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Abstract

Whole genome sequencing is increasingly used to diagnose medical conditions of genetic

origin. While both coding and non-coding DNA variants contribute to a wide range of dis-

eases, most patients who receive a WGS-based diagnosis today harbour a protein-coding

mutation. Functional interpretation and prioritization of non-coding variants represents a

persistent challenge, and disease-causing non-coding variants remain largely unidentified.

Depending on the disease, WGS fails to identify a candidate variant in 20–80% of patients,

severely limiting the usefulness of sequencing for personalised medicine. Here we present

FINSURF, a machine-learning approach to predict the functional impact of non-coding vari-

ants in regulatory regions. FINSURF outperforms state-of-the-art methods, owing in particu-

lar to optimized control variants selection during training. In addition to ranking candidate

variants, FINSURF breaks down the score for each variant into contributions from individual

annotations, facilitating the evaluation of their functional relevance. We applied FINSURF to

a diverse set of 30 diseases with described causative non-coding mutations, and correctly

identified the disease-causative non-coding variant within the ten top hits in 22 cases. FIN-

SURF is implemented as an online server to as well as custom browser tracks, and provides

a quick and efficient solution to prioritize candidate non-coding variants in realistic clinical

settings.

Author summary

Genetic diseases are caused by DNA mutations disrupting gene sequences, but also non-

coding regions that regulate their expression. Identifying such non-coding mutations is

difficult, because the precise location and function of regulatory regions remain poorly

characterized. When analysing complete genome sequences from patients, clinicians must

rely on bioinformatic tools to rank the most likely candidate mutations. Here we present

FINSURF, a new machine-learning method trained to recognise non-coding mutations

likely to cause disease. FINSURF outperforms state-of-the-art methods by considering a

composite benchmark of control mutations with no described phenotypic effect. A novel

feature in FINSURF also consists in associating non-coding mutations to target genes

whose expression might be affected, enabling users to narrow down on genes relevant to
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the disrupted function or disease, if known. When applied to complete human genomes

containing millions of benign mutations, in 73% of cases FINSURF correctly identified

mutations causing varied genetic diseases in the top 10 scores. FINSURF is available for

download, as a genome score track and as an online server.

Introduction

Whole genome sequencing (WGS) is increasingly used to diagnose pathogenic genetic variants

in patients. However, interpretation of whole genome sequencing data remains virtually

restricted to the ~2% that encode proteins, because the only mutations we functionally under-

stand well are those affecting codons and splice sites. Disease-causing non-coding variants, on

the other hand, presumably operate by deregulating gene expression. Regulatory mutations

causing genetic diseases are known to show a wide range of penetrance in mammals [1,2].

Still, numerous examples demonstrate that a single base pair change in a transcription factor

binding site or in a gene promoter can disrupt gene expression and cause a pathology [2–6].

Identifying such regulatory variants remains eminently challenging, as it requires demonstrat-

ing that the mutation modifies gene expression timing, intensity or cell type, and leads to a dis-

ease phenotype. This may explain why large fractions of patients participating in WGS cohorts

do not receive a molecular diagnosis [7,8].

A first issue to identify candidate pathogenic variants in patients is the sheer volume of

genetic variants to consider. A WGS dataset delivers 4 to 5 million variants per individual. Less

than 10% are present at high frequency in the human population (more than 5% of individu-

als), the vast majority (>90%) are present at lower frequencies [8], and a few thousand are

unique to each genome [9]. Ultra-rare variants, among which a mutation causing a highly pen-

etrant genetic disease might be sought in priority, therefore amount to tens of thousands of

candidates. Secondly, the catalogue of regulatory elements in the human genome is still incom-

plete. Tremendous progress has been made in characterising the properties of noncoding

regions using genome-wide assays in many cell types, including the ENCODE [10] and the

Roadmap Epigenomics project [11]. However the relationship between epigenomic signals as

well as their amount of true and false positives have yet to be established [12]. Studies consis-

tently report more than two million predicted regulatory regions in the human genome

[11,13], but most of these are not experimentally validated. Large-scale reporter assays can

quantify the impact of individual variants on gene expression, but being ectopic, they do not

account for the complex cognate genomic context of true regulatory regions [14,15]. Finally,

linking a regulatory mutation to the gene whose expression is modified remains a critical step

to demonstrate disease causality. Regulatory regions lie in vast expanses of non-coding DNA,

sometimes hundreds of kilobases from their target gene. Different approaches have attempted

to link regulatory elements to genes genome-wide, using correlated expression (e.g. the FAN-

TOM project [16]), correlated chromatin states [13,17], physical contacts with a TSS (Capture-

HiC [18,19]) or evolutionary linkage (e.g. PEGASUS [20]), but the specificity of these methods

is unknown.

Considering the tremendous amount, diversity and complexity of information available on

chromatin states, evolutionary conservation and genome topology associated with gene regula-

tion, a number of computational methods based on machine learning have recently been

developed to identify putatively functional non-coding variants [21] (Table C in S1 Text).

Their aim is to integrate the data into a single statistical framework and rank variants through

a score that reflects their functional importance or regulatory potential. Current methods
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suffer from three main limitations. First, specificity and sensitivity are typically evaluated

using data similar to the data used for model training, and it is unclear how models generalise

to new variants. Second, scores are over-simplified numerical values that do not capture the

rich and heterogeneous set of annotations contributing to variant selection. Third, most meth-

ods do not assign candidate regulatory variants to a predicted target gene, or resort to a naive

“nearest gene” approach to do so, even though this is incomplete in many cases [16,22,23].

Here we describe FINSURF, a method for ranking non-coding variants in the context of

human diseases. FINSURF computes a functional score predictive of the damaging nature of

the mutation, but also breaks the score down into quantified contributions from all the fea-

tures, making it biologically interpretable. In addition, FINSURF associates variants to one or

several putatively deregulated genes when possible, which can be confronted to known genes

implicated in a disease. Using a realistic setup that replicates real patient WGS in a broad

range of diseases, we demonstrate that FINSURF is able to pick out the correct damaging regu-

latory mutations from several million variants with high accuracy and precision.

Material and methods

Training datasets

As positive controls, we selected all variants labelled as Damaging Mutations from the Human

Gene Mutation Database [5] (version Pro 2017.2). To focus on non-coding variants, we

excluded variants that were annotated as protein-impacting and/or located within CDS

according to the HGMD gene annotations. We additionally used the GENCODE [24] genome

annotation (version 29 lift-over hg19) to further exclude variants located within CDS, start

codon, stop codon, or splice sites. This lead to the identification of 880 non-coding damaging

mutations. This entire set was included for the “Random” model, but reduced to 878 for the

“Adjusted” model and to 877 in the “Local” model, as some variants did not have any appro-

priate negative controls (see hereafter for the description of these models and sampling

schemes). Negative controls were sampled from a set of 38,056,330 variants for which no med-

ical impact was found (accessed on 2017/09/05 from http://ftp.ncbi.nlm.nih.gov/pub/clinvar/

vcf_GRCh37/archive_1.0/2017/).

A first set of 880,000 negative controls was sampled randomly after removing coding variants

and indels, as no indels were present in the positive set (here-after named "Random"; 880 vari-

ants sampled per tree, over 1000 trees). This corresponds to a naive approach under which no

particular bias is expected between the positive and negative controls aside from the differences

in distributions of annotations. A second set of 6,113 negative controls was selected within 1,000

bp of positive control variants (here-after named “Local”). This control set was built to test sepa-

ration of positive and negative controls at high genetic resolution. The third set (called

“Adjusted”, which was used for the analysis) corresponds to a intermediate situation, where neg-

ative controls are sampled from cytogenetic bands containing at least one positive control to

avoid artificially biasing negative controls towards non-functional genomic regions [25]. Addi-

tionally, proportions of negative controls in the different GENCODE biotypes were matched to

those of positive controls. This correction aims at forcing the classification model to focus on the

functional differences between positive and negative controls, rather than capturing differences

that arise from a location bias (as positive controls are biased towards gene-proximal non-coding

regions). In total, 67,089 negative controls were retained in this set.

Annotation of non-coding variants

See Table A in S1 Text for a complete list of annotations. To build the classification model, we

identified four groups of annotations to characterize non-coding variants. The first group
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corresponds to annotations related to sequence evolutionary conservation. PhyloP and Phast-

Cons scores for the human genome (hg19 version) based on the 100 vertebrate multiple

genome alignment were downloaded from the UCSC web browser. The same scores were

obtained for the 20 primate genomes alignments for the hg38 version, and converted to hg19

coordinates using liftOver [26]. In addition, GERP scores and GERP elements were down-

loaded from the Sidow lab webpage (hg19 version). Finally, the Context-dependent tolerance

score (CDTS) evaluates constraint at the human population level. Scores were obtained from

the original publication [27] for hg19. The second group corresponds to annotations describ-

ing biochemical properties of the genome. The Roadmap Epigenomics project provides with

18 chromatin states inferred from combinations of histone modifications, across 98 cell types.

This large amount of features would correspond to a very sparse set of annotations, a variant

being associated to a single of the 18 chromatin states for a given cell type. As sparse annota-

tions are poorly exploited by random forests, we aggregated these chromatin states per geno-

mic position and counted the number of cell types corresponding to each chromatin state. We

also selected three key histone marks of regulatory regions, H3K4me1, H3K4me3, and

H3K27ac, and calculated the median Fold Change value at each genomic position across the

same 98 cell types. Additionally, we downloaded two datasets related to transcription factor

binding sites from the UCSC Genome Browser: TFBS identified as conserved between mouse,

rat, and human; and clusters of TFBS identified in ChIP-seq peaks from 161 experiments

across 91 cell types from the ENCODE project. A complementary dataset of TFBS from JAS-

PAR, identified within ChIP-seq peaks, was obtained from Ensembl [28]. Finally, a dataset of

DNaseI hypersensitive regions was obtained from the UCSC, corresponding to clusters identi-

fied in 125 cell types from ENCODE. A third group of features describe sequence properties

related to variant locations. Three features were retained: CpG dinucleotides and CpG islands,

downloaded from the UCSC, and variant type (transition, transversion, or INDEL). The last

group gathers annotations from recently published datasets predicting regulatory regions in

the genome together with their gene targets. We extracted predicted regulatory regions from

the following datasets: GeneHancer [29] (version 4.4, accessed 2018-12-17), PEGASUS [20]

(2018-12-17), FANTOM5 co-expressed regions [16] (2018-11-19), FOCS FANTOM5, FOCS

ROADMAP DHS, and FOCS Gro-seq co-expression [17] (2018-12-11). We also included pro-

moters (2kb upstream of transcription start sites) and UTR regions from all coding and non-

coding genes from the GENCODE [24] dataset as potential non-coding regions of interest

(v29lifthg19). These datasets were integrated by merging overlapping elements into regions

with one or multiple evidences of predicted associations. This integration was not performed

for GeneHancer, which was handled separately, as it does not provide a single score for each

regulatory region/predicted target pair. A list of predicted targets was derived for each regula-

tory region by merging all predicted target genes across methodologies. In addition to these

four groups of annotations, which are used for classification by the FINSURF model, other

annotations were included for filtering and characterizing variants. Notably, we used the GEN-

CODE (v29liftHg19) annotations for the locations of biotypes such as CDS, introns, etc. A

total of 471,099,210 genomic positions were thus annotated with the set of descriptors, and

evaluated for functional potential with FINSURF. For each position, 2 predictions are

reported: one for transitions and one for transversions. Tabix-indexed tabular files for all chro-

mosomes were generated, allowing the fast interrogation of these files for millions of variants

of interest. Functional profiles are reported for all variants lying within annotated regulatory

regions. For indels, all positions affected by the variant (as well as the one preceding and fol-

lowing positions) are evaluated, but only the highest score is reported.
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Model training and performance evaluation

We trained three Random Forest models (Random, Adjusted and Local, using different nega-

tive control sets) using the Scikit-Learn Python library v.0.20.2, with the following parameters:

1,000 trees, maximum depth = 15 nodes, minimum number of samples per leaf = 1. These

parameters were optimized using a nested-cross validation evaluation of 400 models, exploring

different range of values. Class size imbalance issues in the training set were solved by sam-

pling with replacement a set of n random variants for each class, where n is the size of the

smallest class (in this case, HGMD-DM non-coding variants; n = 880). Each tree in the Ran-

dom Forest was then built from a different, balanced set of positive and negative controls.

Model performance was evaluated using 10-fold cross-validation. We note that genetic vari-

ants in the training set are not necessarily independent, as they can be located at close genomic

distance and thus share some of their features. This can lead to performance over-estimation

when closely located variants of the same class are split into training and validation sets, which

can artificially favour correct classification of the validation variants. To mitigate this problem,

for cross-validation variants were separated by location, based on cytogenetic bands (Fig B in

S1 Text). Model discrimination between variant classes was evaluated based on the Receiver-

Operating Curve (ROC; true positive rate as a function of false positive rate) and the Preci-

sion-Recall Curve (PRC; proportion of true positives among all positives, as a function of the

true positive rate). This second curve is of particular interest in the context of imbalanced

learning, as it better captures how the proportion of true positives against false positives

changes with increasingly lenient thresholds on the prediction score. For the Adjusted model,

we maximized the F1-score, defined as the harmonic mean of the precision and recall, and

obtained an optimal prediction score threshold of 0.51. This threshold was used to calculate

the confusion matrix. Eight other methods were also evaluated using 10-fold cross-validations

on the control dataset. Variants missing a score for any of the methods were excluded from the

evaluation (average drop-out rate = 53%). Indels were scored as with FINSURF: all bases cov-

ered by the indel were scored, but only the highest scoring position was retained.

Finally, we applied each of the three FINSURF models (Random, Adjusted, Local) on the

training datasets of the two other models, in order to evaluate the performance of each model

across different genomic contexts. We re-used the 10-fold cross-validation scheme used for

model training, but evaluated the 10 partial models using negative test sets sampled with either

of the other two models. In order to make the performance curves comparable, an additional

random sub-sampling was performed on the negative controls, so that the proportion of posi-

tives in the test-subset of each k-fold was as close as the one from the “Local” selection scheme

(12.5%).

Independent evaluation

We downloaded 448 disease-causing non-coding variants used to train the ReMM-Genomiser

model [25]. Of these, we excluded 11 variants found within coding regions according to GEN-

CODE v29. We then intersected these variants with our training set of regulatory HGMD-DM

variants and excluded overlaps. This resulted in a set of 92 non-coding regulatory variants

independent from our training positive controls, which were used to compute ROC and PRC

curves. Of these, 30 were dropped during the comparison against other methods, as some

models did not provide scores for these positions, leaving 62 variants for the comparison. Neg-

ative controls (N = 17,122) were sampled from the ClinVar dataset, using the Adjusted sam-

pling protocol. For analysis of a realistic genome-wide VCF, we further excluded disease-

causing non-coding variants located within 1,000 bp of an HGMD-DM variant from the FIN-

SURF training dataset, and specifically focused on 49 variants that represent a set of fully
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independent regulatory variants with respect to our model. All non-coding variants (according

to GENCODE v29) from the Illumina Platinum genome NA12877 [30] were annotated and

scored with FINSURF as a realistic genetic background.

Feature contributions and clustering

Feature contributions were calculated using a more computationally efficient, in-house re-

implementation of the treeinterpreter package (https://github.com/andosa/treeinterpreter;

https://arxiv.org/abs/1906.10845), which calculates the average decrease in Gini impurity

index across all trees for each feature/variant combination. To avoid overfitting, feature contri-

butions for a particular variant were calculated only from trees where this variant was not used

for training. K-means clustering was performed on the feature contributions vectors for the

positive control variants to explore structure in the training set. Different K values from 2 to

19 were explored, and the optimal K was selected using maximization of the silhouette score

and inertia minimization with Scikit-Learn v.0.20.2. For each cluster, mean feature contribu-

tions were calculated to obtain the average functional profile. To translate these feature contri-

butions into feature values, we calculated the feature effect size for variants within a cluster

against variants from other clusters combined with negative controls. This comparison high-

lights distinctions between positive and negative controls that are specific to this cluster. Effect

size was calculated depending on feature distribution: Cohen’s h for binary features, and

Cohen’s d for discrete and continuous features:

dcohen ¼
ð�xA � �xBÞ

stdpooled

hcohen ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffi
ðpAÞ

p
�

ffiffiffiffiffiffiffiffi
ðpBÞ

p� �� �

Disease association analysis

We collected sets of genes from OMIM [31], associated with 30 diseases caused by 49 fully-

independent non-coding variants from the ReMM-Genomiser [25] training dataset (see ‘Inde-

pendent evaluation’ above). Each disease was associated with a single gene, except for “Cere-

bral Amyloid Angiopathy, APP-related” (OMIM:605714) for which 3 genes were retrieved

from the OMIM webpage. Variants within regulatory regions with predicted targets that con-

tained the identified disease-gene were selected and ranked based on their FINSURF score.

Results

FINSURF accurately distinguishes true regulatory variants from a variety

of negative controls

We trained random forest classifiers [32] using 880 experimentally validated, non-coding reg-

ulatory variants as a positive training set, identified in the HGMD [5] database as Damaging

Mutations (hereafter named “HGMD-DM” variants). We sampled control variants from 31

million non-coding variants with no clinical significance in the ClinVar [33] database as nega-

tive training sets. Importantly, we observed that negative and positive variants are unequally

distributed with regard to genomic features such as introns, intergenes or promoters (Fig 1A).

This probably reflects a mixture of underlying biology of regulatory variants and bias in the

HGMD database. We therefore defined three negative training sets to explore the impact of

genomic variant distribution on the model ability to discriminate non-coding regulatory vari-

ants. Briefly, two extreme models were built: one with randomly sampled negative controls
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(“Random”), and one with negative controls sampled within 1 kb of variants from the positive

set (“Local”; Material and Methods). The first model learns from large numbers of variants

across the entire genome; however, the model may be overly naive, as genomic distribution

biases in the training set may result in poor discrimination between closely located variants.

The second model separates positive and negative variants at high resolution; but it explores a

small fraction of the genome and may not generalize. We also defined an intermediate model

(“Adjusted”), where we sampled negative controls from cytogenetic bands containing positive

controls, a similar strategy to ReMM-Genomiser [25], and then sub-sampled to match the pro-

portions of positive and negative variants within genomic feature intervals as defined by GEN-

CODE biotypes (Material and Methods, Fig 1A and 1B). During model training, we ensured

that contributions from positive and negative training sets remain balanced (Material and

Methods). We assembled a compendium of 41 genomic features to deeply annotate all vari-

ants, including evolutionary sequence conservation [27,34–37], biochemical composite anno-

tations from hundreds of biological contexts [11,13,38], sequence features, and predicted

regulatory element–gene interactions [16,17,20,29] (Table A in S1 Text and Fig 1B).

Fig 1. FINSURF design strategy. a. Percentage of genetic variants intersecting GENCODE biotypes across benign variants (shades of blue, corresponding to different

sampling strategies) and damaging variants from the HGMD database (red). b. The final pipeline leading to the FINSURF model. Control negative variants were sampled

using the Adjusted strategy. Both the negative and positive sets were annotated with 41 features, and a random forest classifier was trained to distinguish them on this

basis. Ten iterations were performed, each time using 9/10 of the data, while testing performances on the remaining 1/10 which had not been used for training.

https://doi.org/10.1371/journal.pgen.1010191.g001
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We evaluated the model’s abilities to distinguish regulatory from non-regulatory variants

by performing 10-fold cross-validation. The positive and negative variant sets were each

divided in ten subsets, and the random forest model was trained on 9 parts and its perfor-

mances evaluated on the 10th, which contains variants not used for the training. This process

was run 10 times, using each subset as the left-out evaluation subset once (Fig 1B).

The Random model performs best, with an area under the curve (AUC) of the Receiving

Operator Curve (ROC) of 0.957 and AUC of the Precision-Recall Curve (PRC) of 0.823 (Fig A

in S1 Text). Following are the Adjusted model and the Local model, in order. This perfor-

mance gradient is consistent with the nature of the negative training sets. Indeed, random

non-coding variants largely fall in repetitive and non-functional genomic DNA, and are easily

distinguished from regulatory regions, but discrimination becomes harder as the negative set

becomes more similar to the positive set. While impressive performances can be achieved by

using highly contrasted negative and positive sets, such a model may perform poorly at sepa-

rating the wheat from the chaff amongst closely located variants. To test this, we applied each

of the three trained models to discriminate the positive variant set from the negative sets of the

other two models (Fig A in S1 Text). As expected, all three models display lower performance

when discriminating variants distributed differently from their own training set. Nonetheless,

the Adjusted model generalises well: it performs similarly with randomly sampled negatives

and its own adjusted set of negatives (ROC AUCs = 0.948 and 0.879, respectively), and just

slightly underperforms compared to the Local model when using closely located positive and

negative variants (ROC AUCs = 0.841 and 0.796, respectively). Because of its high perfor-

mances and its ability to generalize genome-wide as well as to discriminate locally, Adjusted

represents an advantageous model on which we base the rest of this study (Fig 2A and 2B). We

named this new model FINSURF, for Functional Interpretation of Non-coding Sequences

Using Random Forests. For each variant, FINSURF provides a score corresponding to the pro-

portion of decision trees in the random forest classifying this variant as regulatory, as well as a

description of genomic features that contributed to this classification, which we refer to as a

“functional profile”. As the functional impact of non-coding indels is heterogeneous and not

well characterised, FINSURF will report the highest scoring position covered by the indel,

including the two flanking positions, as a general solution. In addition to its score, each variant

is associated with a list of putative target genes based on the union of publicly available

resources linking putative regulatory sequences to target genes, including biochemical co-acti-

vation and conserved physical linkage (PEGASUS, GeneHancer, FANTOM5, FOCS, GEN-

CODE promoters and UTRs; see Material and Methods: Annotation of non-coding variants

and Table B in S1 Text). The FINSURF score can be used to annotate, classify and rank vari-

ants relative to each other, while genomic features and target genes can be used to further

refine candidate pathogenic variant searches.

Evaluation against alternative methods and variants

We next evaluated FINSURF against eight existing methods designed to assess the functional

impact of non-coding variants. For this, we reused the same 10-fold cross-validation variant

subsets used to evaluate FINSURF, with negative variants sampled from the Adjusted set. We

scored each validation subset with the other methods as well, and we compared respective per-

formances using ROC and PRC AUC (panel a of Fig C in S1 Text). FINSURF outperforms all

methods according to the ROC AUC values (0.819), and is second best according to the PRC

AUC values (0.486) after ReMM-Genomiser [25] (PRC AUC of 0.512). Of note, ReMM-Geno-

miser, NCBoost [39] and FATHMM-MKL are all trained on the HGMD-DM positive variants.

These methods are therefore placed in overly favourable conditions, as variants used for their
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training likely appear in our validation subsets, while FINSURF is entirely evaluated on left-

out variants. These results confirm that FINSURF is highly efficient to identify disease-causing,

penetrant non-coding genetic variants of the type found in the HGMD-DM resource.

To verify that FINSURF’s performances extend to an independent set of non-coding regu-

latory mutations, we collected non-coding variants used for training ReMM-Genomiser but

absent from the HGMD-DM resource. This small but independent dataset comprises 92 muta-

tions, of which 62 can be scored by all eight methods, including 41 SNV and 21 INDELS. For

the negative set, 31,564 variants (of which 17,122 can be scored by all methods) were selected

from the non-coding and clinically non-significative ClinVar set, following the Adjusted

Fig 2. FINSURF performances. a. Receiving Operating Curve (ROC) after a 10-fold training procedure. The average curve is shown in bold red and the 95% confidence

interval is indicated by a pink shading, with the mean Area Under Curve (AUC) reported in the bottom right. The dashed diagonal line indicates the distinction between

positives and negatives expected by chance (AUC = 0.50). b. Precision Recall Curve (PRC) computed from the same 10-fold training procedure. As for the ROC, the

average curve is shown in bold red and the 95% interval is indicated by a pink shading, with the mean Area Under Curve (AUC) reported at the bottom. The dashed

diagonal line indicates the amount of true positive to be recovered by a model predicting all variants as positive, fixed to 12.5%. c. Distributions of FINSURF scores in the

test set for each of the 10-fold trainings. Scores for negative variants are shown in blue, and for positive variants in red. The vertical dashed line represents the optimal

score threshold (0.51) to separate positives from negatives (Material and Methods). d. ROC curves comparisons between FINSURF and eight other methods on a set of 62

variant independent from the training set of FINSURF. AUC values for each method are indicated in the legend.

https://doi.org/10.1371/journal.pgen.1010191.g002
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sampling scheme and excluding those already used to train FINSURF. Remarkably, FINSURF

again outperforms all alternative methods (Fig 2D and panel b of Fig C in S1 Text) despite

some methods having been trained using this set of positive variants. Taken together, these

results demonstrate that the combination of a carefully designed set of negative variants, a

deep annotation and the optimization of a random forest classifier lead to advanced abilities to

identify functional non-coding variants.

FINSURF scores can be decomposed in biologically interpretable

measurements

While accuracy is critical, most advanced statistical classification methods, including random

forests, result in numerical scores, weights or probabilities that cannot be directly interpreted

biologically. In addition to the score, FINSURF provides an array of descriptors for every bio-

logical feature and every variant, which serve to interpret how the model reached its conclu-

sions. First, the Feature Importance measures how much a given biological feature contributed

to discriminating positive and negative variants during training, averaged across all nodes and

decision trees where the feature was sampled (Material and Methods) [40]. Feature Impor-

tance thus provides a feature-centric view of their relative discriminatory power. Second, Fea-

ture Contributions are variant-centric measures describing how each feature individually

contributed in classifying a particular variant as positive or negative [41].

In agreement with previous models [25,39,42], the relative Feature Importances from the

FINSURF model highlight the major influence of evolutionary sequence conservation scores

in classifying regulatory variants (Fig D in S1 Text), with the GERP [37] score computed on a

multiple alignment of 34 mammalian genomes largely dominating all other features. Addition-

ally, the maximum predicted motif score within clusters of overlapping transcription factor

binding sites (TFBS; Clustered TFBS max score) also plays a major role. Other prominent fea-

tures include promoter segments and H3K27ac signals [11], as well as enhancers from the

GeneHancer [29] collection. Together, these results confirm that FINSURF exploits diverse

features consistent with different regulatory functions to identify non-coding pathogenic

mutations.

Feature Contributions in turn allow users to investigate the biological properties of individ-

ual or groups of variants, and how they contributed to their classification. As an example, we

relied on these variant-specific vectors to group the 880 HGMD-DM positive variants into

seven clusters (Fig 3A and 3B, Fig E in S1 Text), revealing heterogeneity in the positive training

set. First, the largest cluster by far (415 variants) contains 99.8% true positives after classifica-

tion by FINSURF, and is characterised by a strong evolutionary conservation signal. Second,

remaining clusters with more than 50% true positives rely less consistently on sequence con-

servation but are all characterised by a substantial overlap with predicted TFBS clusters.

Finally, clusters 6 and 7 are two small clusters where FINSURF displays low accuracy (42 and

85 variants; false negative rate > 60%). Variants in these clusters display characteristics typical

of variants from the negative set and have nearly no features contributing positively to their

classification. This observation could be caused by insufficient coverage of their regulatory fea-

tures in the collection used by FINSURF, possibly because they are condition-dependent, or

that despite manual curation of the HGMD database, these variants are in fact not regulatory.

FINSURF additionally provides a graphical display tool to investigate the functional proper-

ties of specific variants. To illustrate this functionality, we explored the functional profiles of

two example variants located in the vicinity of SERPINC1, one correctly classified as a regula-

tory variant (Fig 3C) and one non-functional but misclassified (Fig 3D). The first example case

was identified by FINSURF as functional based on its strong evolutionary conservation, as
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highlighted by the Feature Contribution values. This variant also overlaps a promoter region, a

TFBS cluster, and is quiescent in many tissues, but these features only weakly contributed to

the classification. The second variant shows no evidence of medical relevance in the ClinVar

database, but FINSURF mis-identified it as functional. The functional profile reveals that this

variant is located within a promoter, overlaps a TFBS cluster and corresponds to an open chro-

matin region in many tissues as revealed by DNAse sensitivity, which jointly contributed to its

misclassification.

Fig 3. Feature contributions. a. The 880 positive variants were clustered using K-means into 7 clusters based on the contributions of all 41 features to their FINSURF

score. Variants were classified as true positives or false negatives using the optimal score threshold (0.51). b. Average feature contributions in each cluster. The grey-red

gradient reflects the normalized contribution of each feature and is relative across the entire grid. Features are grouped by functionally relevant categories (denoted by

green, purple, red and blue colours). c. Functional profile of a True Positive variant, characterized as a disease-causing mutation impacting the SERPINC1 promoter. The

heights of bars represent each of the features, rescaled between -1 and 1 from their distribution over the 400Mb of regulatory regions. The colours represents the feature

contributions, highlighting which feature contributed positively (red) or negatively (blue) to the prediction score. d. Functional profile of a False Positive variant, passing

the optimal threshold of 0.51, and found in regulatory regions also associated to SERPINC1.

https://doi.org/10.1371/journal.pgen.1010191.g003
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From whole genome sequences to pathogenic mutations

Given its high discrimination power and ability to generalize well across the genome, FIN-

SURF is theoretically well suited to assist identification of pathogenic mutations when analys-

ing Whole Genome Sequences (WGS) from patients. To test this, we generated realistic

synthetic genomes that replicate a typical clinical situation, where a patient’s genome is

sequenced to diagnose the molecular cause of a known disease, but no coding mutation can be

detected in any associated gene and a regulatory mutation is suspected. We focused on the set

of 92 curated non-coding variants used by REMM-Genomiser for training, known to cause 56

different genetic diseases, and that were not used to train FINSURF. Despite their indepen-

dence from the HGMD-DM training set, 43 variants still lied in the immediate vicinity of

mutations used for training and likely share some of their biological annotations, which trans-

lated in higher but possibly overfit FINSURF scores (panel a of Fig F in S1 Text). To alleviate

this bias, we removed all variants located within 1,000 bp from any variant that FINSURF used

during training, leaving 49 variants causing 30 diseases. These 49 variants display a wide distri-

bution of FINSURF scores ranging from 0.072 to 0.965 (Fig 4A).

Then, we seeded these pathogenic variants amongst 4,016,599 genetic variants identified in

a reference donor from the Illumina Platinum Genome23 collection, and scored the resulting

synthetic genome with FINSURF. Unsurprisingly, the 49 pathogenic variants rank higher than

average, with the majority (82%) comprised in the top 5% (Mann-Whitney test, p value = 1.23

10−29, Fig 4B). However this enrichment is of little practical use, as only one pathogenic variant

scores in the top 100 variants which could realistically be investigated further by molecular

biology techniques. This is an underappreciated limitation of pathogenic variant identification

methods applied to real WGS data, where causative variants are vastly outnumbered by other

variants, some of them with regulatory functions.

We show next how the regulatory and gene target predictions built into FINSURF dramati-

cally increase its accuracy picking out disease-relevant regulatory candidates. We first

restricted our search to variants in the 16% of the genome (471 Mb) harbouring molecular evi-

dence of regulatory functions or evolutionary conservation in any of the resources leveraged

by FINSURF (Table B in S1 text). This filter assumes that the remaining 84% of the genome

which have never been associated with regulatory evidence are unlikely to be functional, and

greatly speeds up computation. All pathogenic variants were retained, and they remain con-

centrated in the top ranking variants of this subset, with 74% in the top 5% (Mann-Whitney

test, p value = 2.27 10−23), but still among a vast excess of false positives. Then, we relied on the

OMIM database [31] to establish lists of potentially deregulated genes for each of the 30 dis-

eases, and only retained variants predicted by FINSURF to interact with those genes. For

example, cerebral amyloid angiopathy is caused by the β-amyloid precursor protein (APP)

[43], whose gene is predicted to interact with 428 candidate variants in this realistic setting.

FINSURF correctly ranks the pathogenic variant in first position (Fig 4B). Overall, across the

30 diseases included in the study, between 3 and 495 variants from the synthetic genome are

predicted to interact with known disease genes (average: 115). FINSURF ranks the causative

pathogenic variants in first position in 11 instances. For 8 other diseases, FINSURF ranked the

causative mutation in the top 5 variants, and in 4 additional cases, the causative mutation was

in the top 10 variants. In summary, FINSURF ranked the pathogenic variant(s) within the first

ten candidates for 22 out of 30 disease cases, making it the first non-coding variant predictor

performing accurately in a practical, realistic setting. Of note, many of the correctly identified

pathogenic variants have comparable scores with FINSURF (Fig 4B) and other methods (pan-

els b-d of Fig E in S1 Text), highlighting how target gene predictions built into FINSURF are a

major contributor to identifying relevant non-coding mutations in disease contexts.
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In two disease cases, FINSURF failed to identify the pathogenic mutation because the vari-

ants are not predicted to interact with disease gene(s). Of these, the mutation linked to Pierre

Robin Sequence is highly scored by FINSURF (0.808) but is predicted to interact with KCNJ2

and KCNJ16 instead of SOX9, the documented causal gene. Interestingly, this variant is located

1.4 Mb away from SOX9 [44], and its functional involvement in Pierre Robin Sequence may

be conditional as this variant is also present in non-affected controls [45]. Further, the two reg-

ulatory mutations associated to Maturity Onset Diabetes of the Young type 11 (MODY11)

have only been shown to reduce the expression of a reporter gene in vitro and have no formally

demonstrated role in the pathology [46]. Together, these results suggest that our methodology

integrating regulatory features and target predictions shows high discrimination and accuracy

to identify relevant non-coding disease variants.

Fig 4. Application to medical genetics. a. A set of 49 regulatory variants causing human diseases (x-axis) not used for training were scored by FINSURF (y-axis).

Eleven variants target a disease gene that is also targeted by a training variant (in blue), while 38 variants are totally independent (in purple). b. The 49 variants were

seeded amongst over 4 million variants from a representative, otherwise healthy individual human genome, and their respective ranks are shown in the top bar (log

scale; colors represent different diseases). When pathogenic and background variants are restricted to putatively functional non-coding sequences based on

molecular or evolutionary evidence, ranking remains uninformative (second bar). However, when filtering for variants associated with disease genes, disease-causing

mutations generally show high-ranking positions (coloured bars; total number of non-coding variants associated each disease indicated on the left; pathogenic

variants highlighted in dark, with their rank above). c. Detailed genomic context for a non-coding mutation causing van der Woude syndrome 1 (MIM 119300),

which is located in an enhancer ~30 kb in 5’ to the TSS of its target gene, interferon regulatory factor 6 (IRF6). Gene associations are from the GeneHancer

collection, and depict the enhancer (green horizontal bar) with the link to its predicted target gene (dashed arc). All tracks are from the UCSC genome browser.

https://doi.org/10.1371/journal.pgen.1010191.g004
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Discussion

We developed FINSURF to score variants in the human genome in the context of medical

genetics, delivering an efficient strategy to identify regulatory non-coding mutations likely to

cause a diagnosed disease. While a growing number of machine-learning models have been

developed in recent years to identify functional non-coding variants [47,48], few if any are

applicable in practical clinical contexts, because of their design and control choices. A classical

problem when designing an experiment, choices of positive and negative controls are not only

paramount for model accuracy and precision, but they must also be tailored to the question

that the model aims to solve. We know that a typical WGS dataset contains thousands of

benign variants that occur in conserved or epigenetically active regions with characteristics of

regulatory sequences [8]. Our goal is to identify a unique mutation among those that likely

causes a disease. While developing FINSURF, we paid a high degree of attention to the design

of a negative control dataset, and its effects on model performances and generalization. Posi-

tive controls, e.g. validated non-coding regulatory variants, remain few and far between in the

literature. As a result, most models including FINSURF are trained on similarly limited data-

sets. However, we show here that the non-coding regulatory variants in the HGMD database

are quite heterogeneous in terms of genomic location and biological features (Fig 3), suggest-

ing that FINSURF can capture a varied range of functional variants. Possibly less appreciated,

negative controls are also crucial to developing a successful model. Randomly chosen benign

human variants, or solely based on population frequency, result in models that successfully

discriminate negatives from positives but lack precision within broad regulatory regions. On

the other hand, benign variants closely matched to positive controls achieve excellent local dis-

crimination but result in overly specific models. We note that previous models have been

trained on sometimes elaborately sampled negative variants [25,49], but the theoretical justifi-

cations and the consequences of those choices on model performance have rarely been

explored. These considerations have been eclipsed by over-reliance on ROC curves to assess

performance, but ought to be properly addressed. FINSURF was explicitly tested both at the

general and the local level using different sets of controls to ensure high performances

genome-wide yet serve the purpose of identifying pathogenic mutations from a background of

variants in similar genomic contexts.

Nonetheless, the concept of regulatory sequence covers multiple situations. From develop-

mental enhancers with strong effects on gene expression and organism fitness to redundant

shadow enhancers, ultimately the regulatory potential of a genomic sequence is likely to be a

continuous property rather than a binary characteristic. This is consistent with the distribution

of FINSURF scores observed during performance tests (Fig 2) where 6.4% of benign variants

obtain scores above the optimal separation threshold of 0.51, while 41.4% of pathogenic muta-

tions are below this threshold and therefore not distinguishable from benign variants. Solely

relying on a score and threshold to identify relevant regulatory mutations from whole-genome

sequences is probably bound to fail in the vast majority of medical genomics applications. To

alleviate this issue, we provide an efficient strategy to first prioritize context-relevant candidate

variants, and then characterise the individual functional profiles of each candidate identified

by the model for further interpretation. Combining information from FINSURF scores, target

predictions and disease aetiology, we are able to correctly identify the causative regulatory

mutation as a top candidate in an array of 22 pathologies representative of the state-of-the-art

on non-coding pathogenic mutations.

This strategy allows users to integrate the discovery power of machine learning models with

prior knowledge on gene-to-phenotype associations to restrict and refine searches for candi-

date genetic variants. Although FINSURF can be used as an agnostic approach to explore
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regulatory variants associated to any gene, we show that predicted target genes aggregated

from molecular and evolutionary evidence by FINSURF can be decisive in identifying variants

that interact with genes of interest. This procedure effectively makes it possible to leverage the

vast knowledge accumulated from gene functional exploration, knock-outs and perturbation

experiments in human and animal models, which can be extracted from the literature or from

dedicated databases [50], and extends it to the more obscure non-coding fraction of the

genome. While current sets of such mutations arguably suffer from ascertainment bias, FIN-

SURF may significantly broaden the pool of relevant candidates for future clinical analyses

compared to prevailing approaches where exon-proximal variants are prioritized.

Web resources

FINSURF is available as an online application at https://www.finsurf.bio.ens.psl.eu/ where

users can load their variants in VCF format as well as optional lists of relevant target genes.

The webserver returns an interactive list of ranked candidate non-coding variants, and allows

users to investigate their functional characteristics through Feature Importance graphs and

links to custom tracks in the UCSC web browser.

Supporting information

S1 Text. Supporting Information include 3 tables and 6 figures. Table A. Sources of func-

tional annotations used by FINSURF. Table B. Sources of regulatory regions associated to

putative target genes used by FINSURF. Table C. Variant scoring methods compared to FIN-

SURF. Fig A. Design and cross-performance evaluation of the random forests models trained

with the three approaches for sampling negative control variants. As described in the methods,

the Random sampling does not correct for the differences in proportions between positive and

negative controls in the different genomic annotations, while the Adjusted model corrects for

this. The cross-performance of the models is evaluated by comparison of the ROC and preci-

sion-recall curves, recalculated from the 10 fold cross validation step of each model (which cor-

respond to the pairs of curves on the diagonal). A given column corresponds to the application

of a model on the 10-fold subsets of variants obtained under the different samples methods

(with filtering of overlapping variants between training and validation subsets, as described in

the Material and Methods). Note that to allow the comparison of performances, a second

undersampling of negative control variants was performed in the validation subset for the Ran-

dom and Adjusted models, in order to match the observed proportion of 12.5% of positive

controls in the Local sampling dataset. The area under the curves of the average curves is

reported in the two tables for each combination of model and validation dataset. Fig B. Com-

parison of the cross-validation scheme for separating training and validation sets of variants.

Separability plots include the Receiver Operating Curve (ROC) and Precision Recall Curve

(PRC) averaged over 10-fold cross-validation, as well as the density plot of positive and nega-

tive controls over the range of FINSURF predicted scores. a. Results from a 10-fold cross-vali-

dation where variants were separated taking into account their localisation within cytogenetic

bands. Variants (whether negative or positive controls) within a certain cytogenetic band are

randomly assigned to one of the 10 folds for the cross-validation, ensuring that information

from their local genomic context will not leak from the training set to the validation set. This

approach is the one retained for all cross-validations experiments in our analyses. Note that

these ROC and PRC are the one presented in the Figs A and B in S1 Text. b. Results from a

10-fold “Stratified” cross-validation, where only the imbalance of positive and negative vari-

ants was taken care of by the stratification procedure. The much better performance and

cleaner separation between classes highlights data leakage from separating at random into
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train and validation sets variants that might share common genomic context. Fig C. Compari-

son between FINSURF (red lines) and eight other methods also designed to functionally inter-

pret non-coding regulatory variants. a. Comparison of performances on the training dataset of

FINSURF “Adjusted”. The subsets of variants generated during the 10-fold cross-validation

were re-used, by scoring the positive and negative control variants with the other methods. At

no time was FINSURF tested on variants used during training. Variants for which a score

could not be computed by any one method (e.g. lack of required annotations) were discarded

for all methods. The average performance curve of the 10-folds are reported. We note the high

precision of the ReMM Genomiser model, which can be explained by the overlap between the

training variants of this model and the HGMD variants used by FINSURF. b. Comparison of

performances on the subset of 92 Genomiser variants, of which 30 are discarded due to miss-

ing scores by at least one method. Negative control variants were re-sampled following the

Adjusted sampling procedure, and those found in the training dataset of the FINSURF model

were removed. Note that the ROC curve is the one presented in the Fig 2d. Fig D. Feature

importance of the 41 features in the FINSURF Adjusted model. Features are listed on the x-

axis and grouped in four categories: green for nucleotide sequence features, purple for evolu-

tionary sequence conservation features, red for functional genomics features and blue for puta-

tive enhancer–promoter association features. Fig E. Analysis of the 878 positive control

variants of the FINSURF model through their feature contribution profiles. Contributions to

the prediction score were calculated for each variant, and k-means clustering was applied. a.

Different number of clusters were explored, and the finale number K = 7 was selected from the

joint minimization of the inertia and maximization of the silhouette. b. Distribution of scores

of variants per cluster, colored by the predicted class when applying the optimal threshold of

0.51. c. Average functional profile of the 7 clusters. These profiles highlight how feature contri-

butions relate to the raw values of the features, as processed by the random forests. For each

cluster, the raw values were normalized, and averaged from the variants within the cluster (col-

ored bars). Reference values (dark grey bars) correspond to the average from the rest of the

training dataset (i.e. positive controls in other clusters and negative controls). The color of the

bars is based on the average contributions of the features in each cluster. Fig F. Predicting

highly pathogenic disease variant in genomic context. a. Box-plots representation and individ-

ual FINSURF score values for 92 known pathogenic variants from the Genomiser dataset but

absent from the FINSURF training set. While 43 variants are very close (� 1kb) to one of the

latter (left), the remaining 49 are sufficiently far (> 1kb) to be considered to overlap indepen-

dent annotations. Of these a subset of 38 variants are also predicted to reside in a regulatory

element targeting a gene that is not in the set of targets of variants in the FINSURF training set

(“not seen”). Since the two subsets (N = 11 and N = 38) show largely overlapping score distri-

butions, they were all used for classification performance in a genomic context. b. Classifica-

tion performance comparisons between FINSURF and eight other methods on the set of 49

positive variants described in (a): left, ROC; middle, PRC; right, scatterplot of ROC versus

PRC AUC values for graphs shown on the left and middle panels. We dropped the 3 variants

from the MODY11 and PRS diseases, as they were located in regulatory regions not targeting

the reported disease gene. Note that only 37 variants were eventually scored by all 9 methods

and could be used for the analysis. The negative set used here were the 875 Platinum variants

also residing in the same predicted regulatory regions as the 37 positives. c. Table reporting the

number of OMIM diseases where at least one of the Genomiser variants is found in the top 10

candidates, after the native score from each method was filtered through Enhancer-Gene inter-

actions that are part of the FINSURF approach. The first row indicates these counts for each

method, where Genomiser variants are ranked among Platinum variants from within regula-

tory regions targeting the disease genes from each disease. The total of 30 OMIM disease is
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reduced for some methods, as ranking is impossible if they do not provide scores for all Geno-

miser variants. The second row shows these counts for the subset of OMIM diseases where all

variants are scored by all methods. Note that here 59% of Platinum variants are discarded,

reducing the space search in an unrealistic fashion. d. Comparison of ranks for the 37 positive

variants among the 875 negatives, based on scores attributed by FINSURF and eight other

methods, after the native score from each method was filtered through Enhancer-Gene inter-

actions that are part of the FINSURF approach. Ranks were normalised between 0 and 100 for

each method (y-axis). Colours represent different diseases. The graph shows that there is little

correlation between variant ranks among the different methods.
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