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Abstract. Uplift Modeling measures the impact of an action (market-
ing, medical treatment) on a person’s behavior. This allows the selection
of the subgroup of persons for which the effect of the action will be most
noteworthy. Uplift estimation is based on groups of people who have re-
ceived different treatments. These groups are assumed to be equivalent.
However, in practice, we observe biases between these groups. We pro-
pose in this paper a protocol to evaluate and study the impact of the
Non-Random Assignment bias (NRA) on the performance of the main
uplift methods. Then we present a weighting method to reduce the ef-
fect of the NRA bias. Experimental results show that our bias reduction
method significantly improves the performance of uplift models under
NRA bias.

Keywords: Uplift Modeling · Machine Learning · Non-random Assign-
ment Bias · Treatment Effect Estimation · Causal Inference

1 Introduction

Uplift modeling is a predictive modeling technique that models directly the in-
cremental impact of treatment, such as a marketing campaign or a drug, on
an individual’s behavior. The applications are multiple: customer relationship
management, personalized medicine, advertising, political elections. Uplift mod-
els help identify groups of people likely to respond positively to treatment only
because they received one. A major difficulty in uplift modeling is that data are
only partially known: it is impossible to know for an individual whether the
chosen treatment is optimal because their responses to alternative treatments
cannot be observed. Several works address challenges related to the uplift mod-
eling with single treatment [8] and multiple treatments [24]. The evaluation of
uplift models is studied in [18]. State-of-art uplift modeling approaches assume
that the groups of individuals are homogeneous. This means that uplift should be
modeled on experimental data, i.e., data whose generation is controlled and for
which there is no bias between different treatment groups. However, in practice,
uplift modeling is used with observational data where bias exists. For exam-
ple, an unanswered commercial call introduces a bias between treated and not
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treated individuals. Similarly, it is assumed that there is no bias between data
used to learn an uplift model and its deployment whereas such a bias may exist.
Those biases jeopardize the practical use of uplift modeling methods [15].

This paper aims to study the Non-Random Assignment (NRA) bias, a very
common bias in the context of uplift modeling. It occurs when the treatment
assignment is dependent on the characteristics of individuals. We address the
following research questions: what is the impact of the NRA bias on the main
uplift modeling approaches? How can the bias effect be reduced? To answer the
first question, we design an experimental protocol that evaluates the impact of
the NRA bias on state-of-art uplift methods. Our study allows us to identify
several behavioral aspects of uplift methods. Regarding the second question,
we propose a weighting method to reduce the effect of the NRA bias on the
performance of uplift models. Experimental results show that our bias reduction
method significantly improves the performance of uplift models under NRA bias.
To the best of our knowledge, this is the first work that focuses on the bias
effect in uplift modeling. The remainder of this paper is organized as follows.
Section 2 introduces uplift modeling definition and methods, Section 3 describes
the problem setting and our experimental protocol for evaluating the impact of
NRA bias. We present our bias reduction method in Section 4 then conclude in
Section 5.

2 Uplift modeling and evaluation

2.1 Definition

Uplift is a notion introduced by Radcliffe and Surry [17] and defined in Rubin’s
causal inference models [20] as the Individual Treatment effect (ITE). We now
outline the notion of uplift and its modeling.

Let X be a group of N individuals indexed by i : 1 . . . N where each indi-
vidual is described by a set of variables X. Xi denotes the set of values of X
for the individual i. Let T be a variable indicating whether or not an individual
has received a treatment. Uplift modeling is based on two groups: the individ-
uals having received a treatment (denoted T = 1) and those without treatment
(denoted T = 0). Let Y be the outcome variable (for instance, the purchase or
not of a product). We note Yi(T = 1) the outcome of an individual i when he
received a treatment and Yi(T = 0) his outcome without treatment. The uplift
of an individual i, denoted by τi, is defined as: τi = Yi(T = 1)− Yi(T = 0).

In practice, we will never observe both Yi(T = 1) and Yi(T = 0) for a
same individual and thus τi cannot be calculated. However, uplift can be empir-
ically estimated by considering two groups: a treatment group (individual with
a treatment) and a control group (without treatment). The estimated uplift of
an individual i denoted by τ̂i is then computed by using the CATE (Conditional
Average Treatment Effect)[20]:

CATE : τ̂i = E[Yi(T = 1)|Xi]− E[Yi(T = 0)|Xi] (1)
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As the real value of τi cannot be observed, it is impossible to directly use
machine learning algorithms such as regression to infer a model to predict τi.
The next section describes how uplift is modeled in the literature.

2.2 Uplift modeling

The uplift modeling literature and a branch of the causal inference literature
have recently approached each other [6]. We sketch below the main methods in
this field of research.

Meta-Learners Meta-Learners take advantage of usual machine learning al-
gorithms to estimate the CATE. The most classical and intuitive approach is
the T-Learner (also known as the Two-Model approach in the uplift liter-
ature, which is the name that we use in this paper). The T-Learner is made
of two independent predictive models, one on the treatment group to estimate
P (Y |X,T = 1) and another on the control group to estimate P (Y |X,T = 0).
The estimated uplift of an individual i is the difference between those values
for the given individual, i.e. τ̂i = P (Y = 1|Xi, T = 1) − P (Y = 1|Xi, T = 0).
The advantages of this approach are the simplicity and the possibility to use any
machine learning algorithm but it has also known limitations [18]. The causal
inference community defines other methods such as the S-Learner which includes
the variable T in the features with a standard regression, the X-Learner which
performs a two-step regression before the estimation of the CATE to deal with
the unbalanced size of treatment groups [7], the DR-Learner [9] which combines
a two-model approach and the use of the Inverse Propensity Weighting [14].

Class-Transformation Approach The principle of this approach [8] is to
map the uplift modeling problem to a usual supervised learning problem. The
outcome variable Y is transformed into a variable Z as illustrated in Eq. 2. Then
a machine learning algorithm is used to learn a model and to predict P (Z|X).
The estimated uplift of an individual i is τ̂i = 2× P (Z = 1|Xi)− 1

Z =


1, if T = 1 and Y = 1

1, if T = 0 and Y = 0

0, otherwise.

(2)

Several studies [3, 8] show that this approach has a better performance than
the two-model approach.

Direct-Approaches These methods modify supervised learning algorithms to
suit them to fit the uplift modeling problem. Then uplift is directly estimated.
Examples include methods based on decision trees [22, 24], k nearest neigh-
bors [5], logistic regression [12] or reinforcement learning [11].
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2.3 Uplift evaluation

Real values of uplift being not observed, supervised machine learning techniques
cannot be used and therefore performance measures of the supervised setting are
inoperative. That is why uplift is evaluated through the ranking of the individuals
according to their estimated uplift value. The intuition is that a good uplift
model estimates higher uplift values to individuals in the treatment group with
positive outcomes than those with negative outcomes and vice versa for the
control group. The qini measure (also known as Area Under Uplift Curve [2, 16])
is based on this principle to evaluate uplift methods. It is a variant of the Gini
coefficient. Qini values are in [−1, 1], the higher the value, the larger the impact
of the predicted optimal treatment.

3 Evaluation of uplift with biased data

This section presents the NRA bias and the experimental protocol that we de-
signed to assess performance of uplift methods under this bias.

3.1 Problem setting

State-of-art uplift methods assume that data are unbiased and that the treat-
ment group comes from the same distribution as the control group, which is not
true for real data. In practice, there are differences between treatment and control
groups, also known as Non-Random Assignment bias, a prevalent type of bias
in uplift modeling. Formally, this bias occurs when P (T = 1|X) 6= P (T = 0|X)
(which also means P (X|T = 1) 6= P (X|T = 0)). Usually it is easier to collect
control data and the treatment group is the most biased because it is more chal-
lenging to apply a treatment to individuals and collect the corresponding data
due to ethical, political or economic constraints.

This bias problem has been studied in the literature on clinical studies
where the goal is to estimate the ”Average Treatment Effect” (ATE) defined
as E[Yi(T = 1) − Yi(T = 0)]. In order to estimate it, the ”Propensity Score
Matching” (PSM) [21] is used to extract balanced treatment groups on which
ATE is estimated. Similarly, in the uplift literature, since uplift methods assume
the homogeneity between treatment groups, PSM is used to extract an unbiased
sample from a biased dataset. Uplift modeling is applied subsequently as carried
in [15]. However, this procedure clearly suffers from a loss of data.

3.2 Designing of the experimental protocol

This section describes the experimental protocol that we designed to evaluate the
behavior of uplift methods under the NRA bias. The principle, to create a NRA
bias and observe its impact, is to introduce imbalances in the data regarding
the initial distribution of the variables. We do this by modifying proportions
of individuals in a non-random way (for example, decreasing the proportion of
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specific socio-professional categories or ages till it disappears in the data). Such
a protocol must satisfy several conditions to correctly evaluate the impact of
NRA in order to avoid introducing a bias due to the protocol itself. (1) The
chosen variables to introduce bias have to be correlated with the outcome Y or
Y given the treatment T , otherwise the bias will not affect the uplift modeling.
(2) In contrast, the choice of the values of the variables, according to which
the proportions of individuals vary, is random. If not, the construction of the
populations E1 and E2 (which will be explained below) may be biased. (3) The
bias must be tunable in order to change its rate and quantify its impact on the
uplift methods. (4) The created bias is only in the treatment group in order to
imitate the natural phenomena as previously explained in Section 3.1. (5) The
total size of each of the biased learning samples is always the same in order to
avoid any variation in the performance due to different learning data sizes.

More precisely, as shown in Fig. 1, two populations E1 and E2 are created.
This is done by choosing a set of variables V and dividing its values into two
groups, C1 and C2, such that the number of individuals defined by the values of
C1 is equivalent to the number of individuals defined by C2. Let E1 (resp. E2) be
the population whose variables correspond to C1 (resp. C2) and whose sizes are
N1 and N2 respectively. We use a 10-fold cross-validation. In the first training
sample, E1 and E2 have an equal size (i.e. N1 = N2), it is considered unbiased
and gives a reference value of the qini. The NRA bias is gradually introduced
in the treatment group by increasing the size of E1 and decreasing the size of
E2 while preserving the total size of the treatment group. We identify the bias
rate of a sample by the variable b where b = (N1 − N2) × 100/N . b goes from
b = 0 in the unbiased situation to b = 100 the most biased situation according
to the NRA bias. An uplift model is then learned on each biased sample defined
by b. All models are then tested on the same test sample and evaluated using
the qini. The evolution of the qini according to b allows studying the behavior
of an uplift method towards the NRA bias.

3.3 Experiments

We apply our protocol to several real and synthetic datasets using the main
uplift approaches 3.

Datasets We use four datasets from politics and marketing fields as well as
four synthetic datasets (cf. Table 1). For all the datasets, the outcome is binary.

1. Criteo [3]: a usual marketing dataset for uplift modeling.
2. Hillstrom4: a classical dataset for uplift modeling. It is made up of two

treatment groups and a control group. We only use the group of people
who received an advertising campaign via mail for women’s products as the
treatment group.

3 For a reproducible purpose, codes and experiment results are available in the sup-
plementary material [19]

4 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.

html/
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Fig. 1. Biased samples generation procedure: (1) Variable(s) V is chosen to create E1
and E2. (2) Creating training and test sets with 10-fold cross validation. (3) Random
sampling of treatment and control groups. (4) The sizes of the treatment and control
groups are always the same throughout the biasing process.

3. Gerber [4]: a policy-relevant dataset used to study the effect of social pressure
on voter turnout.

4. Retail Hero5: a dataset of the X5 sales group, the treatment is the action to
send SMS to encourage consumers to increase their purchases.

5. Megafon6: a synthetic dataset created for uplift modeling. It is generated by
telecom companies in order to reproduce the situations encountered by these
companies.

6. Zenodo7: a synthetic dataset containing trigonometric patterns specifically
designed for uplift modeling. We used a subset of 20,000 rows of data (data
identified by the variable trial id = 1 and trial id = 2).

7. Synth1 and Synth2: two synthetic datasets that we have built as a 2D grid
of size 10x10 in which each cell corresponds to a particular uplift drawn at
random. Synth1 is a dataset with a high ATE value and Synth2 has a low
response rate.

Uplift methods We test 13 uplift methods: two-model approach (2M); class-
transformation approach (CT), each with Xgboost and logistic regression (LR);
DR-Learner (DR); X-Learner and S-Learner, each with Xgboost and linear re-
gression (LinR). Direct-approaches based on decision trees are tested as well:
KL, ED [22] and CTS [24].

5 https://ods.ai/competitions/x5-retailhero-uplift-modeling/data
6 https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
7 https://zenodo.org/record/3653141\#.YUCYEufgoW8
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Table 1. Dataset characteristics.
- Datasets have a balanced size of treatment and control groups.
- Independence between treatment and control groups is measured using the C2ST
test [13]. A p-value smaller than 0.05 means the null hypothesis is rejected (i.e. treat-
ment independence).
- *Value after re-balancing the dataset using PSM [21]

Datasets #Rows #Variables Response Ratio ATE Treatment Independence

Criteo 50000 13 0.16 0.08 0.1
Hillstrom 42693 8 0.129 0.04 0.33
Gerber 76419 10 0.34 0.06 0.43
RetailHero 200039 11 0.619 0.033 0.7
Megafon 600000 36 0.2 0.04 0.4375*
Synthetic Zenodo 20000 16 0.3 0.109 0.22
Synth1 40000 2 0.32 0.241 0.197
Synth2 40000 2 0.007 0.00125 0.33

Implementation details For each dataset (except Synth1 and Synth2) and
for each uplift method, the experimental protocol is applied twice with different
contents of V : once with the variable the most correlated with Y and once with
the variable the most correlated with Y given the treatment group (T = 1). For
Synth1 and Synth2, V contains the two variables of these datasets. Moreover,
given a set V , the experiment is repeated twice in order to provide different
splittings of C1 and C2.

3.4 Results

Qini variability according to b Fig. 2 illustrates the results (due to space
constraints, it is not possible to give all the results). We observe that the NRA
bias strongly affects the performance of uplift models8 (the higher the bias rate,
the more significant the decrease of the qini). To provide a global view of the
results, we compute for each dataset and each uplift method the Average Qini,
i.e., the average of qini values according to the bias rates going from b = 0 to
b = 100 (cf. Table 2).

Overall ranking To better compare the methods according to their resistance
to NRA bias, Fig. 3 shows the average rank obtained by each method based on
the Average Qini (all divisions of V are taken into account).

The results of these experiments provide the following messages: (i) the most
resistant models to the NRA bias are the ED and X-Learner LinR, DR LinR,
two-model approach with the logistic regression: the qini strongly decays only
when the bias rate is high; (ii) the models where the qini gently degrades as the
bias rate increases are tree based methods (KL, and CTS) and (iii) the models

8 When comparison with state of the art is possible, the achieved qini values without
bias (b = 0) are those usually found in the literature [3].
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Fig. 2. Qini values of uplift methods according to NRA bias rates in the Criteo dataset
with the ’f8’ variable (top left), Hillstrom dataset with the ’mens’ variable (top right),
Megafon dataset with the ’X16’ variable (bottom left) and Synth2 dataset with its
both variables (bottom right). A method name is followed by the learning algorithm
used with it.

strongly affected by the bias even with low bias rates are the class-transformation
based methods and the S-Learner LinR.

Methods comparison with statistical tests We study now the significance
of the results regarding the comparison of the uplift methods (cf. Table 2) by
using a statistical test. Following the study [1], we choose the Friedman test
with the post hoc test of Nemenyi to compare the performance (average qini)
of more than two methods across several datasets. Fig. 4 depicts the results
with a heatmap. The null hypothesis states that there is no significant difference
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Table 2. Average Qini (multiplied by 100) and its variance (shown in brackets) across
datasets and uplift methods (in bold, the best value for each dataset). A dataset name
is followed by the names of the V variables used to generate the NRA bias (due to
space constraints, the results are given for a single splitting of the V values).

TwoModel ClassTransformation DR XLearner SLearner Trees

Xgboost LR Xgboost LR Xgboost LinR Xgboost LinR Xgboost LinR KL ED CTS

Criteo f2 6.6(1.7) 7.2(1.6) 0.2(1.9) 1.9(1.2) 4.4(2.8) 9.9(0.9) 5.5(2.6) 8.5(0.8) 8.0(1.9) -0.2(1.9) 0.6(1.4) 4.9(1.3) 2.1(1.5)

Criteo f8 8.1(2.6) 6.3(2.0) 0.1(1.7) 1.7(1.0) 3.7(2.3) 9.8(1.0) 5.4(2.6) 8.1(1.1) 8.4(1.9) -0.2(1.7) 1.2(1.6) 5.2(1.2) 2.4(1.6)

Gerber p2002 -2.4(2.0) 1.1(1.1) -2.1(1.5) -0.4(1.2) -2.0(1.9) 0.8(1.1) -2.3(1.9) 1.4(1.1) -2.0(2.0) 0.1(0.9) -1.5(1.8) -0.9(1.5) -0.1(1.7)

Gerber p2004 -2.1(2.0) 0.8(1.1) -1.8(1.7) -1.2(1.3) -2.1(1.9) 0.7(1.1) -2.1(1.8) 1.2(1.3) -1.8(2.0) 0.0(1.1) -1.7(1.8) -1.5(1.9) -0.6(1.9)

Hillstrom mens 2.7(2.1) 5.5(2.6) -4.1(2.0) -4.6(2.2) 1.9(2.4) 5.4(2.1) 2.0(2.6) 5.5(2.2) 2.5(2.7) 0.2(2.4) 2.8(2.6) 2.9(2.5) 1.0(2.8)

Hillstrom newbie 2.8(2.2) 6.2(2.7) 0.1(2.1) 2.4(1.9) 1.0(2.4) 5.9(2.0) 2.1(2.3) 6.0(2.0) 3.3(2.2) -0.1(2.4) 4.2(2.2) 4.3(2.5) 4.3(2.5)

Megafone X16 17.8(0.5) 3.5(0.4) 8.6(0.6) 3.2(0.4) 16.9(0.5) 3.0(0.5) 18.3(0.4) 3.0(0.6) 17.9(0.4) -0.0(0.6) 13.2(0.5) 13.7(0.5) 11.6(0.7)

Megafone X21 18.2(0.4) 3.5(0.4) 12.0(0.4) 2.4(0.5) 17.4(0.5) 3.0(0.4) 18.8(0.4) 3.1(0.4) 18.4(0.4) -0.0(0.6) 13.9(0.5) 14.0(0.6) 10.7(0.8)

Synth1 7.0(0.9) 0.9(1.6) 1.7(0.9) -2.9(1.3) 9.7(1.5) -0.4(1.5) 12.6(1.6) -1.6(2.0) 12.2(1.2) 0.6(1.6) 9.7(1.2) 8.8(1.6) 8.7(1.2)

Synth2 9.8(0.1) 1.9(0.1) 8.1(0.5) 1.1(0.2) 9.7(0.2) 1.9(0.1) 9.7(0.2) 1.8(0.1) 10.1(0.1) -0.1(0.4) 9.7(0.1) 9.6(0.2) 8.7(0.1)

retailHero age 0.7(0.4) 1.2(0.3) 0.3(0.4) 0.8(0.4) 0.5(0.4) 1.3(0.4) 0.5(0.3) 1.2(0.3) 0.9(0.3) -0.0(0.3) 0.8(0.3) 0.9(0.3) 0.9(0.4)

retailHero trNum 0.8(0.4) 1.2(0.3) 0.4(0.3) 1.1(0.4) 0.4(0.4) 1.3(0.4) 0.5(0.4) 1.2(0.4) 0.9(0.4) -0.0(0.4) 0.7(0.4) 0.7(0.4) 0.6(0.4)

zenodoSynth X10 9.7(1.8) 12.6(1.9) 7.0(2.2) 12.1(1.5) 7.8(1.9) 12.2(1.9) 9.4(1.7) 12.1(1.7) 11.5(2.0) 0.0(2.5) 12.8(1.9) 13.0(1.9) 10.6(2.6)

zenodoSynth X31 9.8(2.4) 12.2(2.0) 6.6(2.0) 12.0(1.9) 7.7(2.1) 12.3(1.9) 9.7(2.2) 12.4(1.7) 11.7(2.2) 0.1(1.9) 12.7(1.9) 13.2(2.0) 10.2(2.2)

in performance according to the average qini between two methods across the
datasets. With a value of p (p-value) smaller than 0.05, the null hypothesis is
rejected (in green in Fig. 4). Fig. 4 and Fig. 3 confirm that the S-Learner and the
class-transformation based approaches are the least resistant towards the NRA
bias.

Fig. 3. Overall ranking for the different
uplift approaches.

Fig. 4. Heat map to visualize the com-
parison between uplift methods. A value
of p smaller than 0.05 means that the null
hypothesis is rejected.

4 Method to reduce the NRA bias impact

This section presents our weighthing method to reduce the effect on the NRA
bias on the uplift modeling. Our method is inspired from the Domain Adaptation
literature where samples of a source dataset are weighted according to their
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Fig. 5. Qini values by class-transformation based methods according to different NRA
bias rates with and without reweighting. Top-left: class-transformation approach with
Xgboost on Criteo dataset and ’f8’ variable. Top-right: class-transformation approach
with logistic regression on Hillstrom dataset and ’mens’ variable. Bottom-left: class-
transformation approach with Xgboost on Megafon dataset with X16 variable. Bottom-
right: class-transformation approach with logistic regression on Synth2 dataset with its
both variables.

importance to a target dataset [10]. The principle of our method is to weight
individuals of the treatment group according to their weight in the control group
to make the biased population (the treatment group) similar to the unbiased one
(the control group). Our weighting technique is based on the propensity score
which is the probability for an individual of being treated (T = 1) given his
vector of observed variables Xi i.e. P (T = 1|Xi). In observational studies, the
propensity scores are not known but they can be learned from the data using
a regression algorithm. Our method weights each individual i of the treatment
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Table 3. Average Qini (multiplied by 100) and its variance (shown in brackets) with
the class-transformation based methods (in bold, the best value for each dataset).
Dataset name is followed by the names of the V variables used to generate the NRA
bias (for space constraints, the results are given for a single splitting of the V values).
MAE takes into account all splittings of V into C1 and C2, as explained previously.

Class-Transformation with LR Class-Transformation with Xgboost

Ref. qini w/o weights wt 1 wt 2 Ref. qini w/o weights wt 1 wt 2

Criteo f2 11.1(0.9) 1.9(1.2) 6.1(1.5) 8.2(2.0) 9.1(2.6) 0.2(1.9) 2.6(1.8) 4.8(1.9)

Criteo f8 11.2(1.0) 1.7(1.0) 5.5(1.8) 7.9(1.7) 9.6(1.2) 0.1(1.7) 3.4(1.5) 5.0(1.8)

Gerber p2002 0.8(1.6) -0.4(1.2) 0.9(1.1) 0.5(1.2) -1.9(2.0) -2.1(1.5) -1.6(1.9) -2.3(1.8)

Gerber p2004 1.1(1.4) -1.2(1.3) 0.9(1.3) 0.4(1.1) -1.6(2.1) -1.8(1.7) -1.7(1.8) -2.3(1.9)

Hillstrom mens 5.9(2.5) -4.6(2.2) 5.3(2.2) 4.2(2.2) 1.7(2.1) -4.1(2.0) -0.2(2.7) 0.5(2.4)

Hillstrom newbie 6.3(1.7) 2.4(1.9) 5.6(2.0) 5.2(2.1) 1.7(1.9) 0.1(2.1) 1.3(2.0) 1.4(2.1)

Megafone X16 3.2(0.5) 3.2(0.4) 3.1(0.4) 3.2(0.4) 17.3(0.6) 8.6(0.6) 8.4(0.5) 15.5(0.5)

Megafone X21 3.2(0.4) 2.4(0.5) 3.1(0.4) 3.0(0.5) 17.2(0.5) 12.0(0.4) 12.0(0.4) 16.0(0.5)

Synth1 -0.2(3.4) -2.9(1.3) -1.0(1.8) -0.8(0.9) 2.5(2.4) 1.7(0.9) 2.5(0.7) 8.9(2.9)

Synth2 1.8(0.0) 1.1(0.2) 1.9(0.1) 1.7(0.1) 10.7(0.0) 8.1(0.5) 8.3(0.5) 9.7(0.2)

retailHero age 1.2(0.4) 0.8(0.4) 1.3(0.4) 1.2(0.3) 0.6(0.4) 0.3(0.4) 0.3(0.4) 0.6(0.4)

retailHero trNum 1.2(0.3) 1.1(0.4) 1.2(0.4) 1.2(0.4) 0.7(0.4) 0.4(0.3) 0.4(0.3) 0.6(0.3)

zenodoSynth X10 12.3(1.3) 12.1(1.5) 11.9(1.7) 9.8(1.8) 8.0(3.1) 7.0(2.2) 7.4(2.0) 6.5(2.1)

zenodoSynth X31 11.7(2.3) 12.0(1.9) 12.1(1.7) 9.9(2.0) 6.9(1.9) 6.6(2.0) 7.2(2.5) 6.5(2.2)

MAE 0 2.367 0.978 1.053 0 2.803 1.953 1.592

group by w(Xi) s.t.:

w(Xi) = P (T = 0|Xi)/P (T = 1|Xi) (3)

We estimate the probabilities of Eq. 3 by using logistic regression and xg-
boost. Then the uplift method integrates the weights to amplify the role of
the under-represented individuals in the treatment group and estimate τ̂i. We
named wt 1 (resp. wt 2) the use of the logistic regression (resp. xgboost) in the
weighting method.

We evaluate our weighting method with the two-model and the class-
transformation approaches since these approaches use traditional machine learn-
ing algorithms where weights can be given directly at each line (individual). The
direct-approaches cannot take into account weights, so we do not use them. Re-
sults show a large enhancement in the performance with the class-transformation
methods (cf. Fig. 5) and a slight improvement with the two-model approach
(the full set of results can be found in the supplementary material [19]). Ta-
ble 3 details the results with the class-transformation based methods. ”Ref.
qini” denotes the reference qini, that is the qini value of a method without
bias (i.e. b = 0) and without weighting. The Mean Absolute Error (where MAE
= 1

n

∑n
j=1 |Ref.qinij −AverageQinij |) indicates the gap between the qini ob-

tained by an uplift method and the reference qini. The smaller the gap is, the
better the weighting. The gap is much smaller with our weighting methods es-
pecially with the logistic regression (LR) than without weighting. Best average
qini values are also achieved with weighting except on zenodoSynth X10.

Statistical Test Following the study [1], we use Wilcoxon test [23] to determine
if our weighting method significantly improves the performance of the uplift
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Table 4. p-values obtained with the Wilcoxon test when comparing uplift methods
w/o and with weighting.

Methods p-value
CT LR w/o weights vs CT LR with wt 1 0.0014
CT LR w/o weights vs CT LR with wt 2 0.106
CT Xgboost w/o weights vs CT Xgboost with wt 1 0.142
CT Xgboost w/o weights vs CT Xgboost with wt 2 0.02

Methods p-value
2M LR w/o weights vs 2M LR with wt 1 0.985
2M LR w/o weights vs 2M LR with wt 2 0.986
2M Xgboost w/o weights vs 2M Xgboost with wt 1 0.356
2M Xgboost w/o weights vs 2M Xgboost with wt 2 0.68

methods. This test is used to compare two methods on several datasets. As we
perform two tests (on wt 1 and wt 2 methods), in order to control the familly-
wise error rate due to multiple tests, the Bonferroni correction is applied and
therefore the null hypothesis is rejected when the p-value is smaller than 0.025.
Table 4 asserts that our weighting technique improves significantly the class-
transformation based methods while there is no significant improvement with
the two-model based methods.

Discussion The weak impact of the weighting method on the two-model ap-
proach methods can be explained. The NRA bias does not change in the treat-
ment group the distribution of the outcome Y given populations E1 and E2 (cf.
Section 3.2). The probability estimations P (Y |T = 1, X) and P (Y |T = 0, X)
are then slightly affected, and the performances with and without weighting are
similar. This is different with the class-transformation methods which directly
estimate Z based on the assumption that the treatment and control groups are
equivalent. However, this assumption no longer holds with the NRA bias. Then
weighting the treatment group improves the estimation of Z and thus the uplift.

5 Conclusion

In this paper, we have studied the effect of the NRA bias when modeling uplift
methods. To the best of our knowledge, this is the first work that focuses on the
study of bias effect on current uplift models. We have designed an experimental
protocol that allows, by varying the bias rate, to study the impact of the NRA
bias on uplift methods and to identify classes of behavior for these methods.
Inspired by the literature on domain adaptation, we have proposed a method to
reduce the effect of the NRA bias by weighting the individuals in the treatment
group. Experimental results on eight datasets show that our method significantly
improves the uplift estimation performances for the class-transformation based
methods.

This work opens several perspectives. As the weighting method reduces the
effect of the NRA bias with the class transformation methods, it seems promising
to design new methods of this family. On the other hand, it will be fruitful to
study other types of bias, such as (i) the deployment bias, which occurs when
uplift models are applied to different populations (Covariate Shift situation) or
when the behavior of individuals changes with time (Concept Drift situation);
(ii) the non-response bias which is a real challenge for uplift modeling with
observational data.
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