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Introduction Research in structural proof theory [7] may lead to considering large calculi, containing
several dozens of rules (e.g. 68 rules found in [5]). Keeping track of all possible combinations of theses
rules is an issue. This problem is particularly critical at the design phase, when trying to come up with a
calculus which meets some desiderata.

When trying to design a calculus, researchers often do not just want to test whether it has the expected
specification, but to know why and how it does or does not. Their requirements often revolve around
intuitions about connectives and rules, e.g. “What happens if we add or remove this rule?”.

The combinatorics of rules also brings a challenge at proof phase, when trying to demonstrate prop-
erties about a calculus. Many theorems on calculi still make use of case disjunction. Such a strategy
becomes difficult and fastidious as the size of the system increases. There is a desire to get a larger
picture of calculi, to get new insights about them.

Approaches based on graphical languages, like proof nets or string diagrams, turned out to be of
great use to give visual intuitions. Nevertheless, they often focus on a single derivation and divert from
the very structure of derivation trees.

Proposal The contribution of this article is twofold:

1. Introducing a novel graphical representation of a calculus aiming at bringing better intuition about
the interconnection of rules and sequents

2. Providing a new perspective of proof search through tree automata theory

Proof tree graphs The graphical representation we introduce is called Proof Tree Graph (PTG). A
PTG can represent a calculus, or more generally any term deduction system.1

• Vertices are sets of terms (e.g. sequents, if we work with a sequent calculus)

• Edges are rules

In Fig. 1, we display a PTG for implicational sequent calculus ImpL ((1) in appendix), and in Fig. 2
a PTG for the sequent calculus of the multiplicative fragment of linear logic (MLL, see [3]).2 Edge

∆, φ ⊢ ψ
→ I.
−−−→ ∆ ⊢ φ→ ψ represents rule (→ I.), from the hypothesis to the conclusion. The axiom is

1Technically, a PTG is a directed hypergraph [1, chap. 6] with additional dashed edges.
2In both calculi considered, we take commas to be multiset separators.
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Figure 1: Proof Tree Graph for implica-
tional sequent calculus.
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Figure 2: Proof Tree Graph for MLL.

represented by an edge with no source as it has no hypothesis. By the same idea, rule → E. has two
source vertices as it has two hypotheses.

A dashed edge u 99K v mean that we can pass from vertex u to v without applying a rule. For
example, φ ⊢ φ 99K Γ ⊢ φ means that both vertices share a common instance sequent, e.g. p ⊢ p if p is
an atomic formula. Note here that a sequent actually stands for a set of instances. They are thus taken up
to meta-variable renaming.

The goal of a PTG is to give visual intuitions about the relationships between rules by linking the
hypotheses and the conclusions of these rules. This way, it appears clearly how certain rules can follow
other rules. Thus, a PTG illustrates the whole system, and not a particular derivation. For example, the
antecedent – succedent symmetry of linear logic is visible through the horizontal axis symmetry if Fig. 2.

One recipe to create a PTG out of any calculus K is the following:

1. As vertex, take any hypothesis or conclusion of a rule of K

2. Create an n-ary edge for every n-ary rule on the corresponding vertices

3. Add a dashed edge u 99K v for every vertices u and v which share an instance (i.e. u ∩ v , ∅)

Proof nets [4] and string diagrams [8], widespread graphical languages, differ from PTGs on the kind
of object represented. They can only represent (sets of equivalent) derivations, whereas PTGs allows us
to represent the whole calculus. Therefore, PTGs give an overarching image of the rules. Some first idea
a such a diagram of rules can be found in [5, Fig. 2].

Proof Tree Automata If all rules of a calculus are unary, a PTG on that calculus looks like the graphical
representation of a non-deterministic finite automaton: vertices are states and edges are transitions. In
this setting, axiom targets make initial states, dashed edges are ε-transitions and all states are accepting.

We build on that analogy to retro-engineer a new kind of tree automata called Proof Tree Automata
(PTA), which graphical representations are PTGs. A PTA A on a calculus K is a tree automaton ([2])
with additional material. Its language is the derivation language of K . A forward proof-search in K
corresponds to a bottom-up run inA.

The additional material is a pair of relations called control relations. Their goal is to ensure that,
while parsing a proof tree, hypothesis terms and conclusion terms are correctly related.
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Using automata and graphs is an open door to topological methods for term deduction. One goal of
PTA and PTGs is to provide a tool with which we can translate properties expressed on sets of derivation
trees into properties expressed on automaton runs or graph walks.

Additional results and open questions An interesting point is the comparison of a PTA A on a cal-
culus K and its tree automaton counterpart F(A), i.e. with control relations removed. The language of
F(A) is wider than the language ofA because it contains derivations which are not correct wrt. K .

One can build a function3 U fromK to F(A), mapping sets of terms to states and derivations to runs.
Function U has the following property: a derivations of F(A) is correct iff it belong to the image of U.
Thus, a PTA appears as tree automaton parameterized by a calculus.

As a novel tool, many questions arise about PTA and PTGs. Particularly, we deem investigations
about relations on PTA to be relevant. When can we say that a PTA is finer than another one? Could we
design a criterion for PTA equivalence (i.e. having the same language). It would also be useful to find
graph rewriting techniques to compute these problems on PTGs.
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Sequent calculus for implicational logic

Ax.φ ⊢ φ
∆, φ ⊢ ψ

→ I.
∆ ⊢ φ→ ψ

∆ ⊢ φ→ ψ Γ ⊢ φ
→ E.

∆,Γ ⊢ ψ
(1)

3Actually, U is a monoidal functor between monoidal categories. This way, U is a refinement system [6].
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