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Résumé. Dans beaucoup de domaines scientifiques et techniques, l’inférence de l’effet
d’un traitement et l’exploration de son hétérogénéité sont déterminantes pour l’optimisation
et la prise de décision. De nombreux méta-algorithmes ont été développés pour estimer la
fonction d’effet moyen conditionnel du traitement (CATE) pour un traitement binaire, leur
principal avantage est de ne pas restreindre l’estimation à une méthode d’apprentissage
supervisée particulière. Dans ce travail, nous étudions le régime de traitement multiple sous
le modèle causal de Rubin et nous nous focalisons sur l’estimation des effets hétérogènes
de traitement. Nous généralisons les meta-algorithmes pour l’estimation de la fonction
CATE pour chaque niveau possible de traitement. Nous évaluons la qualité de chaque
méta-algorithme sur des données observationnelles en utilisant un jeu de données Semi-
synthétique et nous soulignons en particulier les performances du X-learner.

Mots-clés. Apprentissage Automatique; Inférence Causale; Traitement multiple;
Effets hétérogènes.

Abstract. In many scientific and engineering domains, inferring the effect of treatment
and exploring its heterogeneity is crucial for optimization and decision making. Several
meta-algorithms have been developed to estimate the Conditional Average Treatment
Effect (CATE) function in the binary setting, with the main advantage of not restraining
the estimation to a specific supervised learning method. In this work, we investigate
the multiple treatment regime under Rubin Causal Model and we focus on estimating
heterogeneous treatment effects. We generalize Meta-learning algorithms to estimate the
CATE for each treatment value. Using semi-synthetic simulation datasets, we assess
the quality of each meta-learner in observational data and we highlight in particular the
performances of the X-learner.

Keywords. Machine Learning; Causal Inference; Multiple Treatments; Heterogeneous
Effects.

1 Introduction.

With the rapid development of Machine Learning (ML) and its efficiency in predicting
outcomes, the question of counterfactual prediction ”what would happen if ?” arises.
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Engineers may want to know how the outcome would be affected when a feature is changed
to a specific value, not only on average but also within a smaller scale, to personalize
treatments at efficient levels and optimize the outcome.

Based on the Potential Outcomes theory Neyman (1923); Rubin (1974), epidemiologists
and statisticians developed a set of statistical tools to make causal inference and estimate
the effects of a treatment on the outcome, whether on average among the whole population
or inside different sub-groups. They have been successfully applied in many fields, but
little is known about their efficiency in industrial applications. Furthermore, most existing
methods and studies are limited to the setting of a binary treatment, whereas in many
real-world applications, the treatment variable can take multiple values. In addition, the
heterogeneity of effects may provide valuable information regarding the effectiveness of
this treatment. Finally, the ground truth of treatment effects cannot be observed. This is
known as the Holland (1986) fundamental problem of causal inference.

2 Problem setting.

Following the potential outcomes framework and the generalization of the Rubin (1974)
Causal Model, we suppose the existence of Y (t), the real-valued counterfactual outcome
that would have been observed under treatment level t ∈ T = {t1, . . . , tK}. We consider
(X, T, Y (t)t∈T ) ∼ P where X = (X(1), . . . , X(d)) ∈ Rd denotes a random vector of
covariates and T denotes the treatment assignment random variable. We suppose finally
that we observe data drawn from independent and identically distributed sample of n units
Dobs,i = (X i, Ti, Yobs,i) distributed as (X, T, Yobs) with Yobs = Y (T ). All assumptions
(Consistency, Unconfoundedness and Overlap) of this model remain valid.

We aim to infer the effect of the treatment T on the outcome Y . More precisely, we
want to estimate the Conditional Average Treatment Effect (CATE), defined as

τt(x) = E(Y (t)− Y (t1)|X = x), (1)

which can be interpreted as is the expected treatment effect between levels T = t1 (defined
as baseline treatment value) and t for an individual with covariates X = x.

3 Proposed model.

To tackle the problem of estimating CATEs in multiple treatment regime, we generalize the
notion of meta-learners as initially developed by Künzel et al. (2019) to derive consistent
estimators of the CATE. All considered meta-learners below, except the R-learner, can
support any supervised regression ML method (e.g. random forest, gradient boosting
methods). These ML methods are called base-learners when applied to a meta-learner.
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3.1 Direct plug-in meta-learners

Direct plug-in meta-learners, also known as one-step learners, estimate the CATE in (1)
by targeting directly the observed data Dobs = (Dobs,i)

n
i=1.

The T-learner builds a CATE estimator using two models µw(x) = E(Y (w)|X = x)

on (Dobs,i)i∈Sw with Sw = {i, Ti = w} for w ∈ {t, t1} and compute the CATE as τ̂
(T)
t (x) =

µ̂t(x)− µ̂t1(x).
The S-learner takes the treatment T as a feature similar to all the other covariates,

estimates µ(x, t) = E(Yobs|X = x, T = t) by single model and computes CATEs as

τ̂
(S)
t (x) = µ̂(x, t)− µ̂(x, t1).

Despite their simplicity, direct plug-in meta-learners may be sensitive to the base
learner and suffer from regularization bias. We denote RegT-learner the regularized
T-learner using Importance Sampling.

3.2 Pseudo-outcome meta-learners

An alternative possibility for mitigating this bias is to consider a specific representation
of the observed outcome Yobs, called pseudo-outcome. These representations incorporate
nuisance components that include valuable information such as the dependence between
covariates X and T (i.e. the Generalized Propensity Score r(t,x) := P(T = t | X = x).

In the M-Learner, we estimate the GPS r then build a CATE estimator τ̂
(M)
t by

regressing the Inverse Propensity Weighting pseudo-outcome ZM
t such that:

ZM
t =

1{T = t}
r(t,X)

Yobs −
1{T = t1}
r(t1,X)

Yobs. (2)

In the DR-Learner, we estimate the GPS r and the outcome models µt, then we build
a CATE estimator τ̂

(DR)
t by regressing the Doubly-Robust pseudo-outcome ZDR

t such that:

ZDR
µ,r,t =

Yobs − µT (X)

r(t,X)
1{T = t} − Yobs − µT (X)

r(t1,X)
1{T = t1}

+ µt(X)− µt1(X).

(3)

In the X-Learner, we estimate all outcome models µt, then we build a CATE estimator
τ̂
(X)
t by regressing the Doubly-Robust pseudo-outcome ZX

t such that:

ZX
t = 1{T = t}(Yobs − µt1(X)) +

∑
t′ ̸=t

1{T = t′} × (µt(X)− Yobs)

+
∑
t′ ̸=t

1{T = t′}(µt′(X)− µt1(X)).
(4)
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3.3 Neyman-Orthogonality meta-learners

The R-learner uses the Robinson (1988) decomposition and the Neyman-Orthogonality
propriety to provide flexible CATEs estimators. In multiple treatments regime, the R-
Learning method estimates all K − 1 models {τt,t1}t̸=t1∈T within the space F of candidate
models such that

{τ̂ (R)
t }t̸=t1∈T = argmin

{τt}t̸=t1
∈F

1

n

n∑
i=1

[
(Yobs,i − m̂(X i))−∑

t̸=t1∈T

(
1{Ti = t} − r̂(t,X i)

)
τt(X i)

]2
,

(5)

where m̂ (respectively, r̂) is an estimator of m = E(Yobs | X) (respectively, the GPS r) and
F is the space of candidate models [{τt}t̸=t1 ]. When F is the family of linear regression
models, then Problem (5) admits a solution that we denote by Rlin-learner.

4 Semi-synthetic dataset for validating causal infer-

ence method.

Motivation and description. The difficulty in evaluating a causal model’s performance
in real-world applications motivates the need to create a semi-synthetic dataset. In this
section, we consider a multistage fracturing Enhanced Geothermal System (EGS), Han et al.
(2020). We assume that the heat extraction performance satisfies the following physical
model Qwell(ℓL) = Qfracture × ℓL/d × ηd where Qfracture is the unknown heat extraction
performance from a single fracture, that can be generated using eight parameters including
reservoir characteristics and fracture design, ℓL is the Lateral Length of the well, d is
the average spacing between two fractures and ηd is the stage efficiency penalizing the
individual contribution when fractures are close to each other. This model respects the
unconfoundedness assumption, and we can control all its variables in the simulations.

A randomized series of numerical experiments using a numerical emulator has been
conducted to simulate the heat performance from a single fracture (i.e. Qfracture), leading
to an initial full factorial design of experiments dataset covering all possible scenarios of a
fracture in a reservoir. The final dataset is created by extrapolating the heat performance
of each case to all well’s lateral lengths, fracture spacing and the efficiency coefficient.

Estimating Heterogeneous Treatment Effects on a non-randomized biased
dataset. We consider the Lateral Length as treatment T with K = 13 possible values
and the covariatesX ∈ R11 are the remaining variables. Following the preferential selection,
we sample n = 10000 units such that wells with high lateral length are likely to have larger
fractures and vice versa. The GPS is estimated using gradient boosting models and the
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Figure 1: CATEs estimation on semi-synthetic dataset. Each line represents τj for
j = 1, . . . , K. (a): The ground truth model; (b): A biased estimation of CATEs by
regressing on Fracture length ft; (c): T-learner estimation; (d): X-learner estimation.

outcome models µw are estimated by the T-learning approach for RandomForest and the S-
learning approach for XGBoost model. Table 1 resumes mPEHE = 1

K−1

∑
t̸=t1

PEHE(τ̂t)

for different meta-learners where PEHE(τ̂t) =
√

1
n

∑n
i=1 (τ̂t(X i)− τt(X i))

2 is the Preci-

sion in Estimation of Heterogeneous Effect (PEHE) as defined by Shalit et al. (2017). Table
1 shows that the XGBoost model is generally a better choice than Random Forests (except
for T-learning); The X-learner, followed by DR-learner, outperforms all other learners.
Finally, Figure 1 shows the ground truth model, what would one obtain by regressing only
on fracture length (correlation) and T-, X-learner’s estimation. It demonstrates the ability
of meta-learners, in particular the X-learner, to rebuild the ground truth.

5 Conclusion & Perspectives.

In this work, we investigated heterogeneous treatment effects estimation under multi-
ple treatment regime. We considered standard plug-in, pseudo-outcome and Neyman-
orthogonality-based meta-learners. Through a semi-synthetic industrial dataset, we as-
sessed the performances of each meta-learner, we showed the ability of the X-learner
to reconstruct the ground truth model and we highlighted the choice of base-learner on
the quality of CATEs estimation. The next step would be to extend this approach to
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Table 1: mPEHE for XGBoost and RandomForest

Meta-learner XGBoost RandomForest

T-learner 0.167 0.154
RegT-Learner 0.153 0.153

S-learner 0.101 0.216

M-learner 1.05 0.907
DR-learner 0.100 0.162
X-learner 0.095 0.175

RLin-learner 0.336 0.338

continuous treatments and use this dataset to validate other Causal Inference methods.
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