
HAL Id: hal-03698732
https://hal.science/hal-03698732v2

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Open Dataset for Beyond-5G Data-driven Network
Automation Experiments

Dung Chi Phung, Nour-El-Houda Yellas, Salah Bin Ruba, Stefano Secci

To cite this version:
Dung Chi Phung, Nour-El-Houda Yellas, Salah Bin Ruba, Stefano Secci. An Open Dataset for Beyond-
5G Data-driven Network Automation Experiments. 2022 1st International Conference on 6G Network-
ing (6GNet), Jul 2022, Paris, France. �10.1109/6GNet54646.2022.9830292�. �hal-03698732v2�

https://hal.science/hal-03698732v2
https://hal.archives-ouvertes.fr


An Open Dataset for Beyond-5G Data-driven
Network Automation Experiments

Chi-Dung Phung, Nour-El-houda Yellas, Salah Bin Ruba, Stefano Secci
Cnam, Paris, France. {first-name.last-name}@cnam.fr

Abstract—In this paper, we present the 5G3E (5G End-to-End
Emulation) dataset created to support 5G network automation.
The dataset contains thousands of time-series, built at different
sampling rates, related to the observation of multiple resources
involved in 5G network operation: radio, computing and net-
work resources. The variety of collected features ranges from
radio front-end metrics to physical server operating system and
network function metrics. We describe the testbed we deployed
to support the creation of traffic starting from real traffic traces
of a commercial network operator.

I. INTRODUCTION

In networking research in general, and mobile networking
in particular, datasets availability plays a critical role in testing
and validating new protocols, architectures, algorithms. A real-
world dataset collected from a real running system is the ideal
data source for validating studies. However, collecting this
type of data is challenging due to legal and technical barriers,
which is particularly important for recent 5G systems.

Due to difficulties in accessing real-world datasets, simu-
lation/emulation systems are widely used to provide the data
to validate the research. Although the data collected from the
simulated operation of a networked system may not reflect
all the characteristics of a real system, it allows flexible cus-
tomization of system parameters to generate different datasets
at any given time depending on the purpose of the study.
As data-driven network architectures for beyond-5G and 6G
system are the current front-line of many research projects,
making available high-frequency component-level data moni-
toring information can favor the evaluation and comparison of
novel algorithms, protocols and architectures.

In this paper, we document the process of creating a first
version1 of a 5G end-to-end emulated system dataset that we
make available to the community working in network automa-
tion and control-loop systems [1]. We start by introducing a
simulation/emulation hybrid system, using a combination of
NS3 [2] network simulation tools with a realistic virtualized
network system software stack. Using anonymous user traffic
data from a national mobile network provider, we employ NS3
to simulate real-time user (client) data, which is then trans-
ferred from the simulated environment to the real network.
After crossing the network fabric, this data traffic is ended
by a simulation environment, where NS3 is used to simulate
the application servers the clients connect to. During these data
transfers, we collect information on the overall network system
components at different sampling rates, thereby building a

1We present planned evolutions to appear in future dataset versions.

dataset composed of thousands of time-series, each related to
a specific subsystem and a specific resource type.

Using real user data as input allows us to simulate a system
which partially reflects the characteristics of a real system.
Moreover, the combination with a simulation tool, allows us
to quickly customize the system parameters according to the
needs and to scale the experiments with a high number of user
equipment (UE).

In Section II, we introduce the platform components. We
start with a description of the anonymous mobile traffic
dataset, and how we employ it to set up the NS3-based end-
to-end connection emulation, simulating the user data closest
to the real system data. Then we introduce the real network
model, and how the traffic from the simulated client/server
environment is fed back into the real network. Section III
introduces the scope of the simulation and how the data-set
features time-series are collected. The last section anticipates
details on the technical demonstration, and draws further
platform and dataset versions.

II. EMULATION PLATFORM

In our platform, we combine both the NS3 simulation
tool and a realistic virtualized 5G network stack. Figure 1
depicts the client-server view of the data-plane traffic flow over
the platform, where we simulate the application connection
handling on both the User Equipment and the server sides.
Each UE has one NS3 instance that generates the application
traffic for each TCP (Transmission Control Protocol) session
from the mobile traffic dataset (described hereafter). The IP
traffic from NS3 node is transferred into the UE’s network
to go through the mobile core network and then to the end-
server. On the server site, network traffic is transferred back
into NS3 to reach the application server emulated in NS3.
Similar behavior happens when traffic is sent back from the
server application. In this section, we first introduce the real-
world mobile traffic dataset we used. Then we detail how NS3
is configured to simulate the application connections from
mobile traffic dataset. Finally, we briefly describe the node-
level view of the testbed along with the software components
we employed.

A. Mobile traffic dataset

We use a real mobile traffic dataset from a national mobile
operator; the data was collected at the 3G and 4G mobile cores
(at Gi/Sgi and Gx/Gy interfaces) for each user session during
a multi-week period in spring 2019. The data, collected at



Fig. 1: Hybrid emulation platform: Per connection view.

the GGSN (Gateway GPRS Support Node), allows knowing
precisely the category of a mobile service used on top of TCP
during an Internet connection (e.g., mail, video streaming,
Voice over IP, gaming) and the amount of data consumed for
this service, for a single user. The data is organized in TCP
sessions with different netflow-like information as below. To
reduce the size of the input dataset, TCP sessions of less than
100KB are discarded. For our simulation setting, we exploit
the following information on a per-TCP connection basis:

• SRCPORT/DSTPORT: source/destination TCP port;
• START/STOP: Start/Stop time of the TCP session;
• BYTEUP/BYTEDN: total upload/download bytes of the

TCP session at IP level;
• NPACKETUP/NPACKETDN: number of packets contain-

ing Upstream/Downstream;
• LOCSTART: provides the user’s basetation location, the

cell is known at the beginning of the TCP session;
• USEFULUP/USEFULDN: useful number of bytes trans-

ferred in the TCP session (Up/Down);
• MAXVOLUP/MAXVOLDN: maximum number of bytes

sent/received by the client during a period of 20s;
• DELAY SYN SYNACK: time in µs between the packet

SYN and the response SYN-ACK;
• DELAY SYNACK ACK: time in µs between the packet

SYN-ACK and the response ACK;
• REMAS: the remote Autonomous System number;
• MAXWINDOWUP/MAXWINDOWDN: maximum value

announced for the TCP window, for Upstream /Down-
stream.

From these fields, we also derive additional parameters such
as RTT within the core network, access link bandwidth, data
transfer size, and window size for each TCP session.

B. NS3 simulation

Inside each simulated UE, we deploy an NS3 instance,
which is responsible for simulating all UE traffic in real-time.
A key step in NS3 simulation is to define the network topol-
ogy. We propose a simulated topology that includes multiple
APPLICATION NODES connected to one gateway. Each node
is responsible for simulating the traffic of one TCP session

in real-time: the character of the link between each node to
the gateway is set based on the TCP session value. On the
server side, multiple NS3 instances are used, each instance
being responsible for simulating a set of application servers.
Also, a virtual tunnel is created to allow traffic from NS3 to
be sent/received to/from the UE’s network.

The input dataset composed of application-level netflow-like
logs allows building statistical distribution for some features.
In order to create sets of connections to emulate the real
communications, NS3 is carefully configured. We detail next
how we set up our NS3 simulation model.

1) Link parameters: We computed them as follows:
• RTT (Round-Trip Time): we use the DE-

LAY SYNACK ACK/2 as RTT value.
• Client up/down access links bandwidth: set to k *

(ByteUp/ByteDown) / Duration, where the duration is
calculated as the time difference between the end and start
of the session. k is set such that the number of packets
created over the simulated connections is the closest to
the real number of packets from the traces (NPACKETDN,
NPACKETUP); overall, we found that the value allowing
minimizing this gap is k = 3 for the given dataset.

• Router queuing: we use the default NS3 link queuing
policy at the moment; in future versions, the queue size
may be reconfigured as a function of the number of flows
to mimic optimal queue sizing in 5G switching systems.

Slicing and related traffic differentiation policies are not
integrated for the moment.

2) TCP session parameters: We convert each input TCP
session to a TCP session between a client application node and
a server application node over the platform. In NS3, we used
TCPSOCKET to simulate the socket, and BULKSENDHELPER,
PACKETSINKHELPER and THREEGPPHTTPHELPER are used
as applications on the CLIENT/SERVER NODE. The basic
parameters are set as follows:

• Source/Destination IP address: we use the subnet
10.0.0.0/8 as IP address space of the client and
172.31.0.0/16 as the server space. The node IP address
therefore takes the form of 10.x.y.z or 172.31.y.z with x,y,
and z being random decimals from 1 to 255; in further



Fig. 2: Hybrid emulation platform: topology.

versions of the dataset, we plan to constrain these ranges
to distinct subnets for distinct REMAS.

• Source/Destination port:
– Source port: set to a random number;
– Destination port: in the current version, we only

use the port 443. We plan to set a port following
empirical statistical distribution of the destination
TCP ports usage from the dataset in future versions,
using the following 99.9% percentile pool: [443, 80,
8080, 993, 8000, 993, 8000, 4070, 5223, 995, 110,
5228, 9339, 143, 587, 1935, 9001, 465, 1090, 25461,
440, 3101, 5222, 732, 3128,9933, 8081, 3724].

• DataSize: bytes sent from the client to the server appli-
cation, set to max(BYTEUP, BYTEDOWN);

• WindowMax and window size: for the current version of
the dataset, they are set as per the default NS3 behavior.

C. 5G RAN and core software stack
As depicted in Figure 1, data traffic quitting the NS3

environment is transmitted over a 5G platform network. In the
RAN part, we use srsRAN version 21.10 [3], a 4G/5G software
radio suite developed by SRS (Software Radio Systems), to
deploy UE and gNodeB. The radio connection between UE
and gNodeB is done via GNU Radio, an open-source tool
that provides signal processing blocks to implement software-
defined radios and signal-processing systems. The wifi inter-
face will be used in further versions of the dataset, in order to
test MPTCP/ATSSS (Multipath TCP/Access Traffic Steering,
Switching and Splitting) functionalities to allow multipath
forwarding across multiple radio access technologies. In the
current dataset version, the channel conditions are perfect, but
we plan to introduce mobility and channel propagation models
in future releases.

The core of the 5G network is deployed through the
Open5GS software suites [4] version 2.4.4, related to 5G Non-
Stand-Alone (NSA) system; in future releases, we plan to
move to a 5G SA system. After their containarization, we
use Kubernetes [5], to deploy these basic 5G core functions:
HSS, MME, UPF, PCRF, NRF, SGW-C, SGW-U, SMF on
three physical servers.

D. System metric collection

To collect data about the overall network activity, metric
collectors are installed at multiple levels in the platform. This
allows us to collect information from:

• Physical level: using Node exporter [6] on all physi-
cal servers allows collecting all information about the
server’s activity (e.g. CPU, memory, network, storage).

• Container level: using Kubernetes, we collect the activity
information of each container, thus getting information
about the activity of each component of the 5G core.

• RAN level: information about UE and gNodeB activity
can be fully collected using srsRAN.

We set the sampling rate to the smallest appropriate level,
which is 150 ms for the physical/container level and 80 ms
for the RAN level, hence collecting a maximum amount of
system information and avoiding server computing saturation.

III. 5G3E (5G END-TO-END EMULATION) DATASET

From the mobile operator network, we select a small cellular
region (TAC, Tracking Area Code). The whole area is covered
by 4 towers-sites with 13 cells; the number of users with TCP
sessions over 100 kbytes counted up to 52 UEs.

Figure 2 depicts the physical model of the system set-up to
emulate the scenario. Three powerful servers connected in a
triangle are used to simulate 4 sites. Sites 1 and 2 have total



Node type CPU Memory Network Disk Radio # per node # nodes # Total Sampling rate
Physical 89 - 371 37 - 39 170 - 540 42 - 296 - 340 - 1080 6 3816 150 ms

Container 18 44 - 45 30 - 45 16 - 24 - 147 - 185 9 1433 150 ms
eNodeB 32 2 2 - - 36 7 252 80ms

UE 32 2 2 - 11 47 35 1645 80ms

TABLE I. Numbers of features time-series of the current version of the dataset [1].

7 cells, while sites 3 and 4 have 3 cells, each serving 5 UEs.
Based on the information about cell locations at the start of the
session, we assign a corresponding set of TCP sessions to each
site. Note that the 5G core is deployed on a clustered system
with 4 physical servers, one represents the master node and
the three others are used to deploy components of the core
network. One physical server is used to simulate the server
site; to avoid congestion, the server is not shared between UEs,
and each UE has an independent set of servers for download
and upload.

A. Training set creation
In order to create a first dataset that can be used for training

purposes, i.e. to learn the network normal conditions, the
system ran for 14 days of mobile traffic traces, from 16 March,
2019, to 29 March, 2019, which lead to the creation of 1.1
TB of data about system performance. As of our knowledge,
no disaster nor major network collapse event happened over
this period, hence qualifying the collected data as training set.
These data can be considered as data representing the normal
operation of the system.

Table I lists the number of distinct features we collect,
for different node types, along with the number of nodes per
node type. Each feature corresponds to a time-series over the
dataset generation period. In the table, the features are grouped
into five different groups: CPU, Memory, Network, Disk and
Radio. We proceed with this type of grouping having in mind
the forthcoming application of anomaly detection framework
such as the one in [7], which uses such groups for different
autoencoder neural networks.

B. Test set creation
In the second step, we created a test set with the objective

to test anomaly detection algorithms such as the one in [7].
We inject some anomalies into the system, while gathering

metrics. Currently, we focus on 4 injected anomaly behaviors:
• CPU overload: we use the stress-ng tool to stress CPU in

a 5G core function. The load CPU with percent loading
in set [10, 20, 30, 40, 50, 60, 70, 80].

• Access bandwidth: set to (k * (byteUp/Down) / duration)
* M with k=3 and M in set [2, 3,4,5].

• Packet loss: different rates set on access link using
iptables: [10, 20, 30, 40, 50, 60, 70, 80] %.

• Link failure: simulation of links failure between site3/site
4 and site1 2. We use BGP to detect the failures to
automatically setup the backup link.

C. Data cleansing and postprocessing
As a final step, we proceed to clean and normalize the data.

This data cleaning and normalization operations consist of:

1) Irrelevant data removal: during this step, we remove ir-
relevant features to infrastructure learning, for example,
metrics related to Node exporter.

2) Feature size correction: consists of correcting samples
with extra features inserted at specific columns. To do
so, we replace each bad line by the previous one. In
fact, the number of samples affected by this error is
negligible compared to the total size of the data set,
roughly 0.014% on average.

3) Features grouping: this step consists of grouping to-
gether metrics based on their types and origine, i.e.,
CPU, Memory, Network, Radio and Disk grouping.

4) Data scaling: the magnitude of numerical values of
features is normalized. This is done by transforming the
data to fit within the [0,1] scale, which can be useful for
some artificial intelligence frameworks.

5) Data reshaping: this step consists of adding the look-
back dimension to the data set. It is necessary if we
need to perform time-series machine learning training.

D. Technical demonstration

During the demonstration, we show how the system works
in a normal situation and some anomaly situations.

ACKNOWLEDGMENT

This work was funded by the ANR CANCAN (https://
cancan.roc.cnam.fr; ANR-18-CE25-0011), H2020 AI@EDGE
(https://aiatedge.eu; grant nb. 101015922), AMI-5G INFLU-
ENCE and ANR MAESTRO-5G (https://maestro5G.roc.cnam.
fr; ANR-18-CE25-0012) projects.

REFERENCES

[1] 5G3E-dataset. URL: https : / / github. com / cedric - cnam /
5G3E-dataset.

[2] The NS3 network simulator. URL: https://www.nsnam.
org.

[3] Open source SDR 4G/5G software suite from Software
Radio Systems (SRS). URL: https://www.srslte.com.

[4] Open source project of 5GC and EPC. URL: https : / /
open5gs.org.

[5] Kubernetes. URL: http://kubernetes.io.
[6] Node exporter - Exporter for machine metrics. URL:

https://prometheus.io.
[7] Alessio Diamanti, José Manuel Sánchez Vı́lchez, and

Stefano Secci. “An AI-empowered framework for cross-
layer softwarized infrastructure state assessment”. In:
IEEE Transactions on Network and Service Management
(2022), pp. 1–1. DOI: 10.1109/TNSM.2022.3161872.


