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Quantifying mixing in arbitrary fluid domains: A Padé

approximation approach

Thomas G. Anderson∗, Marc Bonnet†, and Shravan Veerapaneni*

Abstract

We consider the model problem of mixing of passive tracers by an incompressible viscous fluid.
Addressing questions of optimal control in realistic geometric settings or alternatively the design
of fluid-confining geometries that successfully effect mixing requires a meaningful norm in which to
quantify mixing that is also suitable for easy and efficient computation (as is needed e.g. for use
in gradient-based optimization methods). We use the physically-inspired reasonable surrogate of
a negative index Sobolev norm over the complex fluid mixing domain Ω, a task which could be
seen as computationally expensive since it requires the computation of an eigenbasis for L2(Ω) by
definition. Instead, we compute a representant of the scalar concentration field in an appropriate
Sobolev space in order to obtain an equivalent definition of the Sobolev surrogate norm. The
representant, in turn, can be computed to high-order accuracy by a Padé approximation to certain
fractional pseudo-differential operators, which naturally leads to a sequence of elliptic problems
with an inhomogeneity related to snapshots of the time-varying concentration field. Fast and
accurate potential theoretic methods are used to efficiently solve these problems, with rapid per-
snapshot mix-norm computation made possible by recent advances in numerical methods for volume
potentials. We couple the methodology to existing solvers for Stokes and advection equations to
obtain a unified framework for simulating and quantifying mixing in arbitrary fluid domains. We
provide numerical results demonstrating the convergence of the new approach as the approximation
order is increased.

1 Introduction

This article concerns fluid mixing processes, whereby some spatially-varying quantity, hereafter denoted
by c and called concentration, is advected by fluid motion. An important objective, then, is to achieve
optimal mixing whereby c becomes spatially near-uniform after sufficient time under appropriate ad-
vection. Pure advection in a fluid domain Ω ⊂ Rd is modeled by the partial differential equation (PDE)
for the function c = c(x, t)

∂tc+ ∇c·u = 0 for (x, t) ∈ Ω× [0, T ], (1)

which for a flow velocity field u = u(x, t) defined on Ω× [0, T ] and satisfying the incompressibility
condition ∇ · u = 0 expresses that the material derivative of c in the flow u vanishes or, equivalently,
that c is conserved when following the material motion. For simplicity, we restrict attention here to
viscous flows modeled by the Stokes equations, but the principle objectives and results translate to
transport and mixing by more complex fluids; we also restrict attention in our numerical experiments
to two-dimensional flows, d = 2. It is important to quantify the departure of c from a spatially uniform
distribution, for instance as a means to design stirring flow motions that promote even mixing. Once a
mixing measure has been established a variety of questions concerning optimal mixing, including under
constraints on either some appropriate norm of the flow velocity itself or instead potentially forcing to
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effect such a flow (such as e.g. fixed energy or power), can be considered [1, 2]. While it appears natural
to measure the unevenness of c in terms of its L2 variance,

Var[c](t) := ‖c(·, t)−c(t)‖2L2(Ω) with c(t) = |Ω|−1
(
c(·, t), 1

)
L2(Ω)

,

where
(
·, ·
)
L2(Ω)

and ‖ · ‖L2(Ω) denote, respectively, the inner product and induced norm on L2(Ω), the

quantity Var[c](t) unfortunately turns out to be conserved in time, dVar[c](t)/dt = 0, for the simple
situation of pure (diffusionless) advection of c by incompressible flows.

This has elicited the definition of alternative methods for measuring mixing quality, notably the
concept of mix-norm [3, 4]. The (squared) mix-norm Φ(c) of a concentration c is defined as a quadratic
mean of the concentration averages evaluated on all balls with centers and radii compatible with the
given fluid domain Ω. Evenness of mixing is then measured in terms of (reducing) the mix-variance
Φ
(
c− c

)
. The mix-norm Φ(c) of c can be formulated analytically (using Fourier series) for periodic

domains (where Ω is the periodic cell such that the intersection of balls with radii of all sizes with
centers near ∂Ω are well-defined, and where the fluid velocity u is also Ω-periodic). On the other hand,
the construction method of the mix-norm makes its evaluation impractical and inefficient for flows in
arbitrary bounded fluid domains Ω.

In light of this difficulty, it is fortunate that the mix-norm Φ(c) for periodic mixing has been shown [3]
to be equivalent to the H−1/2(Ω) Sobolev norm of c. More generally [1], weighted versions of Φ(c) are
equivalent to H−r(Ω) Sobolev norms with 1/2≤ r≤ 1 (the value of r depending on the chosen weight);
for example, the mixing enhancement study [5] uses r= 2/3. As Sobolev norms can a priori be defined
for functions in arbitrary fluid domains, the foregoing norm equivalence results for periodic flows lead
naturally to the idea of using Sobolev norms with appropriate negative indices as mix-norm surrogates
that, unlike the original mix-norm, are applicable for arbitrary flow configurations.

This work accordingly rests on the premise that mixing by a flow in an arbitrary fluid domain Ω can
adequately be measured by means of the variance Φ2

r(c) := ‖c− c‖2H−r(Ω) associated with the Sobolev

norm ‖ · ‖2H−r(Ω) with negative index −r (1/2 ≤ r ≤ 1). In this framework, our main objective is to

formulate and demonstrate computational methods for the practical evaluation of Φ2
r(c). Indeed, as

discussed later in more detail, this task is far from straightforward due to the lack of explicit expressions
of negative Sobolev norms of a given function c in Ω. One approach, which constitutes an extension of
the Fourier series formulation for periodic flows, consists in expanding c in terms of the Laplace Dirichlet
eigenfunctions ϕn (n ∈ N) for Ω and evaluating Φ2

r(c) as a sum of appropriately weighted squares of
expansion coefficients (see Sec. 2.2 for details). This treatment is computationally expensive, since it
entails first the computation of accurate approximations of ϕn to sufficiently high order, then expensive
numerical quadrature for the precise evaluation of the projections

(
c, ϕn

)
of c on the increasingly-

oscillatory eigenfunctions. In view of this, and taking some inspiration from the boundary element
literature where approximations of fractional Sobolev norms or fractional pseudo-differential operators
on surfaces are used for error estimation or preconditioning [6], we propose in this work to use a
formulation of Φ2

r(c) in terms of the Riesz representant u[c] of c in Hr(Ω) and compute an approximation
of u[c] using a Padé approximant of the operator (I − ∆)r. This results in Φ2

r(c) being evaluated by
combining the solutions of elliptic problems on Ω arising from the Padé approximation process, the
number of which scaling proportionally with the desired Padé approximation order and being in practice
moderate. Also, any linear elliptic solver may be used for this purpose, the numerical results presented
in this work being obtained with boundary integral equation methods. The eigenfunction and Padé
approaches are in fact linked (see Section 3.2). We finally mention that the Dunford-Taylor integral
representation of fractional operators leads to similar numerical solution strategies for u[c] [7, 8] (also,
see Remark 4).

The organization of this article is as follows. The proposed Riesz-representant approach to the eval-
uation of Φ2

r(c) is presented in Section 2, together with a concise summary of the underlying Sobolev
framework and the eigenfunction-based norm evaluation used here for comparison purposes. The pro-
posed Padé approximation approach to Φ2

r(c) is then given in Section 3, and assessed in Section 4 on
numerical experiments involving norm evaluation and mixing by Stokes flows.
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2 Sobolev mix-norm and its practical computation

Our main objective is to develop practical methods for the evaluation of the surrogate mix-variance

Φ2
r(c) := ‖c− c‖2H−r(Ω), (2)

defined in terms of the Sobolev norm ‖ · ‖2H−r(Ω) with negative index −r (1/2 ≤ r ≤ 1), on a given

snapshot of the concentration c in the fluid domain Ω. To evaluate Φ2
r(c) as a function of time in an

advection process (1), definition (2) is applied at each time t to c(·, t) in Eulerian representation.

2.1 Sobolev norms with fractional indices: an overview

We begin by collecting known definitions and facts about Sobolev norms with fractional indices; for a
concise yet quite informative exposition on Sobolev spaces, see [9, Chap. 2]. First considering functions
or distributions whose support is Rd, the Sobolev space Hr(Rd) may be defined, for any index r ∈ R,
in terms of the Fourier-Bessel scalar product and norm:

(v, w)r,Rd :=
(

(|ξ|2 +1)r/2v̂, (|ξ|2 +1)r/2ŵ
)
L2(Rd)

, ‖v‖2r,Rd := (v, v)r,Rd , (3)

where v̂ : Rd → C, is the Fourier transform of v. We observe that the Hr(Rd) norm (3) can be expressed
as

‖v‖r,Rd :=
∥∥(I −∆)r/2v

∥∥
L2(Rd)

(4)

in terms of a fractional power (I −∆)α of the elliptic operator I −∆ on Rd defined by

F
[
(I −∆)αv

]
(ξ) = (1+ |ξ|2)αv̂(ξ). (5)

Analogous definitions are available for spatially periodic functions, based on Fourier series expansions
instead of the Fourier transform.

In this work, we focus on (negative fractional) Sobolev norms of functions defined in a given bounded
domain Ω⊂Rd, and notations (·, ·)r or ‖ · ‖r implicitly refer to that domain. For this case, the Fourier-
Bessel framework provides

‖v‖r = min
V ∈Hr(Rd), V |Ω=v

‖V ‖r,Rd , (6)

which is not well suited to the practical evaluation of ‖v‖r,Ω. Alternatively, for positive fractional indices
r ∈ (0, 1),

‖v‖2r := ‖v‖20 +

∫
Ω

∫
Ω

(v(y)−v(x))2

|y−x|d+2r
dV (x) dV (y) (7)

defines a norm for Hr(Ω); the double-integral term is known as the Slobodeckij semi-norm. Formula (7)
is explicit, but evaluating the semi-norm is potentially expensive (due to the 2d-dimensional integral
over Ω×Ω) and requires suitable quadrature methods since a (weakly) singular integral is involved.
Another possibility consists in setting again

‖v‖r :=
∥∥(I −∆)r/2v

∥∥
0

(8)

with fractional operators (I −∆)α on Ω now defined from the spectral decomposition of the Laplacian
on Ω (see Section 2.2).

For negative indices, our primary concern, explicit formulas for H−r(Ω) norms are not available for
arbitrary domains. In fact, elements of H−r(Ω) are, by the definition of that space, continuous linear

functionals on H̃r(Ω) :=
{
v|Ω : v ∈ Hr(Rd), supp(v) ⊂ Ω

}
, and their norm is therefore defined by

duality. By Riesz’s representation theorem, there exists a unique function u[c]∈ H̃r(Ω) such that(
u[c], v

)
r

=
〈
c, v
〉

for all v ∈ H̃r(Ω), (9)
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(the duality bracket
〈
c, v
〉

denoting c ∈ H−r(Ω) evaluated at v ∈ H̃r(Ω), with
〈
c, v
〉

= (c, v)0 under
the present assumption that c ∈ L2(Ω)), which for r > 1

2 can be understood as the weak form of the
problem

(I−∆)ru[c] = c, γu[c] = 0 (10)

(where γw denotes the boundary trace of w ∈Hr(Ω)). Moreover, u[c] satisfies

‖c‖−r = ‖u[c]‖r. (11)

Then, by (11), we have
‖c‖2−r = ‖u[c]‖2r =

〈
u[c], c

〉
=
(
u[c], c

)
0

(12)

(since, again, c ∈ L2(Ω) by assumption). If r ∈ ] 1
2 , 1[ and Ω is a Lipschitz domain, we have H̃r(Ω) =

Hr
0 (Ω), and all elements of H̃r(Ω) have a vanishing trace on ∂Ω. A practical method for evaluating
‖c‖−r thus consists in the following steps: (a) compute the Riesz representant u[c] of c for the H−r(Ω)
norm by solving problem (9), and (b) evaluate ‖c‖−r using (12). In (9), the Hr(Ω) scalar product and
norm may be defined in terms of (I −∆)r where ∆ is the Dirichlet Laplacian on Ω.

Remark 1 (special case r= 1) For r = 1, the H1 norm is simply given by ‖v‖21 = ‖v‖20 + ‖∇v‖20,
and ‖v‖2

H1
0 (Ω)

:= ‖∇v‖20 defines an equivalent norm for H1
0 (Ω). In particular, by contrast with the

fractional-index case, those norms are additive with respect to partitions of Ω (e.g. finite elements).
Problem (9) becomes the weak form of the Poisson equation with homogeneous Dirichlet condition and
domain source term c, a problem easily solvable using a variety of standard numerical methods. Then,
‖c‖2−1 =

(
∇u[c],∇u[c]

)
0
.

Remark 2 (link to Sobolev interpolation) The norm (8) with ∆ the Dirichlet Laplacian on Ω is
suitable for equipping the interpolation space

[
H1

0 (Ω), L2(Ω)
]
1−r. For r ∈ ] 1

2 , 1[, we have
[
H1

0 (Ω), L2(Ω)
]
1−r =

Hr
0 (Ω). For r = 1

2 , we have
[
H1

0 (Ω), L2(Ω)
]
1−r = Hr

00(Ω), with Hr
00(Ω) strictly contained in Hr

0 (Ω)

and having a strictly finer topology, see [10, Chap. 1]. Problem (9) thus defines the Riesz representant
of an element of (Hr

0 (Ω))′ = H−r(Ω) if r ∈ ] 1
2 , 1[, and of an element of (Hr

00(Ω))′ if r= 1
2

2.2 Evaluation using a Hilbert basis

This section describes the computation of ‖c‖−r using the spectral decomposition of the Dirichlet
Laplacian and the associated L2(Ω)-orthonormal Hilbert basis. Let (ϕn)n≥0 be a countable set of
Laplacian eigenfunctions for Ω, which satisfy −∆ϕn = λnϕn in Ω and γϕn = 0, the eigenvalues λn
being strictly positive. Normalizing the ϕn so that ‖ϕn‖0 = 1, we also have ‖∇ϕn‖20 = λn. The set

(ϕn)n≥0 is a Hilbert basis of L2(Ω), while λ
−1/2
n (ϕn)n≥0 defines a Hilbert basis of H1

0 (Ω).
For c =

∑
n≥0 cnϕn in L2(Ω) (so that cn = (c, ϕn)0), we may define the evaluation of the operator

f(∆) on c by

f(∆)c =
∑
n≥0

f(−λn)cnϕn (13)

whenever the sequence |f(−λn)cn|2 is summable (this criterion defining the domain of f(∆) on L2(Ω)).
In particular, the summability requirement is satisfied with f(X) = (1−X)−r for any r ≥ 0, and (13)
allows to evaluate (I−∆)−r for any r ∈ (0, 1) [7]. The Riesz representant u[c] of c is then obtained as

u[c] = (I −∆)−rc =
∑
n≥0

(1+λn)−rcnϕn (14)

and (12) therefore yields

‖c‖2−r =
∑
n≥0

(1+λn)−rc2n. (15)

For f(X) = (1−X)−r, this procedure evaluates u[c] as an element of the interpolation space
[
H1

0 (Ω), L2(Ω)
]
1−r,

see Remark 2.
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3 Negative Sobolev norm evaluation using Padé approximants

While the Hilbert basis approach to mix-norm evaluation allows in principle the numerical evaluation of
‖c‖−r in general geometries, it is prohibitively expensive as it relies on production of an appropriate set
of oscillatory eigenfunctions (itself a challenging computational problem) onto which the scalar fields
must be accurately projected. In this section we first outline a practical, computationally-efficient
approach based on Padé approximation [11] and then connect this approach back to the Hilbert basis
evaluation described in Section 2.2.

3.1 Practical method

To avoid reliance upon a (truncated) set of eigenfunctions, computable approximations of the operator
(I−∆)−r (and, more generally, of operators of the form f(∆), where ∆ is the Dirichlet Laplacian) can
be set up using Padé approximations [12] of the function f(X) = (1−X)−r.

A Padé approximant of a univariate function f(X) is a rational fraction Πm,n[f ](X) := Pm(X)/Qn(X)
(where P and Q are polynomials of respective degrees m and n) such that the m+n degree Taylor poly-
nomials of f and Πm,n[f ] about X = 0 coincide (i.e. the Taylor expansion of f−Πm,n[f ] is 0+o(Xm+n)).
There is naturally some flexibility in how to choose the degrees m and n; here we make the selection
m=n− 1, i.e. we use Padé approximants Πn[f ] := Πn−1,n[f ] (see also Remark 3). A classical method
for computing the coefficients of the polynomials Pn−1, Qn is summarized in Appendix B. The next
step consists in recasting Πn[f ] as a partial fraction decomposition: we have

Πn[f ](X) =

n∑
k=1

Akn
Xk
n −X

with Akn = −Pn−1(Xk
n)

Q′n(Xk
n)

(16)

where X1
n, . . . , X

n
n are the roots of Qn, which are assumed to be distinct (i.e. of unit multiplicity). If

each of the roots Xk
n is positive (which is for example the case for f(X) = (1−X)−1/2, i.e. r = 1

2 ),
then each of the operators Xk

n−∆ is elliptic. The approximation of u[c] = f(∆)c solving problem (9)
provided for a given concentration c by the Padé approximant (16) is then

u[c] ≈
n∑
k=1

Aknwk where wk solves (Xk
n−∆)wk = c in Ω, γw = 0 on ∂Ω. (17)

To define the wk uniquely in (17), boundary conditions must be specified. Indeed, notice that for
positive r the function (I−∆)−rv is in some sense an antiderivative of v, which is not uniquely defined
unless additional conditions (such as boundary conditions on wk) are supplied.

Remark 3 The specific degrees of polynomials used in our Padé approximants are somewhat arbitrary;
the Padé approximants Πn[f ] = Πn−1,n[f ] used here generate partial fraction approximations without a
constant term, but other choices appear equally valid. Variations may also be considered for the choice of
fractional operator; for example, replacing the operator (1−∆)−r that we treat here with (1−µ−1∆)−r,
where µ is an estimate of the first (lowest) Dirichlet eigenvalue λ1(Ω) for the domain Ω, removes length
scale effects in that operator. Such estimates can be obtained e.g. from the Faber-Krahn inequality that
provides λ1(Ω) ≥ µ with µ = πz2

0,1/|Ω| (d = 2, with z0,1 as in Appendix A) or µ = (4π4/3|Ω|)2/3

(d = 3).

Remark 4 Alternative numerical approximation methods for the evaluation of fractional elliptic oper-
ators are developed and justified in [7, 8] on the basis of Dunford-Taylor integral representations of such
operators. In the case of (I−∆)−r, we have [7]

(I−∆)−rc =
2 sin(πr)

π

∫ ∞
0

t2r−1(I− t2∆)−1c dt (18)

for any c∈L2(Ω), where (I−t2∆)−1c = ut[c] solves the variational elliptic problem: find ut[c] ∈ H1
0 (Ω)

such that (u,w)0 + t2(∇u[c],∇w)0 = c for all w ∈H1
0 (Ω). Upon applying a quadrature rule (involving

finitely many nodes and weights) to the above integral, one has to evaluate a finite linear combination
of solutions of elliptic problems, similarly to the proposed Padé approximation approach.
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3.2 Link between Padé approximations and eigenfunction expansions

For the purposes of comparison, it is useful to reformulate the Padé approximation approach of Sec. 3 by
means of the Hilbert basis of Laplacian eigenfunctions introduced in Sec. 2.2. Letting v =

∑
m≥0 vmϕm

and wk =
∑
m≥0 w

k
mϕm, the problem (Xk

n−∆)wk = v with homogeneous Dirichlet BCs becomes∑
m≥0

(Xk
n+λm)wkmϕm =

∑
m≥0

vmϕm =⇒ wkm =
vm

Xk
n+λm

. (19)

The Padé approximation (17) of f(∆)v, found to be given by

f(∆)v ≈
n∑
k=1

Akn

( ∑
m≥0

vm
Xk
n+λm

ϕm

)
=
∑
m≥0

( n∑
k=1

Akn
Xk
n+λm

)
vmϕm =

∑
m≥0

Πn[f ](−λm)vmϕm, (20)

is formula (13) with f(−λm) replaced with its Padé approximation Πn[f ](−λm). This indicates con-
sistency between the eigenfunction-expansion and Padé-approximation treatments. It also allows an
understanding of the effectiveness of the numerical approximation (20) to f(∆)v via knowledge of the
approximating power for the scalar problem for Πn[f ](X).

3.3 Numerical methods and algorithms

This section describes the mathematical and computational framework used in the experiments of
the present work. We first briefly outline relevant aspects of the conservation law package used for
solving (1), then describe the use of potential-theoretic techniques to solve the required elliptic problems
for the Padé approximation to the mix-norm in (17), and finally describe standard boundary-integral
solution techniques for the inhomogeneous Stokes equations to produce the flow field u.

Concentration field evolution solver. The hyperbolic PDE (1) with no-outflow boundary con-
ditions is solved using the Clawpack v5.8.2 library [13, 14]; we refer the reader to reference [15] for a
complete mathematical description of the finite volume solvers used in this software but we note that
the solver computes solutions in logically-rectangular coordinates and provides automatic time-step se-
lection as dictated by the physics of the system. The Clawpack description of fluid domains as a union
of rectangular domains with explicitly known domain mappings constrains the complexity of geometry
that we consider in this work; additionally, the solvers appear to be limited by a choice of low-order
accuracy or uniform discretizations. While for the present purposes Clawpack allows a demonstration
of the main capabilities of Padé-based approximations of the mix-norm for real-world mixing problems,
future work will utilize more recently-developed high-order and adaptive hyperbolic conservation law
solvers such as [16].

Elliptic problems for Padé approximants. The inhomogeneous elliptic PDE (17) is of modified
Helmholtz type,

−∆v + λv = f for x ∈ Ω,

v = 0 for x ∈ ∂Ω.
(21)

A homogeneous counterpart to (21) can be obtained by linearity and the use of a particular solution
vP produced by the Newton potential

vP (x) :=

∫
Ω

G(x,y)f(y) dV (y), x ∈ Ω, (22)

where G denotes the Green function for the elliptic operator in (21). We solve this homogeneous elliptic
problem, in turn, by introducing a representation of its solution in terms of the double-layer potential

D[ψ](x) :=

∫
∂Ω

∂G(x,y)

∂n(y)
ψ(y) dσ(y), x ∈ Ω. (23)

6



That is, we set v(x) = vP (x) + D[ψ](x). Enforcing the Dirichlet boundary condition and using jump
relations for the double-layer potential [17] yields the following second-kind integral equation for the
unknown density function ψ: (

±1

2
I +D

)
[ψ](x) = −vP , x ∈ Γ±. (24)

Here, Γ+ (resp. Γ−) denotes that section of the boundary ∂Ω with respect to which the domain lays
interior (exterior), and D denotes the double-layer boundary integral operator

D[ψ](x) :=

∫
∂Ω

∂G(x,y)

∂n(y)
ψ(y) dσ(y), x ∈ ∂Ω. (25)

We use standard spectral singular quadratures [17, §12] for discretization of the integral equation (24),
spectral near-singular quadratures [18] for evaluation of the double layer potential (23) for x laying
in close proximity to ∂Ω, and recently-introduced high-order accurate numerical methods [19] for the
evaluation of the volume potential (22). Importantly in the present context where the spatial field c
changes at every time-step, the solvers developed in [19] provide exceptionally-fast access to the volume
potential over the same domain with new volumetrically-distributed sources.

Stokes problems for fluid velocity. The Stokes problem refers to the task of finding a velocity
function u(x) and pressure function p(x) that satisfy the PDE boundary value problem

−µ∇2u+∇p = 0, x ∈ Ω

∇ · u = 0, x ∈ Ω,

u = g(x), x ∈ Γ = ∂Ω.

(26)

where µ is the fluid viscosity. Analogous integral equations to those arising from the modified Helmholtz
equation follow from use of the representation formula

u(x) = D[ϕ](x) :=

∫
∂Ω

∂Gs(x,y)

∂n(y)
ϕ(y) dσ(y) (27)

that yields a solution u induced by the boundary integral density ϕ, where

Gs(x,y) =
1

4πµ

(
− log |x− y|I +

(x− y)⊗ (x− y)

|x− y|2

)
is the free-space Green’s function for the Stokes equations [20]. The resulting integral equations are
again of Fredholm type of the second kind. As before, spectral quadratures are used in the discretization
of the resulting integral equation that ϕ must solve for u to satisfy the boundary condition in (26).

The overall procedure that we have described in this paper to quantify fluid mixing is as follows.
First, the Stokes boundary value problem (26) is solved using boundary integral equations and the
velocity function u is accessible throughout the fluid domain Ω by means of (27). Using this velocity,
a given initial concentration field c = c(x, t) is advected in accordance with the appropriate transport
model (here following equation (1)) by means of the conservation law solver. At a desired snapshot in
time t the mix-norm surrogate ‖c‖−r is produced by first obtaining the representant u[c(·, t)] using (17)
and then the norm finally via (12). The representant u[c] is obtained via solution of problems of
the form (21) using boundary integral equations and volumetric Newton potentials—for a given fixed
geometry we note that rapid repeated evaluation of the elliptic problems is possible so that mix-norm
evaluation is inexpensive relative to the advection solver.

4 Numerical Results

This section demonstrates the approximation quality of the Padé approximants described in this article,
and then demonstrates the use of the mix-norm surrogate to characterize mixing in fluid flow simulations.
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4.1 Negative Sobolev index norm evaluation using Padé approximation

This validation experiment concerns the computation of the mix-norm ‖·‖H−r(Ω), r = 1
2 , over the disc

domain B(0, 1), using the Padé approximation method described in Sec. 3, with results referring to
the left-hand panel of Figure 1 (the ‘inner product’ labels refer to computation of this norm via the
representation (12)); comparisons are made to the reference evaluation of the same norm using a Hilbert
basis for L2(Ω) described in Section 2.2. This experiment considers the one-parameter family of L2(Ω)
functions on Ω defined by

c(x) = sin(απx1) sin(απx2)(ρ− 1), ρ =
(
x2

1 + x2
2

)1/2
, x = (x1, x2) ∈ Ω,

which have an oscillatory character that varies with the parameter α ∈ R. The Hilbert basis, which is
known analytically for this domain (see Appendix A), is truncated to n < N and m < M (N = M = 20)
and is used for computation both of the Fourier-based norm and the solution of the inhomogeneous
modified Laplace problems (17); sufficient discretization of the fluid domain is used to ensure accurate
projections onto this set of functions. This approximation suffices to represent both c and the associated
Riesz representant u[c] with a maximum error of 10−5 in Ω for the values of α considered in this
experiment.

The right plot in Figure 1 shows the results of a similar experiment, this time for the annular

domain Ω = B(0, 1)\B(0, 1
2 ). For α ∈ R we consider the computation of mix-norm of the concentration

functions

c(x) = sin(απx1) sin(απx2)(ρ− 1
2 )(ρ− 1), ρ =

(
x2

1 + x2
2

)1/2
x = (x1, x2) ∈ Ω,

which are defined in Ω and satisfy γc = 0. For this geometry it is still possible, though even here not
completely computationally trivial, to obtain a basis of eigenfunctions (known analytically in terms
of numerically-computed eigenvalues, see Appendix A). The Hilbert basis is truncated to n < N and
m < M (N = 35,M = 60), and used to compute both the Fourier-based norm and the solution of
the inhomogeneous modified Laplace problems in (17). This set of functions suffices to represent both
c and the associated Riesz representant u[c] with a maximum error of 10−4 in Ω for all values of α
considered in this experiment. The ground truth for this experiment, labeled ‘Fourier’ in Figure 1, is
again a mix-norm value obtained using a generalized Fourier series.

Figure 1: Mix-norm ‖·‖−r with r = 1
2
. “Fourier” denotes the norm result when using the Hilbert basis of

eigenfunctions, while the “inner product” values correspond to the inner-product of the Riesz representant
u[c] in (12), and where the n value denotes the order of Padé approximation used in the computation
of (17). Left: disc domain; Right: annular region
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Figure 2: Mixing in a narrow-channel Taylor-Couette device driven by a velocity field arising from a tan-
gential slip boundary condition. Far-left: Vorticity of fluid flow induced by the tangential slip in the fluid
mixing experiment. Left to Right: snapshots of concentration at t = 0, t = 1.0, and t = 3.0.

We draw a few conclusions from these experiments. First, it is evident from both experiments that
convergence is rapid in Padé order (see also the right panel in Figure 3 for an explicit error-vs-order
plot). We also note that as the value of the mix-norm decreases (as α increases in this experiment,
and the input function c becomes more oscillatory) the accuracy of the numerical approximation to the
norm decreases; that is, the norm approximation quality is not uniform across its range. This effect
reflects the underlying approximation quality of Padé approximants to the function (1 −X)−r, which
are of highest quality for small values of X (corresponding to the first eigenvalues of the operator with
less oscillatory associated eigenfunctions); indeed the accuracy of Padé-approximated mix-norms can
be estimated via the approximation quality of the scalar problem. Studies with other values of the
parameter r reveal similar accuracy levels with identical conclusions and are omitted.

4.2 Numerical demonstration of mix-norm application in incompressible
flows

Here we consider mixing by a physically-realistic complex flow that arises as the solution to the Stokes
equation with tangential slip boundary conditions (the flow is computationally found as the solution to
a boundary integral formulation for the Stokes equations, cf. Section 3.3). The geometry is a Taylor-
Couette device of inner radius ρ1 = 1/2 and outer radius ρ2 = 1, and is displayed in Figure 2. The
initial scalar field consists of two Gaussian bump profiles, with opposing signs, namely,

c(x) = e−40(x2
1+(x2−3/4)2) − e−40((x1−3/4)2+x2

2), where x = (x1, x2) ∈ Ω.

We seek a velocity function u(x) and pressure function p(x) that satisfy the Stokes boundary value
problem (26) in this domain, wherein g = ust̂ is a tangential slip boundary condition with t̂ the unit
tangent vector on the positively-oriented boundary Γ. The prescribed slip magnitude us depends on
the angular variable θ, and is given by us(θ) = cos( n`2π θ), n = 20. (note that us is defined on both of
the inner and outer circles of the annulus, and for each we take the parameter ` to equal the perimeter
of that circle.) The solution to the Stokes equations is computed to an accuracy level of approximately
10−8 as measured by self-convergence of the boundary integral equation solution with respect to the
number of collocation nodes, while the conservation law solver, in turn, is discretized sufficiently to
keep errors smaller than those observed in Figure 3.

To indicate the effectiveness of the proposed Padé approximation approach to the production of the
mix-norm, we consider the convergence in Padé order for the mixing that results from this real flow
(as before, the reference value of ‖c‖−1/2 is denoted by the ‘Fourier’ curves in Figure 3 and is obtained
via a generalized Fourier series). Specifically, in Figure 3 we show convergence in the number n = N
of Padé approximant terms for the Riesz representant u[c] of c for the H−r(Ω), r = − 1

2 , norm. For
each 0 ≤ k ≤ n we solve the elliptic problem in equation (17)), with absolute errors less than 10−5, and
proceed to compute the mix-norm ‖·‖−r = (u[c], c)0. The mixing can be seen in Figure 2, with relative
errors at the final time t = 2.5 of 1.5% for N = 14 Padé approximant terms.

This experiment demonstrates the success of the mix-norm surrogate (12) as a means to quantify
fluid mixing in arbitrary geometries. We note that the mixing displayed in the plots in Figure 2 with
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Figure 3: Convergence in Padé order for the computation of the mix-norm in a setting of fluid mixing by a
time-independent slip velocity.

associated mix-norm evolution shown in the left-panel of Figure 3 captures even at very low Padé orders
and relatively low accuracy the qualitative behavior of the mixing process. Furthermore, if high accuracy
is desired, the right panel of Figure 3 demonstrates high-order convergence (in fact, near-exponential
convergence is apparent) to the true mix-norm surrogate, at the cost of an increasing number of elliptic
solves.

5 Conclusions

This work proposed and demonstrated the effectiveness of Padé approximants and the solution of
certain associated elliptic PDEs to compute a mix-norm for tracers in incompressible flows that is both
efficient in the presence of complex geometry and reduces the problem to well-understood problems in
computational PDEs (inhomogeneous linear PDEs solved via volume potentials). This surrogate norm
‖·‖−r is equivalent to the Fourier based one but crucially avoids the need to compute eigenfunctions of
the Laplacian over arbitrary domains. One weakness of the proposed Padé approximation strategy is
the observed lack of uniformity in the error as the mix-norm decreases in value; in ongoing work we seek
to address this issue by developing alternate means to compute the Riesz representant associated with
the surrogate mix-norm that both avoid this issue entirely and also require only a single inhomogeneous
solve. In contrast to the steady-state velocities considered here, time-varying velocities are of course
not only possible (and expected, in order to achieve optimal mixing rates) to efficiently compute in the
present context but will naturally be explored in future work in the context of optimal control.
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A Eigenfunction expansion in circular or annular domains

Circular domain. Let Ω = B(0, a) =
{
x(ρ, θ) , 0 ≤ ρ < a, 0 ≤ θ < 2π

}
be the disk of radius a.

The Dirichlet Laplace eigenfunctions for Ω are

ϕ0m = γ0mJ0(z0mρ/a), ϕ(1)
nm = γnmJn(znmρ/a) cosnθ, ϕ(2)

mn = γnmJn(znmρ/a) sinnθ (28)

where Jn is the Bessel function of first kind and integer order n and znm (m = 1, 2, . . .) are the (real,
positive) zeros of Jn (the excluded zero z = 0 of Jn (n ≥ 1) not producing nonzero eigenfunctions).

Setting the normalization constants to γ0m =
√
π
[
aJ1(z0m)

]−1
and γnm =

√
π/2

[
aJn+1(znm)

]−1

(n≥ 1), the eigenfunctions (28) are L2(Ω)-orthonormal and satisfy

−∆ϕ0m = λ0mϕ0m and −∆ϕ(1,2)
nm = λnmϕ

(1,2)
nm , with λnm = z2

nm/a
2 (n,m≥ 0). (29)

As (Dirichlet) Laplace eigenfunctions, the functions (28) define a Hilbert basis of L2(Ω), so that any
c ∈ L2(Ω) admits the expansion

c(ρ, θ) =
∑
m≥0

{
c0mϕ0m(ρ, θ) +

∑
n≥1

(
c(1)
nmϕ

(1)
nm(ρ, θ) + c(2)

nmϕ
(2)
nm(ρ, θ)

)}
(30)

with c0m =
(
ϕ0m, c

)
L2(Ω)

and c
(1,2)
nm =

(
ϕ

(1,2)
nm , c

)
L2(Ω)

. The H−r(Ω) norm of c is therefore given by

‖c‖2−r =
∑
m≥0

{
(1+λ0m)−r[c0m]2 +

∑
n≥1

(1+λnm)−r
(

[c(1)
nm]2 + [c(2)

nm]2
)}
. (31)

Annular domain. Let now Ω = B(0, ρ1)\B(0, ρ2) be the annulus of internal radius ρ2 and external
radius ρ1. The (unnormalized) radial Dirichlet eigenfunctions for Ω are given by the expression

fnm(ρ) =
−1

Jn(ζnmρ1)
Jn(ζnmρ) +

1

Yn(ζnmρ1)
Yn(ζnmρ). (32)

so that eigenfunctions are given (analogously to the disc case, and before normalization) via ϕ
(1,2)
nm (ρ, θ) =

fnm(ρ)

{
cos(nθ)
sin(nθ)

}
. While the functional form (32) of the eigenfunctions is clearly known, the corre-

sponding annular eigenvalues λnm = ζ2
nm are required for the basis to be fully determined. We solve for

the eigenvalues using a Newton iteration on the eigenvalue equation, with the method bootstrapped us-
ing an approximate eigenvalue obtained using the chebfun system [21] (whose values, at least for larger
eigenvalues fail to provide adequate accuracy but are still highly useful to start a Newton iteration).

B Derivation of Padé approximations

Let f have the (2n− 1)-th order Taylor expansion

f(X) = a0 +a1X . . .+a2n−1X
2n−1 + o(X2n−1) (33)

about X = 0. In particular, we have a0 = 1 and ak+1 = ak(2k+r)/(2k+2) for f(X) = (1−X)−r/2. The
coefficients of the polynomials

Pn−1(X) = p0 +p1X . . .+pn−1X
n−1, Qn(X) = 1+q1X . . .+qnX

n, (34)

such that Πn[f ] = Pn−1/Qn (with the adopted normalization q0 = 1 ensuring uniqueness of Pn−1, Qn)
are found from the linear relations

(a) an+k + an+k−1q1 + . . .+ akqn = 0 (0≤ k≤n−1),

(b) pk = a0qk + a1qk−1 . . .+ akq0 (0≤ k≤n− 1)
(35)

where q1, . . . qn solve the n linear equations (a) and p0, . . . , pn−1 are then given explicitly by relations (b).
Numerical experiments for f(X) = (1−X)−1/2 indicate however that the linear system (35a) becomes
ill-conditioned for n larger than about 10. We therefore solved (35) using symbolic computation.
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