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Abstract—We use a sensor network of 173 sensors to monitor
the energy consumption, the indoor environment quality and local
meteorological conditions of three collective residential buildings
composed of 62 dwellings. In particular, 146 sensors were
deployed in 8 apartments and 27 sensors in the buildings common
areas. The collected data are used to assess the performances of
the three buildings which have recently been undergoing heavy
retrofit actions. It also aims to accurately characterize some of the
occupants behaviors which directly impact the buildings energy
consumption and the indoor environment quality such as the
occupancy patterns, the windows opening for natural ventilation
or the temperature set point. We observe different occupancy
patterns depending on the number of people in apartments
and their schedule. As expected, we also observe a strong
seasonal variation of windows opening rates and consequently
in natural ventilation. Averaged indoor temperatures over the
heating season are much higher than the values used in regulatory
simulation scenarios. Furthermore, besides the recent buildings
energy retrofit there is a total absence of time-of-day dependent
heating load control which may explain a large amount of the
buildings energy performance gap.

Index Terms—sensor network, building, indoor environment
quality, energy, performance gap

I. INTRODUCTION

As residential buildings account for a third of the overall
energy consumption and greenhouse gas emissions in Europe
[1], building energy modeling is an essential tool to reach
energy efficiency goals [2]. In the energy modeling process,
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calibration is a mandatory step to obtain accurate and reliable
energy simulations [3]. Nevertheless, the comparison between
simulation results and the actual building energy behavior
often highlights a significant performance gap [4] that may
have various origins [5]. Among these, building operation
description in energy models, especially energy usages, users’
behavior and indoor environment quality (IEQ), play an im-
portant role in the reliability of simulations [6].

To render a more accurate building operation description and
target performance gap reducing, using monitored field data
are is a key solution [7]. Sensor networks are popular tools
for in situ data collection and have been promoted by recent
regulations over energy monitoring [8]. However, the literature
shows that the many aspects of energy related behaviors and
IEQ are difficult to target all at once and with a high level of
detail [9,10], especially in residential buildings [11].
Therefore, the present study discusses results on the analysis
of field data collected in a residential case study to characterize
energy-related behaviors and indoor environment quality (IEQ)
for physics-based building energy modeling and calibration.
The case study is a three-building residence of social housings,
and recently retrofited. Data collection covers building energy
behavior — thermal and electricity, indoor environment, in-
habitants’ comfort, occupancy, occupants behavior and energy
uses, and local weather. Data are collected through a wireless
sensor network of 173 sensors, deployed on energy systems,
in shared portions of the buildings and in an eight-apartment
sample [12]. Collection is performed for over a year in house-



holds and for three years at building scale. Analyses focus on
occupancy, natural ventilation through window opening, and
heating patterns.

The article is organized as follow: Section 2 introduces the
case study. Section 3 details materials and methods for the
sensor network and collected data processing. Analyses results
are discussed in Section 4 along with a feedback on lessons
learnt from the instrumentation process. Section 4 presents
conclusions and future works prospects.

II. BUILDING USE CASE DESCRIPTION

Building use case has three residential social housing

buildings located in Paris (France) eastern suburb. Buildings
comprise 63 apartments over a 4,600 m? living area. They
were built in 1974 and underwent a full deep energy retrofit in
2021. The main energy-uses, heating and domestic hot water,
are produced by a central geothermal energy system dedicated
to the three buildings.
An eight-apartment sample is instrumented along with com-
mon portions of the buildings and building-scale thermal
energy consumption. Description of the eight supervised apart-
ments is given in Table I with the floor number, the related
area, the orientation and the floor number. Buildings are later
referred as B1, B2 and B3 in the present study. Instrumented
households are referred with their floor such as B1/2 for the
apartment on the second floor of building.

TABLE I
DESCRIPTION OF INSTRUMENTED APARTMENTS
Building Floor Area (m?) | Orientation Number
number of inhabitants
Bl 2 63 North-West 2
Bl 3 50 North-East 1
B2 0 64 North-West 1
B2 1 53 South-East 1
B2 2 53 South-East 1
B2 5 50 South-East 1
B3 0 74 North-East 2
B3 2 64 North-West 1

ITI. MATERIALS AND METHODS
A. Instrumentation plan and used sensors

The sensor network aims to characterize the main energy
end-uses (electricity, heating and domestic hot water), indoor
environment quality and energy-related behaviors. We installed
173 sensors in total, 27 of which are dedicated to the buildings
common areas, with a data collection starting in February
2019. We also installed 146 sensors in a sample of 8 apart-
ments, with an average of 18 sensors for each apartment and
data collection starting from February 2021.

Electricity demand is measured in electrical switchboards, on
smart electric meters and with smartplugs — only in apartments
for the latter — at one-minute time-step. Thermal energy
consumption, for heating and domestic hot water (DHW),
is measured at building-scale with ultrasonic thermal energy
meters at five-minute time-step. In apartments, thermal energy

demand is characterized using temperature measurements at
one-minute and half-hour time-steps for DHW and heating,
respectively. Indoor environment quality is monitored with
a half-hour time-step using a sensor combining temperature,
humidity, CO5 and luminosity measurements, along with sen-
sors measuring the temperature of building envelope walls.
At building-scale, temperature and humidity are hourly mon-
itored. Energy-related behaviors are tracked with window-
opening and presence detection — counting the number of
passing in the range of the sensor. The former is event-driven
and the latter is aggregated data half-hour time-step.

The local weather is monitored as well using a weather station
with measurements of temperature, humidity, rainfall, solar
irradiation, wind speed and direction.

B. Data collection and storage

The sensor network is entirely wireless. It relies on two
different wireless communication protocols: LoraWan and
GPRS. LoRa is divided between an operated network and a
private network. The choice of a specific protocol depends
on its characteristics, data acquisition requirements and avail-
able technologies for each type of sensor [12]. GPRS data
communication is used for electrical measurements on electric
smart meters and switchboards. Building-scale data acquisition
along with smart-plugs relies on a LoRa operated network. All
other sensors installed in apartments are using a private LoRa
network.

Collected data are stored on a FTP server, in csv format.

C. Data processing

Data processing is divided into five steps. First, data are
cleaned to only retain relevant information: date, time, type
of measurement, and corresponding values. Collected data are
then formatted. Because of the many different types of sensors
and communication protocols, raw data are initially collected
under different formats. Data filing is set to a single csv file for
each measurement of each sensor, updated daily. Data quality
is studied to assess data completion for the different sensors,
identify relevant timeframes for data analyses and identify
potential causes of data losses.

The fourth step of data processing unifies data time-step. Data
aggregation is set to hourly time-step. Indeed, sensors have
different acquisition time-steps, from one-minute to one hour.
Therefore, the largest time-step is selected. Moreover, data
analyses are performed to use analyses results for physics-
based energy modeling where usage scenarios are mostly
daily profiles with hourly time-step. These daily profiles are
obtained by averaging data for each time-step.

Finally, specific types of data are modified. Window opening
data are resampled prior to aggregation because of event-
based data acquisition. Presence detection in apartments is
modified to presence/absence. If any presence is detected,
the apartment is considered with full occupancy. Otherwise,
it is considered empty. DHW temperature measurements in
apartments are processed to deduce DHW usage. Since DHW
volume consumption cannot be measured onsite, averaged



daily consumptions for 40°C DHW usage are retrieved from
studies from ADEME agency [13]. A 40°C threshold is
applied to DHW temperature measurements: any data point
over 40°C is considered as one minute of DHW usage. Data
are summed at hourly time-step to retrieve daily profiles
figuring DHW time usage for each hour. Then, daily mean
consumptions are evenly distributed over the daily profiles.
Data processing is performed using Python 3.7.

IV. RESULTS AND DISCUSSIONS
A. Occupancy and natural ventilation

Building occupancy is expected to be a predominant energy
driver since it leads to DHW consumption, window opening,
dissipated power from appliances use, ventilation regulation
and so on. Occupancy is deduced from presence detection
in apartments, performed in the living room. Activity and
presence of occupants in the different apartments largely differ
from one apartment to the other. Comparing B1/2 (Figure
1(a)) and B1/3 (Figure 1(b)), presence in the former is quite
consistent all along the day with small peak at lunch time and
in the evening. In B1/3, there are two clear signs of activity
in the apartment, in the morning and in the evening. Such
differences can be explained by the number of people living
in instrumented apartments and their respective schedule: B1/2
has a student with changing schedule and a working parent
while B1/3 only has a full-time working adult. However,
because presence detection sensors do not count how many
people are present in the apartment at a given time, uncertain-
ties remain for occupancy profiles of apartments with several
occupants.
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Fig. 1. Occupancy profiles for B1 floor 2 (a) and B1 floor 3 (b) before night
correction and after night correction (c) and (d)

Natural ventilation is pictured by window opening. Window
opening data are processed to result in daily profiles with
an opening duration for each hourly time slot of the day.
Daily profiles are then aggregated for each month. Window
opening shows that this behavior is mostly season-driven as
for the example of the living room in B1 floor 2 (Figure2).
Windows are mostly opened during the summer period. This

can be explained by the absence of AC units in the buildings.
Furthermore, regarding the short time of opening during the
heating season starting in October, window opening duration
is expected not to have a very significant impact on heating
energy consumption.

May-21|June21| July-21) Aug-21) Sept-21| Oct-21| Nov-21| Dec-21| Jan-22| Feb-22
00:00 3 27 22 21 10 0 3 2 0 0
01:00 2 24 24 20 8 0 0 2 0 0
02:00 2 22 24 20 ) 0 0 2 1 0
03:00 1 2] 24 20 6 0 2 1 4 0
04:00 0 19 24 18 6 0 2 0 4 0
05:00 0 19 24 18 6 0 2 0 4 0
06:00 0 18 24 18 4 0 2 0 0 0
07:00 0 19 23 18 3 0 3 1 1 0
08:00 0 19 26 18 6 0 3 0 0 0
09:00 2 25 24 19 5 4 0 2 1 2
10:00 3 28 26 23 8 3 1 3 4 3
11:00 2 23 27 26 6 J 2 J 4 4
12:00 5 22 30 29 9 9 1 7 9 1
13:00 9 27 29 35 17 9 2 4 6 1
14:00 8 25 29 31 19 2 0 4 4 0
15:00 7 22 30 31 17 0 1 8 1 0
16:00 5 22 32 35 15 3 3 6 3 1
17:00 7 23 31 33 13 5 0 6 4 2
18:00 4 22 29 38 20 4 0 0 8 2
19:00 9 25 30 40 29 3 1 I 9 2
20:00 7 30 28 38 26 1 0 1 J 0
21:00 9 28 19 31 23 0 0 0 8 0
22:00 9 28 18 25 21 0 2 0 9 0
23:00 2 26 23 24 13 0 7 1 3 0
Total
opening
time per| 1,6 9.4 104 | 10,5 | 5,0 0,8 0,6 0,9 1,6 0,3
day
(hours)

Fig. 2. Daily window opening profiles for each month from May 2021 to
February 2022 — each cell shows the number of minutes of opening for each
hourly time slot.

B. Heating patterns

Heating patterns are characterized using indoor air temper-
ature and heaters temperature measurements.
Indoor temperature measurements show that obtained mea-
surements are much higher than the recommended 19°C
setpoint temperature. Indeed, apartments have an average
indoor temperature from 21.2°C for B1/2 up to 25°C for
B3/0 for the 2021-2022 heating season. Also, despite the
fact the three residential buildings are just retrofited with a
brand new heating system, analyses results show that there
is no water logic management of the heating system. Indeed,
there is no difference between day and night temperatures in
the apartment (Figure3 (a)) which is also highlighted by the
analysis of heaters temperature confirmed by the analysis of
heaters temperature analysis (Figure3 (b)).

C. Field experiment feedback and lessons learned

Data analyses entirely rely on a field experiment. Im-
plementing such a large sensor network highlighted several
critical points for future work and replicability [12]. First, the
installation conditions and environment are critical. Indeed,
existing buildings were not necessarily built and designed
to have such a diverse instrumentation solution installed.
Although the energy retrofit updated many aspects of the
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Fig. 3. Density curve for indoor temperature in B1/3 (a) and scatter plot
of indoor temperature vs. heaters temperature in the living room of B1/3 (b)
comparing day and night time measurements.

buildings, there are still data communication issues remaining
because of the location of sensors, gateways and structure of
the building. Also, the whole purpose of the study is to collect
data in an occupied environment. This is a strong constraint
as well, since many sensors can be moved or deactivated by
building users, thus affecting data collection.

The sensor network uses technologies from the IoT mar-
ket. These technologies are not developed to sustain such a
demanding and detailed instrumentation plan. This resulted
in several technological issues, malfunctions, and limitations
regarding the measurements. Moreover, about half of the
sensor network deployment was entrusted to a contractor,
while the rest of the solution was installed and supervised
by the research team. Comparing the two processes, it results
that an internal management of the instrumentation requires
strong technical skills and knowledge. However, it significantly
ease and speed up the handling of technical issues, then
preventing significant data loss. On the other hand, contractors
provide a more ’plug-and-play” service without constraints
of installation. However, they do not control the whole chain
of sensor network deployment as they often depend on other
contractors for installation services. Hence, there is a major
loss of time and data in the communication and operation
process to set up the sensor network and fix technical issues.

CONCLUSIONS AND FUTURE WORK

We used a sensor network of 173 sensors to monitor energy
consumption, occupants behaviors and indoor and outdoor
environment quality of three collective residential buildings
composed of 62 dwellings for more than 2 years. In particular,
we extensively instrumented a sample of 8 dwellings and the
buildings common areas.

The main goal of the deployed sensors network is to assess the
buildings energy performance after a heavy retrofit program, to
compare actual performance to predictions and to understand
the eventual performance gap using field data. Collected data
enable us to characterize the occupants behaviors, a parameter
of paramount importance for the buildings performance gap

understanding. In particular, we extracted typical occupancy
patterns, windows opening patterns and heating patterns. If
occupancy patterns correspond to what is commonly reported
in literature, we show a strong seasonal variation of windows
opening patterns. In addition, measured heating patterns ex-
hibit high indoor temperatures compared to values generally
used in standard heating scenarios considered in energy codes
and building thermal regulations in general which might
explain a significant part of the performance gap.

The buildings monitoring as well as the data processing is still
in progress and will enable us in the near future to automat-
ically extract typical energy consumption and occupants be-
haviors patterns using automatic data profiles clustering [14].
Clustering results can then be embedded in building energy
models to accurately assess their impact on the buildings
overall energy consumption and the potential performance gap
between simulations and measurements. In addition, the cross
analysis of different measured quantities such as occupancy,
indoor environment quality, outdoor weather conditions con-
dition, energy related behaviors will enable us to derive finer
and more realistic models for these different quantities.
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