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A B S T R A C T
This paper presents a procedure for the estimation of the effective thermo-viscoelastic behavior
in fiber-reinforced polymer filaments used in high temperature fiber-reinforced additive man-
ufacturing (HT-FRAM). The filament is an amorphous polymer matrix (PEI) reinforced with
elastic short glass fibers treated as a single polymer composite (SPC) holding the assumption
of thermo-rheologically simple matrix. Effective thermo-viscoelastic behavior is obtained by
implementing mean-field homogenization schemes through the extension of the correspondence
principle to continuous variations of temperature by using the time-temperature superposition
principle and the internal time technique. The state of the fibers in the composite is described
through the use of probability distribution functions. Explicit forms of the effective properties
are obtained from an identification step, ensuring the same mathematical structure as the
matrix behavior. The benchmark simulations are predictions of residual stress resulting from
the cooling of the representative elementary volumes (REVs) characterizing the composite
filament. The computation of the averaged stress in the benchmarking examples is achieved by
solving numerically the stress-strain problem via the internal variables’ framework. Reference
solutions are obtained from Fast Fourier Transform based full-field homogenization simulations.
A comparative analysis is performed, showing the reliability of the proposed homogenization
procedure to predict residual stress against extensive computations of the macroscopic behavior
of a given microstructure.
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1. Introduction
Additive manufacturing (known as 3D-printing) is a booming technology covering a wide range of applications
[26, 37]. Fused deposition modeling (FDM) is one of the variations of this technology, based essentially on
thermoplastic polymer filament [15]. Transport, medical and sports industries are on the way to integrate the FDM
technique to design structural parts, aiming to take advantage of the versatility of the process and looking to achieve
the best strength-to-weight ratio. FDM 3D-printing of engineering polymers is able to offer parts with low-scale
production, presenting completely adapted solutions for final costumers [18].

The FDM printing process induces a complex thermal history in the thermoplastic filament: from almost the
material’s melting temperature to room temperature. This severe thermo-mechanical loading creates significant defects
in 3D-printed parts, commonly referred as warping [11], due to the creation of residual thermal internal stresses during
the cooling of the polymer [50]. Currently, to estimate these internal stresses, finite element methods in commercial
codes [29, 28] solve the thermo-mechanical structural problem by integrating thermo-viscoelastic behavior laws for
the polymer material [5, 58].

In order to further improve the mechanical strength of the printed parts, fiber-reinforced additive manufacturing
(FRAM) has been developed and has the advantage of combining the FDM process with the ability to manufacture a
short [22, 49] or continuous fiber composite part [32]. In order to improve the temperature strength of the printed parts,
high temperature 3D-printing has been developed and has been naturally extended to fibre-reinforced high temperature
thermoplastic polymers in order to obtain parts with good thermomechanical properties [60]. One of the most widely
used matrix-materials to address these issues is the polyetherimide (PEI) commercially known as UltemⓇ , which is
an amorphous polymer with a good combination of thermal and mechanical properties. The elevated glass transition
temperature (𝑇g > 210 ◦𝐶 ) of the PEI reflects its high thermal stability, but complicates the control of the printing
process in requiring high printing temperatures (𝑇𝑝 > 350 ◦𝐶). The PEI filament reinforced with glass fibers is the
material considered in the present work.

With the HT-FRAM 3D-printing process, a composite part is now 3D-printed with a thermal history involving a
wide range of temperature, moreover the calculation of the thermo-mechanical behavior becomes multiscale (taking
into account the microstructure: length and orientation distribution of glass fibers). The scale characterizing the
heterogeneity of the reinforced thermoplastic filament is the scale of glass fibers (around 100 𝜇𝑚 length and 10 𝜇𝑚
diameter) and is much lower than the scale of the printed part (the composite structure of the PEI filament reinforced
with glass fibers is observed in using three-dimensional computerized tomography scans (CT-scans) as related in Fig.
1). In consequence, it is no longer possible to use conventional codes based on the finite element method to take into
account the effect of the reinforcement on the behavior of the composite filament, as it becomes too expensive to
predict.

It is necessary to choose a homogenization method to describe the effective behavior of the fiber-reinforced filament,
(see for instance [43]). The macroscopic behavior can be given as a result of numerical simulations in the case of
full-field methods (see for instance [44, 45, 17, 9, 8]). In case of complex microstructures, the estimates given by the
mean field methods are no longer accurate and require numerical calculations to be approximated (see [42] and [54]
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(a) lateral view (b) sectional view
Figure 1: 3D reconstruction of CT-scans acquisitions performed on the PEI FDM glass fiber reinforced filament with a
volume fraction of 10%. The scanning step used an X-ray source with a voxel size of 2.67 𝜇𝑚, a voltage of 150 kv and a
current of 18 µA. The imager has a resolution of 1920 x 1536 pixels. The device used is an EasyTom XL Ultra 150/160
(µCT) produced by RX Solution. The pictures describe the volume rendering of fibers embedded in the PEI matrix.

in the case of poly-crystals). Full-field methods can handle a lot of complexities in constitutive laws describing their
behavior (non-linearity, plasticity, aging...), but they only give the response of the composite for a particular loading
path. This requires a large amount of computations on many REVs (Representative Elementary Volume) with different
distributions of inclusions. The cost in terms of calculation time can be too much expensive.

The macroscopic behavior can be also described in an analytical way in the thanks to mean-field methods
(see among others [31, 16]). In linear viscoelasticity framework, by using the correspondence principle, several
authors like [40] or [52] among others, find some estimates in closed form for the macroscopic behavior of isotropic
composites with microstructures following the Hashin-Shtrikman lower bound. Gupta et al. [24] has investigated a
Mori–Tanaka (MT) approach to predict the elastic effective properties of a 3D-printed composite material, assuming
that the matrix (thermoplastic polymer) and fibers (carbon fiber) are linearly elastic and homogeneous, to predict
the elastic effective properties of 3D-printed composite material. Hessman et al. [27] has confronted different mean
field homogenization schemes to predict elastic effective properties for short fiber reinforced composites using a fiber
length distribution and an orientation distribution in Advani and Tucker form [1]. The authors show that reasonable
predictions for effective elastic properties are possible even with limited microstructural information. Muliana [46] has
proposed a micromechanical model to predict thermal properties and thermo-viscoelastic response of a functionally
graded material idealized as solid spherical particles spatially distributed in a homogeneous matrix. Both constituents
are considered thermo-viscoelastic. Although mean-field approximations are more difficult to obtain for complex
constituents behaviors, certain non-linearities exhibited by polymer matrices can be accounted for, see the case of
an elastoplastic matrix in [35, 7].

The present work proposes to predict the residual thermal internal stresses during the cooling of this HT-FRAM
3D-printed composite in using mean field homogenization technique and correspondence principle to estimate the
effective behavior of a thermo-viscoelastic amorphous polymer matrix (PEI) reinforced with a transverse isotropic
distribution of the elastic inclusions (short Glass Fibers (GF)). In Section 2, the matrix in which the short glass fibers
are embedded is an amorphous polymer assumed to belong to the group of thermo-rhelogically simple materials [14].
The polymer follows the time temperature superposition principle (TTS) [3] and the material functions describing
its behavior are presented using the notion of "internal time" [25, 13]. The PEI-like matrix thermo-viscoelastic
model parameters are identified (and some of them estimated) with the experimental data taken from data-sheet
from SABIC [55]. In Section 3, the procedure to perform mean-field homogenization in single polymer composite
(SPC) with elastic fibrous reinforcements is presented. Probabilistic description of the Representative Elementary
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Volume (REV) and supplementary identification step to ensure the same mathematical structure for the matrix and
the composite are presented as well. In Section 4, first, the internal variables’ approach to rewrite the local thermo-
viscoelastic problem is given, as well as its incremental scheme to update the residual stress. Three different scenarios
are considered to compare the accuracy of the presented mean-field homogenization procedure with respect to Fast
Fourier Transform (FFT) based full-field homogenization simulations. The reference solutions are computed using
REVs that are statistically equivalent to the distribution parameters chosen for the microstructure iterations that are
used in the mean-field computations. Convergence studies for the reference solutions are presented as well. Finally, a
comparative analysis is performed for each scenario.

2. Amorphous polymer matrix behavior
This section presents the thermo-viscoelastic model used to describe the behavior of the PEI-like amorphous
polymer. The model is based on the following assumptions: thermo-rheogically simple material [14], time temperature
superposition principle (TTS) [3], and the notion of internal time [13, 25]. The model’s parameters are identified by
using data given by the material supplier SABIC [55], and other supplementary assumptions to circumvent the lack of
experimental data (Appendix D).
2.1. thermo-viscoelasticity under isothermal conditions
Constitutive equations of the viscoelastic polymer matrix are written under the Boltzmann superposition principle
[23, 41], which in the case of a non-aging isotropic viscoelastic solid at equilibrium under isothermal conditions (𝑇 is
constant), and stress-free for 𝑡 ≤ 0, can be represented as follows:

𝝈(𝑡) = ∫

𝑡

−∞
𝑳(𝑡 − 𝜏, 𝑇 )𝑑𝜺(𝜏) =

(

𝑳(⋅, 𝑇 ) ∗ 𝑑𝜺
𝑑𝑡

)

(𝑡) = (𝑳(⋅, 𝑇 )⊛ 𝜺) (𝑡), (1)

with
𝑳(𝑡, 𝑇 ) = 3𝜅(𝑡, 𝑇 )𝑱 + 2𝜇(𝑡, 𝑇 )𝑲 , (2)

where 𝑇 is the constant temperature characterizing the thermal state of the polymer, 𝝈(𝑡) and 𝜺(𝑡) are the stress and
infinitesimal strain second-order tensors, respectively. The fourth-order relaxation tensor of the isotropic matrix𝑳(𝑡, 𝑇 ),
is characterized by 𝜅(𝑡, 𝑇 ) and 𝜇(𝑡, 𝑇 ), the compressibility and shear relaxation modulus respectively, and 𝑱 and
𝑲 , the hydrostatic and deviatoric fourth-order projectors respectively [51]. Symbols ∗ and ⊛ denotes classical and
Stieltjes convolution product [41]. The dependence of 𝑳(𝑡, 𝑇 ) on the given temperature 𝑇 at which some experiment
is performed is represented via the time-temperature superposition principle of thermorheologically simple materials
[36, 20], which define 𝑳(𝑡, 𝑇 ) as

𝑳(𝑡, 𝑇 ) = 𝑳
(

𝑡
𝑎𝑇 (𝑇 )

)

, (3)

where 𝑎𝑇 (𝑇 ) is the shift factor function, which enables the description of the properties at multiple constant temperature
states from a single reference curve of the property, known as master-curve, obtained for a chosen reference temperature
𝑇r for which 𝑎𝑇 (𝑇r) = 1. In practice, this is reflected in a horizontal displacement in the plot of the observed property
as a function of the logarithmic time or frequency ( Fig. 2). The isotropic relaxation moduli, 𝜅 and 𝜇, are represented
by using the following Generalized Maxwell model (or Prony series model) [23, 25, 56]:

𝑳
(

𝑡
𝑎𝑇 (𝑇 )

)

= 3

[

𝜅g −
𝑈
∑

𝑢=1
𝜅(𝑢)

(

1 − exp

(

−𝑡
𝑎𝑇 (𝑇 )𝜏

(𝑢)
𝐿

))]

𝑱+2

[

𝜇g −
𝑈
∑

𝑢=1
𝜇(𝑢)

(

1 − exp

(

−𝑡
𝑎𝑇 (𝑇 )𝜏

(𝑢)
𝐿

))]

𝑲 , (4)

where 𝜅g = 𝜅∞ +
∑𝑈

𝑢=1 𝜅
(𝑢) and 𝜇g = 𝜇∞ +

∑𝑈
𝑢=1 𝜇

(𝑢) are the compressibility and shear glassy modulus respectively,
assumed to be temperature independent,𝑈 is the number of Maxwell branches, 𝜅(𝑢) and 𝜇(𝑢) and 𝜏(𝑢)𝐿 are the coefficients
and relaxation time associated with each branch 𝑢. Fig. 3a shows the moduli 𝜅(𝑢) and 𝜇(𝑢) for the different relaxation
times 𝜏(𝑢)𝐿 . Fig. 3b shows the evolution of the relaxation moduli 𝜅 and 𝜇 with respect to time at the reference temperature.
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Figure 2: Time-temperature superposition in compressibility modulus.

(a) Moduli distributions with shared characteristic times 𝜏 (𝑢)𝐿 . (b) Relaxation moduli vs. time.
Figure 3: Relaxation spectra characterizing the linear viscoelastic behavior of a PEI-like polymer matrix used in the present
work.

The explicit form of the shift factor function 𝑎𝑇 for polymers varies in literature with the range of temperature of the
observed material [57]. The most widely used formulations are the WLF (Williams-Landel-Ferry [20]) commonly used
for temperatures above the glass transition, the VFTH (Vogel-Fulcher-Tamman-Hesse) equation, and the Arrhenius
equation for terminal flow [57]. In view of the experimental results available on PEI matrix of the 3D-printed filament,
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it was found that, the best one is the model VFTH which define the 𝑎𝑇 function as follows:

log10 𝑎𝑇 (𝑇 ) = 𝑎 + 𝑏
𝑐 + (𝑇 − 𝑇𝑟)

, (5)

with 𝑎, 𝑏 and 𝑐, three material parameters. This function is implemented in the whole characteristic range of temperature
with piecewise constant coefficients (with 𝑇s characterizing the discontinuity) from either side of the glass transition
temperature 𝑇g = 𝑇r = 216◦C, which give the evolution plotted on Fig. 4. Numerical values of the material parameters
are shown in Table. 1.

Table 1
Piecewise constant coefficients of the VFTH function

𝑇s = 205.099 𝑇 < 𝑇s 𝑇 > 𝑇s

𝑎 −3.56811 −17.0449
𝑏 1882.297 1129.382
𝑐 288.3494 66.36251

Figure 4: VFTH shift function with piecewise constant coefficients.

2.2. thermo-viscoelasticity under non isothermal conditions
HT-FRAM 3D-printing process implies continuous variations of the temperature as a function of time, which modify
the stiffness of the material and its free volume. Following [13], the constitutive relation (1) can be extended to non-
isothermal loading by using the internal time 𝜉 as the time variable replacing the observer’s time 𝑡 and which depends
on the temperature history through the following relationship:

𝜉(𝑡) = ∫

𝑡

0

𝑑𝑢
𝑎𝑇 (𝑇 (𝑢))

. (6)
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Computed internal times for given linear cooling histories at different rates is presented in Fig. 5a. With the
definition (6) of the internal time 𝜉, and recalling that all the quantities of interest are now defined in the internal time
domain, 𝜉, to preserve the convolution interpretation of the integrals in the constitutive equations. The stress-strain
equation (Eq. 1) under non-isothermal conditions reads

𝝈(𝜉) = ∫

𝜉

−∞
𝑳(𝜉 − 𝑣)

(

𝜺̇(𝑣) − 𝜷̇(𝑣)
)

𝑑𝑣 = (𝑳⊛ (𝜺 − 𝜷)) (𝜉). (7)

In Eq. (7), 𝜷 is the thermal strain tensor defined by:

𝜷(𝜉) = ∫

𝜉

−∞
𝜶(𝜉 − 𝑣)𝑑𝜃(𝑣) and 𝜶(𝜉) =

[

𝛼l −
𝑆
∑

𝑠=1
𝛼(𝑠) exp

(

−𝜉

𝜏(𝑠)𝛼

)]

𝑰2, (8)

where 𝜶(𝜉) is the thermal creep function, 𝜃(𝜉) = 𝑇 (𝜉) − 𝑇0, is the change of temperature from the initial temperature
𝑇0, 𝑰2 is the second order identity tensor, 𝛼l the high temperature thermal expansion coefficient (𝑇 > 𝑇g), 𝛼g =
𝛼l −

∑𝑆
𝑠=1 𝛼

(𝑠) the low temperature thermal expansion coefficient (𝑇 < 𝑇g), and 𝛼(𝑠) and 𝜏(𝑠)𝛼 are the thermal expansion
coefficients and relaxation times, characterizing the time dependence of the thermal strain. This representation of the
polymer’s thermal strain has been used in [48, 12] to predict thermo-mechanical behavior in shape memory polymers,
and in [33] to predict volume shrinkage in quenching experiments in PVAc samples. As expected from the conclusions
of A. J. Kovacs in [34], this approach allows a more complete description of the evolution of the structural state of the
polymer. This model is able to take into account the dependence of the volume variations in function of the rate of
temperature change [33]. It must be noted that𝜶(𝜉) is defined in the internal time domain, reflecting the fact that thermal
expansion properties are affected by temperature in the same way as the mechanical properties. Moreover, this spectral
form of the dilatation coefficient appears naturally in the thermo-viscoelastic effective behavior of the composite even
when the matrix expansion coefficient is assumed to be constant in function of time. In Fig. 5b, computed matrix’
thermal dilatation are shown for various linear cooling histories.

(a) 𝜉 vs. 𝑇 . (b) matrix’ thermal strain 𝛽(1)
11 .

Figure 5: Computed internal time and thermal strains of the amorphous polymer matrix, identified with a superscript (1)
(i.e. {⋅}(1)) for various linear cooling rates.
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3. Effective thermo-viscoelastic behavior of the reinforced filament
This section presents the mean-field homogenization procedure. The objective is to give an estimation of the
macroscopic stress, 𝝈̄, for given histories of the macroscopic, strain and temperature, 𝜺̄ and 𝑇̄ respectively, and
for a given Representative Elementary Volume, Ω. To do so, we extend the well-known correspondence principle
[52, 41, 56, 25, 23] to thermo-mechanical loading by using the fact that, in our case, all the materials constituting the
REV share the same internal time 𝜉. This property is verified under the following assumptions: i) In the considered
REV, only the matrix is thermo-viscoelastic, the fibers are purely elastic and therefore time-independent. ii) The matrix
is thermo-rheologically simple, with its behavior given by the equations (7) and (8). iii) For coupled thermo-mechanical
homogenization problem, at the REV scale, the mechanical problem have to be solved by considering a homogeneous
temperature field 𝑇̄ which is the average in the REV of the temperature field 𝑇 (𝒙) solving the heat equation in the REV,
i.e. 𝑇̄ = ⟨𝑇 (𝒙)⟩ = 1

|Ω| ∫Ω 𝑇 (𝒙)𝑑Ω. This had been demonstrated by [62] for periodic composites by using asymptotic
homogenization in the framework of thermo-viscoelasticity. The effective thermo-viscoelastic response to a thermo-
mechanical loading is then given by: 𝝈̄(𝜉) = ⟨𝝈(𝒙, 𝜉)⟩, with 𝝈(𝒙, 𝜉) solving the following equations in Ω:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div 𝝈(𝒙, 𝜉) = 𝟎 ∀𝒙 ∈ Ω,

𝝈(𝒙, 𝜉) =
(

𝑳(𝑟) ⊛
(

𝜺(𝒙, ⋅) − 𝜷(𝑟))) (𝜉) ∀𝒙 ∈ Ω(𝑟),

𝜷(𝑟)(𝜉) =
(

𝜶(𝑟) ⊛ 𝜃̄
)

(𝜉),
⟨𝜺(𝒙, 𝜉)⟩ = 𝜺̄(𝜉),

(9)

with Ω(𝑟) being the volume occupied by phase 𝑟 in the REV (Ω = ∪𝑅
𝑟=1Ω

(𝑟)). Boundary conditions and compatibility
conditions on 𝜺 must complete this problem. The implementation of mean-field schemes is achieved by using the
correspondence principle [41, 25], that utilizes the Laplace-Carson transform to rewrite (9) as a symbolic equivalent
of a linear thermoelastic composite. The explicit form of the Laplace-Carson transform ({⋅}) is defined as follows:

𝑓 ∗(𝑝) = {𝑓}(𝑝) = 𝑝{𝑓}(𝑝) = 𝑝∫

∞

0
𝑓 (𝜉)𝑒−𝑝𝜉𝑑𝜉, (10)

and recalling the property for the Stieltjes convolution product 𝑓 ⊛ 𝑔,
{𝑓 ⊛ 𝑔}(𝑝) = 𝑝{𝑓}(𝑝)𝑝{𝑔}(𝑝) = 𝑓 ∗(𝑝)𝑔∗(𝑝). (11)

All the mechanical quantities in (9) are defined in terms of the internal time domain, ensuring the applicability
of the property in Eq. (11) to the constitutive equations in (9), and therefore showing the fact that the TTS principle
definitions for an SPC filament will remain the same as the matrix. In the Laplace domain, the symbolic homogenization
problem reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div 𝝈∗(𝒙, 𝑝) = 𝟎 ∀𝒙 ∈ Ω,

𝝈∗(𝒙, 𝑝) = 𝑳∗(𝑟)(𝑝) ∶
(

𝜺∗(𝒙, 𝑝) − 𝜷∗(𝑟)(𝑝)
)

∀𝒙 ∈ Ω(𝑟),

𝜷∗(𝑟)(𝑝) = 𝜶∗(𝑟)(𝑝)𝜃̄∗(𝑝) ∀𝒙 ∈ Ω(𝑟),
⟨𝜺∗(𝒙, 𝑝)⟩ = 𝜺̄∗(𝑝),

(12)

with compatibility and boundary conditions.
Based on the theory of effective moduli [6, 61], an approximated solution of the linear problem in (12) is sought

using mean-field approaches, that are widely applied to randomly distributed microstructures [27, 4, 39, 63, 19, 53]. In
this context, localization tensors (𝑨∗(𝑟)(𝑝) and 𝒂∗(𝑟)(𝑝)) are characterized as linear operators relating the local strain of
a given phase 𝑟 of volume fraction 𝑐(𝑟), and the macroscopic strain imposed on the REV by assuming strain fields that
are uniform per phase (𝜺∗(𝑟)(𝑝) = 𝑨∗(𝑟)(𝑝) ∶ 𝜺̄∗(𝑝) + 𝒂∗(𝑟)(𝑝)𝜃̄∗(𝑝)). By considering the relation given in [61] between
the concentration tensors 𝑨∗(𝑟)(𝑝) and 𝒂∗(𝑟)(𝑝), the effective behavior (𝑳̃∗(𝑝), 𝜶̃∗(𝑝)) of an R-phases composite in the
Laplace-Carson domain is obtained through the following relationships, noting that, in order to lighten the writing, the
dependency on the complex variable 𝑝 of every transformed quantity is not presented explicitly, but it can be understood
in every starred variable, {⋅}∗.
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𝝈̄∗ = 𝑳̃∗ ∶ (𝜺̄∗ − 𝜶̃∗𝜃̄∗), (13)
with

𝑳̃∗ =

(

𝑳∗(1) +
𝑅
∑

𝑟=2
𝑐(𝑟)

(

𝑳∗(𝑟) −𝑳∗(1)) ∶ 𝑨∗(𝑟)

)

, and

𝜶̃∗ =
(

𝑳̃∗)−1 ∶

(

𝑳∗(1) ∶ 𝜶∗(1) +
𝑅
∑

𝑟=2
𝑐(𝑟)

(

𝑨∗(𝑟))𝑇 ∶
(

𝑳∗(𝑟) ∶ 𝜶∗(𝑟) −𝑳∗(1) ∶ 𝜶∗(1))
)

,

(14)

where the superscript (1) denotes the matrix. Three mean-field schemes are implemented: Mori–Tanaka, Lielens and
IDD (Interaction Direct Derivative), each of them with a particular form of 𝑨∗(𝑟). It must be noted that in the present
work, all chosen schemes involve the mean over the phases of some quantities inside its formulation of the localization
tensor. Details about the choices made are presented in Appendix A.
3.1. Short-fibers description
A microstructure like the one presented in the microtomography in Fig. 1, should be considered as a heterogeneous
medium with 𝑅−1 linear thermoelastic phases embedded in a thermo-viscoelastic matrix (each phase corresponds to a
family of elastic fibers sharing the same microstructural parameters (i.e. length and orientation)). The fibrous inclusions
of the engineering thermoplastic polymers are commonly made of carbon (transverse isotropic) or glass (isotropic).
In the next definitions, transverse-isotropic symmetry will be used for both, the inclusions’ and matrix’ properties,
since an isotropic material can be represented in any transverse-isotropic basis with arbitrary orientation vector 𝒏
of the symmetry axis [51]. The chosen 4th order tensor basis is the Hill basis {(1), ..,(𝑏), ..,(6)}(𝒏) (Appendix
B.1). Constitutive equations of the fibrous inclusions (defined in the internal time), denoted by the superscript (f), are
presented directly in the Laplace-Carson domain as the explicit form of the fibers’ properties remains the same after
transformation (i.e. 𝑳∗(f) = 𝑳(f), 𝜶∗(f) = 𝜶(f) ).

𝝈∗(f)(𝑝) = 𝑳(f)(𝒏) ∶
(

𝜺∗(𝑝) − 𝜷∗(𝑝)
)

=
6
∑

𝑏=1
𝑙(𝑏,f)(𝑏)(𝒏) ∶

(

𝜺∗(𝑝) − 𝜷∗(𝑝)
)

,

𝜷∗(f)(𝑝) = 𝜶(f)𝜃∗(𝑝) =
(

𝛼(f)11𝚯 + 𝛼(f)33
)

𝜃∗(𝑝),

(15)

with 𝛼(f)11 and 𝛼(f)33 , being the transverse and longitudinal fibers’ expansion coefficients associated to the second order
tensor basis  = 𝒏⊗ 𝒏 and 𝚯 = 𝑰2 − in terms of the orientation vector 𝒏 (Appendix B.1).
Probabilistic approach to account the presence of fibers:
In the present study, instead of a deterministic description of the fibers, a continuous distributions approach is
implemented for the microstructural parameters [1, 27]. To illustrate this, only the effective mechanical behavior (𝑳̃∗)
is presented, as it is enough to show the impact of this technique in the thermo-mechanical macroscopic response.
Since it is sought a binary representation of the composite (polymer matrix + fibers), the superscript (1) is substituted
by (m) as the matrix identification character in Eq. (14). The volume fraction of the polymer matrix is then expressed
by: 𝑐(1) = 𝑐(m) = 1 −

∑𝑅
𝑟=2 𝑐

(𝑟) = 1 − 𝑐(f). With 𝑐(f) being the fibers’ total volume fraction. Then, 𝑳̃∗ from Eq. (14)
is rewritten by considering the explicit form of 𝑳∗(f) in Eq. (15) to write both, matrix and inclusions’ mechanical
properties in the fibers’ basis.

𝑳̃∗ = 𝑳∗(m) + 𝑐(f)
6
∑

𝑏=1

(

𝑙∗(𝑏,f) − 𝑙∗(𝑏,m))
𝑅
∑

𝑟=2

𝑐(𝑟)

𝑐(f)
(𝑏)(𝒏(𝑟)) ∶ 𝑨∗(𝑟)(𝒏(𝑟), 𝑤(𝑟)). (16)

The above presentation is possible because the fiber families differ only in their orientation (𝒏(𝑟)) and length (i.e.
aspect ratio 𝑤(𝑟) = 𝑙(𝑟)∕𝑑), so their only differences are in the explicit forms of the Hill basis and the localization tensor.
Considering as it is shown in [51] for spheroidal inclusions, that the localization tensor of a fiber family with orientation
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𝒏(𝑟) can be written down in the same basis as its mechanical properties (𝑨∗(𝑟) =
∑6

𝑏=1 𝑎
∗(𝑟)(𝑤(𝑟))(𝑏)(𝒏(𝑟))), and by

introducing the relative volume fraction of a family of fibers with respect to the total number of fibers 𝑐(𝑟)f = 𝑐(𝑟)∕𝑐(f)

(with ∑𝑅
𝑟=2 𝑐

(𝑟)
f = 1), Eq. (16) reads,

𝑳̃∗ = 𝑳∗(m) + 𝑐(f)
6
∑

𝑏=1

(

𝑙∗(𝑏,f) − 𝑙∗(𝑏,m))
𝑅
∑

𝑟=2
𝑐(𝑟)f (𝑏)(𝒏(𝑟)) ∶

6
∑

𝑣=1
𝑎∗(𝑣,𝑟)(𝑤(𝑟))(𝑣)(𝒏(𝑟))

= 𝑳∗(m) + 𝑐(f)
6
∑

𝑏=1

6
∑

𝑣=1

(

𝑙∗(𝑏,f) − 𝑙∗(𝑏,m)) ⟨𝑎∗(𝑣,𝑟)(𝑤(𝑟))
(

(𝑏)(𝒏(𝑟)) ∶ (𝑣)(𝒏(𝑟))
)⟩

Ω∖Ω(m) .

(17)

The expression between angle brackets in the foregoing equation represents the volume average over the space of
orientations and lengths of the concerned quantities. For the case of an REV with a finite number of fibers, Eq. (17)
can be computed explicitly in a deterministic way, however this approach limits the number of fibers describing the
distribution of the microstructural parameters. As it is mentioned in [1], The most general description of the fibers’
state is the probability distribution function, in which it is possible to consider an infinite number of fibers covering in
a more accurate way the distribution of parameters in the composite. The probabilistic approach is then introduced as
the number of fibers in Ω tends to infinity, therefore its microstructural parameters are no longer defined in a discrete
way but characterized by a continuous distribution of the observed parameter.

⟨

𝑎∗(𝑣,𝑟)(𝑤(𝑟))
(

(𝑏)(𝒏(𝑟)) ∶ (𝑣)(𝒏(𝑟))
)⟩

Ω∖Ω(m) =
1

|Ω∖Ω(m)
|
∫Ω∖Ω(m)

𝑎∗(𝑣,𝑟)(𝑤(𝑟))
(

(𝑏)(𝒏(𝑟)) ∶ (𝑣)(𝒏(𝑟))
)

𝑑Ω

= ∫

𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

𝑓𝑤(𝑤)𝑎∗(𝑣)(𝑤)𝑑𝑤∫𝑆
𝑓𝒏(𝒏)

(

(𝑏)(𝒏) ∶ (𝑣)(𝒏)
)

𝑑𝑆.
(18)

The mean over the distribution of lengths is characterized by the integral of the normalized distribution function
(𝑓𝑤(𝑤)), that depends on the aspect ratio (𝑤 = 𝑙∕𝑑 ∈ [𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥]) being a function of the fiber length (𝑙 ∈
[𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥]) under the hypothesis of constant fibers’ diameter (𝑑). The mean over the orientations is computed by
integrating over the unit sphere (𝑆) the distribution function (𝑓𝒏(𝒏)), depending on the unit direction vector (𝒏).

For the simulation examples of the present work, glass fiber inclusions are considered, in consequence 𝑳∗(𝑟) is
independent of the orientation vector 𝒏 of the fiber as it is isotropic and can be represented in any arbitrary transverse
isotropic basis {(𝑏)}(𝒏) , therefore in Eq. (17) only the localization tensor 𝑨∗(𝑟)(𝑤(𝑟),𝒏(𝑟)) is different for each family
of fibers. This fact reduces the computation of the distribution averages to the computation of the mean coefficients
{𝑎∗(𝑣,𝑓 )⋆ } and associated mean Hill basis tensors {(𝑣,𝑓 )

⋆ } (Eqs. (B.8) - (B.10)). Considering this, Eq. (17) under the
continuous distribution representation (Eq. (18)) reads

𝑳̃∗ = 𝑳∗(𝑚) + 𝑐(𝑓 )
(

𝑳∗(𝑓 ) −𝑳∗(𝑚)) ∶
6
∑

𝑣=1
∫

𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

𝑓𝑤(𝑤)𝑎∗(𝑣)(𝑤)𝑑𝑤∫𝑆
𝑓𝒏(𝒏)(𝑣)(𝒏)𝑑𝑆

= 𝑳∗(𝑚) + 𝑐(𝑓 )
(

𝑳∗(𝑓 ) −𝑳∗(𝑚)) ∶
6
∑

𝑣=1
𝑎∗(𝑣,𝑓 )⋆ (𝑣,𝑓 )

⋆ = 𝑳∗(𝑚) + 𝑐(𝑓 )
(

𝑳∗(𝑓 ) −𝑳∗(𝑚)) ∶ 𝑨∗(𝑓 )
⋆ ,

(19)

with 𝑨∗(𝑓 )
⋆ being the distribution averaged fibers’ localization tensor. The two-phases like version of the effective

thermo-viscoelastic behavior (Eq. 14) for the case of isotropic linear elastic glass fibers inclusions is given by:
𝑳̃∗ = 𝑳∗(𝑚) + 𝑐(𝑓 )

(

𝑳∗(𝑓 ) −𝑳∗(𝑚)) ∶ 𝑨∗(𝑓 )
⋆ ,

𝜶̃∗ = 𝜶̄ +
(

𝑺∗(𝑓 ) − 𝑺∗(𝑚))−1 ∶
(

𝑺̃∗ − 𝑺̄∗) ∶
(

𝜶∗(𝑓 ) − 𝜶∗(𝑚)) ,
(20)

where 𝑺̃∗ and 𝑺̄∗ = 𝑐(𝑚)𝑺∗(𝑚)+𝑐(𝑓 )𝑺∗(𝑓 ), are the effective and average, transformed creep moduli tensor (𝑺∗ = (𝑳∗)−1)
respectively. 𝜶∗(𝑚), 𝜶∗(𝑓 ), are the matrix’ and fibers’ thermal expansion second order tensors, respectively. The second
equation in Eq. (20) is equivalent to the well-known Levin’s equation (Hashin-Rosen, [38, 53]). The choices made for
the explicit form of 𝑓𝑤(𝑤) and 𝑓𝒏(𝒏) are presented below.
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Weibull’s law for length distributions:
The chosen length probability density function (𝑓𝑤(𝑤)) is the Weibull’s law, used in the literature in the context of
injection molding thermoplastic composites, where it was demonstrated its accuracy compared to the deterministic
approach [47]. The explicit form of the function reads

𝑓𝑤(𝑤) = W (𝑤𝑝(𝑤)) , with

𝑝(𝑤) =
𝑐𝑤
𝑤0

(

𝑤
𝑤0

)𝑐𝑤−1
𝑒
−
(

𝑤
𝑤0

)𝑐𝑤

, and W =

(

∫

𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

𝑤𝑝(𝑤)𝑑𝑤

)−1

,
(21)

where 𝑐𝑤, 𝑤0 are the Weibull’s law parameters to be fitted from data statistics obtained from image processing (e.g.
microtomography Fig. 1). Examples of the parameters range chosen for the present study are presented in Fig. 6. From
this figure, it can be noted that the value of 𝑤0 represents the mean aspect ratio. Furthermore, by increasing the value
of 𝑐𝑤 at a given 𝑤0 the number of fibers with aspect ratio 𝑤0 is increased.

(a) Probability density plot for a given 𝑤0 = 30 and various 𝑐𝑤 (b) Probability density plot for a given 𝑐𝑤 = 1.5 and various 𝑤0.
Figure 6: Weibull’s probability density (𝑝(𝑤)) plots for various combinations of the parameters (𝑐𝑤, 𝑤0) used in the present
study.

Advani and Tucker law for orientation distributions:
Primal observations of filament microtomography (Fig. 1) suggest an axisymetric distribution of the fibers’ orientation
about the filament axis. For this case, the Advani-Tucker’s law is proposed in [1] in the context of injection molding
composites. In the axisymetric case, this law is characterized by a single parameter (𝑚AT) to be computed from
microphotography analysis. The explicit form of the distribution law is presented below.

𝑓𝒏(𝜃, 𝜙) = 𝐾 sin𝑚AT (𝜃) cos𝑚AT (𝜙), (22)
where 𝐾 is a normalization constant and, 𝜃 and 𝜙 are the direction angles characterizing the orientation deviation of a
fiber from the filament axis. The implementation of this approach is simplified by using the mean orientation tensors
(𝜼2 and 𝜼4) as it is done in [1]. This procedure is of particular interest in the case of composites holding material
symmetries that enables to write down the effective behavior in a particular choice of basis. Information about the
application of the law and computation of orientations tensors can be found in Appendix B.4. Some examples of the
orientation distributions used in the present work are presented in Fig. 7. As can be noted from this figure, the number of
fibers, oriented in the principal filament’s axis direction, increases as 𝑚AT becomes greater. Indeed, the unidirectional
case corresponds to the limit 𝑚AT → ∞.
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(a) Probability density plot for 𝑚AT = 2 (b) Probability density plot for 𝑚AT = 10

Figure 7: Advani-Tucker probability density 𝑓𝒏(𝒏) for deviation angles 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [−𝜋∕2, 𝜋∕2]

3.2. Effective Prony series
To ensure the same mathematical representation of the effective behavior as it was presented for the matrix in the
time domain (Prony-series), this study considers a supplementary identification step. In Eq. (20), the effective thermo-
viscoelastic behavior is given in the Laplace-Carson domain (𝑳̃∗, 𝜶̃∗). In function of the length of the Prony-series of
the polymer matrix and the choice of mean-field scheme, the complexity of the rational polynomials of the elements
in 𝑳̃∗ and 𝜶̃∗ varies, therefore the analytical inversion of the Laplace-Carson transform is sometimes too expensive in
terms of computational time or is not giving a sum of weighted exponential functions (Prony-series) as it is desired.
Since a complex relaxation moduli tensor 𝑳(𝑗𝜔) is equivalent to the above defined Laplace-Carson transform of the
relaxation moduli tensor [21, 25], artificial dynamical mechanical analysis (DMA) is performed, and then processed
using KN-HW identification procedure from [30] to obtain an approximation of the discrete spectra (Appendix C).
The advantage of this method in contrast with the collocation methods is that it includes an accurate approximation of
the characteristic discrete time spectrum. This is performed identically for both, mechanical and thermal Prony-series,
differing only on the physical meaning of the identified coefficients. The expected explicit form of 𝑳̃∗ and 𝜶̃∗ after
parameters’ identification reads

𝑳̃∗ = 𝑳̃g −
6
∑

𝑏=1

𝑁𝑏
∑

𝑛𝑏=1

𝑙(𝑏,𝑛𝑏)∕𝜏(𝑛𝑏)𝐿

𝑝 + (𝜏(𝑛𝑏)𝐿 )−1
(𝑏)

⋆ , (23)

𝜶̃∗ = 𝜶̃g +
𝑀
∑

𝑚=1

𝛼̃(𝑚)11 ∕𝜏(𝑚)𝛼

𝑝 + (𝜏(𝑚)𝛼 )−1
𝚯⋆ +

𝑂
∑

𝑜=1

𝛼̃(𝑜)33 ∕𝜏
(𝑜)
𝛼

𝑝 + (𝜏(𝑜)𝛼 )−1
⋆. (24)

Here, 𝑳̃g is the effective glassy 4th order stiffness tensor, 𝜶̃g is the glassy 2nd order thermal expansion tensor,
𝚯⋆ = 𝑰2−𝜼2 is the second-order tensor that characterizes the orthogonal behavior,⋆ = 𝜼2 is the second-order tensor
that characterizes the symmetry axis behavior (Appendix B.3), 𝑁𝑏 is the length of the Prony-series of the relaxation
modulus 𝑙∗(𝑏), and, 𝑀 and 𝑂 are the lengths of the Prony-series of the effective thermal creep functions 𝛼̃∗11 and 𝛼̃∗33,
respectively.
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4. Simulation results
The modeling of the matrix thermo-viscoelastic behavior for the specific range of temperatures of the 3D-FDM
printing have been presented in Section 2, where linear viscoelasticity, time-temperature superposition principle and
the internal time technique were introduced. Section 3 presents the methodology to obtain the effective behavior.
The homogenization procedure via mean-field schemes is achieved based on the validity of the applicability of the
correspondence principle (Laplace-Carson transform) in continuous variations of temperature for thermo-rheologically
simple polymers. Mean-field schemes were presented in a general shared formulation, differing only in the form of the
localization tensor 𝑨∗(𝒏(𝑟), 𝑤(𝑟)) in function of the chosen scheme (Appendix A). Probabilistic approach to account for
the variability of lengths and orientations of the fibers was introduced as a powerful tool able to map distributions over
greater spaces and being very simple in terms of implementation. Finally, the methodology to identify the coefficients
of the effective properties of the composite was introduced, ensuring that the composite is represented in the same way
as the matrix. This Prony-series representation allows applying directly the internal variables’ formulation [41, 5, 52]
for the incremental scheme in the computation of stress as a function of time and temperature. In this section, the
accuracy of the presented methodology will be compared to extensive heterogeneous simulations in computational
REVs using the FFT-based full field homogenization method.
4.1. Internal variables’ technique for stress computation
The stress computation problem can be formulated as follows:

Given 𝑳̃(𝑡), 𝜶̃(𝑡), 𝑎𝑇 (𝑇 ), 𝜺̄(𝑡) and 𝜃̄(𝑡) = 𝑇̄ (𝑡) − 𝑇̄0, compute 𝝈̄(𝑡).
First, 𝜉(𝑡) is computed by using Eq. (6) in function of 𝑇̄ (𝑡) and the total observation time of the simulation. Then,

a simple way to start the procedure to compute the evolution of the macroscopic stress 𝝈̄(𝑡) is by considering the
explicit form of the Laplace-Carson transform of the stress function (Eq. (7)) for the case of a transverse isotropic
homogenized material (Eqs. (23) - (24)), noting that, in order to lighten the writing, the implicit form of the thermal
strains is conserved, and its computation is treated separately. It must be note that as [52], the following formulation
allows a simple and natural definition of the internal variables forms avoiding integral operations, and reducing the
formulation to algebraic operations in rational polynomials.

𝝈̄∗(𝑝) =
⎛

⎜

⎜

⎝

𝑳̃g −
6
∑

𝑏=1

𝑁𝑏
∑

𝑛𝑏=1

𝑙(𝑏,𝑛𝑏)∕𝜏(𝑛𝑏)𝐿

𝑝 + (𝜏(𝑛𝑏)𝐿 )−1
(𝑏)

⋆

⎞

⎟

⎟

⎠

∶
(

𝜺̄∗(𝑝) − 𝜷∗(𝑝)
)

= 𝝈̄∗
g (𝑝) −

6
∑

𝑏=1

𝑁𝑏
∑

𝑛𝑏=1
𝑙(𝑏,𝑛𝑏)

(𝑏)
⋆ ∶

(

𝜺̄∗(𝑝) − 𝜷∗(𝑝)
)

𝜏(𝑛𝑏)𝐿

(

𝑝 + (𝜏(𝑛𝑏)𝐿 )−1
) ,

(25)

with

𝜷∗(𝑝) =

(

𝜶̃g +
𝑀
∑

𝑚=1

𝛼̃(𝑚)11 ∕𝜏(𝑚)𝛼

𝑝 + (𝜏(𝑚)𝛼 )−1
𝚯⋆ +

𝑂
∑

𝑜=1

𝛼̃(𝑜)33 ∕𝜏
(𝑜)
𝛼

𝑝 + (𝜏(𝑜)𝛼 )−1
⋆

)

𝜃̄∗(𝑝)

= 𝜷∗
g (𝑝) +

𝑀
∑

𝑚=1

𝛼̃(𝑚)11 𝜃̄∗(𝑝)

𝜏(𝑚)𝛼

(

𝑝 + (𝜏(𝑚)𝛼 )−1
)𝚯⋆ +

𝑂
∑

𝑜=1

𝛼̃(𝑜)33 𝜃̄
∗(𝑝)

𝜏(𝑜)𝛼

(

𝑝 + (𝜏(𝑜)𝛼 )−1
)⋆,

(26)

where 𝝈̄∗g (𝑝) and 𝜷∗g (𝑝) are the Laplace-Carson transform of the glassy responses in terms of stress and thermal strains,
respectively. Introducing three sets of second order tensor internal variables {𝒒∗(𝑛𝑏)𝐿 }, {𝒒∗(𝑚)𝛼1 } and {𝒒∗(𝑜)𝛼3 } the foregoing
equations reads:

𝝈̄∗(𝑝) = 𝝈̄∗
g (𝑝) −

6
∑

𝑏=1

𝑁𝑏
∑

𝑛𝑏=1
𝑙(𝑛𝑏)(𝑏)

⋆ ∶ 𝒒∗(𝑛𝑏)𝐿 (𝑝), 𝒒∗(𝑛𝑏)𝐿 (𝑝) =
𝜺̄∗(𝑝) − 𝜷∗(𝑝)

𝜏(𝑛𝑏)𝐿

(

𝑝 + (𝜏(𝑛𝑏)𝐿 )−1
)

𝜷∗(𝑝) = 𝜷∗
g (𝑝) +

𝑀
∑

𝑚=1
𝒒∗(𝑚)𝛼1

(𝑝) +
𝑂
∑

𝑜=1
𝒒∗(𝑜)𝛼3

(𝑝), 𝒒∗(𝑚)𝛼1
(𝑝) =

𝛼̃(𝑚)11 𝜃̄∗(𝑝)𝚯⋆

𝜏(𝑚)𝛼

(

𝑝 + (𝜏(𝑚)𝛼 )−1
) , 𝒒∗(𝑜)𝛼3

(𝑝) =
𝛼̃(𝑜)33 𝜃̄

∗(𝑝)⋆

𝜏(𝑜)𝛼

(

𝑝 + (𝜏(𝑜)𝛼 )−1
)
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(27)
Reordering the expressions of the internal variables and performing the inverse transform of the equations in Eq. (27)
we obtain equivalent forms to those presented in [52]. the internal-time forms and the associated O.D.E’s of the internal
variables are obtained as follows:

𝝈̄(𝜉) = 𝝈̄g(𝜉) −
6
∑

𝑏=1

𝑁𝑏
∑

𝑛𝑏=1
𝑙(𝑛𝑏)(𝑏)

⋆ ∶ 𝒒(𝑏,𝑛𝑏)𝐿 (𝜉), 𝑑
𝑑𝜉

𝒒(𝑛𝑏)𝐿 (𝜉) + 1
𝜏(𝑛𝑏)𝐿

𝒒(𝑛𝑏)𝐿 (𝜉) =
𝜺̄(𝜉) − 𝜷(𝜉)

𝜏(𝑛𝑏)𝐿

,

𝜷(𝜉) = 𝜷g(𝜉) +
𝑀
∑

𝑚=1
𝒒(𝑚)𝛼1

(𝜉) +
𝑂
∑

𝑜=1
𝒒(𝑜)𝛼3

(𝜉), 𝑑
𝑑𝜉

𝒒(𝑚)𝛼1
(𝜉) + 1

𝜏(𝑚)𝛼

𝒒(𝑚)𝛼1
(𝜉) =

𝛼̃(𝑚)11 𝜃̄(𝜉)𝚯⋆

𝜏(𝑚)𝛼

, 𝑑
𝑑𝜉

𝒒(𝑜)𝛼3
+ 1

𝜏(𝑜)𝛼

𝒒(𝑜)𝛼3
=

𝛼̃(𝑜)33 𝜃̄(𝜉)⋆

𝜏(𝑜)𝛼

.

(28)
The computed stress is then obtained in the internal-time domain. Thanks to the mapping 𝑡 ↦ 𝜉, quantities

measured in the internal time take the same values in the correspondent observer times, in fact since the values of
𝜉 are computed as an initial step for a given temperature at a given instant, the return to the observer time is trivial. For
the simulation examples, the non-homogeneous ODE’s characterizing the evolution of the internal variables are solved
numerically by implementing the Taylor’s integration scheme [59]. This methodology is based on the assumption of a
linear evolution of the right-hand side of the ODE’s for the computation of its particular solution. The discrete evolution
equation for an ODE relating second order tensorial functions (Eq. (28)), for instance, an arbitrary internal variable
𝒒(𝜉), and a right-hand side 𝚼(𝜉)

𝜏 , is written down as follows:
∀𝜉𝑘 ∈ {0, 𝜉2, ..., 𝜉𝑘, ..., 𝜉𝐾}, and, Δ𝜉𝑘+1 = 𝜉𝑘+1 − 𝜉𝑘

𝒒(𝜉𝑘+1) = 𝒒(𝜉𝑘)𝑒
−Δ𝜉𝑘+1

𝜏 + 𝚼(𝜉𝑘)
(

1 − 𝑒−
Δ𝜉𝑘+1

𝜏

)

+ (𝚼(𝜉𝑘+1) − 𝚼(𝜉𝑘))
(

1 − 𝜏
Δ𝜉𝑘+1

(1 − 𝑒−
Δ𝜉𝑘+1

𝜏 )
) (29)

4.2. Problems setting

Macroscopic loading:
Three scenarios of simulation are presented. All these situations consider a linear cooling while different mechanical
constraints are applied to the REV. Five constant cooling rate ( ̇̄𝜃) are studied, from very fast (8.64s) to slow cooling
(24h). The cooling rate iterations are given by Δ𝑇̄ ∕𝑡𝑐 , with 𝑡𝑐 being the cooling times, previously presented in Fig. 5,
and Δ𝑇 the total variation of temperature, here, −225◦C. Numerical values are presented below.

̇̄𝜃 ∈ {−0.00260417,−0.0260417,−0.260417,−2.60417,−26.0417}[◦C s−1].
For the mechanical constraints, three different cases are considered: the strains-free case, this is, 𝜺̄(𝑡) = 𝟎 (load

case 1). The second case is the stress-free case, this is, 𝝈̄(𝑡) = 𝟎 (load case 2). Finally, the mixed conditions’ case is
implemented, this is, 𝝈̄22(𝑡) = 0 and 𝜺̄33(𝑡) = 𝜺̄11(𝑡) = 0 (load case 3), which corresponds to the case of a laminate
composed by two thin plates with an angle of relative deviation of the material’s symmetry axis of 90◦ with 𝒆2 being
the stacking direction of the laminate.
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Sensibility to the starting temperature:
The study range of the temperature characterizing the FDM 3D-printing of a PEI filaments is between 355◦C to room
temperature (≈ 25◦C). Primary studies of the amorphous PEI-like matrix used in the present work have suggested the
quasi-pure dissipative behavior between 355 and 250◦C, reflected by a negligible amount of residual stress produced
within this temperature interval. This can be identified easily by observing the values of 𝑎𝑇 (𝑇 ) associated to high
temperatures, it is observed that, the amount of viscous strain is increased at high temperatures as most of the relaxation
mechanisms are activated simultaneously. The influence of the starting temperature on the magnitude of the residual
stress is presented in Fig. 8. This analysis was performed at maximum cooling rate as it is the one giving the highest
levels of stress. From this figure, it is clear that the generation of stress at high temperature is negligible compared to
the level produced as the glass transition temperature (𝑇g = 216◦C) is closer and below it. The maximum relative error
on the stress is close to 2%. For the interest of the present work, low stages of stress are not displayed. In conclusion,
the starting temperature is set to 𝑇 (0) = 250◦C, which imposes the before mentioned Δ𝑇 = −225◦C.

(a) stress component 𝜎11 vs. temperature 𝑇 (b) Relative error on 𝜎∞
11 vs. initial temperature 𝑇0.

Figure 8: Influence of the starting temperature 𝑇0 of the simulation on the magnitude of the residual stress at minimum
cooling time (8.64[s]). Study performed for the load case 1 (Section 4.4).

4.3. Numerical considerations
Reference solutions are obtained from FFT-based full-field homogenization [45] by using the in-house code Craft1.
This method uses 3D images discretized in voxels for the REVs (Fig. 9). The fibers’ are represented by long capsules
(cylinders with hemispherical ends), that is closer to the actual geometry of the fibers. In contrast, mean-field schemes
uses prolate spheroids as representation for the fibers. For this study, it is considered a spheroid that preserves the
quadratic moment of the capsule used in the full-field simulations instead of keeping the same aspect ratio [19], this is,
𝑤0 = 𝑤ref

0 (2∕
√

3). Comparison data of the consequences of the precedent choice is presented in Fig. 10. In this figure,
the error is measured just on the Lielens scheme, comparing the closeness of the asymptotic stress with the reference
solutions. Finally, the simulations used for these plots consider the case of maximum volume fraction (𝑐(𝑓 ) = 40%) as
it represents a greater influence of the presence of fibers on the macroscopic behavior.

The computational 3D REVs for the simulations are generated using the probability distribution functions described
in Section 3. The generation task has to ensure the non superposition of fibers as priority, in consequence the
distributions are exposed to violations during the sampling process, this is why after generation, the distribution

1http://craft.lma.cnrs-mrs.fr/
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parameters are refitted from the generated microstructures to avoid the loss of accuracy when comparing the mean-field
data (in results, only theoretical values of the distribution parameters are displayed).

(a) 𝑚AT = 2, 𝑐𝑤 = 0.5 and 𝑤0 = 20 . (b) 𝑚AT = 60, 𝑐𝑤 = 2.5 and 𝑤0 = 40.
Figure 9: Examples of computer generated representative elementary volumes (REV) used in the computation of reference
solutions. The volume fraction of fibers in the displayed microstructures is 𝑐(𝑓 ) = 10% . On the left side, the more disoriented
case with a higher variability of lengths. On the right side, the most oriented and less variable lengths.

(a) Error on 𝜎∞
11. (b) Error on 𝜎∞

33.
Figure 10: Relative error of the inclusions’ representation, measured on the asymptotic stress for Lielens’ scheme vs.
normalized cooling rate. volume fraction 𝑐(𝑓 ) = 40%. Distribution parameters, 𝑚AT = 60, 𝑐𝑤 = 2.5 and 𝑤0 = 40.
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Discretization and Sampling convergence: Due to the high cost in terms of computation time of references
solutions, the discretization of the REVs is limited by the computation capabilities of the available hardware. This is
why a study of discretization convergence is performed to improve the time of computations. By imposing a maximum
admissible error of 1.0 × 10−4, the microstructure discretization is set to 300 × 300 × 300 voxels. On the other hand,
a study characterizing the convergence in terms of the number of inclusions is performed too. This is equivalent to
the study of the size of the REV, as the dimensions of the fibers are obtained by relative sizing from the total volume
and the volume fraction; this study characterizes the accuracy of the representation of the REV with respect to the
whole composite volume. Similarly, by imposing the maximum error in the number of fibers to 1.5×10−4, the number
of inclusions for the simulations is set to 300 fibers. Results of the Convergence studies are presented in Fig. 11. In
addition, in Table. 2 the times for reference and mean-field solutions’ computations are presented, the values correspond
to the "faster" FFT simulation and its correspondent obtained through mean-field schemes. In the case of the reference
solutions, each simulation was obtained in two computational nodes with 56 cores and 128 Gigabytes of RAM.

For mean-field computations, a machine with 16 cores and 128 Gigabytes of RAM was used. As can be noted from
the table, even under less computational power conditions, the time for mean-field computations is always negligible
compared to the full-field reference solutions. In fact, as the effective behavior is in an explicit form, the computation
of effective behavior (in the Laplace-Carson domain) is a fraction of the time shown in the table. Most of the time is
consumed in approximating effective Prony-series and computing each simulation scenario.

Table 2
Time of computations for effective residual stress simulations

Method Time (h.m.s.)

FFT(300x300x300) 05:11:17
FFT(400x400x400) 08:04:21
FFT(500x500x500) 12:19:03
Mean-field 00:02:46

(a) Error on 𝝈̄∞ vs number of voxels per edge (𝑁𝑣𝑥). (b) Error on 𝝈̄∞ vs number of inclusions (𝑁𝑖𝑛𝑐).
Figure 11: Convergence study for reference solutions. volume fraction 𝑐(𝑓 ) = 40%. Distribution parameters, 𝑚AT = 60,
𝑐𝑤 = 2.5 and 𝑤0 = 40.
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4.4. Comparisons
Here, results are presented for the simulations settings specified in Section 4.2. The solutions are obtained for multiple
combination of microstructural parameters, that are, the volume fraction 𝑐(𝑓 ), the orientation distribution parameter
𝑚AT, and length distribution parameters 𝑤0 and 𝑐𝑤. Numerical values of the parameters are presented in the Table. 3.
All combinations of parameters have been tested, and as can be noted this represents a large amount of data. For the
sake of clarity in comparisons, just some representative combinations are presented for each load case.

Simulation results are presented as follows: First, for each load case, the evolution of the computed mechanical
quantities is presented in function of the temperature (figures Fig. 12, Fig. 17 and Fig. 22). Each of these figures
shows the evolution for three different values of the imposed cooling rate, from the slowest (blue lines) passing by
a middle velocity (green lines), to the fastest (purple lines). As can be noted from the gaps in each group, they are
almost consistent in each figure, this fact verifies the ability of the method to predict residual stress in a wide range
of cooling rates. Then, having this initial figures for each load case, the influence of the microstructural parameters is
studied by presenting the asymptotic value of the mechanical quantities as a function of the microstructural parameters
by sweeping in one parameter while the rest of them remains constant and equal to the values of the evolution plots:
Figures Fig. 13, Fig. 18 and Fig. 23 showing the influence of the volume fraction 𝑐(𝑓 ), figures Fig. 14, Fig. 19 and
Fig. 24 presents the influence of the Advani-Tucker orientation parameter 𝑚AT. To study the influence of the length
distribution parameters (Weibull’s law), Figures Fig. 15, Fig. 20 and Fig. 25 show the influence of 𝑐𝑤, and figures Fig.
16, Fig. 21 and Fig. 26 present the influence of 𝑤0. Regarding the plotted stress, it is normalized by the elastic response
of the matrix 𝝈(𝑚),𝑒.

From all these figures, the high accuracy of the proposed methodology is verified noting that, Lielens’ scheme is
almost always slightly closer to the reference solutions, but despite this fact the magnitude of the gaps are negligible
between the implemented mean-field schemes. The closeness of the responses of the Mori–Tanaka and IDD schemes is
explained from the fact that the IDD approximation was computed using a unique spatial distribution cell which aspect
ratio is very close to the fiber’s mean aspect ratio (𝑤(𝐷,𝑟) = 0.8𝑤0). A better use of the capabilities of this scheme
should consider a non-uniformly distributed spatial distribution cell (Ω(𝐷,𝑟)) space using a probabilistic distribution,
as it was for example implemented for the variation in the fiber lengths and suggested in [63]. As inferred in [39],
the Lielens’ scheme is able to improve the approximation of the effective behavior at higher volume fractions of the
fibrous phase by considering the computation of localization tensors as an interpolation of the Mori–Tanaka scheme and
another one obtained by considering the same estimate but in a case in which the fibers become the continuous phase
and the matrix the dispersed one. The latter justifying why this approximation shows better results when comparing
the asymptotic responses as a function of the volume fraction (Fig. 13, Fig. 18 and Fig. 23), anyway considering the
volume fraction interval in the present work, that is representative of the charge of fibers in composite filaments for
HT-FRAM technology, the gaps between the mean-field schemes are not so significant which explains the closeness
between all of them. In the same fashion, the effects of the variations of the microstructural parameters (i.e. length and
orientation distributions) representing the particular state of the fibers inside the composite filament are enhanced by
Lielens approach. Regarding the effect of the variation of the orientation parameter 𝑚AT, in Fig. 14, Fig. 19 and Fig.
24, the mean-field approach exhibits consistency in all cases when going from the more disoriented distribution (more
isotropic) to the more filament axis aligned distribution (increasing the stiffness in the axis direction). However, the
proposed methodology and the reference solutions are slightly closer in the cases where the fiber orientation disorder
increases (lower values of the Advani and Tucker parameter). Finally, considering the variation of the length parameters
𝑤0 and 𝑐𝑤, representing the mean length and intensification of the distribution around this value respectively. The
simulation results are still consistent when considering combinations resulting in microstructures of long fibers and
more or less homogeneous in distribution, with those that have a distribution of different lengths. The variations of the
gaps are always on the same order, and as pointed out before Lielens’ scheme is always better at accounting the effect
of these variations when comparing with reference solutions. From the aforementioned, one can conclude that any of
these three methods could be a good choice, however it must be noted that if one aims to make an objective choice
based on the quality and the complexity of the implementation, the choice should be the Mori–Tanaka Scheme.
Load case 1:
Due to the fact that the imposed macroscopic strain is 𝜺̄(𝑡) = 𝟎, this case presents the highest levels of stress. The
figure Fig. 13 showing the normalized asymptotic stress in function of the volume fraction allows seeing the effect of
the reinforcement in the macroscopic behavior, then from the left to the right side the values of the normalized stress
are always increasing as the effective relaxation moduli tensor increases in magnitude. The figure Fig. 14, showing
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Table 3
Microstructural parameters for simulations

Parameter Values

𝑚AT 2 10 60 -
𝑐𝑤 0.5 1.5 2.5 -
𝑤0 20 30 40 -
𝑐(𝑓 ) 0.1 0.2 0.3 0.4

the normalized asymptotic stress on-plane and on-axis, allows seeing the level of anisotropy in terms of the principal
directions 𝒆1 and 𝒆3. from the less to the most oriented, one can see how the level of isotropy decrease as the fibers
become more organized around the filament axis, the ability of the probabilistic approach to map these variations is
then verified because the gap between reference and mean-field solutions is almost consistent. From these figures,
one can note that it is difficult to differentiate the gap between the different mean-field schemes implemented in the
comparisons. Indeed, it seems that the three of them are giving high quality approximations. To be able to compare
between them. The figure Fig. 15 and Fig. 16 showing the influence of the length distribution parameters shows small
variations of the observed stress as these parameters varies; regarding Fig. 15 and considering that the fixed value
of 𝑚AT is 10 which represents a larger number of fibers in the filament axis direction (Fig. 7), one can note how the
fact of increasing the number of fibers with a length that is close to the mean value 𝑤0 = 30, significantly increases
the asymptotic response of the stress in the filament axis direction compared to the behavior in the transverse plane.
Looking at the variations of the asymptotic stress as a function of the mean length 𝑤0, and holding the distribution
parameter 𝑐𝑤 to 1.5, a decrease in the asymptotic stress is observed as𝑤0 increases, this can be interpreted supported by
Fig. 6 in which this fact gives as output a "more distributed" population of fibers but always being notably higher to the
side of the shorter fibers, then as the diameter of fibers is considered constant the fact that shorter fibers are populating
the REV gives an effective stiffness that is lower, ergo it is reasonable that the asymptotic stress decrease. From all the
figures showing the asymptotic response, it is confirmed that despite the scheme chosen for the approximations, all of
them are very close to the reference solutions. Anyway, Lielens scheme is always slightly better in all situations.
Load case 2:
In this case, the macroscopic stress 𝝈̄ is set to 𝟎 in the REV, therefore the corresponding strain solution is equal to the
macroscopic thermal strain, since it is the only source of deformation in the REV. As can be noted from the figures of
this case (Figs. 17-21), the computed macroscopic strains remain inside the linear domain, which validates the material
model adopted in the present work, that is linear viscoelastic. The figure Fig. 17 showing the evolution of the strain
elements in function of temperature confirms the consistency of the methodology when computing stress or strain.
Similarly to the load case 1, in figure Fig. 19 the degree of anisotropy is controlled via the values of 𝑚AT, the effect of
the reinforcement in the macroscopic strain presented in Fig. 18 shows the high accuracy of the proposed procedure
as the solutions are very close to the reference (FFT), specially when regarding the filament axis direction (𝒆3). When
looking figures Fig. 20 and Fig. 21 one can note how the macroscopic strain decreases as the parameters increases,
this represents the fact that the mean length of the fibers increases and the number of fibers associated to this value
increases.
Load case 3:
This is the case of mixed macroscopic constraints, here the laminate case, in which the stacking direction is 𝒆2.
Results are presented in the same way as the precedent load cases, Fig. 22 shows the evolution of the showing the
non-zero elements of the mechanical response (𝜀̄22 = 𝜀̄11 and 𝜎̄33) in function of temperature. In agreement with the
precedent cases, the solutions plotted show remarkable accuracy compared to reference solutions in both, stress and
strain. Similarly to the precedent load cases, the influence of the microstructural parameters in presented in figures Fig.
23- 26. In the same way as for the precedent load cases, Lielens schemes seems to be slightly better when estimating
both, macroscopic stress or strain.
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(a) On-plane residual stress (𝜎11). (b) Filament axis residual stress (𝜎33).
Figure 12: Normalized stress vs. temperature (𝑇 ), computed for load case 1, 𝑐(𝑓 ) = 0.2, 𝑚AT = 10, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .

(a) On-plane residual stress (𝜎11). (b) Filament axis residual stress (𝜎33).
Figure 13: Asymptotic normalized stress vs. the volume fraction (𝑐(𝑓 )), computed for load case 1, Cooling time = 8.64[s],
𝑚AT = 10, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .
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(a) On-plane residual stress (𝜎11). (b) Filament axis residual stress (𝜎33).
Figure 14: Asymptotic normalized stress vs. the Advani-Tucker parameter 𝑚AT, computed for load case 1, Cooling time =
8.64[s], 𝑐(𝑓 ) = 0.2, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .

(a) On-plane residual stress (𝜎11). (b) Filament axis residual stress (𝜎33).
Figure 15: Asymptotic normalized stress vs. the Weibull’s parameter 𝑐𝑤, computed for load case 1, Cooling time = 8.64[s],
𝑐(𝑓 ) = 0.2, 𝑚AT = 10 and 𝑤0 = 30 .
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(a) On-plane residual stress (𝜎11). (b) Filament axis residual stress (𝜎33).
Figure 16: Asymptotic normalized stress vs. the Weibull’s parameter 𝑤0, computed for load case 1, Cooling time = 8.64[s],
𝑐(𝑓 ) = 0.2, 𝑚AT = 10 and 𝑐𝑤 = 1.5 .

(a) On-plane residual strain (𝜀11). (b) Filament axis residual strain (𝜀33).
Figure 17: Strain vs. temperature (𝑇 ), computed for load case 2, 𝑐(𝑓 ) = 0.2, 𝑚AT = 10, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .
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(a) On-plane residual strain (𝜀11). (b) Filament axis residual strain (𝜀33).
Figure 18: Asymptotic strain vs. the volume fraction (𝑐(𝑓 )), computed for load case 2, Cooling time = 8.64[s], 𝑚AT = 10,
𝑐𝑤 = 1.5 and 𝑤0 = 30 .

(a) On-plane residual strain (𝜀11). (b) Filament axis residual strain (𝜀33).
Figure 19: Asymptotic strain vs. the Advani-Tucker parameter (𝑚AT), computed for load case 2, Cooling time = 8.64[s],
𝑐(𝑓 ) = 0.2, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .
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(a) On-plane residual strain (𝜀11). (b) Filament axis residual strain (𝜀33).
Figure 20: Asymptotic strain vs. the Weibull parameter 𝑐𝑤, computed for load case 2, Cooling time = 8.64[s], 𝑐(𝑓 ) = 0.2,
𝑚AT = 10 and 𝑤0 = 30 .

(a) On-plane residual strain (𝜀11). (b) Filament axis residual strain (𝜀33).
Figure 21: Asymptotic strain vs. the Weibull parameter 𝑤0, computed for load case 2, Cooling time = 8.64[s], 𝑐(𝑓 ) = 0.2,
𝑚AT = 10 and 𝑐𝑤 = 1.5 .
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(a) On-plane residual strain (𝜀11). (b) Filament axis residual stress (𝜎33).
Figure 22: Strain and normalized stress response vs. temperature (𝑇 ), computed for load case 3, 𝑐(𝑓 ) = 0.2, 𝑚AT = 10,
𝑐𝑤 = 1.5 and 𝑤0 = 30 .

(a) On-plane residual strain (𝜀11). (b) Filament axis residual stress (𝜎33).
Figure 23: Asymptotic strain and normalized stress response vs. the volume fraction (𝑐(𝑓 )), computed for load case 3,
Cooling time = 8.64[s], 𝑚AT = 10, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .
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(a) On-plane residual strain (𝜀11). (b) Filament axis residual stress (𝜎33).
Figure 24: Asymptotic strain and normalized stress response vs. the Advani-Tucker parameter 𝑚AT, computed for load case
3, Cooling time = 8.64[s], 𝑐(𝑓 ) = 0.2, 𝑐𝑤 = 1.5 and 𝑤0 = 30 .

(a) On-plane residual strain (𝜀11). (b) Filament axis residual stress (𝜎33).
Figure 25: Asymptotic strain and normalized stress response vs. the Weibull’s parameter 𝑐𝑤, computed for load case 3,
Cooling time = 8.64[s], 𝑐(𝑓 ) = 0.2, 𝑚AT = 10 and 𝑤0 = 30 .
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(a) On-plane residual strain (𝜀11). (b) Filament axis residual stress (𝜎33).
Figure 26: Asymptotic strain and normalized stress response vs. the Weibull’s parameter 𝑤0, computed for load case 3,
Cooling time = 8.64[s], 𝑐(𝑓 ) = 0.2, 𝑚AT = 10 and 𝑐𝑤 = 1.5 .
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5. Conclusions & Perspectives
As it was shown in the simulations section, the proposed procedure to compute the effective macroscopic behavior of
an SPC filament exhibits a remarkable accuracy compared to the full-field simulations for all the different REVs that
were tested. In addition, this fact confirms the validity of the probabilistic description of the fibers’ microstructural
parameters (i.e. length and orientation). This procedure holds consistency when computing the mechanical response
(stress or strain) when different mechanical constraints are applied. The accuracy of the procedure was verified when
different cooling rates are applied in the thermal history, then confirming the good agreement when considering
the instantaneous or delayed components of the macroscopic mechanical responses. The highlights of the proposed
methodoly are:

• Polymer matrix representation that holds thermodynamic consistency; being able to map the delayed response
in terms of volume variations in function of temperature, reproducing the transitional states from rubbery to
glassy behavior. This fact is indeed of primal importance, as the nature of the manufacturing process imposes
the thermal strain as the main source of residual stress and dimensional instability in an HT-FRAM 3D-printed
composite part.

• Concise methodology, constructed around practical and functional choices, giving to the formulation simplicity
while conserving its reliability, reducing dramatically the time of computations when comparing to full-field
analysis (Table. 2). This is achieved through the introduction of the extension of analytical homogenization in the
context of thermo-viscoelasticity via the internal-time technique for the correspondence principle in continuous
variations of temperature, and ensuring the mathematical representation of the composite in the same way as
the matrix by introducing an identification step, able to identify optimal values of the discrete spectra when no
noisy data is used.

• Efficient implementation of the estimation of the influence of the variability of length and orientations in the
effective behavior by implementing probabilistic descriptions of the parameters’ distributions. Giving a plus in
simplicity of formulation while being a more accurate description of the general state of the composite.

• High accurate Methodology to approximate effective thermo-viscoelastic behavior in discontinuous-fiber rein-
forced amorphous polymers, with high capacity of adaptation in finite elements commercial software products,
as it has already been tested (Abaqus and Digimat).

In terms of perspectives, the next step will be to model the effective thermo-viscoelastic behavior of the printed part
at the upper scale with the porosities due to the stacking of the filaments (mesoscale) by integrating the effective
behavior model of the composite filament proposed in this paper and the topology of the porosities to solve the
thermomechanical structure calculation in order to predict the warping of the HT FRAM 3D-printed part and to
compare against experiments performed in simple structures.
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A. Mean-field models
Here, the explicit forms of the localization tensors 𝑨∗(𝑟) used in the computation of its distribution averaged form 𝑨∗(𝑓 )

⋆after Eqs. (17)-(20), are presented. Recalling the explicit form of the latter:

𝑨∗(𝑓 )
⋆ = ∫𝑆 ∫

𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

𝑓𝑤(𝑤)𝑓𝒏(𝒏)𝑨(𝑟)(𝑤,𝒏)𝑑𝑤𝑑𝑆 (A.1)

Localization tensors for the implemented mean-field schemes:
All mean-fields approximations are based on Eshelby’s equivalent inclusion method, whose results and notations are
summarized. Consider an ellipsoidal domain Ω(𝑟) embedded in an infinite matrix with elastic tensor 𝑳(m), supporting
a constant internal stress (or polarization) 𝝉 so that the total stress is 𝝈(𝑟) = 𝑳(m) ∶ 𝜺(𝑟)+𝜏, where 𝜺(𝑟) is the total strain
inside the inclusion. Then this strain is found to be constant and equal to:

𝜺(𝑟) = −𝑷 (𝑟)
0 ∶ 𝝉 (A.2)

where 𝑷 (𝑟)
0 is Hill’s tensor, and depends on the matrix moduli and the inclusion’s shape. Now consider that the domain

Ω(𝑟) supports an inhomogeneity characterized by the elastic tensor 𝑳(𝑟), and is submitted to a strain field 𝜺0 uniform
at infinity. Then, writing 𝝈(𝑟) = 𝑳(𝑟) ∶ 𝜺(𝑟) = 𝑳(m) ∶ 𝜺(𝑟) + (𝑳(𝑟) − 𝑳(m)) ∶ 𝜺(𝑟), i.e. introducing the polarization
𝝉 = (𝑳(𝑟) −𝑳(m)) ∶ 𝜺(𝑟), applying the previous formula (A.2) one obtains by superposition

𝜺(𝑟) = 𝜺0 − 𝑷 (𝑟)
0 ∶ (𝑳(𝑟) −𝑳(m)) ∶ 𝜺(𝑟) (A.3)

and finally,
𝜺(𝑟) = 𝑨(𝑟)

0 ∶ 𝜺0, 𝑨(𝑟)
0 =

[

𝑰4 + 𝑷 (𝑟)
0 ∶ (𝑳(𝑟) −𝑳(m))

]−1
. (A.4)

where𝑨(𝑟)
0 is the localization tensor of the inclusionΩ(𝑟) embedded in the matrix𝑳0. Both Hill and localization tensors’

expressions are given in [51] for a wide variety of inclusion shapes. The localization tensor 𝑨(𝑟)
0 is used in the dilute

approximation, or Eshelby’s model, valid only for very low volume fractions of inclusions where interactions between
inclusions are negligible. For higher volume fractions, these interactions must be accounted for, as proposed by various
authors.
Mori–Tanaka (MT) model: As reformulated by [4], in this model the mean inclusion strain is linked to the mean
matrix strain (rather than the total mean strain) through Eshelby’s method. This results in the following localization
tensor:

𝑨(𝑟)
MT = 𝑨(𝑟)

0 ∶

[

(1 −
𝑅
∑

𝑟=2
𝑐(𝑟))𝑰4 +

𝑅
∑

𝑟=2
𝑐(𝑟)𝑨(𝑟)

0

]−1

, (A.5)

where 𝑐(𝑟) is the inclusion’s volume fraction.
Lielens’ model: This model, introduced in [39], results from an interpolation between two bounds of the effective
properties: (i) the lower Hashin and Shtrikman bound (corresponding to the MT model), and (ii) an upper bound,
obtained by inverting the properties and geometries of matrix and fibers. The resulting localization tensor is:

𝑨(𝑟)
Lie = 𝑨

(𝑟)
∶
[

(1 −
𝑅
∑

𝑟=2
𝑐(𝑟))𝑰4 +

𝑅
∑

𝑟=2
𝑐(𝑟)𝑨

(𝑟)]−1
, where 𝑨

(𝑟)
=
[

(1 − 𝜂𝐿)
[

𝑨(𝑟)
0

]−1
+ 𝜂𝐿

[

𝑨(𝑟)
inv
]−1

]−1
, (A.6)

where 𝑨(𝑟)
inv is the tensor given by Eq. (A.4) by inverting the matrix’ and inclusion properties, and 𝜂𝐿 being the

interpolation factor depending on the volume fraction. Lielens proposes to use:
𝜂𝐿 = 1

2
𝑐(𝑟)(1 + 𝑐(𝑟)), (A.7)

a choice that was validated by subsequent studies.
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Interaction direct derivative (IDD) model: This model, introduced by [19, 63], comes from a double inclusion
approach whereas a micromechanical analysis is performed by considering a matrix cell Ω(𝑟)

𝐷 of ellipsoidal geometry
surrounding each inclusion Ω(𝑟), itself surrounded by the effective medium. After some simplifications, the resulting
concentration tensor for an inclusion is:

𝑨(𝑟)
IDD = 𝑨(𝑟)

0 ∶

[

𝑰4 −
𝑅
∑

𝑟=2
𝑐(𝑟)𝑷 (D,𝑟)

0 ∶ (𝑳(𝑟) −𝑳(m)) ∶ 𝑨(𝑟)
0

]−1

, (A.8)

As pointed out by [19] and recently recalled by [27], the IDD model is in fact a general formulation that embeds (i)
the MT model when each cell has the same geometry as its related inclusion (i.e. 𝑷 (D,𝑟)

0 = 𝑷 (𝑟)
0 ), and (ii) the Ponte-

Castañeda and Willis (PCW) model from [10] when all cells are identical and their shape characterizes the distribution
of inclusions’ centers (i.e. 𝑷 (D,𝑟)

0 = 𝑷 (D)
0 ).
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B. Mathematical tools
B.1. Transversely isotropic elasticity tensors and matrix representation
The explicit form of the Hill basis tensors for a given symmetry axis orientation (𝒏) is presented below.

 = 𝒏⊗ 𝒏, 𝚯 = 𝑰2 − ,

(1)(𝒏) = 1
2
𝚯⊗𝚯, (2)(𝒏) = 𝚯⊗ , (3)(𝒏) =  ⊗𝚯, (4)(𝒏) =  ⊗ ,

(5)(𝒏) = 1
2
(

Θ𝑖𝑘Θ𝑙𝑗 + Θ𝑖𝑙Θ𝑘𝑗 − Θ𝑖𝑗Θ𝑘𝑙
)

,

(6)(𝒏) = 1
2
(

Θ𝑖𝑘𝑙𝑗 + Θ𝑖𝑙𝑘𝑗 + Θ𝑗𝑘𝑙𝑖 + Θ𝑗𝑙𝑘𝑖
)

.

(B.1)

With ⊗ representing the tensor product.
Transversely isotropic elasticity tensors are written in Hill basis as:

𝑳 = 2𝐾1 + 𝓁(2 +3) + 𝑛4 + 2𝑚5 + 2𝜇6 =
6
∑

𝑏=1
𝑙(𝑏)(𝑏), (B.2)

where:
• 𝐾 is the plane strain bulk modulus.
• 𝑚 is the transverse shear modulus: (𝑚 = 𝐺23 if 𝒏 = 𝒆1).
• 𝜇 is the longitudinal shear modulus: (𝜇 = 𝐺12 = 𝐺13 if 𝒏 = 𝒆1).
• 𝓁 and 𝑛 can be linked to the “engineering” constants, e.g if 𝒏 = 𝒆1:

𝓁∕2𝐾 = 𝜈12, 𝑛 − 𝓁2∕𝐾 = 𝐸1. (B.3)

In 6 × 6 matrix representation (Voigt notations), taking 𝒏 = 𝒆1, one has [2]

𝑳Voigt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐿11 𝐿12 𝐿12 0 0 0
𝐿12 𝐿22 𝐿23 0 0 0
𝐿12 𝐿23 𝐿22 0 0 0
0 0 0 (𝐿22 − 𝐿23)∕2 0 0
0 0 0 0 𝐿55
0 0 0 0 0 𝐿55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛 𝓁 𝓁 0 0 0
𝓁 𝐾 + 𝑚 𝐾 − 𝑚 0 0 0
𝓁 𝐾 − 𝑚 𝐾 + 𝑚 0 0 0
0 0 0 𝑚 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.4)

Using “engineering” coefficients (e.g. (𝐸1, 𝐸2, 𝜈12, 𝐺12, 𝐺23)) the associated compliance matrix is:

𝑺Voigt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸1

− 𝜈12
𝐸2

− 𝜈12
𝐸2

0 0 0

− 𝜈21
𝐸1

1
𝐸2

− 𝜈32
𝐸2

0 0 0

− 𝜈21
𝐸1

− 𝜈32
𝐸2

1
𝐸2

0 0 0

0 0 0 1
𝐺23

0 0

0 0 0 0 1
𝐺12

0

0 0 0 0 0 1
𝐺12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.5)

where 𝜈21 is determined by the symmetry requirement 𝜈21∕𝐸1 = 𝜈12∕𝐸2.
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Double product “:”  𝚯
(1) 𝟎 𝚯
(2) 𝚯 𝟎
(3) 𝟎 2
(4)  𝟎
(5) 𝟎 𝟎
(6) 𝟎 𝟎

Table 4
Product between fourth-order Hill basis tensor and second-order tensor of the natural basis of transverse isotropic tensors.

For completely isotropic materials, one has:

𝑳Voigt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, so that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐾 = 𝜆 + 𝜇 = 𝜅 + 1
3
𝜇

𝓁 = 𝜆 = 𝜅 − 2
3
𝜇

𝑛 = 𝜆 + 2𝜇 = 𝜅 + 4
3
𝜇

𝑚 = 𝜇

(B.6)

where we used 𝜆 = 𝜅 − 2𝜇∕3.
B.2. Products of tensors in Hill basis
By Table. 4, the product between fourth- and second-order transverse isotropic tensors is:

𝑻 ∶ 𝒕 = (𝑇4𝑡1 + 2𝑇3𝑡2) + (𝑇2𝑡1 + 𝑇1𝑡2)𝚯. (B.7)
B.3. Orientation averaged Hill basis
By Eq. (B.1) it is noted that the orientation averaging of the Hill basis is reduced to the computation of the second
and fourth order orientation tensors, interpreted as the second and fourth order moments of the orientation distribution
respectively [1]. the expressions of the orientation tensors are presented below.

𝜼2 = ∫𝑆
𝑓𝒏(𝒏)(𝒏⊗ 𝒏)𝑑𝑆, 𝜼4 = ∫𝑆

𝑓𝒏(𝒏)(𝒏⊗ 𝒏⊗ 𝒏⊗ 𝒏)𝑑𝑆. (B.8)
The explicit forms of the orientation averaged Hill basis reads

(1)
⋆ = 1

2
[

𝑰2 ⊗ 𝑰2 − 𝑰2 ⊗ 𝜼2 − 𝜼2 ⊗ 𝑰2 + 𝜼4
]

, (2)
⋆ = 𝑰2 ⊗ 𝜼2 − 𝜼4, (3)

⋆ = 𝜼2 ⊗ 𝑰2 − 𝜼4

(4)
⋆ = 𝜼4, (5)

⋆ = 1
2
[

2𝑰4 − 𝝀 − 𝑰2 ⊗ 𝜼2 + 𝑰2 ⊗ 𝜼2 + 𝜼2 ⊗ 𝑰2 + 𝜼4
]

, (6)
⋆ = 1

2
𝝀 − 2𝜼4

𝜆𝑖𝑗𝑘𝑙 = (𝐼2)𝑖𝑘(𝜂2)𝑗𝑙 + (𝜂2)𝑖𝑘(𝐼2)𝑗𝑙 + (𝐼2)𝑖𝑙(𝜂2)𝑗𝑘 + (𝜂2)𝑖𝑙(𝐼2)𝑗𝑘.

(B.9)

B.4. Orientation tensors for Advani-Tucker law
By Eq. B.8, the orientation tensors in matrix notation corresponding to the Advani-Tucker law for the axisymmetric
distribution, can be computed as follows:

𝜼2 =
1

𝑚AT + 3

⎡

⎢

⎢

⎣

𝑚AT + 1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

𝜼4 =
1

(𝑚AT + 3)(𝑚AT + 5)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑚AT + 1)(𝑚AT + 3) (𝑚AT + 1) (𝑚AT + 1) 0 0 0
(𝑚AT + 1) 3 1 0 0 0
(𝑚AT + 1) 1 3 0 0 0

0 0 0 1 0 0
0 0 0 0 (𝑚AT + 1) 0
0 0 0 0 0 (𝑚AT + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.10)
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C. Parameters identification
The Laplace-Carson transform of a relaxation moduli tensor 𝑳∗, gives the steady-state response to a harmonic loading
by considering the change of variable 𝑝 = 𝑗𝜔, with 𝜔 being the circular velocity of the harmonic loading [25, 21].
This is why identification methods developed for this kind of harmonic loading (e.g. DMA tests) are implemented to
estimate the coefficients of an equivalent Prony-series representing the effective thermo-viscoelastic behavior from the
generated data.

Let 𝑚(𝑡) be a given relaxation modulus (an element of 𝑳(𝑡)), and 𝑚∗(𝑝) its correspondent Laplace-Carson
transform. The identification of the coefficients of 𝑚(𝑡) begins with the approximation of the discrete characteristic
time distribution. This is achieved by using the Krein-Nudelman method [30]. After this, the associated coefficients
are computed from a classic mean-squares procedure. The methodology to approximate Prony-series is presented as
follows:

Given the frequency data: {𝜔𝑖, 𝑚̂𝑖}, with 𝑚∗
𝑖 = 𝑚′

𝑖 + 𝑗𝑚′′
𝑖 , and its conjugate form 𝑚̂𝑖, with 𝑖 ∈ [1, 𝐼]. Find an

approximation for 𝜏𝑛, 𝑁𝜏 and 𝑚𝑛, that are the discrete time distribution and its size, and the coefficients associated to
each characteristic time, respectively:

• Build the following square matrices:

𝑀1
𝑘𝑙 = 𝑗

𝑚̂𝑘 − 𝑚∗
𝑙

𝜔𝑘 + 𝜔𝑙
, 𝑀2

𝑘𝑙 =

𝑚̂𝑘
𝜔𝑘

+
𝑚∗
𝑙

𝜔𝑙

𝜔𝑘 + 𝜔𝑙
. (C.1)

• Compute the eigenvectors 𝝀1 and 𝝀2 associated to the null space of 𝑴1 and 𝑴2, then compute the following
two functions:

𝑓1(𝑠) =
𝐼
∑

𝑖=1

𝜆1𝑖
𝑠 + 𝑗𝜔𝑖

, 𝑓2(𝑠) =
𝐼
∑

𝑖=1

𝜆2𝑖
𝑠 + 𝑗𝜔𝑖

. (C.2)

• Discretize 𝑓1 and 𝑓2 considering 𝑠 as a frequency variable lying in the same range of {𝜔𝑖∕2𝜋}. Then, find
numerically the common real positive zeros (𝑠𝑛) corresponding to the discrete characteristic times of the
relaxation modulus 𝑚(𝑡):

𝜏𝑛 = (𝑠𝑛)−1, 𝑛 ∈ [1, 𝑁𝜏 ] (C.3)

• Build the following rectangular matrices:

𝐴1
𝑖𝑛 =

(𝜔𝑖𝜏𝑛)2

1 + (𝜔𝑖𝜏𝑛)2
, 𝐴2

𝑖𝑛 =
𝜔𝑖𝜏𝑛

1 + (𝜔𝑖𝜏𝑛)2
(C.4)

• The associated moduli are computed by solving the following minimization problem:
{𝑚𝑛} = argmin (||𝑨1.{𝑚𝑛} − {𝑚′

𝑖}|| + ||𝑨2.{𝑚𝑛} − {𝑚′′
𝑖 }||

) (C.5)
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(a) On-plane shear relaxation modulus. (b) On-plane compressibility relaxation modulus.

(c) relaxation modulus related with the axial behavior 𝑛. (d) On-plane thermal creep function.
Figure 27: Identification examples using Krein-Nudelman method.
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D. Materials’ data
Fibers’ mechanical properties are assumed to be constant: 𝜅 = 39.733[GPa], 𝜇 = 29.05[GPa] and
𝛼 = 2.21E − 5[1∕◦C].
Matrix coefficients for the reference master-curves are presented below:
Glassy moduli: 𝜅g = 4.23879[GPa], 𝜇g = 1.23968[GPa]
𝜏(𝑢)[s] 𝜅(𝑢)[GPa] 𝜇(𝑢)[GPa]
1.4211E − 11 0.0284181 0.0284181
7.2697E − 11 0.0341941 0.0273223
3.7188E − 10 0.0920182 0.0255737
1.9024E − 9 0.172648 0.0237469
9.7315E − 9 0.268286 0.0222851
4.9782E − 8 0.366893 0.0214578
2.5466E − 7 0.452075 0.0214489
1.3027E − 6 0.505714 0.0224768
6.6640E − 6 0.514237 0.0249357
3.4089E − 5 0.47587 0.0296341
1.7439E − 4 0.402704 0.0383457
8.9208E − 4 0.314523 0.055318
4.5634E − 3 0.229389 0.0917189
0.0233442 0.158053 0.174055
0.119418 0.103904 0.274284
0.610883 0.0656627 0.187685
3.12498 0.040106 0.0904041
15.9858 0.0237646 0.0485919
81.7757 0.0136966 0.0302413

Glassy modulus: 𝛼g = 5.98536E − 5[1∕◦C]
𝜏(𝑠)[s] 𝛼(𝑠)[1∕◦C] 𝜏(𝑠)[s] 𝛼(𝑠)[1∕◦C]
1.09402E − 16 6.43788E − 7 1.48477E − 3 1.63691E − 6
4.96202E − 16 6.54383E − 7 6.73427E − 3 1.62182E − 6
2.25056E − 15 6.74554E − 7 3.05438E − 2 1.59023E − 6
1.02075E − 14 7.03568E − 7 1.38533E − 1 1.54303E − 6
4.62970E − 14 7.40899E − 7 6.28327E − 1 1.48174E − 6
2.09983E − 13 7.86106E − 7 2.84982 1.40840E − 6
9.52393E − 13 8.38741E − 7 12.9255 1.32544E − 6
4.31964E − 12 8.98259E − 7 58.6247 1.23550E − 6
1.95920E − 11 9.63950E − 7 265.896 1.14129E − 6
8.88601E − 11 1.03487E − 6 1205.99 1.04541E − 6
4.03035E − 10 1.10980E − 6 5469.85 9.50225E − 7
1.82799E − 9 1.18721E − 6 24808.9 8.57797E − 7
8.29098E − 9 1.26525E − 6 112522 7.69789E − 7
3.76043E − 8 1.34181E − 6 510353 6.87463E − 7
1.70557E − 7 1.41451E − 6 2.31474E + 6 6.11684E − 7
7.73572E − 7 1.48087E − 6 1.04987E + 7 5.42952E − 7
3.50859E − 6 1.53837E − 6 4.76174E + 7 4.81461E − 7
1.59134E − 5 1.58461E − 6 2.15972E + 8 4.27147E − 7
7.21765E − 5 1.61749E − 6 9.79554E + 8 3.79766E − 7
3.27361E − 4 1.63530E − 6 4.44283E + 9 3.38943E − 7
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