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FREE BOUNDARY MINIMAL HYPERSURFACES OUTSIDE OF THE BALL

LAURENT MAZET AND ABRAÃO MENDES

Abstract. In this paper we obtain two classification theorems for free boundary minimal hy-
persurfaces outside of the unit ball (exterior FBMH for short) in Euclidean space. The first
result states that the only exterior stable FBMH with parallel embedded regular ends are the
catenoidal hypersurfaces. To achieve this we prove a Bôcher type result for positive Jacobi func-
tions on regular minimal ends in Rn+1 which, after some calculations, implies the first theorem.
The second theorem states that any exterior FBMH Σ with one regular end is a catenoidal
hypersurface. Its proof is based on a symmetrization procedure similar to R. Schoen [14]. We
also give a complete description of the catenoidal hypersurfaces, including the calculation of
their indices.

1. Introduction

Over the last few years, the study of free boundary minimal hypersurfaces (FBMH for short)
has occupied a prominent place in differential geometry, especially the study of FBMH in the
Euclidean unit ball B ⊂ Rn+1 (see e.g. [1, 2, 7, 8, 9, 16, 17] and the references therein).

In this paper, we deal with FBMH in Rn+1 \ B with compact boundary in ∂B, which are
called exterior free boundary minimal hypersurfaces. These hypersurfaces are critical for the
n-volume functional with respect to deformations that let the boundary on the unit sphere.
For such critical points, the second order derivative of the volume functional is given by the
so-called stability operator which here has a contribution from the boundary. In our situation,
this contribution is nonnegative due to the concavity of the unit sphere with respect to its
outside. An interesting question would be to understand the geometry and the topology of
these hypersurfaces in terms of their indices. In the ball, this is the study made by L. Ambrozio,
A. Carlotto and B. Sharp in [2]. A situation where non-compact FBMH have been studied is
the case of Schwarzschild space: R. Montezuma [13] and E. Barbosa and J.M. Espinar [3] have
looked at some properties of these hypersurfaces.

In Rn+1 \B, important examples of exterior FBMH are the catenoidal hypersurfaces, defined
as exterior FBMH invariant by isometries fixing a straight line. In Section 4 we give a complete
description of the catenoidal hypersurfaces and calculate their indices: some have index 0 and
others index 1.

The aim of this paper is to prove two classification results for catenoidal hypersurfaces. The
first classification theorem is the following. Definitions are given in Sections 2 and 3.
Theorem 1. Let Σ be an exterior free boundary minimal hypersurface in Rn+1\B. Let us assume
that Σ is stable and has parallel embedded regular ends. Then Σ is a catenoidal hypersurface.

In order to prove Theorem 1, we first prove that saying that Σ is stable is equivalent to saying
that there exists a positive Jacobi function u on Σ satisfying the Robin boundary condition
∂νu + u = 0 on ∂Σ. This is the content of Proposition 3. Its proof is based on the proof of
a classical stability characterization due to D. Fischer-Colbrie and R. Schoen [6, Theorem 1]
for manifolds without boundary, where here we make use of the Harnack inequality for positive
solutions to ∆u + qu = 0 on Σ with Robin boundary condition ∂νu + u = 0 on ∂Σ proved
in Appendix A. Second, we obtain a Bôcher type theorem for positive Jacobi functions on
regular minimal ends in Rn+1 which, together with Proposition 3, implies that Σ is invariant by
isometries fixing a straight line, in other words, Σ is a catenoidal hypersurface.

L.M. was partially supported by the ANR-19-CE40-0014 grant. A.M. was partially supported by the National
Council for Scientific and Technological Development – CNPq, Brazil (Grant 305710/2020-6). The authors
were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES-
COFECUB 88887.143161/2017-0).
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As mentioned above, some of the catenoidal hypersurfaces have index 1, so it would be
interesting to know if the index equal to 1 implies that the hypersurface is catenoidal. When
n = 2, it would be a result similar to Lopez-Ros result [12] for boundaryless minimal surfaces.
For example, it would be interesting to understand if a control on the index gives a control on
the number of ends of the hypersurface. However, the positive contribution of the boundary to
the stability operator seems to make this not an easy task.

The second classification theorem is the following.

Theorem 2. Let Σ be an exterior free boundary minimal hypersurface. If Σ has one regular
end, then Σ is a catenoidal hypersurface.

The proof of Theorem 2 is based on a symmetrization procedure as in Schoen’s paper [14].
The paper is organized as follows. In Section 2 we present some preliminaries on FBMH and

prove Proposition 3. In Section 3 we state and prove an auxiliary Bôcher type result (Theorem 4)
and present the proof of Theorem 1. In Section 4 we introduce the catenoidal hypersurfaces
and give a complete description of them, including the calculation of their indices. In Section 5
we prove Theorem 2. Finally, in Appendix A we present a proof of the Harnack inequality for
positive functions satisfying a Robin type boundary condition.

2. Free boundary minimal hypersurfaces in Rn+1 \ B

Let Σ be an n-manifold with compact boundary. We say that F : Σ→ Rn+1 \B is an exterior
proper immersion if F is a proper immersion and F (Σ)∩ ∂B = F (∂Σ). In this paper, we always
consider such exterior proper immersions. We also assume that Σ is orientable so that a unit
normal N is well defined along F . Besides, we will often identify Σ with its image F (Σ) and
just say that Σ is an exterior hypersurface.

We will consider exterior hypersurfaces that are critical for the n-volume functional with
respect to any deformations keeping the boundary on ∂B. Such a hypersurface Σ has vanish-
ing mean curvature and meets ∂B orthogonally: we call them exterior free boundary minimal
hypersurfaces.

Basic examples are given by cones over minimal hypersurfaces S ⊂ Sn = ∂B:

Σ = {tp ∈ Rn+1; p ∈ S and t ≥ 1}.

One can also consider exterior FBMH that are invariant by isometries fixing a straight line: they
are called catenoidal hypersurfaces. Their complete description is given in Section 4.

Let Σ be an exterior free boundary minimal hypersurface. The free boundary condition
implies that, at P ∈ ∂Σ, the outgoing unit normal ν(P ) = −P is a principal direction of the
second fundamental form B of Σ. Indeed, for T ∈ T∂Σ, we have

B(ν, T ) = (DT ν,N) = −B∂B(T,N) = −(T,N) = 0,(2.1)

where D is the covariant derivative in Rn+1 and B∂B is the second fundamental form of ∂B.

Figure 1. Exterior FBMH
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As in the boundaryless case, we also have a monotonicity formula for exterior free boundary
minimal hypersurfaces:

|Σ ∩BR|
Rn

−
(

1− 1
Rn

) |∂Σ|
n

=
∫

Σ∩BR

|X⊥|2

|X|n+2 ,(2.2)

where BR is the Euclidean ball centered at the origin of radius R ≥ 1. In fact, let v(r) = |Σ∩Br|,
r > 1. It follows from coarea formula that

d

dr
v(r) =

∫
Σ∩∂Br

1
|∇Σd|

,

where d(X) = |X| is the distance function to the origin. On the other hand, because Σ is
minimal, divΣ(X>) = n. Therefore,

nv(r) =
∫

Σ∩Br
divΣ(X>) =

∫
∂Σ

(X>, ν) +
∫

Σ∩∂Br
(X>, ν) = −|∂Σ|+

∫
Σ∩∂Br

|X>|.

This gives

d

dr

(
v(r)
rn

)
= |∂Σ|
rn+1 +

∫
Σ∩∂Br

1
rn

(
1

|∇Σd|
− |X

>|
r

)
= |∂Σ|
rn+1 +

∫
Σ∩∂Br

1
|∇Σd|

(
|X⊥|2

rn+2

)
,

where above we have used that ∇Σd = X>

|X| and |X⊥|2 = r2 − |X>|2. Thus, integrating last
equation from 1 to R and using coarea formula, we obtain (2.2).

2.1. The stability operator. Let {Ft} be a family of exterior proper immersions of Σ such
that F0(Σ) is free boundary minimal and ∂tFt has compact support. Even if the volume of Ft(Σ)
is infinite its derivatives can be computed since the deformation has compact support. Then the
first derivative of the n-volume functional vanishes at t = 0 and the second derivative at t = 0
can be computed in terms of the function u = (∂tFt|t=0, N) by

d2

dt2
Vol(Ft(Σ))

∣∣
t=0 = Q(u, u) =

∫
Σ

(|∇Σu|2 − ‖B‖2u2)dµ+
∫
∂Σ
u2ds,

where ∇Σ and dµ are the gradient and the n-volume measure on Σ, and ds is the (n−1)-volume
measure on ∂Σ, all with respect to the metric induced by F0 (see [2]). After integration by
parts, one has

Q(u, u) = −
∫

Σ
u(∆u+ ‖B‖2u)dµ+

∫
∂Σ
u(u+ ∂νu)ds.

So the quadratic form Q is associated with the Jacobi operator defined by Lu = ∆u + ‖B‖2u.
Then, for any bounded domain Ω in Σ, we can consider the associated spectrum of L: a sequence
of eigenvalues λn ↗ +∞ and a L2-orthonormal sequence of functions un on Ω such that

∆un + ‖B‖2un = −λnun on Ω,
∂νun + un = 0 on ∂Σ ∩ Ω,
un = 0 on ∂Ω \ ∂Σ.

The number of negative eigenvalues is then called the index of Q on Ω and is denoted by
Ind(Q,Ω). If (Ωn) is an increasing sequence of domains such that ∪Ωn = Σ, then the limit of
the increasing sequence (Ind(Q,Ωn)) is called the index of Σ and is denoted by Ind(Σ).

When Ind(Σ) = 0, we say that Σ is stable and this is equivalent to Q(u, u) ≥ 0 for any
function u with compact support on Σ. Actually, we have an alternative characterization of
stability given by the following Fischer-Colbrie and Schoen type result.

Proposition 3. Let Σ be an exterior free boundary minimal hypersurface. Then Σ is stable if
and only if there exists a positive solution u on Σ to

(2.3)
{

∆u+ ‖B‖2u = 0 on Σ,
∂νu+ u = 0 on ∂Σ.
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Proof. The proof is very similar to that one of [6, Theorem 1] by Fischer-Colbrie and Schoen.
In fact, in order to adapt their proof, we just need to observe that, if u is as in (2.3), then
∂ν ln u = −1 on ∂Σ (this is for the part (iii) =⇒ (i)) and use the Harnack inequality given in
Proposition 9 in Appendix A (for the part (ii) =⇒ (iii)). �

When n = 2, Fischer-Colbrie’s result [5, Theorem 2] gives that an exterior free boundary
minimal surface Σ has finite index if and only if it has finite total curvature. One difference is
that, in our case, the quadratic form Q does not depend only on the Gauss map but also on
the conformal factor along the boundary ∂Σ. A second important point is that we assume ∂Σ
to be compact. For example, if Σ is stable, we have a solution u to (2.3) which can be lifted
to the universal cover Σ̃. This implies that the associated quadratic form on Σ̃ is nonnegative.
However, the universal cover may not have finite total curvature as we are going to see below
(see Example 6). Actually, the universal cover is not properly immersed and thus it is not an
exterior surface according to our definition.

2.2. Regular ends. The asymptotic of an exterior free boundary minimal hypersurface can be
highly complicated. A simple asymptotic is given by regular ends introduced by Schoen in [14].

In order to describe it, we split P ∈ Rn+1 as (X, z) ∈ Rn × R. Then an end E of an exterior
free boundary minimal hypersurface is said to be regular if, after an isometry, a representative
of E is given by the graph of a function f of bounded gradient defined on {|X| ≥ R} with the
following asymptotic:

f(X) = A ln |X|+B + (C,X)|X|−2 +O(|X|−2) if n = 2,(2.4)

f(X) = B +A|X|−(n−2) + (C,X)|X|−n +O(|X|−n) if n > 2,(2.5)
where A,B ∈ R and C ∈ Rn. We notice that the above estimate on f implies similar estimates
on its derivatives (see [14]). For example, one sees that ∇f(X) goes to 0 as |X| goes to +∞
and, in particular, there is a well-defined unit normal at ∞ for such an end.

If n = 2 and Σ has finite total curvature, then Σ is conformally equivalent to a compact
Riemann surface with boundary minus a finite number of points. Moreover, a properly embedded
annular end with finite total curvature is regular [14, Proposition 1].

In the case 3 ≤ n ≤ 6, following the arguments of J. Tysk [19], if we assume that Σ has finite
index and finite volume growth in the sense that limR→+∞R

−n|Σ ∩ BR| < +∞, then Σ has
finitely many ends, all of them being regular.

3. Stable hypersurfaces

3.1. A Bôcher type result for the Jacobi operator. In this section, we analyze the asymp-
totic behavior of positive Jacobi functions (i.e. solutions to Lu = 0) on regular ends.

Theorem 4. Let E be a regular minimal end in Rn+1 (let X ∈ Rn be a coordinate associated
to the end as in (2.4) and (2.5)) and consider a positive Jacobi function u on E. Then u has
the following asymptotic: there exist A,B ∈ R such that

u(X) = A ln |X|+B + v(X) if n = 2,

u(X) = A+B|X|−(n−2) + v(X) if n > 2,

where v is such that the function |X|n−1v is C2-bounded on Rn \ BR. Moreover, either A > 0
or A = 0 and B > 0.

Proof. Writing X = etp with t ∈ R and p ∈ Sn−1, a regular end can be parametrized by
[t0,+∞) × Sn−1 with a metric g having the asymptotic g = e2t(δ + O(e−2(n−1)t)), where δ is
the product metric on R × Sn−1. Moreover, the second fundamental form can be estimated by
‖B‖2 = O(e−2nt). Thus the Jacobi operator can be computed as

∆u+ ‖B‖2u = e−2t (utt + (n− 2)ut + ∆σu+M(u)) ,
where ∆σ is the Laplacian on Sn−1 and M(u) is a second order linear operator whose coefficients
have C0,α-norm bounded by Ce−2(n−1)t for some constant C > 0.



FREE BOUNDARY MINIMAL HYPERSURFACES OUTSIDE OF THE BALL 5

Therefore a Jacobi function u satisfies

(3.1) utt + (n− 2)ut + ∆σu+M(u) = 0,

which is a uniformly elliptic equation on [t0,+∞) × Sn−1. As a consequence, by Harnack
inequality ([10, Corollary 8.21]), there is a constant C > 0 such that, for any p, q ∈ Sn−1

and t, s ≥ t0 + 1 with |t− s| ≤ 1, and any positive Jacobi function u, we have

u(t, p) ≤ Cu(s, q).

By Schauder’s elliptic estimates ([10, Corollary 6.3]), we also have

(3.2) ‖u‖C2,α([t− 1
2 ,t+

1
2 ]×Sn−1) ≤ C‖u‖C0([t−1,t+1]×Sn−1) for t ≥ t0 + 2.

Let us define ū(t) = 1
|Sn−1|

∫
Sn−1 u(t, p)dσ. By Harnack inequality, we obtain

(3.3) ‖u‖C0([t−1,t+1]×Sn−1) ≤ C min
p∈Sn−1

u(t, p) ≤ Cū(t).

Then, combining with (3.2), there is a constant C > 0 such that

(3.4) ‖M(u)‖C0,α([t− 1
2 ,t+

1
2 ]×Sn−1) ≤ Ce

−2(n−1)tū(t)

and M(u)(t) = 1
|Sn−1|

∫
Sn−1 M(u)(t, p)dσ satisfies

(3.5) ‖M(u)‖C0,α([t− 1
2 ,t+

1
2 ]) ≤ Ce

−2(n−1)tū(t).

By integrating (3.1) over Sn−1, we obtain that ū solves ūtt+(n−2)ūt+M(u) = 0. Considering
first the case n > 2, let a and b be two functions such that(

ū
ū′

)
= a

(
1
0

)
+ b

(
1

2− n

)
.

Then we have the system {
a′ = − 1

n−2M(u)(t),
b′ = −(n− 2)b+ 1

n−2M(u)(t).

Using the above equations, we obtain

∂t
√
a2 + b2 ≤ C|M(u)(t)| ≤ Ce−2(n−1)tū(t) ≤ Ce−2(n−1)t

√
a2 + b2.

Thus
√
a2 + b2 and ū stay bounded on [t0,+∞). In particular, |M(u)(t)| ≤ Ce−2(n−1)t. Also,

∂t
(
ent
√
a2 + b2

)
≥ nent

√
a2 + b2 − (n− 2)ent b2√

a2 + b2
− Ce−(n−2)t

√
a2 + b2

≥ (2− Ce−2(n−1)t)ent
√
a2 + b2 ≥ 0

for t sufficiently large. Therefore ent
√
a2 + b2 cannot converge to 0 at t goes to +∞. We can

also solve the system to obtain{
a = A+

∫+∞
t

1
n−2M(u)(s)ds,

b = Be−(n−2)t − e−(n−2)t ∫+∞
t

1
n−2e

(n−2)sM(u)(s)ds.

We notice that if A = B = 0 then limt→+∞ e
nta = limt→+∞ e

ntb = 0, which is not possible. Then
we can be sure that either A or B is nonzero. As ū = a+ b is positive and A = limt→+∞(a+ b),
then either A > 0 or A = 0 and B > 0. Observe that ū−A−Be−(n−2)t = O(e−2(n−1)t).

If n = 2, we notice that

∂t

√
ū2 + ū2

t ≤
ūūt√
ū2 + ū2

t

+ C|M(u)| ≤ 1
2

√
ū2 + ū2

t + Ce−2tū

≤
(1

2 + Ce−2t
)√

ū2 + ū2
t .
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Thus ū = O(e
1
2 t) and then M(u) = O(e−

3
2 t). We also have

∂t

(
e

3
4 t
√
ū2 + ū2

t

)
≥
(3

4 −
1
2 − Ce

−2t
)
e

3
4 t
√
ū2 + ū2

t ≥ 0

for t sufficiently large. So e
3
4 t
√
ū2 + ū2

t cannot converge to 0 as t goes to +∞. By integrating
the equation on ū, one gets

ū(t) = At+B −
∫ +∞

t

(∫ +∞

s
M(u)(r)dr

)
ds.

If A and B vanish, then ū, ūt = O(e−
3
2 t), which is not possible. Then either A > 0 or A = 0

and B > 0. Notice that ū − At − B = O(te−2t). In fact, last equation gives that ū = O(t).
Then, from (3.5) we have M(u) = O(te−2t). Therefore, using last equation again, we obtain
ū−At−B = O(te−2t).

In both cases, we have M(u) = O(te−2(n−1)t).
Now, to conclude, we need to estimate u − ū. Let vi be a L2-unit eigenfunction for the

Laplace operator on Sn−1 associated to a nonzero eigenvalue λ (in particular, λ ≥ n − 1). Let
ui =

∫
Sn−1 uvidσ. Equation (3.1) implies

uitt + (n− 2)uit − λui = −
∫
Sn−1

M(u)vidσ = fi = O(te−2(n−1)t).

Observe that µ2 + (n − 2)µ − λ = 0 has two roots: µ+ ≥ 1 and µ− ≤ −(n − 1). Then, solving
the above equation, we obtain

(3.6) ui(t) = eµ+t
(
ai −

∫ +∞

t
e−µ+s fi(s)

µ+ − µ−
ds

)
+ eµ−t

(
bi −

∫ t

t0
e−µ−s

fi(s)
µ+ − µ−

ds

)
for some ai, bi ∈ R. Using (3.3) and the fact that ū = O(t), we have ui = O(t) and thus ai = 0.
We also have

bi = e−µ−t0ui(t0) + e(µ+−µ−)t0
∫ +∞

t0
e−µ+s fi(s)

µ+ − µ−
ds.

Now, by Cauchy-Schwarz,(∫ +∞

t
e−µ+sfi(s)ds

)2
≤ 1
µ+

e−µ+t
∫ +∞

t
e−µ+sf2

i (s)ds,(∫ t

t0
e−µ−sfi(s)ds

)2
≤ 1
−µ−

(e−µ−t − e−µ−t0)
∫ t

t0
e−µ−sf2

i (s)ds.

Thus, by squaring (3.6), we obtain

u2
i (t) ≤ 16

(
eµ+t

µ+(µ+ − µ−)2

∫ +∞

t
e−µ+sf2

i (s)ds+ e2µ−(t−t0)u2
i (t0)

+ e2µ−(t−t0)+µ+t0

µ+(µ+ − µ−)2

∫ +∞

t0
e−µ+sf2

i (s)ds+ eµ−t

−µ−(µ+ − µ−)2

∫ t

t0
e−µ−sf2

i (s)ds
)
.

Let us define

Ũ(t) =
∫
Sn−1

(u(t, p)− ū(t))2dσ,

M̃(t) =
∫
Sn−1

(M(u)(t, p)−M(u)(t))2dσ.

Using that µ+ ≥ 1 and µ− ≤ −(n − 1), we can sum the above inequalities with respect to i to
obtain

Ũ(t) ≤ 16
(
eµ+t

∫ +∞

t
e−µ+sM̃(s)ds+ e2µ−(t−t0)Ũ(t0)

+ e2µ−(t−t0)+µ+t0

∫ +∞

t0
e−µ+sM̃(s)ds+ eµ−t

∫ t

t0
e−µ−sM̃(s)ds

)
.



FREE BOUNDARY MINIMAL HYPERSURFACES OUTSIDE OF THE BALL 7

Since M̃(t) = O(t2e−4(n−1)t), it follows that

‖u− ū‖L2([t−1,t+2]×Sn−1) = O(e−(n−1)t).

Actually, u− ū solves the equation

ztt + (n− 2)zt + ∆σz +M(z) = M(u)−M(ū).

Then, combining the above L2-estimate with (3.4) and (3.5), Schauder’s estimates give

‖u− ū‖C2([t,t+1]×Sn−1) = O(e−(n−1)t).

We have then proved that

‖u−A−Be−(n−2)t‖C2([t,t+1]×Sn−1) = O(e−(n−1)t) if n > 2,
‖u−At−B‖C2([t,t+1]×Sn−1) = O(e−t) if n = 2.

This gives the expected result after going back to the original coordinate system. �

3.2. Classification of stable hypersurfaces. If Σ is an exterior free boundary minimal hy-
persurface with regular ends, the unit normal to Σ has a well-defined limit at each end. Then
we say that such a hypersurface has parallel ends if these limits coincide up to a sign. We notice
that, if Σ is embedded, then its ends are always parallel.

Now, we are going to use the above Bôcher type theorem in order to give a classification of
stable exterior FBMH with parallel regular ends.

Proof of Theorem 1. Consider the (X, z) coordinate system on Rn+1. After an isometry, we can
assume that the unit normal to the ends of Σ are given by ±ez.

Now, let M ∈ Mn(R) be a skew-symmetric matrix and consider the Killing vector field
K(X, z) = MX. Notice that K generates isometries fixing the z-axis. Then the scalar product
u = (K,N) is a solution to ∆u + ‖B‖2u = 0 on Σ. Moreover, since K is tangent to ∂B, u
satisfies ∂νu+ u = 0 on ∂Σ.

Each end of Σ can be parametrized by the graph of a function f with the asymptotic given
by (2.4) or (2.5) (depending on n). In particular,

N(X, f(X)) = ± 1√
1 + |∇f(X)|2

(−∇f(X) + ez).

So the asymptotic of f gives that u = O(|X|−(n−1)).
On the other hand, since Σ is stable, there is a positive solution v to (2.3). The asymptotic

of v is given by Theorem 4. As a consequence, we see that u(X)/v(X) goes to 0 as |X| goes
to +∞. Also, the function w = u/v satisfies{

∆w + 2(∇ ln v,∇w) = 0 on Σ,
∂νw = 0 on ∂Σ.

Therefore the maximum principle gives that w = u/v is constant and thus equals zero. This
implies that u = 0 and then Σ is invariant by the isometries generated by K. So Σ is a catenoidal
hypersurface. �

4. Catenoidal hypersurfaces

Theorem 1 gives that stable hypersurfaces are invariant by isometries fixing an axis. In this
section, we describe this kind of exterior free boundary minimal hypersurfaces Σ. We fix the
axis to be Rez.

Let φ be a primitive of the function r 7→ (r2(n−1)−1)−1/2 defined on [1,+∞). The hypersurface

Σ = {(X, z) ∈ Rn × R; |X| ≥ 1 and z2 = φ2(|X|)}

is a minimal hypersurface invariant by isometries fixing Rez. Actually, any connected piece of a
minimal hypersurface invariant by isometries fixing Rez is a subset of λΣ+µez for some λ, µ ∈ R.
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Half of Σ can be parametrized by the map

F : [1,+∞)× Sn−1 → Rn+1

(r, p) 7→ (rp, φ(r)) .

Given α ∈ (0, π2 ), we look for a rotational exterior free boundary minimal hypersurface with
boundary in {z = sinα}. Let Rα = (sinα)−1/(n−1) be such that φ′(Rα) = tanα. Notice that
Rα decreases with α from +∞ to 1. Let Cα be the hypersurface parametrized by

Fα : [Rα,+∞)× Sn−1 → Rn+1

(r, p) 7→ λα(rp, φ(r)) + µαez
,

where λα and µα are chosen such that Cα has the expected boundary:

(4.1)
{
λα = R−1

α cosα = (sinα)
1

n−1 cosα,
µα = sinα− λαφ(Rα).

The hypersurface Cα has free boundary because of the choice of Rα. Thus, for any α ∈ [0, π2 ),
there is exactly one rotational exterior free boundary minimal hypersurface: Cα for α 6= 0 and
C0 = {z = 0} \ B for α = 0.

Therefore Cα is an exterior free boundary minimal catenoidal hypersurface and any connected
exterior free boundary minimal catenoidal hypersurface is the image of some Cα by a linear
isometry of Rn+1.

Figure 2. Catenoidal hypersurface Cα, α ≈ 0.92

Observe that

(4.2) ∂αλα = (sinα)−
n−2
n−1

( 1
n− 1 cos2 α− sin2 α

)
.

Let αn = arctan( 1√
n−1). It follows that, on [0, αn], λα is increasing from 0 to λαn and, on

[αn, π2 ), λα is decreasing up to 0. Moreover, Cα converges to the hyperplane {z = 1} as α goes
to π

2 .
The stability properties of Cα is described by the following result, whose proof is inspired by

the computation of the index of catenoids in Rn+1 by L.-F. Tam and D. Zhou [18].

Proposition 5. There exists ᾱn ∈ [αn, π2 ) such that Cα is stable for α ∈ [0, ᾱn), and Cα has
index 1 for α ∈ (ᾱn, π2 ).

Actually, ᾱ2 = α2 = π
4 and ᾱn > αn for n > 2.

Proof. We first study some preliminary stability properties of Cα. Notice that Cα is a graph
over part of Rn. Therefore Cα is stable as a graph with fixed boundary: the stability operator
is nonnegative for any test functions that vanish on ∂Cα.

Let us consider on Rn coordinates (x, Y ) ∈ R × Rn−1. Let K(x, Y, z) = (−z, 0, x) be the
Killing vector field generating rotations around {x = 0, z = 0} in Rn+1. Then the scalar product
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k = (K,N) defines on Cα a solution to (2.3). The boundary condition comes from the fact that
K is tangent to ∂B. Actually, one can compute k in the (r, p) coordinates. By (4.1), we have

k = 1√
1 + (φ′(r))2

(
(λαφ(r) + µα)φ′(r) + λαr

)
px,

where px is the x coordinate of p ∈ Sn−1 ⊂ R× Rn−1. Observe that, by (4.1),

(λαφ(r) + µα)φ′(r) + λαr ≥ (λαφ(Rα) + µα)φ′(r) + λαRα

= sinα φ′(r) + cosα > 0.

Hence k has constant sign when px has constant sign. This implies that the half catenoidal
hypersurfaces Cα ∩ {±x ≥ 0} are stable.

Let us now study the global stability of Cα. We have a one-parameter family {Cα} of catenoidal
hypersurfaces. Therefore the derivative with respect to α gives a deformation field whose scalar
product with the unit normal to Cα is a function u which solves (2.3). In the Fα parametrization
and for the upward pointing unit normal, u can be computed as

u = 1√
1 + φ′(r)2 (−∂αλαrφ′(r) + ∂αλαφ(r) + ∂αµα).

So u depends only on r and is equal to 1 on ∂Cα, i.e. at r = Rα. In order to study the sign of
u close to r = +∞, let us have a look on λα. By (4.2), we have

∂2
αλα = −cosα (sinα)−

2n−3
n−1

(
(n2 + n− 2) sin2 α+ (n− 2) cos2 α

)
(n− 1)2 ≤ 0.

Thus ∂αλα is decreasing.
If n = 2, we have limr→+∞ φ(r) = +∞. Then, for α 6= α2 = π

4 , we have limr→+∞ u = ±∞
depending on sign(∂αλα): close to r = +∞, u is positive for α < α2 and negative for α > α2.

If n > 2, we have limr→+∞ φ(r) < +∞ and, by (4.1),

lim
r→+∞

u = ∂αµα + ∂αλα lim
r→+∞

φ(r)

= n

n− 1 cosα+ ∂αλα

(
lim

r→+∞
φ(r)− φ(Rα)

)
.

This limit is positive when α ≤ αn. Moreover, when α ≥ αn, the limit is decreasing with α and
negative for α close to π

2 . Then there exists ᾱn > αn such that the limit is positive for α < ᾱn
and negative for α > ᾱn.

Thus, for α < ᾱn, u is positive on ∂Cα and close to the infinity. Therefore, if u changes sign
on Cα, {u < 0} would be a precompact subdomain of Cα with u = 0 on its boundary, but this
would contradict the stability of Cα as a graph. Hence, for α < ᾱn, u is positive and then, by
Proposition 3, Cα is stable. Cᾱn is also stable as limit of stable minimal hypersurfaces.

When α > ᾱn, u changes sign on Cα. Thus there is A > Rα such that u is nonnegative on
[Rα, A]×Sn−1 and vanishes on {A}×Sn−1. This implies that Cα has index at least 1. We notice
that there is no value B > A such that u vanishes on {B}×Sn−1. Indeed, this would contradict
that [A,+∞)× Sn−1 is stable as a graph.

Let us now prove that, for α > ᾱn, Cα has index 1. If it is not the case, then there is B > Rα
such that the Jacobi operator has index at least 2 on [Rα, B] × Sn−1. Let us consider u2 the
eigenfunction associated to the second eigenvalue λ2 < 0 on Cα(B) = Fα([Rα, B]× Sn−1): u2 is
a solution to 

∆u2 + ‖B‖2u2 = −λ2u2 on Cα(B),
∂νu2 + u2 = 0 on ∂Cα,
u2 = 0 on r = B.

We are going to prove that u2 depends only on the r variable. As above, let us consider (x, Y )
coordinates on Rn and let S be the symmetry of Rn+1 with respect to {x = 0}. Cα(B) is
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invariant by S and then we can consider on it the function v defined by v(p) = u2(p)−u2(S(p)).
v is then a solution to 

∆v + ‖B‖2v = −λ2v on Cα(B),
∂νv + v = 0 on ∂Cα,
v = 0 on r = B.

Moreover, we have v = 0 on Cα(B) ∩ {x = 0}. If v 6= 0, this implies that Cα(B) ∩ {x ≥ 0}
is unstable since λ2 < 0, which contradicts the stability of Cα ∩ {x ≥ 0}. So v ≡ 0 and u2
is invariant by S. Changing the choice of the x coordinate, we obtain that u2 is invariant by
isometries fixing the z-axis and then depends only on r.

As u2 is associated to the second eigenvalue, u2 must change sign. Then there is C ∈ (Rα, B)
such that u2 = 0 on {r = C}. As λ2 < 0, this implies that {C ≤ r ≤ B} is unstable, which
contradicts the stability of Cα as a graph. Hence Cα has index 1 for α > ᾱn. �

Example 6. Consider the universal cover of Cα for n = 2:

Fα : [Rα,+∞)× R → Cα ⊂ R3

(r, θ) 7→ λα(r cos θ, r sin θ, φ(r)) + µαez
.

Straightforward computations give that the area element and the Gaussian curvature of Fα are
given by

dµα = λ2
αr(1 + (φ′)2)

1
2 drdθ,

Kα = φ′φ′′

λ2
αr(1 + (φ′)2)2 .

Therefore,

Kαdµα = φ′φ′′

(1 + (φ′)2)
3
2
drdθ = − drdθ

r2
√
r2 − 1

.

Thus, the total curvature of Cα is given by

2
∫ 2π

0

(∫ +∞

Rα

dr

r2
√
r2 − 1

)
dθ = 4π

∫ +∞

Rα

dr

r2
√
r2 − 1

= 4π(1− cosα),

while the total curvature of its universal cover is infinite. For α ≤ π
4 , this example shows

that when the boundary is not compact, even if the stability operator is nonnegative, the total
curvature can be infinite.

5. Classification of one-ended examples

This section is devoted to the proof of Theorem 2. The idea of the proof is based on a
symmetrization procedure as in Schoen’s paper [14].

After a rotation, we can assume that the end of Σ is the graph of a function f over the outside
of a compact set with the following asymptotic:

f(X) = A ln |X|+B +O(|X|−1) if n = 2,
with A ≥ 0 and, if A = 0, B ≥ 0, and

f(X) = B +A|X|−(n−2) +O(|X|−(n−1)) if n > 2,
with B ≥ 0.

The first step consists in proving that either Σ = {z = 0} \B = C0 or A > 0 and Σ ⊂ {z > ε}
for some ε > 0.

Observe that ∂Σ ⊂ {z ≥ −2} and Σ \K ⊂ {z ≥ −2} for some compact set K ⊂ Rn+1. Then,
by the maximum principle, Σ ⊂ {z ≥ −2}. In fact, for each t < 0, we have Σ \K ⊂ {z ≥ t} (for
a possibly different compact set K). Therefore, if Σ∩{z < 0} 6= ∅, we can start from t = −2 and
let t < 0 increase up to finding a first contact point in Σ ∩ {z = t0} for some t0 < 0. We notice
that, since Σ is free boundary, the first contact point cannot be at ∂Σ. Then the maximum
principle can be applied at the first contact point in order to guarantee that Σ = {z = t0} \ B,
which is not free boundary.



FREE BOUNDARY MINIMAL HYPERSURFACES OUTSIDE OF THE BALL 11

This shows that Σ ⊂ {z ≥ 0}. Then either ∂Σ ⊂ {z > 0} or ∂Σ has a point in {z = 0} and
the boundary maximum principle can be applied so that Σ = {z = 0} \ B.

If ∂Σ ⊂ {z > 0}, then we see that

−
∫
∂Σ
∂νz =

∫
∂Σ

(P, ez) > 0.

Since z is harmonic on Σ, using the asymptotic of f we obtain that

0 <
∫

Σ∩{|X|=R}
∂νz =

∫
Σ∩{|X|=R}

(ν, ez)

=
∫
Sn−1

(
−(n− 2)A 1

Rn−1R
n−1 +O(R−1)

)
dσ

= −(n− 2)|Sn−1|A+ o(1)

for n > 2. The same estimate gives that 0 < 2πA+ o(1) for n = 2. Therefore, if n = 2, we have
A > 0 and this implies that f(X) > 1 for |X| sufficiently large. If n > 2, we have A < 0 and,
since f ≥ 0, this implies that B > 0 and f(X) > B

2 for |X| sufficiently large. In any case, we
obtain that Σ ⊂ {z ≥ ε} for small positive ε since there cannot be any first contact point with
{z = t} for 0 ≤ t ≤ ε. This ends the first step.

We fix a (x, Y ) coordinate system in Rn = R×Rn−1. We want to prove that Σ is symmetric
with respect to {x = 0}. In order to do this, we are going to follow a symmetrization procedure.

Given θ ∈ [0, π2 ], let Πθ be the hyperplane of equation −x sin θ + z cos θ = 0, Sθ be the
symmetry with respect to Πθ, and Σ−θ = Σ ∩ {−x sin θ + z cos θ ≤ 0}. If Bρ is the ball centered
at the origin of radius ρ > 0, we notice that Sθ(Bρ) = Bρ.

Lemma 7. Given θ ∈ [0, π2 ), there exists ρθ > 0 such that, outside Bρθ , Sθ(Σ−θ ) is above Σ.
Moreover, ρθ can be chosen as an increasing function of θ.

Proof. In R2, let p = (a cosα, a sinα) be a point with a > 0 and 0 ≤ α ≤ θ and Rt be the
rotation of angle t. If 0 ≤ t ≤ 2(θ−α), then the angle between

−−−−→
pRt(p) and the vertical z-axis is

α− t
2 and then at most θ (see Figure 3).

Figure 3. Angle between
−−−−→
pRt(p) and the z-axis

Because of the asymptotic of Σ, the intersection Σ∩∂Bρ can be parametrized by ∂Bρ∩{z = 0}
in the following way: there is a function g such that

Σ ∩ ∂Bρ =
{(

(1− g2(X)
|X|2

)1/2X, g(X)
)
;X ∈ ∂Bρ ∩ {z = 0}

}
,

where g satisfies

g(X) = A ln |X|+B +O(|X|−1) if n = 2,

g(X) = B +A|X|−(n−2) +O(|X|−(n−1)) if n > 2,
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and
(5.1) dg(X)(V ) = O(|X|−2)|V |
for any vector V tangent to ∂B|X|.

In the (x, Y, z) coordinates, we can extend the rotation Rt to Rn+1 by fixing the Y coordinates.
Let ρ be large and P ∈ Σ−θ ∩∂Bρ. We can write P =

(
(1− g2(X)

|X|2 )1/2X, g(X)
)

for some X = (x, Y ).
Then Sθ(P ) is above Σ if Rt(P ) does not meet Σ for 0 < t ≤ 2(θ − α), where 0 ≤ α ≤ θ is such
that (

(1− g2(X)
|X|2

)1/2x, g(X)
)

= a(cosα, sinα)

for some a > 0 (see Figure 4). In particular, Sθ(P ) = R2(θ−α)(P ). We notice that Rt(P ) belongs
to ∂Bρ. Then, if Rt(P ) ∈ Σ, we must have

Rt(P ) =
(
(1− g2(X ′)

|X ′|2
)1/2X ′, g(X ′)

)
for some X ′ ∈ ∂Bρ ∩ {z = 0}.

Figure 4. Configuration if Sθ(P ) is not above Σ

As a consequence, by integrating (5.1) along ∂Bρ ∩ {z = 0}, we have

|g(X)− g(X ′)| ≤ Cρ−2|X −X ′| ≤ C ′ρ−2
∣∣∣(1− g2(X)

|X|2
)1/2X − (1− g2(X ′)

|X ′|2
)1/2X ′

∣∣∣.
This implies that

−−−−−→
PRt(P ) makes an angle less than C ′′ρ−2 with the horizontal plane {z = 0}.

Therefore, if ρθ is chosen such that this angle is less than π
2 − θ, we obtain a contradiction with

Rt(P ) ∈ Σ and the lemma is proved. �

We are now ready to finish the proof of Theorem 2. Let

T =
{
θ ∈ [0, π2 ];Sβ(Σ−β ) is above Σ for all β ∈ [0, θ]

}
.

Since Σ ⊂ {z > 0}, we may choose θ0 > 0 small enough such that Σ−θ0
⊂ Rn+1 \ Bρθ0

. By
Lemma 7, we have [0, θ0] ⊂ T . The set T is then a closed interval of the form [0, θ1]. Let us
notice that when we symmetrize with respect to Πθ, the image of a point on ∂Bρ stays on ∂Bρ,
so that points in ∂Σ cannot be sent to interior points of Σ and interior points of Σ cannot be
sent to ∂Σ.

Then, if θ1 <
π
2 , by Lemma 7, there is a point P ∈ Σ−θ1

such that one of the following occurs:
• P /∈ Πθ1 , Sθ1(P ) ∈ Σ and Sθ1(Σ−θ1

) is on one side of Σ.
• P ∈ Πθ1 , Σ is orthogonal to Πθ1 at P and Sθ1(Σ−θ1

) is on one side of Σ.
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In the first case, if P /∈ ∂Σ, then maximum principle gives that Σ is symmetric with respect
to Πθ1 . If P ∈ ∂Σ, then, by free boundary hypothesis, Σ and Sθ1(Σ−θ1

) are normal to ∂B and
thus tangent, since Sθ1(Σ−θ1

) is on one side of Σ. As a consequence, the boundary maximum
principle implies that Σ is symmetric with respect to Πθ1 .

In the second case, if P /∈ ∂Σ, the boundary maximum principle implies that Σ is symmetric
with respect to Πθ1 . If P ∈ ∂Σ, then as Sθ1(Σ−θ1

) is on one side of Σ, we can locally parametrize Σ
and Sθ1(Σ−θ1

) over a quarter of the tangent plane TPΣ by two functions u and v such that u ≤ v,
u(P ) = v(P ), and ∇u(P ) = ∇v(P ). Moreover, at P , the tangent vector P is an eigenvector
of the second fundamental form of Σ (see (2.1)). Thus the Hessian of u and v at P coincide.
So, applying Serrin’s corner maximum principle [15] to v − u, we obtain that u ≡ v and Σ is
symmetric with respect to Πθ1 .

In any case, we obtain that Πθ1 is a plane of symmetry of Σ, which is not possible by Lemma 7.
This gives that θ1 = π

2 . Then Sπ/2(Σ ∩ {x ≥ 0}) is above Σ. The same argument gives that
Sπ/2(Σ ∩ {x ≤ 0}) is above Σ. As a consequence, Σ is symmetric with respect to {x = 0}.

By changing the coordinate system, we obtain that Σ is symmetric with respect to any vertical
hyperplane passing through the origin and then invariant by rotation around the vertical z-axis:
Σ is a catenoidal surface.

Appendix A. Harnack inequality

In this paper, we are considering solutions u to some elliptic equations on Σ under the Robin
boundary condition ∂νu + u = 0. Elliptic regularity theory for this condition can be found
in [11, Theorem 2.4.2.6]. Besides, one can also remark that, if d is a smooth function on
Σ with ∂νd = 1 (for example −d could be the distance function to ∂Σ) and v = edu, then
∂νv = (∂νd)edu + ed∂νu = 0 and v solves some elliptic equation. So results for Neumann
boundary data can be translated to the Robin boundary condition.

In the proof of Proposition 3, we use a Harnack inequality up to the boundary that can be
derived from the following one.

Proposition 8. Let Σ be a Riemannian manifold with compact boundary and u be a positive
solution to {

∆u+ (X,∇u) + qu = 0 on Σ,
∂νu = 0 on ∂Σ,

where X is smooth vectorfield and q a smooth function. Then, given a compact domain U ⊂ Σ,
there exists a constant C > 0 (not depending on u) such that, for any p, q ∈ U , we have

u(p)
u(q) ≤ C.

No such statement seems to appear in the literature. Similar results appear in [4, 20], however
they are not directly applicable here because of certain hypotheses.

Proof. In order to prove such an estimate, it is enough to prove an upper bound on |∇ ln u|. Let
v = ln u. We have

(A.1) ∆v = ∆u
u
− |∇u|

2

u2 = −q − (X,∇v)− |∇v|2.

Now, let w = |∇v|2 and consider a nonnegative function φ with compact support such that
φ = 1 on ∂Σ and φ ≥ 1 on U . Let consider p a point of maximum of φw. We notice that
∂νv = 0, so ∇v is tangent to ∂Σ. Thus

∂ν(φw) = w∂νφ+ 2φ(∇ν∇v,∇v)
= w∂νφ+ 2φ(∇∇v∇v, ν)
= w∂νφ+ 2φB∂Σ(∇v,∇v)
≤ w(∂νφ+ 2H),
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where B∂Σ is the second fundamental form of ∂Σ and H is an upper bound for the principal
curvatures of ∂Σ. So, choosing φ such that ∂νφ+2H < 0, we can ensure that ∂ν(φw) is negative.
Thus the maximum cannot be on the boundary of Σ. Let us compute ∆(φw) by using Bochner
formula:

∆(φw) = w∆φ+ 2(∇φ,∇w) + φ∆(|∇v|2)

= w∆φ+ 2(∇φ,∇w) + 2φ
[
(∇v,∇∆v) + |∇2v|2 + Ric(∇v,∇v)

]
≥ w(∆φ− 2Kφ) + 2(∇φ,∇w) + 2φ|∇2v|2 + 2φ(∇v,∇(−q − (X,∇v)− w)),

where −K is a lower bound on the Ricci tensor. We also have
(∇v,∇(X,∇v)) = (∇∇vX,∇v) + (X,∇∇v∇v)

≤ Kw + (∇v,∇X∇v)

= Kw + 1
2(X,∇w),

where K is also chosen to be an upper bound for the tensor (∇·X, ·).
At p, we have 0 = w∇φ+ φ∇w, that is, ∇w = −w∇φφ . Thus

∆(φw) ≥ w(∆φ− 4Kφ) + 2φ|∇2v|2 − 2φ(∇v,∇q)

− 2 |∇φ|
2

φ
w + w(X,∇φ) + 2w(∇v,∇φ).

At p, ∆(φw) ≤ 0, and so

(A.2) 0 ≥ 2φ|∇2v|2 + w(∆φ− 4Kφ− 2 |∇φ|
2

φ
+ (X,∇φ))− 2|∇φ|w3/2 − 2φ|∇q|w1/2.

We have |∇2v| ≥ 1√
n
|∆v|. Then, by (A.1), we have

|∇2v|2 ≥ 1
n
|∆v|2 = 1

n
(w2 − aw3/2 − bw − cw1/2 − d)

for some constants a, b, c and d which depend only on X and q. Thus, combining with (A.2)
and multiplying by φ(p), we obtain at p,

0 ≥ 2
n

(φw)2 −A(φw)3/2 −B(φw)− C(φw)1/2 −D

for some constants A, B, C and D which depend only on K, X, q and φ. This implies that
φ(p)w(p) ≤M for some constant M = M(A,B,C,D) and thus w(q) ≤M for q ∈ U , since φ ≥ 1
on U . �

As a consequence, we have the following Harnack inequality for the Robin boundary condition.

Proposition 9. Let Σ be a Riemannian manifold with compact boundary and u be a positive
solution to {

∆u+ qu = 0 on Σ,
∂νu+ u = 0 on ∂Σ,

where q is a smooth function. Then, given a compact domain U ⊂ Σ, there exists a constant
C > 0 (not depending on u) such that, for any p, q ∈ U , we have

u(p)
u(q) ≤ C.

Proof. As explained above, let d be a smooth function on Σ such that ∂νd = 1 and v = edu. We
then have ∂νv = (∂νd)edu+ ed∂νu = 0. We also have

∆v = ed(u|∇d|2 + u∆d+ 2(∇u,∇d) + d∆u)
= 2(∇v,∇d) + (∆d− |∇d|2 − dq)v.

So the above proposition applies to v and gives the expected result for u. �
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