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Abstract. This paper focuses on linearisation techniques for a class of mixed singular/continuous
control problems and ensuing algorithms. The motivation comes from (re)insurance problems with
reserve-dependent premiums with Cramér-Lundberg claims, by allowing singular dividend pay-
ments and capital injections. Using variational techniques and embedding the trajectories in an
appropriate family of occupation measures, we provide the linearisation of such problems in which
the continuous control is given by reinsurance policies and the singular one by dividends and capital
injections. The linearisation translates into a dual dynamic programming (DDP) algorithm. An
important part of the paper is dedicated to structural considerations allowing reasonable implemen-
tation. We also hint connections to methods relying on moment sum of squares and LMI (linear
matrix inequality)-relaxations to approximate the optimal candidates.
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1 Preliminaries

1.1 Introduction

This paper focuses on an insurance model with Cramér-Lundberg claims (C arriving along
a Poisson process N) and mixed types of control policies π. These policies include continuous
retention levels u affecting the reserve-dependent premium p and can be seen as a reinsurance
mechanism in which the primary company only pays the fraction u(C) of one claim. The policies
also include singular controls coming from classical dividend payments (L) and capital injections
(I).

Xπ
t := x+

∫ t

0
pus (Xπ

s ) ds−
Nt∑
i=1

uτi (Ci)− Lt + It.

∗The work has been supported by National Key R and D Program of China (NO. 2018YFA0703900), the NSF of
P.R.China (NOs. 12031009, 11871037), NSFC-RS (No. 11661130148; NA150344), 111 Project (No. B12023).
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The capital injected has to be reimbursed at a unitary cost k > 1. The aim is to maximize a
q > 0-discounted value of dividends from which the reimbursement is subtracted.

Maximize over π, Ex
[∫ σπ0−

0
e−qs (dLs − kdIs)

]
.

The precise restrictions on the policies π are made clear below. The literature on insurance with
various models is very rich and a complete overview exceeds the aim of this paper.
The first result in connection with dividends optimization is due to de Finetti [10] for Brownian
approximations of the claims in which injections of capital are not possible and the bankruptcy is
declared as soon as the reserve becomes negative. Within the same Brownian setting, [30] consid-
ers a problem in which the reserve is systematically reflected to the non-negative real values and
the injections (deposits) are withdrawn from the efficiency criterion. The paper [24] is the first to
compare the two values and to specify a critical cost of injection of capital discriminating between
the two strategies.
In the jump-diffusion case, a complete characterization of optimal dividends has been provided
in [6] for a class of spectrally negative Lévy claims in absence of injections of capital. Extensions
to systematic injections (similar to [30]) have made the object of [18], [11], [25] and so on. The
paper [5] focuses on a control problem in connection to an insurance company that pays out div-
idends and is allowed to inject capital and shows that the a Løkka-Zervos-type alternative is also
valid for a Cramér-Lundberg risk process in which the claims are exponentially distributed. The
paper [4] deals with similar problems but without asking a systematic reflection (as it was the
case in the previously cited papers), but optimizing the level below which such injections are futile
and declaring bankruptcy is preferable. The same kind of results have been obtained in [12] for
more general claims but using different methods based on the scale functions (see [2], [19], [22]etc.).
These papers usually deal with a fixed premium p and they do not take into account the question
of reinsurance. The optimal strategy in [4] (and [12]) is shown to be of a, b-type (reflect if above
−a, pay dividends if above b), with a and b depending on k.
Finally, for reinsurance problems (but without injections), the reader is referred to the book [8]
and the seminal paper [7] to get acquainted with the Hamilton-Jacobi approach. For excess-of-loss
reinsurance, also see [1].

We consider here a model that extends the one in [4] by adding (to the premium as it is already
the case in [8]) a continuous control parameter specifying the level of retention in connection to
reinsurance. Verification results for such models are a lot more trickier. The main methods we
wish to suggest in this article in order to solve mixed singular/continuous optimal control problems
are based on linear programming techniques and dual dynamic programming algorithms. Over the
years, similar methods have been employed for control problems (but lacking the mixed features).
Using viscosity arguments, it is shown that the initial control problem is equivalent to a linear
optimization problem formulated on a space of measures ( see [9], [14] and references therein for
more details for diffusions). The same approach is adapted to continuous control of jump diffusions,
e.g. [28]. For example, the paper [31] provides an equivalent infinite-dimensional linear program-
ming and a dual formulation for multidimensional singular stochastic control.

As for the dual algorithm, Pereira et al. are the first to have presented a methodology for the
solution of multi-stage optimization problems with random features called stochastic dual dynamic
programming (SDDP) in [26]. Several scholars devoted themselves to the improvement of DDP. For
example, [29] presents statistical properties as well as the convergence of SDDP methods applied to
multi-stage linear programming problems. Lasserre et al. consider nonlinear optimal control prob-
lems treated through occupation measures with polynomial data and provides a method named
LMI (linear matrix inequality)-relaxations in [21] and [20]. Recently, [17] present a finite-horizon
optimization algorithm based on DDP by using sum-of-squares techniques and LMI-relaxations to
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solve the problems described by occupation measures with polynomial functions. These references
mostly concern deterministic dynamics, continuous controls and they do not present stopping times.
In connection with exit problems with stochastic dynamics, we mention [15], but as far as we see,
their problem has no mixed features for control, nor does it present representations for stopping
times.

Main contributions and positioning. The main difference with respect to our work is that
the aforementioned papers deal with a specific type of control (either continuous or singular) and,
foremost, as we have already mentioned, they do not take into account linear formulations for the
stopping times. These features are essential to our problem and need to be dealt with.

1. Rather than relying on the classical duality for infinite-dimensional programs (as it is the case
in [31]), we adopt a variational point of view inspired by [9]. We prove, in Proposition 3.1 that
the value function of our control problem (4) satisfies a Hamilton-Jacobi variational inequality
(5). This super-solution can be approximated by regular functions (cf. Proposition 3.2).

2. We linearise the mixed singular/continuous optimal control problem by defining occupation mea-
sures satisfying convenient linear and total-variation restrictions in (8). To our best knowledge,
this kind of formulations are completely new.

3. We provide two kinds of dual formulations for the control problem in Theorem 4.1. This trans-
lates into linearised forms of the dynamic programming principle (cf. (11)), again new as far as
we know.

4. Since the Hamiltonian is written differently on the negative axis1, the set of constraints, and the
dual formulation have to be extended in a compatible way (see Proposition 5.1). Again, this is
specific to our framework and we have no knowledge of similar results.

5. Finally, we present the two-stage dual algorithm inspired by the cited references. However, a
rather important part of the paper is spent explaining

• how to deal with the non-compactness of the features (e.g. possibly unbounded injections);

• how to ensure polynomial features for the infinitesimal generator (such that the considerations
in [27] apply);

• how to generate scenarios in the forward step.

Again, to our best knowledge, such features are new.

Let us just point out that the numerical illustrations of the algorithm make the object of a second
part in order to keep the paper at a reasonable length. They include comparisons with the a, b-
policies benchmark in [4] and [3].

This paper is organized as follows. In the remaining of the section, we give some standard
notations used throughout the paper. Section 2 is devoted to the description of the problem. In
particular, the surplus process is introduced in (1) and the restrictions on the dividends are specified
in (2). Having defined the value function of our control problem in (4), we provide the upper
estimates for the controlled surplus trajectory and the regularity of the value function in Proposition
2.1. Further estimates used to define variation constraints for the occupation measures are exhibited
in Proposition 2.2. Section 3 is concerned with the variational characterization of the value function.
This is done in Proposition 3.1 and completed with approximation results in Proposition 3.2. The
linearization method makes the object of Section 4. We describe the occupation measures and their

1the reserve can become negative without inducing bankruptcy because of capital injections
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constraints in (8) and Definition 4.1. The duality and no-gap results make the object of Theorem 4.1.
Section 5 provides further insight into the linearized dynamic programming principles in Subsection
5.1 and the extensions to the negative axis in Subsection 5.2. These considerations are followed
by a detailed description of the algorithm. Besides the presentation of the forward and backward
step, we make a thorough analysis of the compact-reduction of the state and control spaces, and
of the polynomial compatibility of the generator, see Example 5.1. Hints to the consideration of a
bankruptcy penalty are provided in Section 6. Finally, the Appendix gathers all the proofs for the
theoretical results.

1.2 Notations

We use the following standard notations:

• R stands for the real axis, R+ denotes the non-negative real semi-axis and R− denotes the non-
positive real semi-axis;

• min (resp., ∧) denotes the minimum between several (resp., two) real quantities; similarly, max
(resp., ∨) denotes the maximum. For a real quantity x, we set x+ := x ∨ 0.

• Bounded variation functions are often identified with the associated measures and the Stieltjes
integral is indifferently written with respect to a function or the associated measure.

• Given a metric space E,

– B(E) denotes the family of Borel subsets of E;

– P(E) denotes the family of probability measures on E;

– M+(E) stands for the family of positive Borel measures on E.

– For a positive real constant a > 0, M+
a (E) stands for the the family of measures in M+(E)

whose total mass does not exceed a.

– The space C1 = C1 (R) stands for differentiable real functions with continuous derivative; the
space C1 (R;R+) stands for non-negative functions in C1; the space C1

lin (resp. C1
lin (R;R+))

stands for the respective subsets of functions with (at most) linear growth.

– We let Rr[x] stand for polynomials of degree not exceeding r ∈ N∗ in the Euclidean variable
x ∈ RN , and we designate by deg(p) the degree of such p ∈ Rr[x].

2 Description of the Problem

The dynamics include the following standard features:

1. A reinsurance policy is a B (R+)-measurable function u : R+ → R+ such that u(x) ≤ x, ∀x ∈ R+,
modelling the part of the claim retained by the initial insurance company. The class of such
policies is generally denoted by R; see hereafter for different classes to which our study applies;

2. Given a reinsurance policy u ∈ R and non-negative claims Ci, i ≥ 1, where (Ci)i≥1 are inde-
pendently and identically distributed (i.i.d.) with distribution function F , one computes the
reinsurance-modified distribution

F u(x) :=

∫
R+

1u(y)≤xF (dy)

i.e. the distribution function of u (C1);
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3. Given a reinsurance policy u and a reserve level and claim-dependent premium function p :
R+ × R+ → R+, we define the premium

pu(x) :=

∫
R+

p (y, x) dF u(y) =

∫
R+

p (u(y), x)F (dy).

We note that, in the multiplicative case p(y, x) = p(x)y and full retention u0(y) = y, one gets
pu

0
(x) = p(x)E [C1] =: p̃(x) (where E [C1] denotes the average of a single claim which is assumed

to be finite).

2.1 Basic Assumptions

Assumption 2.1 Throughout the paper, the following are assumed to hold true.
[A1p]: The function p : R2

+ → R+ is non-decreasing with respect to both arguments.
[A2p]: The function p is uniformly continuous and

‖p‖0 :=

∫ ∞
0

p(y, 0)F (dy) <∞,

[p]1 := sup
x,x′∈R+,
x 6=x′

∫ ∞
0

sup
0≤y≤z

∣∣p(y, x)− p
(
y, x′

)∣∣ dF (z)

|x− x′|
<∞.

Remark 2.1 1. As a consequence of [A1p], the average satisfies

pu(x) ≤ p̄(x) :=

∫
R+

p(y, x)dF (y), ∀u ∈ R, ∀x ∈ R+.

2. [A2p] is satisfied if, for example, p (·, 0) has polynomial growth, the generic claim C has a finite
moment of the degree of such polynomial and p is Lipschitz-continuous in x uniformly in the
first variable.

3. We consider the flow x̄xt = x+

∫ t

0
p̄ (x̄xs ) ds. Under the assumptions [A1p], [A2p], the applica-

tion R+ 3 x 7→ x̄xt satisfies
x̄xt ≤ (x+ t ‖p‖0) e[p]1t.

It follows that, for q > [p]1,

∫ ∞
0

e−qtx̄xt dt ≤ Ax+B, for some A,B ∈ R. The arguments devel-

oped throughout the paper work as well under the uniform continuity of p and this kind of linear
growth assumption. We have chosen to limit ourselves to the above-mentioned assumptions in
order to give better readability to the linearisation arguments.

2.2 The Model and Immediate Properties

We consider the following dynamics for the reserve of an insurance company

Xt = x+

∫ t

0
pus (Xs) ds−

Nt∑
i=1

uτi (Ci) ,

where ut ∈ R is the reinsurance policy and τi stands for the time of i-th claim. We consider a rich
enough probability space (Ω,F ,P) supporting the (independent) Poisson process N (of intensity
λ > 0) and the family of i.i.d. random variables (r.v.) (Ci)i≥1 modelling the claims. On this space
we consider the natural right-continuous, P-completed filtration F.
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1) Having fixed a triplet π := (u, L, I) describing mixed continuous/singular strategies as explained
before, the surplus process is given (under the Px), by the following equation

(1) Xπ
t := x+

∫ t

0
pus (Xπ

s ) ds−
Nt∑
i=1

uτi (Ci)− Lt + It.

2) The reinsurance (or, more precisely, retention) policy u is an R-valued predictable process,
where, similar to [7], R is one of the following:

• RA (all Borel functions u : R+ → R+ such that (s.t.) u(y) ≤ y, y ≥ 0),

• Ra0P (proportional retention u(y) = u(1)y, u(1) ∈ [a0, 1] with minimal proportion a0 ∈ [0, 1]),

• RXL (excess-of-loss policies u(y) = min {y, a}, a ≥ 0).

3) A right-continuous with left-limits (abbreviated to càdlàg), adapted process L such that L0− = 0
and which is non decreasing will be referred to as a dividend strategy ;

4) A non-decreasing, càdlàg, adapted process I such that I0− = 0 will model the capital injection.

5) Both L and I are such that Ex
[∫ ∞

0
e−[p]1sφsds

]
<∞, where φ ∈ {I, L}.

6) A strategy is given by π := (u, L, I) with components as before. The set of strategies of this
type is Π+(x).

7) • (before bankruptcy) for t ≥ 0, the dividends are assumed to comply with

(2) 4 Lt := Lt − Lt− ≤ Xπ
t− −4N̄u

t +4It, where N̄u
t :=

Nt∑
i=1

uτi (Ci) .

• (after bankruptcy intervening asXπ
t−−4N̄u

t +4It < 0), we freeze the components i.e. Is = It−,
and Ls = Lt−, ∀s ≥ t.

8) The triplet π ∈ Π+(x) obeying to the restriction (7) is called an admissible strategy and they
form the class Π(x). Furthermore, whenever u is a fixed reinsurance policy, we consider the
section Πu(x) := {(L, I) : π := (u, L, I) ∈ Π(x)} .

9) For every such strategies π ∈ Π(s),

(a) we consider the bankruptcy time σπ0− := inf
{
t ≥ 0 : Xπ

t− −4N̄u
t +4It < 0

}
. This has the

following significance. When a large claim intervenes and capital injection is considered
too expensive, then bankruptcy is the solution to adopt. Whenever needed, the initial
condition of Xπ (i.e. x) will be explicit in σx,π0− ;

(b) The gain associated to such policies is

(3) v (x, π) := Ex
[∫ σπ0−

0
e−qs (dLs − kdIs)

]
,

where x denotes the initial value of process X. The quantity k ≥ 1 is the cost of one unit
of injected capital;

(c) The optimal gain is given by

(4) V (x) := sup
π∈Π(x)

v (x, π) , ∀x ∈ R.
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Remark 2.2 If π ∈ Π(x) is an admissible strategy, then, prior to σπ0−, it is sub-optimal to have
4It ∧4Lt > 0. Indeed, the same dynamics (hence, the same bankruptcy time) and a better gain is
got for Ĩt := It −

∑
s≤t∧σπ0−

4Ls ∧4Is, L̃t := Lt −
∑

s≤t∧σπ0−
4Ls ∧4Is. The same argument can

be applied to the continuous parts.

We have the following immediate properties.

Proposition 2.1 1) Under the assumptions [A1p] and [A2p], for every x ∈ R+, given a strategy
π ∈ Π+(x), the equation (1) admits a unique solution.

2) For any x ∈ R+, the family Π(x) is not empty. When the initial positions x′, x ∈ R+ satisfy
x ≤ x′, one has the inclusion Π(x) ⊂ Π (x′). Furthermore, for π ∈ Π(x), one has, P-a.s.,

σx,π0− ≤ σ
x′,π
0− .

3) For all initial positions x ∈ R+, all strategies π ∈ Π(x), and every q ≥ [p]1,
max

{
Xπ
t−, 0

}
≤ xeqt + ‖p‖0

eqt − 1

q
+

∫
[0,t)

eq(t−s) (dIs − dLs)

max {Xπ
t , 0} ≤ xeqt + ‖p‖0

eqt − 1

q
+

∫
[0,t]

eq(t−s) (dIs − dLs)
, ∀t ∈

[
0, σπ0−

]
, P− a.s.,

on
{
σπ0− <∞

}
.

4) For arbitrary π ∈ Π(x), one has the lower bound x+
‖p‖0
λ+q ≤ V (x).

5) If q ≥ [p]1, then, for every π ∈ Π(x), one has the upper bound v(x, π) ≤ x+
‖p‖0
q ≤ x+

‖p‖0
[p]1

.

6) For every 0 < ε, one has V (x+ ε)− V (x) ∈ [0, kε].

The proof is quite standard and follows from the assumptions on p. Item 3. follows from com-
parison with the explicit solution of the no-jump linear equation driven by y 7→ ‖p‖0 + qy and with
singular controls L, I. Item 4. is got by using the no-injection, no-reinsurance, pay all reserve (and
declare bankruptcy at first claim) strategy. The upper bound in (5) follows from Proposition 2.1-
(3). Finally, the Proposition 2.1-(6) which is useful to get the absolutely continuity and derivative
bounds of V is obtained by tempering with the singular controls L and I at 0 which allows to pass
from x to x+ ε or the other way around.

The following quantitative properties will prove useful in order to qualify the occupation mea-
sures associated to controlled trajectories and the larger set of constraints appearing in the linearized
formulation of our initial control problem.

Proposition 2.2 Let x ≥ 0 and π := (u, L, I) ∈ Π(x) be 1-optimal (in the sense that the associated
cost v(x, π) ≥ V (x)− 1). Then, for every t ≥ 0,

1) the injection process satisfies Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
≤

2 ‖p‖0 + [p]1
(k − 1) [p]1

;

2) the dividend process satisfies Ex

[∫
[0,t∧σπ0−]

e−qsdLs

]
≤ x+

(k + 1) ‖p‖0 + [p]1
(k − 1) [p]1

;

3) the associated solution satisfies Ex
[
sup
t≥0

e−q(t∧σ
π
0−)
(
Xπ
t∧σπ0− ∨ 0

)]
≤ x+

(k + 1) ‖p‖0 + [p]1
(k − 1) [p]1

;

4) Furthermore, Ex

[∫
[0,σπ0−]

e−qt (Xπ
t ∨ 0) dt

]
≤ 1

q − [p]1

(
x+

(k + 1) ‖p‖0 + [p]1
(k − 1) [p]1

)
.

The proof is postponed to the Appendix.
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3 The Hamilton-Jacobi-Bellman Variational Inequality

As it is by now standard in this kind of control problems, we consider the Hamilton-Jacobi integro-
differential inequality

(5)

{
max

{
1− V ′(x), V ′(x)− k,H

(
x, V, V ′(x)

)}
= 0, x ∈ R+,

min
{

max
{

1− V ′(x), V ′(x)− k
}
, V (x)

}
= 0, x ∈ R− \ {0} .

.

Here, the Hamiltonian H is defined as

(6) H (x, ψ, a) := sup
u∈R

(
− (λ+ q)ψ(x) + pu(x)a+ λ

∫
R+

ψ(x− u(y))dF (y)

)
,

for continuous ψ and we also define

Luψ(x) = pu(x)ψ′(x) + λ

∫
R+

ψ(x− y)dF u(y)− (λ+ q)ψ(x),

when ψ is absolutely continuous. Let us give a rather immediate characterization of V in connection
to the above system

Proposition 3.1 The function V is non negative, absolutely continuous (AC) and a super-solution

to (5)2such that V (x) ≤ x+
‖p‖0
q , for all x ≥ 0, and V (0) ≥ ‖p‖0λ+q > 0.

The proof is immediate and standard. It follows from the dynamic programming principle and
it is sketched in the Appendix. On R+, one only needs to show that LuV ≤ 0 and this follows
from an infinitesimal argument at t ∧ τ1 (the time of the first claim) for no-dividend, no-injection
strategy. For negative reserves, the two possibilities are to declare bankruptcy (leading to 0-value)
or to inject capital to reach 0 position and continue with the best strategies from there. This yields
V (x) = (V (0) + kx)+.
We proceed with the following basic remark.

Remark 3.1 Let φ be a super-solution to (5) which is non negative and absolutely continuous. The
function φ is zero for arguments x ≤ −φ(0) (in order to comply with the equation on the negative
arguments). As a consequence, there exists x0 ∈ R for which φ(x) = 0, ∀x ≤ x0 and Lebesgue-a.e.
on (x0,∞), φ admits a derivative in [1, k]. Moreover, please note that φ is non-decreasing.

Before proceeding with the linear programming arguments, let us give the following useful result.

Proposition 3.2 Let φ be a super-solution to (5) which is non negative and absolutely continuous
and such that

(a) φ(0) > 0;

(b) φ has a linear growth and φ(y) is upper bounded by c+ y, for some constant c ∈ R and y ≥ 0.

Furthermore, let
R∗− 3 x0 := sup {x ∈ R : φ(x) = 0} .

1. There exists a family of non-decreasing functions (φn)n∈N of class C1 s.t.

(a) φ(x) ≤ φn(x) ≤ φ(x) + c̃
n , for all x ∈ R;

(b) 1 ≤ φ′n(x) ≤ k on [x0,∞),

2In the sense that for Lebesgue-almost every x ∈ R the function φ has a derivative φ′(x) and the equation (5) is
satisfied at x. In particular, note that V is non-decreasing.
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(c) φ′n converges (as n→∞) to φ′, pointwise a.e. on [x0,∞), and

(d) Luφn(x) ≤ 0, for all x ≥ 0.

2. Moreover, V (x) ≤ φ(x), for every x ∈ R+.

Here, c̃ is a generic constant independent of n ≥ 1 and x ∈ R.

The proof is postponed to the Appendix.

Remark 3.2 1. A careful look at the proof shows that the functions ψn and, hence, φn have k-
upper-bounded derivatives on the entire state space R.

2. When ψn are constructed from V (recall that V (x) = (V (0) + kx)+ on R−), one has φ′n(y) =

k, ∀y ∈
[
−V (0)

k , −2
n

]
.

4 Linear Programming Arguments

4.1 Occupation Measures

Whenever L and I are as before, we consider

J (ω) := J L(ω) ∪ J I(ω) := {s ∈ R+ : ∆Ls (ω) 6= 0} ∪ {s ∈ R+ : ∆Is(ω) 6= 0} , ω ∈ Ω,

and
J̃ (ω) := {s ∈ R+ : ∆Ls (ω) + ∆Is(ω) 6= 0} ∪ {τi(ω) : i ≥ 1} , ω ∈ Ω,

where τi designates the time of arrival for the ith claim (i ≥ 1). These constitute the times at
which the reserve Xx,π has a jump. Furthermore, we distinguish four non-decreasing processes
corresponding to the continuous and discrete part of L, resp. I and their associated q-discounted
measures Lc, L − Lc, Ic, I − Ic. We apply Itô’s formula to (the finite variation process) s 7→
e−qsφ (Xπ

s ) on
[
0, t ∧ σπ0−

]
and owing to Remark 2.2, we get

Ex
[
e−q(t∧σ0−)φ

(
Xπ
t∧σ0−

)]
=φ(x) + Ex

[∫ t∧σπ0−

0

(
−qe−qsφ(Xπ

s−) + e−qsφ′
(
Xπ
s−
)
pus
(
Xπ
s−
))
ds

]
− Ex

[∫ t∧σπ0−

0
e−qsφ′

(
Xπ
s−
)

(dLcs − dIcs)
]

+ Ex

 ∑
s∈[0,t∧σπ0−]∩J̃

e−qs
(
φ
(
Xπ
s− −∆N̄us

s −∆Ls + ∆Is
)
− φ

(
Xπ
s−
))

=φ(x)+Ex
[∫ t∧σπ0−

0
e−qs

(
λ

∫
R+

φ
(
Xπ
s−−z

)
F us(dz)−(q+λ)φ

(
Xπ
s−
)
+φ′

(
Xπ
s−
)
pus
(
Xπ
s−
))
ds

]

− Ex
[∫ t∧σπ0−

0
e−qsφ′

(
Xπ
s−
)
(dLcs−dIcs)

]
+ Ex

 ∑
s∈J I∩[0,t∧σπ0−]

e−qs
∫ ∆Is

0
φ′
(
Xπ
s−−∆N̄us

s +z
)
dz


− Ex

 ∑
s∈JL∩[0,t∧σπ0−]

e−qs
∫ ∆Ls

0
φ′
(
Xπ
s− −∆N̄us

s − z
)
dz

 .

(7)

In view of this formula, we consider, for x ≥ 0, and admissible policies (u, L, I) ∈ Π(x) and for the
stopping times σ ∈ T := {t ∧ σ0− : t ≥ 0} the following occupation measures
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(i) γ0 ∈ P (R+ × R),
γ0 (ds1dy1) = Px (σ ∈ ds1, X

π
σ ∈ dy1) ;

(ii) γ1 ∈M+ (R+ × R× R+ × R+ ×R),

γ1 (ds1dy1ds2dy2du) := Ex
[
1{σ∈ds1, Xπ

σ∈dy1}e
−qs21{

s2∈[0,s1], Xπ
s2−
∈dy2

}
, us2∈du

ds2

]
;

(iii) γ2 ∈M+ (R+ × R× R+ × R+ ×R× R+),

γ2 (ds1dy1ds2dy2dudl) := Ex
[
1{σ∈ds1, Xπ

σ∈dy1}1
{
s2∈[0,s1], Xπ

s2−
∈dy2

}e−qs2Lc (ds2)

]
,

+ Ex

1{σ∈ds1, Xπ
σ∈dy1}

∫
R+

1{
Xπ
s2−
−∆N̄u

s2
−z∈dy2, z≤l, us2∈du

}dzδ∆Ls2
(dl)e−qs2

 ∑
s∈J∩[0,s1]

δs (ds2)

 ;

(iv) γ3 ∈M+ (R+ × R× R+ × R+ ×R× R+),

γ3 (ds1dy1ds2dy2dudi) := Ex
[
1{σ∈ds1, Xπ

σ∈dy1}1
{
s2∈[0,s1], Xπ

s2−
∈dy2

}e−qs2Ic (ds2)

]

+ Ex

1{σ∈ds1, Xπ
σ∈dy1}

∫
R+

1{
Xπ
s2−
−∆N̄u

s2
+z∈dy2, z≤i, us2∈du

}dzδ∆Is2
(di)e−qs2

 ∑
s∈J∩[0,s1]

δs (ds2)

 .
A look at the properties in Proposition 2.2, the definitions of the above measures and Itô’s formula
in (7) yield the following structural properties (for 1-optimal policies).

(i)

∫
R+×R

e−qs1 (y1 ∨ 0) γ0 (ds1dy1) ≤ x+ +
(k + 1) ‖p‖0 + [p]1

(k − 1) [p]1
;

(ii)



(a) γ1 ∈M+
1
q

(R+ × R× R+ × R+ ×R) ;

(b) γ1 (ds1dy1,R+ × R+ ×R) =
1− e−qs1

q
γ0 (ds1dy1) ;

(c)

∫
R+×R×R+×R+×R

y2γ1 (ds1dy1ds2dy2du) ≤ 1

q − [p]1

(
x+ +

(k + 1) ‖p‖0 + [p]1
(k − 1) [p]1

)
;

(iii) γ2 ∈M+

x++
(k+1)‖p‖0+[p]1

(k−1)[p]1

(R+ × R× R+ × R+ ×R× R+) ;

(iv) γ3 ∈M+

(−x)++
2‖p‖0+[p]1
(k−1)[p]1

(R+ × R× R+ × R+ ×R× R+) ;

(v) For every regular test function with linear growth φ ∈ C1 (R;R) ,∫
R+×R

e−qs1φ (y1) γ0 (ds1, dy1) =φ(x) +

∫
R+×R

Luφ (y2) γ1 (R+ R,R+, dy2, du)

+

∫
R+

φ′ (y2) (γ3 − γ2) (R+,R,R+, dy2,R,R+) .

(8)

Remark 4.1 1. Whenever t = 0, the occupation measure γ0 is a Dirac one δ(0,x), γ1 is null (thus,
still obeys to (ii)(b)), while γ2 and γ3 account for the jump in L and I at 0.

2. Whenever the occupation measure is associated to σ = σπ0− ∧ t for t > 0, the reader will note
that the support of γ0 (and similarly for the others, of course) satisfies Supp (γ0) ⊂ [0, t]× R.

3. The identification of marginals for γ1 in (ii)(b) together with the fact that the measures γ0 do
not have atoms at 0 (again, provided that t > 0) explains why we call the first measure γ0.
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4. We have stated the conditions with x+ instead of x (although we have assumed that x ≥ 0) for
reasons that will appear obvious in Section 5.3. The same applies to, (8) (iv).

From now on, in order to avoid lengthy notations, we will write

∫
e−qs1 (y1 ∨ 0) dγ0 instead of∫

R+×R
e−qs1 (y1 ∨ 0) γ0 (ds1dy1) and so on.

Definition 4.1 The set of constraints for initial positions x ≥ 0, designated hereafter by Θ(x) is
defined by

Θ(x) =


γ = (γ0, γ1, γ2, γ3) : γ0 ∈ P (R+ × R) ; γ1 ∈M+ (R+ × R× R+ × R+ ×R) ;

γ2, γ3 ∈M+ (R+ × R× R+ × R+ ×R× R+) ,

γ satisfies (8)

 .

For every t ≥ 0, the set of all measures γ ∈ Θ(x) such that their first marginal(s) have support
included in [0, t]× R will be designated by Θt(x).

4.2 The Duality Result

Theorem 4.1 The linearized function Λ : R+ −→ R∗+ defined by

Λ(x) := sup
γ∈Θ(x)

(γ2 − kγ3) (R+ × R× R+ × R+ ×R× R+) ,

coincides with V on R+ and the common value is given by the dual value

V (x) = Λ(x) = Λ∗(x) := inf φ(x)

s.t. φ ∈ C1 (R;R+) , with linear growth, φ′ ∈ [1, k] on [0,∞) ;

Luφ(y) ≤ 0, ∀u ∈ R, ∀y ∈ R+.

(9)

Moreover, the functions in the description of Λ∗ can be taken with k-upper bounded derivative on
R i.e.

Λ∗(x) = inf φ(x)

s.t. φ ∈ C1 (R;R+) , φ′ ≤ k, on R, φ′ ≥ 1, on [0,∞) ;

Luφ(y) ≤ 0, ∀u ∈ R, ∀y ∈ R+.

(10)

The reader is referred to the Appendix for the proof of this result.

5 Two (and Multi)-stage Linear Decision Formulations and the
Dual Programming Algorithm

5.1 The Linearized Dynamic Programming Principle and A Two-Stage Decision
Problem

Let us take a look at the dynamic programming principle and provide some linearized versions
taking into account the previous dual formulation(s). Prior to giving our main result, let us extend
the functions Λ and Λ∗ from R+ to the entire real axis R by setting

Λ(x) = Λ∗(x) = (Λ(0) + kx)+ , x < 0.

11



Corollary 5.1 For every t > 0 and every x ≥ 0, the value function V can be retrieved as a
two-stage problem

V (x) = sup
γ∈Θt(x)

{∫
(dγ2 − kdγ3) +

∫
e−qs1Λ∗ (y1) dγ0

}
= sup

γ∈Θt(x)

{∫
(dγ2 − kdγ3) + inf

φ∈F

∫
e−qs1φ(y1)dγ0

}
,

(11)

where F :=
{
φ ∈ C1 (R;R+)

∣∣ φ′ ≤ k, on R, φ′ ≥ 1, on [0,∞) ; Luφ(y) ≤ 0, ∀u ∈ R, ∀y ∈ R+

}
.

Remark 5.1 The reader will note that the first equality provides the classical dynamic programming
principle (please also take a look at Proposition 7.1 in the Appendix. The only particularity is the
”linearized” formulation. The second equality, however, no longer asks for minimization at all
points y1 but includes a linear criterion involving part of γ.

Again, for readability purposes, we postpone the proof to the Appendix.

Remark 5.2 The reader will easily note that the proof shows that both sets Θt(x) can be replaced
with Θ(x).

5.2 Extension of the Set of Constraints. Coherence With the DPP

As we have seen in the previous subsection, in order to provide a linear formulation of the dynamic
programming principle, we needed to extend the value function to negative initial positions. In the
same spirit, before proceeding with our two-stage algorithm, let us give a natural extension of the
(constraint) sets of measures Θt to initial data x that are negative.

1. For x < −V (0)
k , it is optimal to declare bankruptcy, and, for such x, we set

(12) Θt(x) :=


γ = (γ0, γ1, γ2, γ3) : γ0 ∈ P(R+× R) ; γ1 ∈M+ (R+× R× R+× R+×R) ;

γ2, γ3 ∈M+ (R+ × R× R+ × R+ ×R× R+) ,

γ0 = δ0 ⊗ δx, γ1 = 0, γ2 = γ3 = 0

 .

It is easy to check that (8) still holds true:

• (i) follows easily for the Dirac measure:

∫
e−qs1(y1 ∨ 0)dγ0 = 0;

• (ii) (a) and (c), (iii) and (iv) are mass or moments bounds which are obvious for the zero
measures;

• (ii) (b) is true since 1− e−qs1 = 0, γ0 − a.s.;

• Finally, (v) reads

∫
R+×R

e−qs1φ(y1)δ(0,x)(ds1dy1) = φ(x) which is trivial.

2. For x ∈
[
− V (0)

k , 0
)
, one naturally defines

δ#
−x (dy2) :=

∫
R+

1x+z∈dy2, z≤−xdz;

Θt(x) :=

γ = (γ0, γ1, γ2, γ3) :=
(
γ′0, γ

′
1, γ
′
2, γ
′
3 + δ(0,0,0) ⊗ δ

#
−x ⊗ δ0 ⊗ δ−x

)
,

where
(
γ′0, γ

′
1, γ
′
2, γ
′
3

)
∈ Θt(0)

 .

(13)

Then (8) holds true:
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• (i), (ii), (iii) hold true for initial data 0, hence for x+ = 0;

• To see (iv), one notes that∫
1dγ3 =

∫
1dγ′3 +

∫ −x
0

dz ≤
2 ‖p0‖+ [p]1
(k − 1) [p]1

− x,

due to the choice of γ′3 and the bounds in Θt(0);

• Finally, in order to prove (v), for φ ∈ C1 (R;R), one has∫
e−qs1φ(y1)dγ0 =

∫
e−qs1φ(y1)dγ′0

= φ(0) +

∫
Luφ(y2)dγ1 +

∫
φ′(y2)(dγ3 − dγ2)−

∫
φ′(y2)δ(0,0,0) ⊗ δ

#
−x (dy2)⊗ δ0 ⊗ δ−x

=

∫
Luφ(y2)dγ1 +

∫
φ′(y2)(dγ3 − dγ2) + φ(0)−

∫ −x
0

φ′(x+ z)dz

=

∫
Luφ(y2)dγ1 +

∫
φ′(y2)(dγ3 − dγ2) + φ(x).

Using this, we get a simple extension of the formula (11) to the entire real axis.

Proposition 5.1 1. The equality (11) is valid for all x∈R, where Θt is extended using (12), (13).

2. Furthermore, the dual formulation (10) holds true for x < 0, i.e.

Λ(x) = Λ∗(x) := inf φ(x)

s.t. φ ∈ C1 (R;R+) , φ′ ≤ k, on R, φ′ ≥ 1, on [0,∞) ;

Luφ(y) ≤ 0, ∀u ∈ R, ∀y ∈ R+.

The explicit proof is relegated to the Appendix.
As a by-product of the first assertion, we get the following multi-stage linear problem (written here
for two time steps t1 and t2 but generalizable to a sequence of such steps).

Corollary 5.2 Let {ti : 1 ≤ i ≤ 2} ⊂ R+. Then, for every x ∈ R, it holds

Λ∗(x)

= sup
γ1∈Θt1 (x)

{∫ (
dγ1

2 − kdγ1
3

)
+

∫
sup

γ2∈Θt2 (y11)

{∫ (
dγ2

2 − kdγ2
3

)
+

∫
e−qs

2
1Λ∗(y2

1)dγ2
0

}
e−qs

1
1dγ1

0

}
.

With 〈·, ·〉 denoting the duality product between the space of measures and continuous functions,
the previous relation can be seen as a linear infinite-dimension problem.

5.3 The Two-Stage Algorithm

Next, with the help of the above considerations, we will give the two-stage algorithm to solve the
optimal control problem (see Corollary 5.2). The algorithm includes two parts: forward simulation
and backward recursion.

5.3.1 Space Considerations and some techniques in algorithm

1. (Space reduction and pseudo-compactness) For reasons that will appear clear in the next subsec-
tion, we consider the measures to be set on some compact space i.e. to be supported by

(s1, y1, y2, i, l) ∈ [0, T ]×
[
−
‖p‖0
k [p]1

, xmax

]
× [0, xmax]× [0, imax]× [0, lmax] .
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(a) We consider the optimization problem for initial capital x ≤ x̄.

(b) The dynamic programming principle (cf. (11)) and the multi-stage one (cf. Corollary 5.2)
will be applied with t ≤ T <∞.

(c) A quick look at Proposition 2.2, assertion 3. shows that, up to a fixed error ε > 0,

sup
x≤x̄

Px

(
sup
t≤T

Xπ
t ≥ xmax,ε

)
≤ eqT

x̄+
(k+1)‖p‖0+[p]1

(k−1)[p]1

xmax,ε
≤ ε,

with the obvious choice xmax,ε :=
x̄+

(k+1)‖p‖0+[p]1
(k−1)[p]1

εe−qT
. In particular, one can work with measures

supported by y1 ∈
[
−V (0)
k , xmax,ε

]
⊂
[
− ‖p‖0k[p]1

, xmax,ε
]
, y2 ∈ [0, xmax,ε] and control the loss.

(d) One essentially expects the injection of capital to intervene as a rescue measure, usually
as the reserve becomes negative and appearing as impulsive feedback, see [4]. This instan-
taneous injection should not exceed the upper-bound for the expected reward. Under this
assumption, and using Proposition 2.1, assertion 5., the measure γ3 is supported on

i ≤ V (0)

k
+ xmax,ε ≤ imax,ε := xmax,ε +

‖p‖0
k [p]1

.

(e) Similar arguments apply to dividends: instantaneous dividends cannot exceed the reserve
(hence xmax,ε) while continuous dividends are usually related to keeping the reserve at some
level (thus a fraction of the premium). It is natural to consider

l ≤ lmax,ε := [p]1 x
max,ε + ‖p‖0 .

2. Standard arguments (cf. [23, Chapter 1]) allow to replace continuous test functions in Θt(x) by
combinations of monomials (via Nachbin’s Theorem) of degree up to some fixed positive integer;

I (SOS technique) The test functions appearing in sup inf formulation (11) satisfy φ ≥ 0 on the
associated Euclidean space. Hence, we will use the long-established Sum-of Squares method (SOS
for short).

1. The notation
∑

2r[y] stands for the polynomials of degree not exceeding 2r in y ∈ RN , for some
positive integer N and obtained as sum of squares. A polynomial p(y) ∈

∑
2r[y] if there exists

a finite family of polynomials ξ1(y), · · · , ξn(y) ∈ Rr[y] such that p(y) =
∑n

i=1 ξi(y)2.

2. Asking that a polynomial p ∈
∑

2r[y] is equivalent to the existence of a symmetric positive semi-
definite matrix M (denoted by M � 0) such that p(y) = XTMX where, written as a α-indexed
vector,

X =

 Π
1≤i≤N

yαii : αi ∈ N, ‖α‖ :=
∑

1≤i≤N
αi ≤ r

 .

This leads to an optimization problem with choices M satisfying the constraint expressed as
linear matrix inequalities (LMI) and roughly taking the form M � 0.

I (truncated quadratic module) For a given semi-algebraic set S :=
{
y ∈ RN | hi(y) ≥ 0, i ∈ I

}
where hi, i ∈ I, are polynomials, the truncated quadratic module of degree r of this set is defined
as

Qr(S) := σ2
0(y) +

∑
i∈I

σ2
i (y)hi(y),

where σ2
0(y), σ2

i (y) ∈
∑

2r[y], with the restriction that deg
(
σ2
i hi
)
≤ 2r. Such polynomials are

obviously non-negative for all y ∈ S and this method will be used as slacks in the algorithm.
I (LMI-relaxation) Next, we will recall a method named LMI (linear matrix inequality)-relaxations
which will be used in the following algorithm (readers are referred to [20] and [15] for more details).
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(a) Define Dyr ⊂ R[t, y] (resp. Dtr) be the monomials of the canonical basis of the space of polyno-
mials in the variables y (resp. t) and of total degree less than r. In practice, it is required that
the support of the problem Y :=

{
y ∈ RN | θj(y) ≥ 0, j ∈ J

}
be a compact semi-algebraic

subset of RN , for some finite index set J and polynomials θj(y). Assume µ is a measure sup-

ported on [0, T ]×Y (µt supported on [0, T ]; µy supported on Y ) and mαβ :=

∫
tβyαdµ, for

‖α‖+β ≤ 2r (mt
β :=

∫
tβdµt; my

α :=

∫
yαdµy ) is moment of the measure µ (µt; µy). We em-

phasize that α = (α1, . . . , αN ) is an integer-valued multi-index, we denote by yα := yα1
1 . . . yαNN ,

and, again, by ‖α‖ :=
∑

1≤i≤N
αi. Moreover, m, mt and my are vectors of the corresponding

moments mαβ, mt
β and my

α.

(b) From Putinar’s Positivstellensatz ( [27] Theorem 3.3 ), there exists a sufficient condition to
guarantee that the moments mαβ have a representing measure µ supported on [0, T ]×Y i.e.

Lm(h2) ≥ 0, ∀h ∈ Rr[t, y]; Lmy(θjh
2) ≥ 0, ∀h ∈ Dy

r−d
deg θj

2
e
;

Lmt(t(T − t)h2) ≥ 0, ∀h ∈ Dtr−1; y ∈ RN .

Here, Lm(h2) :=
∫
h2(t, y)dµ =

∫ ∑
‖α‖+β≤2r hαβt

βyαdµ =
∑
‖α‖+β≤2r hαβmαβ is a linear

functional on R[t, y]. Similar definitions hold for Lmy and Lmt) and hαβ denotes the coefficient
of function h2.

(c) Next, we will use moment matrix defined in ( [21] Lasserre et al. 2008) to further deal with
the conditions in (b). The detailed definition of moment matrices Mr (m) will be presented in
the Appendix. Let h denote the vector of coefficients of the polynomial h of degree less than
r, then

〈h,Mr (m) h〉 = Lm(h2) =

∫
h2dµ ≥ 0, ∀h ∈ R[t, y];〈

h,M
r−d

degθj
2
e

(θjm
y) h

〉
= Lmy(θjh

2) =

∫
θjh

2dµy ≥ 0, ∀h ∈ Dyr , ∀j ∈ J ;

〈
h,Mr−1

(
t(T − t)mt

)
h
〉

= Lmt(t(T − t)h2) =

∫
t(T − t)h2dµt ≥ 0, ∀h ∈ Dtr.

Then, the above inequalities imply that the localizing matrices Mr (m), M
r−d

degθj
2
e

(θjm
y)

and Mr−1

(
t(T − t)mt

)
) are symmetric non-negative matrices, i.e. for every r, Mr (m) � 0,

M
r−d

degθj
2
e

(θjm
y) � 0 and Mr−1

(
t(T − t)mt

)
� 0.

5.3.2 Notations for moments

In this section, to avoid the complexity of notations, we use Y to represent the compact set in which
the y position is located, and specify the constructions as if the dimension N = 1. Of course, while
this is valid for the marginal measures

∫
[0,T ] e

−qtγ0(dt, dy) (concerned only with the occupation of

the space at bankruptcy), they are a bit lengthier for the other measures. The reader is invited to
refer to the aforementioned space considerations to understand what Y stands for in the case of
measures γi, i ∈ {1, 2, 3}.

1. (Ȳ0: moments of γ̄0) For a given order r ∈ N∗, φ(y) ∈ C1 (Y;R+) can be approximated by the
following polynomial

(14) ϕ(y) =
∑
β≤2r

Cβy
β, where m,β ∈ N, Cβ ∈ R.
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We define a (discounted) version of γ0, i.e. γ̄0(dt, dy) := e−qtγ0(dt, dy) and define the following
moment of γ̄0,

Ȳ β
0 :=

∫
Y
yβ γ̄0([0, T ], dy) =

∫
[0,T ]×Y

e−qtyβγ0(dt, dy), with β ≤ 2r,

and Ȳ0 is the β-indexed vector of the above moments. Thus,∫
[0,T ]×Y

e−qtφ(y)dγ0 =

∫
[0,T ]×Y

∑
β≤2r

Cβy
βe−qtdγ0 =

∑
β≤2r

CβȲ
β

0 =: LȲ0
(φ(y)) .

Time moments are defined similarly and so are mixed time and space moments with 2-dimensional
multi-indexes.

2. (Yi: moments of γi, i = 1, 2, 3) We define the following moments of the measures (γ0, γ1, γ2,
γ3), for which the time is well present compared with Ȳ0,

Y β
i :=

∫
Y
yβdγi, for i = 1, 2, 3; ‖β‖ ≤ 2r,

and Yi denotes the vector of corresponding moment. For instance, in the case of i = 1, one

has a dimension N = 5 and the set Y := [0, T ] ×
[
− ‖p‖0k[p]1

, xmax
]
× [0, T ] × [0, xmax] × R̄. The y

variable stands for (s1, y1, s2, y2, u). To render R̄ convenient, please take a look at Example 5.1.
Then, β ∈ N5 is a 5-dimensional multi-index. Thus, for a given polynomial of type (14) (this
time, β ≤ 2r has to be read as ‖β‖ ≤ 2r), one has∫

Y
φ(y)γj(dy) =

∑
‖β‖≤2r

CβY
β
j =: LYj (φ(y)) , j = 0, 1, 2, 3.

Of course, the spaces Y should be different for indexes j, but they can be embedded into a
larger, universal one. Of particular importance are polynomials φ that only depend on the y2

component.

3. (D: moment sof Dirac measure) The moments of Dirac measure are defined as Dα
x :=

∫
yαδx(dy).

Then, Dx is the corresponding vector of moments. The definition of linear operators LDx is similar
to the one of LYj , with j ∈ {0, 1, 2, 3}.

Remark 5.3 The reader will keep in mind that although we talk about Y, it is not just a one-
dimensional setting. As a matter of fact, we can consider polynomials ϕ ∈ R [s1, y1, y2, u, l, i]. Let
us further explain Putinar’s result [27, Remark after Eq. (16)] and the meaning it has for our
constraints.

1. Consistency of γ0: y1 ∈
[
− ‖p‖0k[p]1

, xmax,ε
]
, t ∈ [0, T ] such that one imposes

(15) LȲ0
(ϕ2) ≥ 0, LȲ0

((
y1 +

‖p‖0
k [p1]

)
(xmax,ε − y1)ϕ2

)
≥ 0, LȲ0

(
t(T − t)ϕ2

)
≥ 0.

Moreover, Mr

(
Ȳ0

)
stands for the moment matrix of moment Ȳ0 with respect to γ̄0.

2. Let us explain the consistency of γ2 (same to γ3), or, to be more precise, of the marginal γ̄2 :=∫
R+
γ2 (·, ·, ds2, ·, ·) since the behaviour of s2 is of little interest. One would have

(16)

{
LY2(ϕ2) ≥ 0, LY2

((
y1 +

‖p‖0
k[p1]

)
(xmax,ε − y1)ϕ2

)
≥ 0, LY2

(
t(T − t)ϕ2

)
≥ 0,

LY2

(
y2 (xmax,ε − y2)ϕ2

)
≥ 0, LY2

(
l (lmax,ε − l)ϕ2

)
≥ 0.

In this case, Y2 is constructed from a multi-index α = (αi)1≤i≤4 ⊂ N4 and defining its length as

‖α‖ :=
∑

1≤i≤4 αi. For such index, one sets Y α
2 :=

∫
s1
α1yα2

1 yα3
2 lα4dγ2.
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5.3.3 The Forward Step

In the remaining of the paper, we will use Yj,z to denote the moment with respect to the occupation
measure γj,z, j ∈ {0, 1, 2, 3}, where z ∈ N denotes the z-th iteration of the algorithm.

We need to point out that we do not explicitly mention (8), i-iv and similar conditions in the
constraints below for space reasons. This will be taken into account in the actual optimization
procedure. With this convention, the forward step appears as

Fz = max
[Yj,z ]3j=0

{
LY2,z(1)− kLY3,z(1) + LȲ0,z

(
φ̂z−1(y1)

)}
,

s.t. LDx(yα) + LY1,z (Lu(yα2 )) + αLY3,z−Y2,z

(
yα−1

2

)
= LȲ0,z

(yα1 )

with max {deg (pu(y)) + α− 1, α} ≤ 2r, u ∈ R,
Mr(Yj,z)�0, Mr−1(s1(t1−s1)Yj,z(s1))�0,

Mr−1

(
(xmax − y1)

(
y1 +

‖p‖0
k [p]1

)
Yj,z(y1)

)
�0, j=0,1,2,3,

Mr−1 (l(lmax − l)Y2,z(l)) � 0, Mr−1 (i(imax − i)Y3,z(i)) � 0,

Mr−1 ((xmax − y2) y2Yj,z(y2)) � 0, j= 1, 2, 3,

(17)

Here, LȲ0,z

(
φ̂z−1(y1)

)
is the cutting plane of

∫
e−qs1Λ∗ (y1) dγ0,z obtained from its dual formula-

tion where φ̂z−1 is the optimal function in the previous backward step.
Our attentive reader has certainly noticed that some of the constraints (those referring to the

integro-differential operator Lu, resp., pu) might fail to be polynomial. However, the approximation
of these terms strongly relies on the type of policies envisaged. Let us focus on the proportional
case and we give an example to explain.

Example 5.1 The usual distribution F of claims is an exponential law, i.e. F (dỹ) = κe−κỹ1R+(ỹ)dỹ.

We give an SOS polynomial approximation of p (u(ŷ), y), i.e. p (u(ŷ), y) :=
∑

a+b≤2r′

Cab (u(ŷ))a yb,3

for some order r′ ∈ N Then, in proportional reinsurance case:

pu(y) =

∫
R+

p (u(ŷ), y)F (dŷ) =

∫
R+

∑
a+b≤2r′

Cab (u(1)ŷ)a ybκe−κŷdŷ

=
∑

a+b≤2r′

Cab y
b (u(1))a

∫
R+

ŷae−κŷdŷ =
∑

a+b≤2r′

Cab
(u(1)a)

κa
Γ(a+ 1)yb,

where Γ is Gamma function; and∫
R+

(y − ỹ)α dF u(ỹ) =

∫
R+

(y − u(ỹ))α κe−κỹdỹ =

∫
R+

(y − u(1)ỹ)α κe−κỹdỹ =

α∑
i=0

(−1)i
Aiα (u(1))i

κi
yα−i,

where Aiα := α!
i!(α−i)! . As a consequence,

Luxα =pu(x)αxα−1 + λ

∫
R+

(x− y)α dF u(y)− (λ+ q)xα

≈
∑

a+b≤2r′

Cab
α (u(1))a

κa
Γ(a+ 1)xb+α−1 + λ

α∑
a=1

(−1)a
Aaα (u(1))a

κa
yα−a − qxα

gives, a 2r′+r−1-degree polynomial approximation of the infinitesimal generator as claimed (where
the test functions have degree α ≤ r). Furthermore, in this case, the optimization is sought over
the real parameter u(1) ∈ [0, 1].

3The coefficients Cab are subject to additional LMI constraints not stated explicitly here.

17



Since the polynomial forms of pu(y) and the integral of dF u depend on the choice of reinsurance
policy u, we will still use them to represent the polynomial form later for the convenience of
presentation. Therefore, our first-stage forward problem is a purely polynomial form of moments
over occupation measures.

The key to solving the forward problem in real programming lies in the realization of the
occupation measures. Even though there is a way to directly generate a measure by using GloptiPoly
3 which is a package dealing with simple occupation measure, our framework is obviously much
more complicated than the one in Lasserre’s [16], [20] (see the following Remark 5.4). In this paper,
we will use the method of Dirac sampling to realize our occupation measure.

For example, to obtain γ0,z in our first stage problem of forward step, we will firstly discretize

the compact spaces they are in (i.e. [0, t1] and
[
xmin :=

‖p‖0
k[p]1

, xmax
]
). Then, we will use Dirac

function to take out the sample that falls in the grids generated by the fixed discretization. If we
have n sets of data (simulate the dynamic process (1) n times), we use Dirac sampling n times, and
then calculate the frequency of sample in each grid to get an approximate distribution which is our
constructed γ0,z. The other measures can be constructed in similar method but for the processes
L, I.

Remark 5.4 First of all, s1 can be skipped. Secondly, if we are working on [0, t1], then the dis-
counted measure e−qs1γ0,z(ds1, dy1) is

• either e−qt1γ0,z(dy1)δt1(ds1), with γ0,z supported by [0, xmax] . Then, one samples [0, xmax] by
setting

{
xn := nxmax

N : 0 ≤ n ≤ N
}

and define

∆1 :=
{
e−qt1δxn(dy1)δt1(ds1), 0 ≤ n ≤ N

}
.

• or γ0,z([0, t1] , dy1) = δ{−V (0)
k

}(dy1) i.e. bankruptcy is declared when injection is no longer prof-

itable. Of course, this is a short-cut as bankruptcy may intervene for more important losses.
However, the value function is null prior to and at this point which can be regarded as a ”ceme-

tery” state when the trajectories and values get frozen. Since V (0) ∈
[
‖p‖0
λ+q ,

‖p‖0
q

]
, one can sample,

as before, x′n over
[
−‖p‖0kq ,−

‖p‖0
k(λ+q)

]
and tn1 over [0, t1] and get a set

∆2 :=
{
e−qt

1
i δ(ti1,x′j)

(ds1, dy1) : 1 ≤ i, j ≤ N
}
.

Then e−qs1γ0,z(ds1, dy1) is well approximated by convex combinations over ∆ := ∆1 ∪∆2.

• for the second case, one should also envisage plainly using δ
− φ̂z−1(0)

k

as y1-marginal, whenever

φz−1(0) provides a guess that will be clear hereafter.

In other words, having fixed N , generating γ0 comes to generating some (N + 1)2 coefficients
αi,j ≥ 0,

∑
i,j αi,j = 1.

Then, we solve, among the candidates generated, this forward problem and get the optimal
moments Ŷj,z, j = 0, 1, 2, 3. Actually, if we get these moments, then we will act as if we got the
corresponding optimal occupation measures γ̂i,z, i = 0, 1, 2, 3. Moreover, if the measure γ̂0,z is fixed,
the time and dynamic process term (s1, y1) can be obtained in the sense of distributions. The lower

bound of this iteration is FLB,z = LŶ2,z
(1)− kLŶ3,z

(1) +

∫
e−qs1Fz(y1)dγ̂0,z.
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5.3.4 Prepared illustration of dual formulation

Let us take a look into the changes operated by the previous considerations. To this purpose, let
us consider the dual formulation of the value function at some point y1 ∈ R (cf. Theorem 4.1, Eq.
(10); see also Proposition 5.1 for y1 < 0).

Λ∗(y1) = inf φ(y1)

s.t. φ ∈ C1 (R;R+) , φ′ ≤ k, on R, φ′ ≥ 1, on [0,∞) ;

Luφ(y) ≤ 0, ∀u ∈ R, ∀y ∈ R+.

1. The function φ and the bounds on derivatives. Our problem allows one to consider the functions

φ restricted to the (compact semi-algebraic) domain of y1 i.e.
[
xmin := − ‖p‖0k[p]1

, xmax
]
. Having

fixed ε > 0, the function Λ∗ is approximated by polynomials ϕ (with an adequate degree 2r
depending on ε).

2. Here, we give some explanations why the polynomial ϕ(y) ∈
∑

2r[y] approximating test functions
φ(y) depend on ε. First of all, we assume that the polynomials ϕ give a C1-approximation of
the smooth functions φ(x).

(a) Given an acceptable error ε > 0, supy∈[xmin,xmax] |(φ′ − ϕ′) (y)| ≤ ε, ϕ(0) = φ(0) ≥ ‖p‖0
λ+q ,

then one gets the derivative ϕ′ should satisfy the constraint ϕ′ ∈ [1− ε, k + ε] because
φ′ ∈ [1, k]. On the negative semi-axis, ϕ′ = k is a good choice (but than one has piecewise
polynomials).

(b) Obviously, |φ(y)− ϕ(y)| ≤ ε |y|. For Luφ(y) ≤ 0, y ∈ [0, xmax], and pu(y) ≤ [p]1 y + ‖p‖0,
one has, for y ∈ [0, xmax],

Luϕ(y)

≤Luφ(y)+pu(y)
∣∣ϕ′(y)−φ′(y)

∣∣+λ∫ ∞
0

∣∣ϕ(y−y′)−φ(y−y′)
∣∣dF u(y′)+(λ+ q) |ϕ(y)−φ(y)|

≤ ([p]1 y + ‖p‖0) ε+λε

∫ ∞
0

∣∣y − u(y′)
∣∣ dF (y′) + (λ+q) yε ≤

(
([p]1 +2λ+ q)xmax +‖p‖0

)
ε.

We have assumed here that xmax ≤ E [C], in order not to complicate the notations. This is
achievable for ε > 0 small enough, by the definition of xmax,ε.

In order to ensure that polynomials ϕ satisfy the necessary condition Lu(ϕ) ≤ 0, y ∈
[
xmin, xmax

]
,

we can define polynomials ϕε(y) = ϕ(y) + Cε 4, where C =
([p]1+2λ+q)xmax+‖p‖0

q , then one has
Luϕε(y) ≤ 0, for y ∈ [0, xmax].

3. For the convenience of the presentation, we write the approximating polynomial depending on
ε in form of ϕ(y) :=

∑
βz≤2r Cβzy

βz , βz ∈ N, Cβz
5 ∈ R and the coefficient C0 depend on ε.

From now on, again for simplicity, we will use φ to denote the polynomial version exhibited
before.

Because the dual problem will be solved as LP (linear programming) problem over finite mo-
ments of occupation measures, we need to take the ”inf” out of the integral in dual formulation.
Hence, we introduce the following lemma.

4The polynomial ϕε(y) can be constructed by adding constant Cε to the first constant term of ϕ(y) that the power
of y is zero and not changing the rest of the terms of ϕ(y).

5The coefficient should satisfy the linear matrix inequalities introduced in SOS technique, cf. Section 5.3.1.
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Lemma 5.1 From (9) and Proposition 5.1, one has the following equality:∫
e−qs1Λ∗(y1)dγ0,z = inf

φ∈F

∫
e−qs1φ(y1)dγ0,z,

and we recall that F=
{
φ∈C1(R;R+)

∣∣φ′ ≤ k, on R, φ′ ≥ 1, on [0,∞) ;Luφ(y)≤0, ∀u ∈R, y∈R+

}
.

Again, the details are provided in the Appendix.

5.3.5 The Backward Step

Next, we will give the backward recursion step. Then, the dual formulation of this problem becomes
an LP problem (cf. Subsections 5.3.2 and 5.3.4): for a given admissible error ε > 0,

Bz = inf
φ

∫
e−qs1φz(y1)dγ̂0,z = min

β,Cβ

∑
β≤2r

Cβ
̂̄Y β

0,z,

s.t.
∑
β≤2r

βCβy
β−1 ≥ 1− ε, ∀y ∈ [0, xmax] ;

∑
β≤2r

βCβy
β−1 ≤ k + ε, ∀y ∈

[
xmin, xmax

]
,

∑
β≤2r

Cβ

{
βpu(y)yβ−1 + λ

∫
R+

(y − ỹ)βdF u(ỹ)− (λ+ q)yβ
}
≤ 0, ∀y ∈ R+, u ∈ R,

Mr

(̂̄Y0,z

)
�0, Mr−1

(
s1(t1−s1)̂̄Y0,z(s1)

)
�0, Mr−1

(
θ1
̂̄Y0,z(y1)

)
�0,

(18)

where γ̂0,z is the optimal measure obtained from the forward step and φz stands for the objective
function of z-th backward step with measure γ̂0,z.

Moreover, in the real implementation, one can use another version of constraints which is with
slacks. Here, we will use the method of truncated quadratic module (cf. section 5.3.1) and define the
needed compact semi-algebraic sets Yz :=

{
y ∈ R| θ1(y) := (y − xmin)(xmax − y) ≥ 0, y ∝ γ0,z

}
and Y+

z := {y ∈ R| θ2(y) := y(xmax − y) ≥ 0, y ∝ γ0,z}. For a given occupation measure γ0,z, the
symbol “y ∝ γ0,z” means that y take values of the specific associated xk from which the measure
γ0,z has been sampled.

Therefore, the improved version of our backward problem with slacks is

Bz = min
β,Cβ

∑
β≤2r

Cβ
̂̄Y β

0,z,

s.t.
∑
β≤2r

βCβy
β−1 − (1− ε) = Qr(Y

+
z ); k + ε−

∑
β≤2r

βCβy
β−1 = Qr(Yz),

∑
β≤2r

Cβ

{
−βpu(y)yβ−1 − λ

∫
R+

(y − ỹ)βdF u(ỹ) + (λ+ q)yβ
}

= Qr(Y
+
z ), u ∈ R,

with max {β − 1 + deg(pu(y)), β} ≤ 2r,

Mr

(̂̄Y0,z

)
� 0, Mr−1

(
s1(t1 − s1)̂̄Y0,z(s1)

)
� 0, Mr−1

(
θ1
̂̄Y0,z(y1)

)
� 0,

(19)

where the forth line of constraint conditions is to maintain the consistency with the order of Qr(·).
Then, we solve this LP problem, find the optimal coefficients β̂, Ĉβ i.e. we get the corresponding

optimal function φ̂z(y) =
∑
Ĉβy

β̂ and it will be used in the newt forward step as a cutting plane,

i.e. LȲ0,z+1

(
φ̂z(y1)

)
. By solving this dual problem, one will get the upper bound BUB,z :=

LŶz(1)− kLŶ3,z
(1) +Bz.

Finally, let us give our complete two-stage algorithm.
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Algorithm: Two-Stage DDP

Input: Functions F , p, initial value x, policy u, tolerance ε, intensity λ, order r.
Output: Upper bound BUB,z, lower bound FLB,z, measure γz.

Step (a): z ← 1; Initialize φ̂0 = 0.
Step (b): Forward simulation:

Solve (17) to obtain and store the optimal occupation measures γ̂z;
Calculate the lower bound FLB,z.

Step (c): Backward recursion:

Solve (19) to get the dual function φ̂z.
Calculate the upper bound BUB,z.

Step (d): If BUB,z − FLB,z < ε,
Then Stop;
Else z ← z + 1; go to Step (b).

Remark 5.5 1. From a theoretical point of view,

(a) the linear programming acts as a compactification method. In particular, under rather
general lower semi-continuity (l.s.c.) assumptions on the cost, the optimal measure will
exist even when the strict control π∗ = (u∗, L∗, I∗) might not. This is the case without any
further convexity assumptions;

(b) the dual dynamic programming can be generalized to mere measurable costs (see [13]), where
the classical dynamic programming might fail to work.

2. From an algorithmic point of view,

(a) this offers a non-trivial tool going beyond the case k =∞ to which the approach in [8] can
be associated;

(b) because of the requirement of mere l.s.c. for the backward candidate, this algorithm can
naturally be generalized to several steps. This is essential in order to compute the optimal
measure in addition to the optimal value.

6 Value Function with a Penalty for Bankruptcy

In this section, we will consider the value function with a penalty for bankruptcy of linear type, i.e.

V (x) := sup
π∈Π(x)

v (x, π) , ∀x ∈ R.

The cost functional is

(20) v (x, π) = Ex
[∫ σπ0−

0
e−qt (dLs − kdIs) + e−qσ

π
0−(−a+ bXπ

σπ0−
)

]
,

where a, b ≥ 0 and e−qσ
π
0−(−a+ bXπ

σπ0−
) is the penalty. for declaring bankruptcy. We need to give

one more assumption on a, b appearing in the cost functional:

[Aa,b] :
‖p‖0
λ
−a−bE [C] ≥ 0.

Now, we recall the surplus process

Xπ
t := x+

∫ t

0
pus (Xπ

s ) ds−
Nt∑
i=1

uτi (Ci)− Lt + It;

and next, we will give some basic properties in this case which are kinds of different from the
Proposition 2.1 given before.
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Proposition 6.1 1. For any π ∈ Π(x), the following holds true V (x) ≥ x+ λ
λ+q

(
‖p‖0
λ − a− bE[C]

)
.

2. If q ≥ [p]1, then, for every π ∈ Π(x), the associated gain satisfies v(x, π) ≤ x+
‖p‖0
q ≤ x+

‖p‖0
[p]1

.

3. For every ε > 0 small enough, one has V (x+ ε)− V (x) ∈ [0, kε].

Proof. We consider the no-injection, no-reinsurance, pay all reserve (and declare bankruptcy at
first claim τ1) strategy denoted by π0:

V (x) ≥ v(x, π0) = Ex
[∫ τ1

0
e−qspus(0)ds+ e−qτ1

(
−a+ bXπ

τ1

)]
= x+E

[∫ τ1

0
e−qs ‖p‖0 ds+e−qτ1

(
−a+ bXπ0

τ1

)]
=

= x+
‖p‖0
q
−
(
a+
‖p‖0
q

)
E
[
e−qτ1

]
+ bE

[
e−qτ1Xπ0

τ1

]
= x+

‖p‖0
q
− λ

λ+ q

(
a+
‖p‖0
q

)
+ b

∫ ∞
0

λe−λte−qtdt

∫
R+

−yF (dy)

= x+
λ

λ+ q

(
‖p‖0
λ
− a− bE[C]

)
.

Item 2: Since Xπ
σπ0−
≤ 0 at the time of bankruptcy, it follows that

v(x, π) ≤ Ex
[∫ σπ0−

0
e−qs (dLs − kdIs)− ae−qσ

π
0−

]
≤ Ex

[∫ σπ0−

0
e−qs (dLs − kdIs)

]
≤ x+

‖p‖0
q
≤ x+

‖p‖0
[p]1

.

Item 3:

• If (u, L, I) =: π ∈ Π(x), take π̃ = (u, L+ ε, I) (i.e. pay ε at time 0, from the reserve x + ε and
then follow the policy π) and π̃ ∈ Π (x+ ε). Hence, v(x+ε, π̃) = ε+v(x, π), V (x+ε) ≥ ε+v(x, π)
and V (x) + ε ≤ V (x+ ε).

• If (u, L, I) =: π ∈ Π(x+ε), take π̃ = (u, L, I + ε) (i.e. inject ε at time 0, from the reserve x, then
follow π) and it is easy to see that π̃ ∈ Π(x). Thus, v(x+ε, π) = v(x, π̃)+kε, v(x+ε, π) ≤ V (x)+kε
and finally V (x+ ε) ≤ V (x) + kε.

Proposition 6.2 Let x ≥ 0 and π := (u, L, I) ∈ Π(x) be 1-optimal (in the sense that the associated
cost v(x, π) ≥ V (x)− 1). Then, for every t ≥ 0,

1. the injection process satisfies Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
≤ 2‖p‖0+[p]1

(k−1)[p]1
+ λ(a+bE[C])

(k−1)(λ+[p]1) ;

2. the dividend process satisfies Ex

[∫
[0,t∧σπ0−]

e−qsdLs

]
≤ x+

(k+1)‖p‖0+[p]1
(k−1)[p]1

+ λ(a+bE[C])
(k−1)(λ+[p]1) ;

3. the associated solution satisfies

Ex
[
sup
t≥0

e−q(t∧σ
π
0−)
(
Xπ
t∧σπ0− ∨ 0

)]
≤ x+

(k + 1) ‖p‖0 + [p]1
(k − 1)[p]1

+
λ (a+ bE[C])

(k − 1) (λ+ [p]1)
;
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4. Furthermore, Ex

[∫
[0,σπ0−]

e−qt (Xπ
t ∨ 0) dt

]
≤ 1

q−[p]1

(
x+

(k+1)‖p‖0+[p]1
(k−1)[p]1

+ λ(a+bE[C])
(k−1)(λ+[p]1)

)
.

Proof. Under the assumptions introduced before and using the previous proposition, one has

x+
λ

λ+ q

(
‖p‖0
λ
− a− bE[C]

)
− 1 ≤ V (x)− 1 ≤ v(x, π)

≤Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − kdIs) + e−q(t∧σ
π
0−)V

(
Xπ
t∧σπ0−

)]

≤Ex

[∫
[0,t∧σπ0−]

e−qs(dLs−dIs)+e−q(t∧σ
x,π
0− )
(

max
{
Xπ
t∧σπ0− , 0

}
+
‖p‖0
[p]1

)]

−(k−1)Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]

≤x+
2 ‖p‖0
[p]1

− (k − 1)Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
.

It follows that

Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
≤ 1

k − 1

{
2 ‖p‖0
[p]1

+
λ

λ+ q
(a+ bE[C]) + 1

}
≤

2 ‖p‖0 + [p]1
(k − 1)[p]1

+
λ (a+ bE[C])

(k − 1) (λ+ [p]1)
.

(21)

By using item 3 of the last proposition and the previous estimates, we can deduce that

Ex
[
sup
t≥0

e−qt
(
Xπ
t∧σx,π0−

∨ 0
)]

+ Ex

[∫
[0,t∧σx,π0− ]

e−qsdLs

]

≤x+
‖p‖0
[p]1

+ Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]

≤x+
(k + 1) ‖p‖0 + [p]1

(k − 1)[p]1
+

λ (a+ bE[C])

(k − 1) (λ+ [p]1)
.

(22)

Finally, by using a similar method to the one in Proposition 2.2, it follows that

Ex

[∫
[0,σπ0−]

e−qt (Xπ
t ∨ 0) dt

]
≤ 1

q − [p]1

(
x+
‖p‖0
[p]1

+ Ex
[∫ σπ0−

0
e−qsdIs

])
≤ 1

q − [p]1

(
x+

(k + 1) ‖p‖0 + [p]1
(k − 1)[p]1

+
λ (a+ bE[C])

(k − 1) (λ+ [p]1)

)
.

(23)

The Hamilton-Jacobi-Bellman variational inequality in this case is the same as before. Under
the additional assumption on a, b, we have the following proposition.

Proposition 6.3 The function V is a non-negative absolutely continuous (AC) super-solution of

(5) such that V (x) ≤ x+
‖p‖0
[p]1

, for all x ≥ 0, and V (0) ≥ λ
λ+q

(
‖p‖0
λ − a− bE[C]

)
> 0.

The proof is very similar to the one without penalty and will, therefore, be omitted.
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Conclusions

This paper provides the theoretical basis for dual algorithms in connection with complex random
systems with mixed control interventions. The numerical implementation of these methods using
classical and deep networks methods make the object of on-going research.

The explicit a, b-barrier strategies explained in [4] and [3] should provide a benchmark in the
case without reinsurance. The limit case k =∞ is morally reduced to the better-known framework
with no-injection and provides a second benchmark (using [8]). Finally, the case of proportional
reinsurance will provide a further benchmark (with three explicit parameters in well-chosen cases).

The method is expected to be intensively used for such reinsurance problems when the candi-
dates to optimality are either difficult to guess or the verification result is simply too fastidious.

7 Appendix

7.1 Proof of Proposition 2.2

Proof of Proposition 2.2. Under the assumption in our statement, and owing to Proposition
2.1 (assertions 3. and 5.),

V (x)− 1 ≤ v(x, π)

≤Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − kdIs) + e−q(t∧σ
π
0−)V

(
Xπ
t∧σπ0−

)]

≤Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − dIs) + e−q(t∧σ
π
0−)
(

max
{
Xπ
t∧σπ0− , 0

}
+
‖p‖0
[p]1

)]

− (k − 1)Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]

≤x+
2 ‖p‖0

[p]1
− (k − 1)Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
.

(24)

It follows that Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
≤

2 ‖p‖0 + [p]1
(k − 1) [p]1

. Using Proposition 2.1 assertion 3. and the

previous estimate, it follows that

Ex
[
sup
t≥0

e−qt
(
Xπ
t∧σπ0− ∨ 0

)]
+ Ex

[∫
[0,t∧σπ0−]

e−qsdLs

]
≤ x+

(k + 1) ‖p‖0 + [p]1
(k − 1) [p]1

,

thus providing the assertions 2. and 3.
Finally, owing to Proposition 2.1 (assertion 3. written for [p]1 instead of q), it follows that, for
0 ≤ t ≤ σπ0−,

Xπ
t ∨ 0 ≤ xe[p]1t + ‖p‖0

e[p]1t − 1

[p]1
+

∫
[0,t]

e[p]1(t−s)dIs.

One multiplies this equation by e−qt, integrates with respect to dt on
[
0, σπ0−

]
and uses Fubini

arguments to deal with the dIsdt part to infer∫
[0,σπ0−]

e−qt (Xπ
t ∨ 0) dt ≤ x 1

q − [p]1
+
‖p‖0
[p]1

(
1

q − [p]1
− 1

q

)
+

1

q − [p]1

∫
[0,σπ0−]

e−qsdIs.

The fourth assertion is complete by taking the expectancy under Px and using the first assertion.
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7.2 (Sketch of the) Proof of the Super-Solution Property

Before proceeding with the elements of proof, let us give a couple of comments on the dynamic
programming principle.

Proposition 7.1 For every initial x ∈ R+ and every t ≥ 0, the following equality holds true

V (x) = sup
π∈Π(x)

Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − kdIs) + e−q(t∧σ
π
0−)V

(
Xπ
t∧σπ0−

)]
.

Elements of Proof of Proposition 7.1. The proof is quite standard, inspired by [7] and the
only difficulty resides in presence of possible unbounded injection I.

We only need to prove that V (x) cannot be lower than the right-hand expression (the converse
inequality being straightforward) and this right-hand term is denoted by Ṽ (x). As usual, the
arguments rely on the uniform continuity of V (following from Proposition 2.1).

Let us fix x ∈ R+ and ε > 0. We begin with noting that Ṽ (x) ≥ x. The argument requires
considering the strategy π0 consisting in no-reinsurance, no capital injection, L0 = x followed by
distributing all premiums as dividends prior to the first claim at which bankruptcy is declared.
Secondly, reasoning as we have already done in Proposition 2.2, it follows that as soon as π is
ε-optimal (for Ṽ (x)), one has

Ex

[∫
[0,t∧σπ0−]

e−qsdIs

]
≤

2 ‖p‖0 + [p]1
(k − 1) [p]1

.

Using Proposition 2.1 assertion 3., it follows that

Ex
[
Xπ
t∧σπ0− ∨ 0

]
≤ eqt (x+ c) ,

where c > 0 is a generic constant (independent of x and π) that is allowed to change from one line

to another. In particular, Px
(
Xπ
t∧σπ0−

> eqt(x+c)
ε

)
≤ ε and define K :=

{
y ∈ R+ : y ≤ eqt(x+c)

ε

}
to get Px

({
Xπ
t∧σπ0−

∨ 0 /∈ K
})
≤ ε. Since V is uniformly continuous, there exists a finite family(

xi
)

1≤i≤N covering K such that, for every x ∈
[
xi, xi+1

)
, one has

max
{
V (x)− V

(
xi
)
, x− xi

}
≤ ε.

For every such xi, there exists a strategy πi ∈ Π
(
xi
)

such that v
(
xi, πi

)
≥ V

(
xi
)
−ε. We define

π∗ by setting

1. π∗s = πs, on {
σπ0− ≤ t, s ≥ 0

}
∪
{
σπ0− > t > s

}
;

2. π∗s = πis−t +
(
0, Lt +Xπ

t − xi, It
)

on
{
σπ0− > t, Xπ

t ∈
[
xi, xi+1

)
, s ≥ t

}
(i.e. pay the surplus

Xπ
t − xi at time t, then follow the strategy πi from the (new) reserve xi);

3. π∗s = (0, Lt +Xπ
t , It) on

{
σπ0− > t,Xπ

t /∈ K, s ≥ t
}

(i.e. give all the surplus Xπ
t in dividends

then wait for ruin).

Then, the strategy π∗ is admissible and

1. On
{
σπ0− ≤ t

}
, Xσπ0−∧t < 0, P− a.s. and everything is contained in the running cost.

2. On
{
σπ0− > t, Xπ

t ∈
[
xi, xi+1

)}
, using Proposition 2.1, assertion 6, one has

(25) 6Xπ
t − xi + v

(
xi, πi

)
≥ V

(
xi
)
− ε ≥ V (Xπ

t )− (k + 1) ε.
6With a proper shift notation, using a strong-Markov family, the left-hand term corresponds to v (Xπ

t , π
∗) on the

Ft+-measurable set
{
σπ0− > t, Xπ

t ∈
[
xi, xi+1

)}
.
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3. On the set
{
σπ0− > t

}
, one has Xπ

t ≥ 0. As a consequence,

Ex
[
1σπ0−>t, Xπ

t /∈Ke
−qtV (Xπ

t )
]
− Ex

[
1σπ0−>t, Xπ

t /∈Ke
−qtXπ

t

]
≤e−qt

‖p‖0
[p]1

Px
(
σπ0− > t, Xπ

t /∈ K
)
≤
‖p‖0 ε
[p]1

.
(26)

Putting all these together, it follows that

Ṽ (x)− ε ≤Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − kdIs) + e−q(t∧σ
π
0−)V

(
Xπ
t∧σπ0−

)]

≤ v (x, π∗)+(k + 1)εPx
(
σπ0− > t,Xπ

t ∈ K
)
+
‖p‖0 ε
[p]1

≤V (x) +

(
k + 1 +

‖p‖0
[p]1

)
ε.

(27)

Our proof is now complete by recalling that ε > 0 is arbitrary.

Remark 7.1 Of course, it is straight-forward to generalize this from deterministic times t to an
exogenous stopping time t ∧ τ1 (note that τ1 ≤ σπ0−, P− a.s.) showing the behavior at t or the first
claim, i.e.

sup
π∈Π(x)

Ex

[∫
[0,t∧τ1]

e−qs (dLs − kdIs) + e−q(t∧τ1)V
(
Xπ
t∧τ1
)]

= V (x).

We proceed with the proof of Proposition 3.1 on the non-negative axis.
(Sketch of the) Proof of Proposition 3.1. Let u ∈ R be fixed and let us consider π = (u, 0, 0)
(no-dividend, no injection policy). For convenience, we let Φx,u

t denote the non-decreasing solution
of dΦx,u

t = pu (Φx,u
t ) dt, Φx,u

0 = x. One easily notes that Φx,u
t ≥ x+ tpu(x), for all t ≥ 0.

Taking into account the dynamic programming principle (see the previous remark) and the mono-
tonicity of V , one has

V (x) ≥Ex
[
e−q(t∧τ1)V

(
Xπ
t∧τ1
)]

≥Px (τ1 > t) e−qtV (x+ pu(x)t) + Ex
[
1τ1≤te

−qτ1
∫
R+

V (x− y)F u(dy)

]
.

One recalls that V is AC, Px (τ1 > t) = e−λt and Ex [1τ1≤te
−qτ1 ] =

λ(1−e−(q+λ)t)
λ+q , subtracts V (x)

and divides the resulting equation by t and finally takes the limit as t→ 0+ to infer

LuV (x) = −(λ+ q)V (x) + pu(x)V ′(x) + λ

∫
R+

V (x− y)F u(dy) ≤ 0,

at every Lebesgue point of V , hence almost surely on R+.

7.3 Proof of Proposition 3.2

Proof of Proposition 3.2. Let us fix a function ρ supported on (0, 1) that is continuously
differentiable and non negative. We construct, in a standard way, a sequence of mollifiers by
setting, for n ≥ 1, ρn(x) := nρ (nx), and

ψn(x) :=

∫
(0, 1

n)
φ(x+ s)ρn(s)ds, ∀x ∈ R.

This sequence ψn consists of class C1 functions. Since φ is absolutely continuous, 1 ≤ φ′ ≤ k, a.e.
on [x0,∞). The same applies to ψ′n. These functions comply with properties (b) and (c) and,
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owing to the monotonicity of φ, φ(x) ≤ ψn(x) ≤ φ(x) +

∫
(0, 1

n)
nksρ(ns)ds ≤ φ(x) +

k

n
. Let us set,

for x ≥ 0,

δn := sup

{
φ′(y) : y ∈

[
x, x+

1

n

]
∩ D(φ)

}
,

where D(φ) stands for the set on which φ is differentiable. By construction, ψ′n(x) ≤ δn
2
. Owing to

δm ∈ [1, k] , ∀m ≥ 1, there exists some point xn ∈
[
x, x+ 2

n

]
∩D(φ) such that φ′ (xn) ≥ δn/2− 1

np̄(x) .

For every u ∈ R, using the mononicity of φ, ψn and pu as well as the choice of xn ∈
[
x, x+ 2

n

]
and

the super-solution condition for φ at xn, we get

Luψn(x)

≤Luφ (xn) + pu(x)ψ′n(x)− pu (xn)φ′ (xn)

+ λ

(∫ ∞
0

ψn (x− y) dF u(y)−
∫ ∞

0
φ (xn − y) dF u(y)

)
+ (λ+ q) (φ (xn)− ψn (x))

≤pu(x)
(
ψ′n(x)−φ′ (xn)

)
+λ

(∫ ∞
0

(ψn (x−y)−φ (x−y)) dF u(y)

)
+(λ+q)

(
2k

n
+ φ (x)−ψn(x)

)
≤ p

u(x)

np̄(x)
+ λ

k

n
+ (λ+ q)

2k

n
≤ 1 + k (3λ+ 2q)

n
.

(28)

1. By setting φn(y) := ψn(y) + 1+(3λ+2q)k
qn , y ∈ R, it follows that φ(y) ≤ ψn(y) ≤ φn(y) ≤ φ(y) +

k+
1+(3λ+2q)k

q

n and φ′n(y) = ψ′n(y). Furthermore, using (28), we conclude that

Luφn(y) ≤Luψn(y) + λ

∫ ∞
0

(φn(y − z)− ψn(y − z)) dF u(z)− (λ+ q) (φn(y)− ψn(y))

≤Luψn(y)− q1 + (3λ+ 2q)k

qn
≤ 0, for y ≥ 0.

2. To prove the second assertion, we begin with fixing x ≥ 0. Owing to Itô’s formula applied to ψn
(cf. the first part of the proof), we get

Ex
[
e−q(t∧σ

π
0−)ψn

(
Xπ
t∧σπ0−

)]
− ψn(x)

≤Ex

[∫
[0,t∧σπ0−]

{
e−qs (kdIs − dLs) + e−qsLusψn

(
Xπ
s−
)
ds
}](29)

When π = (u, L, I) is such that v(x, π) + 1 ≥ V (x), then, by Proposition 2.2, one has

Ex

[∫
[0,σπ0−]

e−qsdIs

]
≤

2 ‖p‖0 + [p]1
(k − 1) [p]1

.

We aim at applying Lebesgue’s dominated convergence arguments (as the time t or n go to
∞). To be able to do this, one uses the later inequality, relying on Proposition 2.1 assertion 3.,
together with 0 ≤ ψn(y) ≤ y + c+ k

n and the inequality

− (λ+ q)ψn(y) ≤ Luψn(y) ≤ k (‖p‖0 + [p]1 y) + λψn(y), ∀y ≥ 0.

The same applies to φ = ψ∞. Allowing t to go to ∞ in (29) and since ψn is non negative, we
have

Ex

[∫
[0,σπ0−]

e−qs (−kdIs + dLs)

]
≤ ψn(x) + Ex

[∫
[0,σπ0−]

e−qsLusψn
(
Xπ
s−
)
ds

]
.(30)
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We conclude, by passing n → ∞ in (30), invoking (28) and by maximizing over π ∈ Π(x) that
the inequality V (x) ≤ φ(x) holds true.

7.4 Proofs of Theorem 4.1, Corollary 5.1 and Lemma 5.1

We gather here these results for which the arguing is somewhat similar.

Proof of Theorem 4.1. We fix x ≥ 0. The inclusion of the occupation measures in Θ(x) (as
presented before) guarantees that V (x) ≤ Λ(x).

Furthermore, we let φ ∈ C1 (R;R+), with linear-growth, derivative φ′ ∈ [1, k] on R+ and
satisfying Luφ(y) ≤ 0, for all u ∈ R and all y ∈ R+.

For γ ∈ Θ(x), the constraint condition written for the test function φ, combined with the non-
positiveness of Luφ (y2) for all y2 ≥ 0, hence γ1-a.s., and the restrictions on the derivative of φ
yield

0 ≤
∫
R+×R

e−qs1φ (y1) γ0 (ds1, dy1) ≤ φ(x) +

∫
R+

φ′ (y2) (γ3 − γ2) (R+,R,R+, dy2,R,R+)

≤ φ(x) + (kγ3 − γ2) (R+,R,R+,R+,R,R+) .

Then, by taking infimum over such φ respectively the supremum over γ ∈ Θ(x) , one gets Λ(x) ≤
Λ∗(x).

To conclude, we need to prove that Λ∗(x) ≤ V (x). To achieve this, one relies on the auxiliary
constructions in Proposition 3.2 and on the characterization of V as super-solution in Proposition
3.1. Indeed, for every n ≥ 1, the functions φn constructed in Proposition 3.2 are of linear growth
(cf. (a) and the properties of V ), with derivative belonging to [1, k] on some interval containing R+

(cf. (b)) and with a non-positive generator (cf. (d)). It follows that Λ∗(x) ≤ φn(x) ≤ V (x) + c̃
n .

Our proof of (9) is complete by recalling that c̃ is independent of n and n is arbitrarily large.
To prove (10), one notes that Λ∗ cannot exceed the right-hand member of (10) and Remark 3.2
allows to prove (as we did just before) that the right-hand member of (10) does not exceed V (x).
The proof is now complete.

Let us now turn to the proof of the Corollary.
Proof of Corollary 5.1. We recall (see Proposition 7.1), that

V (x) = sup
π∈Π(x)

Ex

[∫
[0,t∧σπ0−]

e−qs (dLs − kdIs) + e−q(t∧σ
π
0−)V

(
Xπ
t∧σπ0−

)]
.

The occupation measure γ associated to the random time t ∧ σπ0− and to the policy π belongs to
Θt(x). It follows that

V (x) ≤ sup
γ∈Θt(x)

{∫
(dγ2 − kdγ3) +

∫
e−qs1V (y1) dγ0

}
= sup
γ∈Θt(x)

{∫
(dγ2 − kdγ3) +

∫
e−qs1Λ∗ (y1) dγ0

}
.

By definition, Λ∗(y1) ≤ φ (y1), for all y1 ≥ 0 and φ satisfying the restrictions in F. Moreover,
since such φ have k-upper bounded derivative and are non-negative, Λ∗ (y1) = (Λ∗(0) + ky1)+ ≤
φ (y1), for all y1 ≤ 0. As a consequence, the second term in (11) does not exceed the third one.

It follows that, in order to conclude, one should prove that

(31) sup
γ∈Θt(x)

{∫
(dγ2 − kdγ3) + inf

φ∈F

∫
e−qs1φ(y1)dγ0

}
≤ V (x).
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We recall that, whenever φ ∈ C1 (R;R+) s.t. φ′ ∈ [1, k] on [0,∞] and Luφ(y) ≤ 0, for all
u ∈ R, and all y ∈ R+, by the definition of Θ(x) ,∫

e−qs1φ (y1) dγ0 = φ(x) +

∫
Luφ (y2) dγ1 +

∫
φ′ (y2) (dγ3 − dγ2) ≤ φ(x) +

∫
(kdγ3 − dγ2) .

As a consequence, it follows that, for such functions φ,∫
(dγ2 − kdγ3) +

∫
e−qs1φ(y1)dγ0 ≤ φ(x).

The claim in (31) is got, as in Theorem 4.1, by employing the functions constructed in the second
assertion of Proposition 3.2 and owing to Remark 3.2. This completes our proof.

To end this subsection, we provide a similar proof for Lemma 5.1.

Proof of Lemma 5.1. For every test function φ that satisfies the constraints, the following
inequality holds true,∫

e−qs1Λ∗(y1)dγ0,z =

∫
e−qs1 inf

ψ∈F
ψ(y1)dγ0,z ≤

∫
e−qs1φ(y1)dγ0,z.

Thus, one can deduce
∫
e−qs1Λ∗(y1)dγ0,z ≤ inf

φ∈F

∫
e−qs1φ(y1)dγ0,z.

For the converse inequality, one relies (again) on Proposition 3.2 and on the equality V = Λ∗

provided in Theorem 4.1. The functions φn exhibited in Proposition 3.2 satisfy (cf. item 1. (a))
φn(y) ≤ Λ∗(y)+ c̃

n (where c̃ is a constant independent of y ∈ R and of n ≥ 1). Furthermore, φn ∈ F
(again due to Proposition 3.2 with the help of Remark 3.2). One recalls that γ0,z ∈ P (R+ × R)
such that

inf
φ∈F

∫
e−qs1φ(y1)dγ0,z ≤

∫
e−qs1φn(y1)dγ0,z ≤

∫
e−qs1Λ∗(y1)dγ0,z +

c̃

n
.

One gets the desired inequality by letting n→∞.

7.5 Proof of Proposition 5.1

Proof of Proposition 5.1. For the first assertion, one just needs to check (11) is valid when
x < 0.

We recall that, for x ∈ R−, V (x) = max {V (0) + kx, 0}. On the other hand, for x < −V (0)
k ,

V (x) = 0, and by the definition in Eq. (12), if γ ∈ Θt(x),∫
(dγ2 − kdγ3) +

∫
e−qs1Λ∗ (y1) dγ0 = Λ∗ (x) = (Λ(0) + kx)+ = 0 = V (x).

If x ∈
[
− V (0)

k , 0
)
, then V (x) = V (0) + kx and, owing to Eq. (13),

sup
γ∈Θt(x)

{∫
(dγ2 − kdγ3) +

∫
e−qs1Λ∗ (y1) dγ0

}
= sup
γ′∈Θt(0)

{∫ (
dγ′2 − kdγ′3

)
+

∫
e−qs1Λ∗ (y1) dγ′0

}
− kδ#

−x (R+)

=V (0)− k
∫ −x

0
dy1 = V (0) + kx.

Let us turn to the dual formulation and fix x < 0. If φ is a regular test function satisfying
the assumptions in the right-hand member, φ(x) ≥ (φ(0) + kx)+. It follows that the right-hand
member is grater or equal to Λ(x).
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1. For x ∈
[
−V (0)

k , 0
)

, we assume, by contradiction, that the inequality is strict. In particular,

there exists ε > 0 such that, for every φ satisfying the assumptions in the right-hand member,
φ(x) ≥ V (x) + 2ε. We use φn constructed in Proposition 3.2 (for V ) and Remark 3.2 (second
assertion). For n large enough, φ′n(y) = k on

[
x, −2

n

]
such that V (0) + c̃

n ≥ φn(0) ≥ φn
(
− 2
n

)
=

φn (x) + k
(
−x− 2

n

)
≥ V (0)− 2k

n + 2ε. A contradiction appears when taking n→∞.

2. For x < −V (0)
k , it suffices to note that 0 ≤ Λ(x) ≤ φn(x) ≤ c̃

n (again due to Proposition 3.2).

7.6 The moment of matrices

Let us give some further details on the moment matrices Mr(m) and M
r−d

degθj
2
e

(θjm
y) men-

tioned in Section 5.3.1. We recall that the notation dxe denotes the largest integer not exceeding
x. In this section, we use v∗ to denote the transpose of vector v.

Given the basis
(
1, t, y, t2, ty, y2, t3, · · · , tr, · · · , yr

)
of polynomial h(t, y) ∈ Rr [t, y] and h denotes

a vector of the corresponding coefficients (h00, h10, h01, · · · , h0r) of h(t, y). Then, the moment matrix
Mr (m) is defined as follows:

Mr (m) :=

∫
[0,T ]×Y

(
1, t, y, t2, ty, y2, t3, · · · , tr, · · · , yr

)∗ (
1, t, y, t2, ty, y2, t3, · · · , tr, · · · , yr

)
dµ

=


m00 m10 m01 · · · m0r

m10 m20 m11 · · · m1r
...

...
...

. . .
...

m0r m1r m0(r+1) · · · m0(2r)

 ,

and one gets Lm

(
h2
)

= hT
∫

[0,T ]×Y
(1, t, y, · · · , yr)∗ (1, t, y, · · · , yr) dµ h = 〈h,Mr (m) h〉.

The polynomial h(y) of degree at most r − ddegθj
2 e has basis

(
1, y, · · · , yr−d

degθj
2
e
)

and the

corresponding vector of coefficients

(
h0, h1, · · · , h

r−d
degθj

2
e

)
is denoted by h. By abuse of notation,

we let θjm
y denote the moments m̄y associated with the measure µ̄(dz) := θj(z)µ

y(dz). This leads

to θjm
y
i :=

∫
Y
ziθj(z)µ

y(dz). With this notation, we define, as before,

M
r−d

deg θj
2
e

(θjm
y) :=

∫
Y

(
1, z, z2, ..., zr−d

deg θj
2
e
)∗(

1, z, z2, ..., zr−d
deg θj

2
e
)
θj(z)µ(dz).

As a consequence, one has Lmy

(
θjh

2(y)
)

=

〈
h,M

r−d
degθj

2
e

(θjm
y) h

〉
.
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