another avenue of investigation consists in assigning
possibilistic degrees to TBox axioms.
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