
HAL Id: hal-03698445
https://hal.science/hal-03698445v1

Preprint submitted on 18 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of rapid population growth on total biomass in
Multi-patch environment

Bilel Elbetch

To cite this version:
Bilel Elbetch. Effects of rapid population growth on total biomass in Multi-patch environment. 2022.
�hal-03698445�

https://hal.science/hal-03698445v1
https://hal.archives-ouvertes.fr


Effects of rapid population growth on total biomass
in Multi-patch environment

Elbetch bilel

June 17, 2022

Abstract

In this work, we study a multi-patch model, where the patches are coupled by
asymmetrical migration terms, and each patch follows a logistic law under the as-
sumption that some growth rates are much larger than the other. First, for Two-patch
model where one growth rate is much larger than the second one, the total equilib-
rium population is greater or smaller than the sum of two carrying capacities for all
migration rate. Second, we consider Three-patch model in the two cases:(i) where
two growth rates are much larger than the third one, (ii) where one growth rate much
larger than the other two. For both cases, we give a complete classification of all
possible situations under which the fragmentation can lead to a total equilibrium
population greater or smaller than the sum of the three carrying capacities. Finally,
in the general case, we consider the model of n patches with the assumption that: (i)
all growth rates but one are much larger than the n th growth rate, (ii) two blocks
where the growth rates of the fist block are much larger than that of the second one.
For the first case, we give a complete classification of all possible situations under
which the fragmentation can lead to a total equilibrium population greater or smaller
than the sum of the n carrying capacities, and in the second case, we construct a
reduced model and we prove its global stability.
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1 Introduction
In biology, there are several factors that affect the population growth and its reproduction
in a sound manner, for example, the disparity and the large variation in the growth rate
between different organisms, which lead to the creation of some imbalances in the en-
vironmental milieu. The theoretical paradigm that has been used to treat these problem,
is that of a single population fragmented into patches coupled by migration, and the sub
population in each patch follows a local logistic law. This system is modeled by a non
linear system of differential equation of the following form:

dx
dt

= f (x)+βΓx, (1.1)

where x = (x1, . . . ,xn)
T , with n is the number of patches in the system, xi represents the

population density in the i-th patch, f (x) = ( f1(x1), . . . , fn(xn))
T , and

fi(xi) = rixi(1− xi/Ki), i = 1, . . .n. (1.2)

The parameters ri and Ki are respectively the intrinsic growth rate and the carrying capac-
ity of patch i. It is fundamental in the ecology of population life histories that intrinsic
growth rate and carrying capacity are distinct parameters related to a species population,
and are not the same in general. The term βΓx on the right hand side of the system (1.1)
describes the effect of the migration between the patches, where β is the migration rate
and Γ = (γi j) is the matrix representing the migrations between the patches. For i 6= j,
γi j > 0 denotes the incoming flux from patch j to patch i. If γi j = 0, there is no migration.
The diagonal entries of Γ satisfy the following equation

γii =−
n

∑
j=1, j 6=i

γ ji, i = 1, · · · ,n, (1.3)

which means that what comes out of a patch is distributed between the other n−1 patches.
The model (1.1)(1.2)(1.3) has been studied by many ecologists and mathematicians,

for example, Freedman and Waltman [17] and Holt [21] in the case n = 2 and Γ such that
γ12 = γ21 = 1, Arditi et al. [1, 2] for two patches and also Poggial et al. [27] in the case
where β → ∞.

DeAngelis et al. [7, 10] considered the case of n > 2 patches in a circle, with sym-
metric migration between any patch and its two neighbours :

dxi

dt
= rixi

(
1− xi

Ki

)
+β (xi−1−2xi + xi+1), i = 1, . . . ,n, (1.4)
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where we denote x0 = xn and xn+1 = x1, so that the same relationships hold between xi,
xi−1 and xi+1 for all values of i. This model corresponds to the matrix Γ whose non-zero
off-diagonal elements are given by

γ1n = γn1 = 1 and γi,i−1 = γi−1,i = 1, for 2≤ i≤ n.

The system (1.4) is a one-dimensional discrete-patch version of the standard reaction-
diffusion model. In [7, 10] the perfect mixing case is described.

Recently, Arditi et al. [1, 2] gave a full mathematical analysis of the two-patch logistic
model with symmetric and asymmetric dispersal. Wu et al. [32] generalized there results
to a source-sink system, i.e the model (1.1)(1.3) for n = 2 and

f (x1,x2) =

(
r1x1

(
1− x1

K1

)
,r2x2

(
−1− x2

K2

))T

(1.5)

The case of the general symmetric and non symmetric migration was considered by El-
betch et al. in [13] and in [14] respectively. They gave some conditions on the parameters
of the model that ensure that migration is beneficial or detrimental to the sum of n carrying
capacities. They also calculated the formula of perfect mixing.

Arino et al. [4] also studied a source-sink model of n patches, where the source patch
follows a logistic growth rate, and the sink patch with exponential decay, i.e

f (x) =

{
rixi

(
1− xi

Ki

)
if i = 1, . . . ,m,

−rixi if i = m+1, . . . ,n.
(1.6)

For the model (1.1)(1.3)(1.6), the authors proved the existence of a threshold number of
source patches such that the population potentially becomes extinct below the threshold
and established above the threshold.

Another important form of f appears in the work of Gao [18] on susceptible-infected-
susceptible (SIS) model in n patches connected by human migration:

fi(xi) = rixi

(
1− xi

Ki

)
− γixi, i = 1, . . . ,n, (1.7)

where γi > 0. Note that, if ri < γi for some patches i, the system (1.1)(1.3)(1.7) is a
source-sink model. For this model, Gao gave the total number of infections at the stable
steady state as β → 0+ and β → ∞. He also calculated the derivative of the total number
of infections at the stable steady for β = 0. For the two-patch model, Gao gave a com-
plete classification of the model parameter space as to whether dispersal is beneficial or
detrimental to disease control.

In [31], Wang considered the model of n patches with Allee effect growth, i.e the
system (1.1)(1.3) for:

fi(xi) = rixi

(
1− xi

Ki

)
− λiθixi

θi + xi
, i = 1, . . . ,n, (1.8)

where ri,Ki,λi and θi are positive constants, the first term in the right-hand side of (1.8)
denote the logistic growth, and the last term describes the mating limitation or preda-
tion effect ( see [11, 12]). Wang gave the conditions on the global stability of the model
(1.1)(1.3)(1.8) in the case of weak Allee effect by using the theory of monotonic dynam-
ical systems.
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Recently, Chen et al. [5] considered the two-patch model with additive Allee effect,
i.e the system (1.1)(1.3) for n = 2 and

f (x1,x2) =

(
−x1,x2

(
1− x2−

m
x2 +a

))T

. (1.9)

The positive parameters m and a are the Allee effect constants. The additive Allee ef-
fect consists of two cases, i.e., weak and strong Allee effects. That is, if 0 < m < a,
it is the weak Allee effect; if m > a, it is the strong Allee effect. For this model, the
authors presented the possible qualitative behavior and bifurcation phenomena, and they
also discussed the existence and stability of all non-negative equilibria of this system.
They investigated the effect of Allee effect and dispersal on total population abundance.
For more details and information on the Allee effect models, the reader is referred to [31].

In [15], I suggested to study the two-patch model where each patches follows a
Richard’s law, i.e, the model (1.1)(1.3) for n = 2 and

f (x1,x2) =

(
r1x1

(
1−
(

x1

K1

)µ)
,r2x2

(
1−
(

x2

K2

)µ))T

, (1.10)

where µ is a positive parameter. For this model, I interested in the effect of this choice,
which generalize the logistic, on the dynamic of the total population in two patches. I
gave a complete classification of the model parameter space concerning when dispersal
causes smaller or larger total biomass than no dispersal. I used for this classification, the
geometric method of Arditi et al. [2]. For general information of the effects of patchiness
and migration in both continuous and discrete cases, and the results beyond the logistic
model, the reader is referred to the work of Levin [24, 25], DeAngelis et al. [7, 8, 9, 10],
Freedman et al. [16], Zaker et al. [33].

Our aim in the present paper, is to study the effect of the migration on the total pop-
ulation with the assumption that some sub populations increase faster than the others.
Mathematically, this assumption means that some growth rates in the equation (1.2) have
the form ri/ε , where ε is assumed to be a small positive number. Under this assumption,
the first term in the right hand side of (1.1) takes the following form:

f (x) =


rixi

(
1− xi

Ki

)
if i = 1, . . . ,m,

ri

ε
xi

(
1− xi

Ki

)
if i = m+1, . . . ,n.

(1.11)

In our main result of Theorem 4.11, we prove the numerical results of [13] under the hy-
pothesis that one growth rate is much larger than the other two, i.e the system (1.1)(1.3)(1.11)
for (n,m) = (3,2). In particular, we prove the existence at most two positive values of
migration rate, solution of the following equation:

Total equilibrium population = Sum of carrying capacities.

We recall that, the numerical simulations of [13] are given for matrix Γ symmetric and
irreducible. Note that, in the numerical result of [14], Elbetch et al. proved for three-patch
model, when the matrix Γ is irreducible and not necessary symmetric, the existence of at
least three positive values of migration rate for which the total equilibrium population
equal its initial state without migration ( see Figures 4,5 and 6 in [14]).

The paper is organized as follows. In Section 2, some proprieties of the model
(1.1)(1.3)(1.11) have been recalled as function of the two parameters ε and β . In Section
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3, Two-patch model with one growth rate is much larger than the second one is consid-
ered, we compare the total equilibrium population with the sum of two capacities when ε

goes to zero. In Section 4, Three-patch model is studied in the both cases: case when two
growth rates are much larger than the third one and case when one growth rate is much
larger than the other two. In Section 5, the model in the general case is considered, with
the hypothesis that some growth rates are much larger than the others. We have given
some comparisons between the total equilibrium population and the sum of carrying ca-
pacities. The conclusion is given in Section 6. The paper ends with two appendices A and
B, which in the first we show the global stability of the reduced model (4.15) and in the
second, we compute the second derivative of the total equilibrium population of the same
model.

2 Model proprieties
Our objective in this section, is to recall some proprieties of the model (1.1)(1.3)(1.11),
and also some essentials results of [13, 14] with respect to parameters β and ε . First, for
the non-negativity of the solutions of (1.1)(1.3)(1.11), we have the following proposition
[13, Prop. 2.1] and [14, Prop. 2.1]:

Proposition 2.1 The domain Rn
+ = {(x1, . . . ,xn) ∈ Rn/xi ≥ 0, i = 1, . . . ,n} is positively

invariant for the system (1.1)(1.3)(1.11).

We recall that, when the matrix of migration Γ is irreducible, System (1.1)(1.3)(1.11)
admits a unique positive equilibrium which is globally asymptotically stable (GAS), see
[3, Theorem 2.2], [4, Theorem 1] or [13, Theorem 6.1]. In what follow, the positive
equilibrium point of (1.1)(1.3)(1.11) is denoted by E∗(β ,ε) = (x∗1(β ,ε), . . . ,x

∗
n(β ,ε)) and

the sum of x∗i (β ,ε) for i = 1, . . . ,n, is denoted by X∗T (β ,ε). Note that, X∗T (0,ε) = K1 +
. . .+Kn. We denote also by δ := (δ1, . . . ,δn)

T the positive vector which generate the
vector space kerΓ. For the existence , uniqueness, and positivity of δ see Lemma 1 of
Cosner et al. [6] and Lemma 1 of Elbetch et al. [14]. In [20, Lemma 2.1], Guo et al.
gives explicit formulas of the components of the vector δ , with respect of the coefficients
of Γ. We denote also in all this article αi = ri/Ki. We recall the following result of [14,
Prop 3.4], which describes the total equilibrium population for perfect mixing (i.e when
β → ∞ in (1.1)(1.3)(1.11)):

Proposition 2.2 Consider the system (1.1)(1.3)(1.11). We have:

X∗T (+∞,ε) := lim
β→∞

X∗T (β ,ε) =
n

∑
i=1

δi
∑

n
i=m+1 riδi + ε ∑

m
i=1 δiri

∑
n
i=m+1 αiδ

2
i + ε ∑

m
i=1 δ 2

i αi
. (2.1)

If the matrix Γ is symmetric, the limit (2.1) specializes to the formula given in [13, Equa-
tion (24)]:

X∗T (+∞,ε) = n
∑

n
i=m+1 ri + ε ∑

m
i=1 ri

∑
n
i=m+1 αi + ε ∑

m
i=1 αi

. (2.2)

We recall the formula of the derivative of the total equilibrium population X∗T (β ,ε) given
in [14, Prop. 4.7] for Γ non symmetric and in [13, Lemma 3.3] for Γ symmetric:

Proposition 2.3 The derivative of X∗T with respect to β at β = 0 is given by:

dX∗T
dβ

(0,ε) =
m

∑
i=1

1
ri

n

∑
j=1, j 6=i

(γi jK j− γ jiKi)+ ε

n

∑
i=m+1

1
ri

n

∑
j=1, j 6=i

(γi jK j− γ jiKi). (2.3)
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In [13, 14], Elbetch et al. have answered in some particular cases of the model
(1.1)(1.3)(1.11) for n = m to the following important question: Is it possible, depend-
ing on the migration rate, that the total equilibrium population X∗T be larger than the sum
of the capacities ∑i Ki ? This question is of ecological importance since the answer gives
the conditions under which dispersal is either beneficial or detrimental to total equilib-
rium population. Note that, this least question has been studied by many researches ( see
[1, 2, 7, 8, 9, 13, 14, 16, 17, 18, 19]). Elbetch et al. [13] proved that, if all the patches do
not differ with respect to the intrinsic growth rate (i.e., r1 = . . . = rn), then the effect of
migration is always detrimental. In the case when (K1, . . . ,Kn)

T ∈ kerΓ ( if the matrix Γ is
symmetric, the condition (K1, . . . ,Kn)

T ∈ kerΓ means that the patches do not differ with
respect to the carrying capacity), migration has no effect on the total equilibrium popula-
tion. An example when the effect of migration is always beneficial, is in the case when
Γ is symmetric and all the patches do not differ with respect to the parameter α = r/K
quantifying intraspecific competition (i.e., α1 = . . . ,αn) ( see also [14, Prop. 4.2] for
another example when Γ is non symmetric).

It was shown by Arditi et al. [1, Proposition 2, page 54], for Two-patch model, that
only three situations can occur: the case where the total equilibrium population is always
greater than the sum of carrying capacities, the case where it is always smaller, and a
third case, where the effect of migration is beneficial for lower values of the migration
coefficient β and detrimental for the higher values. More precisely, it was shown in [1]
that, if n = 2 in (1.1)(1.3)(1.11) ( i.e the system (3.1)), the following trichotomy holds

• If X∗T (+∞,ε)> K1 +K2 then X∗T (β ,ε)> K1 +K2 for all β > 0 and ε > 0.

• If dX∗T
dβ

(0,ε) > 0 and X∗T (+∞,ε) < K1 +K2, then there exists β0(ε) > 0 such that
X∗T (β ,ε) > K1 + K2 for 0 < β < β0(ε), X∗T (β ,ε) < K1 + K2 for β > β0(ε) and
X∗T (β0,ε) = K1 +K2.

• If dX∗T
dβ

(0,ε)< 0, then X∗T (β ,ε)< K1 +K2 for all β > 0 and ε > 0.

Therefore, the condition X∗T (β ,ε) = K1 +K2 holds only for β = 0 and at most for one
positive value β = β0(ε). The value β0(ε) exists if and only if d

dβ
X∗T (0,ε) > 0 and

X∗T (+∞,ε)< K1 +K2.
In [13, Section 5.2], Elbetch et al. have considered the model (1.1)(1.3)(1.11) for

n = 3 with Γ is symmetric, and shown by numerical simulations the following situations,
which do not exist in the two-patch model:

• The case where dX∗T
dβ

(0,ε)< 0 and X∗T (+∞,ε)> K1 +K2 +K3.

• The case where dX∗T
dβ

(0,ε)> 0 and X∗T (+∞,ε)> K1+K2+K3 and there exist values
of β for which X∗T (β ,ε)< K1 +K2 +K3.

• The case where dX∗T
dβ

(0,ε)< 0 and X∗T (+∞,ε)< K1+K2+K3 and there exist values
of β for which X∗T (β ,ε)> K1 +K2 +K3.

Therefore the equality X∗T (β ,ε) = K1 +K2 +K3 can occur for two positive values of β ,
not only for a unique positive value as in the two-patch case.

In [14, Section 6], Elbetch et al. have reconsidered the three-patch model with Γ is
not symmetric. The novelty when Γ is not symmetric is the existence of three positive
values of migration rate solution of the following equation:

Total equilibrium population = Sum of three carrying capacities,

i.e. the following situation hold:
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• The case where dX∗T
dβ

(0,ε)> 0 and X∗T (+∞,ε)< K1+K2+K3, and there exists three
values 0 < β1 < β2 < β3 for which we have:

X∗T (β ,ε) =
{

> K1 +K2 +K3 f or β ∈]0,β1[∪]β2,β3[,
< K1 +K2 +K3 f or β ∈]β1,β2[∪]β3,∞[.

3 Two-patch model where one growth rate is much larger
than the second one

In this section, we consider the two-patch model and we assume that the growth rate r2 is
much larger than r1, i.e the system (1.1)(1.3)(1.11) for (n,m) = (2,1). For simplicity we
denote γ2 := γ12 > 0 the migration rate from patch 2 to patch 1 and γ1 := γ21 > 0 from
patch 1 to patch 2. The model is written:

dx1

dt
= r1x1

(
1− x1

K1

)
+β (γ2x2− γ1x1) ,

dx2

dt
=

r2

ε
x2

(
1− x2

K2

)
+β (γ1x1− γ2x2) ,

(3.1)

where ε is assumed to be a small positive number. The derivative of X∗T (β ,ε) with respect
to β at β = 0 becomes:

dX∗T
dβ

(0,ε) = (γ2K2− γ1K1)

(
1
r1
− ε

r2

)
, (3.2)

which is the formula [1, Equation A.1] given by Arditi et al with ε = 1 and γ1 = γ2 = 1.
The behavior of the model (3.1) for perfect mixing (i.e β → ∞) rewritten:

X∗T (+∞,ε) = (γ1 + γ2)
εγ2r1 + γ1r2

εγ2
2 α1 + γ2

1 α2
, (3.3)

where αi = ri/Ki; which is the formula [2, Equation 7] given by Arditi et al with ε = 1.
First, we have the result:

Theorem 3.1 Let (x1(t,ε),x2(t,ε)) be the solution of the system (3.1) with initial con-
dition (x0

1,x
0
2) satisfying x0

i ≥ 0 for i = 1,2. Let z(t) be the solution of the differential
equation

dx1

dt
= r1x1

(
1− x1

K1

)
+β (γ2K2− γ1x1) =: ϕ(x1), (3.4)

with initial condition z(0) = x0
1. Then, when ε → 0, we have

x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (3.5)

and, for any t0 > 0, we have

x2(t,ε) = K2 +oε(1), uniformly for t ∈ [t0,+∞). (3.6)

Proof 1 When ε → 0, the system (3.1) is a slow-fast system, with one slow variable, x1,
and one fast variable, x2. Tikhonov’s theorem [26, 28, 29] prompts us to consider the
dynamics of the fast variable in the time scale τ = 1

ε
t. One obtains

dx2

dτ
= r2x2

(
1− x2

K2

)
+ εβ (γ1x1− γ2x2). (3.7)
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In the limit ε → 0, we find the fast dynamics

dx2

dτ
= r2x2

(
1− x2

K2

)
. (3.8)

The slow manifold is given by the positive equilibrium of the system (3.8), i.e x2 = K2,
which is GAS in the positive axis. When ε goes to zero, Tikhonov’s theorem ensures that
after a fast transition toward the slow manifold, the solutions of (3.1) converge to the
solutions of the reduced model (3.4), obtained by replacing x2 = K2 into the dynamics of
the slow variable.
The differential equation (3.4) admits as a positive equilibrium

x∗1(β ,0
+) :=

K1

2
− β

2α1
γ1 +

1
2α1

√
γ2

1 β 2 +(4α1γ2K2−2r1γ1)β + r2
1. (3.9)

As ϕ(x1)> 0 for all 0≤ x1 < x∗1(β ,0
+) and ϕ(x1)< 0 for all x1 > x∗1(β ,0

+) then, the equi-
librium x∗1(β ,0

+) is GAS in the positive axis, so, the approximation given by Tikhonov’s
theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t0 > 0 for the fast variable,
where t0 is as small as we want. Therefore, let z(t) be the solution of the reduced model
(3.4) of initial condition z(0) = x0

1, then, when ε → 0, we have the approximations (3.5)
and (3.6).

As a corollary of the previous theorem, we have the following result which give the
limit of the total equilibrium population X∗T (β ,ε) of the model (3.1) when ε goes to zero:

Corollary 3.2 We have:

X∗T (β ,0
+) := lim

ε→0
X∗T (β ,ε) = lim

ε→0
(x∗1(β ,ε)+ x∗2(β ,ε)) (3.10)

=
K1

2
+K2−

β

2α1
γ1 +

1
2α1

√
γ2

1 β 2 +(4α1γ2K2−2r1γ1)β + r2
1.

Proof 2 According to the equations (3.5), (3.6) and (3.9), when ε goes to zero, the equi-
librium E∗(β ,ε) of the model (3.1) is converge to E∗(β ,0+) := (x∗1(β ,0

+),K2), where
x∗1(β ,0

+) is given in (3.9).The sum of the coordinates of E∗(β ,0+) gives the formula
(3.10).

In the following proposition, we calculate the derivative and the formula of perfect
mixing (i.e when β → ∞) of the total equilibrium population defined by (3.10).

Proposition 3.3 Consider the total equilibrium population (3.10). Then,

dX∗T
dβ

(0,0+) :=
−γ1K1 + γ2K2

r1
, (3.11)

and
X∗T (+∞,0+) :=

γ1 + γ2

γ1
K2. (3.12)

Proof 3 The derivative of the total equilibrium population X∗T (β ,0
+) defined by (3.10)

with respect to β is:

dX∗T
dβ

(β ,0+) =− γ1

2α1
+

1
2α1

γ2
1 β +2γ2K2α1− γ1r1√

γ2
1 β 2 +(4γ2K2α1−2γ1r1)β + r2

1

. (3.13)
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In particular, the derivative of the total equilibrium population at β = 0 is given by the
formula (3.11).

By taking the limit of (3.10) when β →∞, we get that the total equilibrium population
X∗T (β ,0

+) tend to (3.12).

We consider the regions in the set of the parameters γ1 and γ2, denoted J0 and J1
defined by:

J0 =

{
(γ1,γ2) :

γ2

γ1
>

K1

K2

}
, J1 =

{
(γ1,γ2) :

γ2

γ1
<

K1

K2

}
. (3.14)

We have the following result which gives the conditions for which patchiness is beneficial
or detrimental in model (3.1) when ε goes to zero.

Theorem 3.4 Let J0 and J1 be the domains defined in (3.14). Consider the total equi-
librium population X∗T (β ,0

+) given by (3.10). Then, we have:

• If (γ1,γ2) ∈J0 then X∗T (β ,0
+)> K1 +K2, for all β > 0.

• If (γ1,γ2) ∈J1 then X∗T (β ,0
+)< K1 +K2, for all β > 0.

• If γ2
γ1

= K1
K2

, then x∗1(β ,0
+) = K1 and x∗2(β ,0

+) = K2 for all β ≥ 0. Therefore
X∗T (β ,0

+) = K1 +K2 for all β ≥ 0.

Proof 4 First, we try to solve the equation X∗T (β ,0
+) = K1 +K2 with respect to β , the

solutions of this last equation give the points of intersection between the curve of the total
equilibrium population β 7→ X∗T (β ,0

+) and the straight line β 7→K1+K2. For any β ≥ 0,
we have

X∗T (β ,0
+) = K1 +K2⇐⇒

1
2α1

√
γ2

1 β 2 +[4α1γ2K2−2r1γ1]β + r2
1 =

K1

2
+

β

2α1
γ1

⇐⇒
√

γ2
1 β 2 +[4α1γ2K2−2r1γ1]β + r2

1 = r1 + γ1β

⇐⇒4α1γ2K2−2r1γ1 = 2r1γ1

⇐⇒α1γ2K2 = r1γ1

⇐⇒γ2K2 = K1γ1⇐⇒
dX∗T
dβ

(0,0+) = 0.

So, if dX∗T
dβ

(0,0+) 6= 0 then β = 0 and the curve of the total equilibrium population inter-
sects the straight line β 7→ K1+K2 in a unique point which is (0,K1+K2). Therefore, we
conclude that the first and second items of the theorem are hold.

We can also show Theorem 3.4 by using Prop A.1 of [14]. Indeed, if r2 is much larger
than r1, then the line γ2

γ1
= r2K1

r1K2
becomes a vertical line in the set of parameters γ1 and γ2.

Therefore, the domain J1 in Fig. 7 of [14] disappear and remain the two domains J0
and J2 which are the same as the both domains J0 and J1 respectively given in (3.14).
So, if (γ1,γ2) ∈J0 then by the item 2 of [14, Prop. A.1], X∗T (β ,0

+) > K1 +K2 for all
β > 0, and if (γ1,γ2) ∈J2 then, X∗T (β ,0

+)< K1 +K2 for all β > 0.
Note that, the critical value β0 > 0 of the migration rate given in [14, Prop. A.1 ] and
given also in [1, Prop.2] for the case γ1 = γ2 = 1, such that the effect is beneficial for lower
values of β on the total equilibrium population and detrimental for the higher values; is
written for our model (3.1) as follow:

β0(ε) =
(r2− r1 ε)α2α1

(α1ε +α2)(γ2ε α1− γ1α2)
. (3.15)

9



When ε → 0, we have limε→0 β0(ε) =−α1K2
γ1

< 0.
Biologically speaking, the existence of a faster growing sub population compared to

the second one causes the critical value of migration rate to disappear. Thus, only three
possible situations remain which may be the total equilibrium population taking instead
of four, either the effect is beneficial, detrimental or not to depend on the migration rate.

In the following proposition, we show that, the function β 7→X∗T (β ,0
+) is monotonous

in [0,+∞[.

Proposition 3.5 If (γ1,γ2) ∈J0 (resp. (γ1,γ2) ∈J1), then the total equilibrium popu-
lation X∗T (β ,0

+) is increasing (resp. decreasing ) in [0,+∞[.

Proof 5 By the equation (3.13), we have:

dX∗T
dβ

(β ,0+) = 0

⇐⇒ −1/2
γ1
√

r12−2r1β γ1 +β 2γ12 +4α1β K2γ2 + r1γ1−β γ1
2−2α1K2γ2√

r12−2r1β γ1 +β 2γ12 +4α1β K2γ2α1
= 0

⇐⇒ 4r1γ1α1K2γ2−4α1
2K2

2
γ2

2 = 0
⇐⇒ γ1K1−K2γ2 = 0.

This last equation prove that dX∗T
dβ

(β ,0+)> 0 for all β if (γ1,γ2)∈J0, and dX∗T
dβ

(β ,0+)< 0
for all β if (γ1,γ2) ∈J1.

4 Three-patch model with two time scales dynamics
In this section, we consider the three-patch model, i.e the model (1.1)(1.3)(1.11) for
(n,m) = (3,1). Our aim in what follows is to study the behavior of the model when
two growth rates are much larger than the third one and we examine also the case when
one growth rate is much larger than the other two. In particular, the aim is to compare the
total equilibrium population with the sum of three capacities.

4.1 Two growth rates are much larger than the third one
We assume that the growth rates r2 and r3 of the second and the third patches respectively
are much larger than r1. One can write the model (1.1)(1.11) for n = 3 and m = 1 in the
following way:

dx1

dt
= r1x1

(
1− x1

K1

)
+β (−(γ21 + γ31)x1 + γ12x2 + γ13x3),

dx2

dt
=

r2

ε
x2

(
1− x2

K2

)
+β (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dt
=

r3

ε
x3

(
1− x3

K3

)
+β (γ31x1 + γ32x2− (γ13 + γ23)x3),

(4.1)

where ε is assumed to be a small positive number. First, we have the following result:

Theorem 4.1 Let (x1(t,ε),x2(t,ε),x3(t,ε)) be the solution of the system (4.1) with ini-
tial condition (x0

1,x
0
2,x

0
3) satisfying x0

i ≥ 0 for i = 1,2,3. Let z(t) be the solution of the
differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+β (b−ax1) =: ϕ(x1), (4.2)
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with a = γ21 + γ31,b = γ12K2 + γ13K3 and initial condition z(0) = x0
1. Then, when ε → 0,

we have
x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (4.3)

and, for any t0 > 0, we have

xi(t,ε) = Ki +oε(1), i = 2,3, uniformly for t ∈ [t0,+∞). (4.4)

Proof 6 When ε → 0, the system (4.1) is a slow-fast system, with one slow variable, x1,
and two fast variables, x2 and x3. Tikhonov’s theorem [26, 28, 29] prompts us to consider
the dynamics of the fast variables in the time scale τ = 1

ε
t. One obtains

dx2

dτ
= r2x2

(
1− x2

K2

)
+ εβ (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dτ
= r3x3

(
1− x3

K3

)
+ εβ (γ31x1 + γ32x2− (γ13 + γ23)x3).

(4.5)

In the limit ε → 0, we find the fast dynamics
dx2

dτ
= r2x2

(
1− x2

K2

)
,

dx3

dτ
= r3x3

(
1− x3

K3

)
.

(4.6)

The slow manifold is given by the positive equilibrium point of the system (4.6), i.e
(x2,x3) = (K2,K3), which is GAS in the interior of the positive cone. When ε goes to
zero, Tikhonov’s theorem ensures that after a fast transition toward the slow manifold, the
solutions of (4.1) converge to solutions of the reduced model (4.2), obtained by replacing
x2 = K2 and x3 = K3 into the dynamics of the slow variable.
The differential equation (4.2) admits

x∗1(β ,0
+) :=

K1

2
− β

2α1
a+

1
2α1

√
a2β 2 +(4α1b−2r1a)β + r2

1, (4.7)

as a positive equilibrium point, which is GAS in the positive axis by the same reason as
the point (3.9), so, the approximation given by Tikhonov’s theorem holds for all t ≥ 0 for
the slow variable and for all t ≥ t0 > 0 for the fast variables, where t0 is as small as we
want. Therefore, let z(t) be the solution of the reduced model (4.2) of initial condition
z(0) = x0

1, then, when ε → 0, we have the approximations (5.3) and (5.4).

As a corollary of the previous theorem, we have the following result which give the limit
of the total equilibrium population X∗T (β ,ε) of the model (4.1) when ε goes to zero:

Corollary 4.2 We have:

X∗T (β ,0
+) := lim

ε→0
X∗T (β ,ε) = lim

ε→0
(x∗1(β ,ε)+ x∗2(β ,ε)+ x∗3(β ,ε))

=
K1

2
+K2 +K3−

β

2α1
a+

1
2α1

√
a2β 2 +(4α1b−2r1a)β + r2

1. (4.8)

Proof 7 According to the equations (5.3), (5.4) and (4.7), when ε goes to zero, the equi-
librium E∗(β ,ε) of the model (4.1) is converge to E∗(β ,0+) := (x∗1(β ,0

+),K2,K3), where
x∗1(β ,0

+) is given in (4.7).The sum of the coordinates of E∗(β ,0+) gives the formula (4.8).
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Proposition 4.3 Consider the total equilibrium (4.8). Then,

dX∗T
dβ

(0,0+) =
−aK1 +b

r1
, (4.9)

and
X∗T (+∞,0+) := K2 +K3 +

b
a
. (4.10)

Proof 8 The derivative of the total equilibrium population X∗T (β ,0
+) defined in (4.8) with

respect to β is:

dX∗T
dβ

(β ,0+) =− a
2α1

+
1

2α1

a2β +2bα1−ar1√
a2β 2 +(4bα1−2ar1)β + r2

1

. (4.11)

In particular, the derivative of the total equilibrium population at β = 0 is given by (4.9).
By taking the limit of (4.8) when β → ∞, we get that the total equilibrium population

X∗T (β ,0
+) tend to the limit (4.10).

We consider the regions in the set of the parameters a and b, denoted D0 and D1
defined by:

D0 = {(a,b) : b > aK1} , D1 = {(a,b) : b < aK1} (4.12)

We have the following result which gives the conditions for which patchiness is beneficial
or detrimental in model (4.1) when ε goes to zero.

Corollary 4.4 Consider the equation X∗T (β ,0
+) defined in (4.8). Let D0 and D1 be the

domains defined by (4.12). Then, we have

• If (a,b) ∈D0 then X∗T (β ,0
+)> K1 +K2 +K3, for all β > 0.

• If (a,b) ∈D1 then X∗T (β ,0
+)< K1 +K2 +K3, for all β > 0.

• If aK1 = b, then x∗1(β ,0
+) = K1,x∗2(β ,0

+) = K2 and x∗2(β ,0
+) = K3 for all β ≥ 0.

Therefore X∗T (β ,0
+) = K1 +K2 +K3 for all β ≥ 0.

Proof 9 The result is a consequence of Theorem 3.4.

Remark 4.5 When ε → 0, the condition aK1 = b is equivalent to (K1,K2,K3)
T ∈ kerΓ.

Indeed, if (K1,K2,K3)
T ∈ kerΓ then

−(γ21 + γ31)K1 + γ12K2 + γ13K3 = 0,
γ21K1− (γ12 + γ32)K2 + γ23K3 = 0,
γ31K1 + γ32K2− (γ13 + γ23)K3 = 0,

(4.13)

The first equation of (4.13) gives aK1 = b.
Now, when ε→ 0, if aK1 = b, then (K1,K2,K3) is a equilibrium of (4.1), i.e Γ(K1,K2,K3)

T =
0, so (K1,K2,K3)

T ∈ kerΓ

Note that, Elbetch et al. [14, Prop. 4.5] have shown that the total equilibrium population
is independent of the migration rate β if and only if (K1, . . . ,Kn)

T ∈ kerΓ, which is the
same with the item 3 of Corollary 4.4.

In [14, Section 6], Elbetch et al. showed that, for the three-patch model, the existence
of at least three positives values of migration rate such that X∗T (β ) = K1 +K2 +K3. Bio-
logically speaking, the results of Corollary 4.4 prove that, the existence of two faster sub
population compared to the third one, causes the all critical values of migration rate to
disappear. Thus, when ε → 0, the total equilibrium population of the model (4.1) behave
like the total equilibrium population of the two-patch model (3.1), i.e only three possible
situations may be the total equilibrium population taking, either the effect is beneficial,
detrimental or not to depend on the migration rate.
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4.2 One growth rate is much larger than the other two
In this section, we assume that the growth rate r3 of the third patch is much larger than r1
and r2. One can write the model (1.1)(1.3)(1.11) for (n,m) = (3,2) in the following way:

dx1

dt
= r1x1

(
1− x1

K1

)
+β (−(γ21 + γ31)x1 + γ12x2 + γ13x3),

dx2

dt
= r2x2

(
1− x2

K2

)
+β (γ21x1− (γ12 + γ32)x2 + γ23x3),

dx3

dt
=

r3

ε
x3

(
1− x3

K3

)
+β (γ31x1 + γ32x2− (γ13 + γ23)x3),

(4.14)

where ε is assumed to be a small positive number. We have the following theorem:

Theorem 4.6 Let (x1(t,ε),x2(t,ε),x3(t,ε)) be the solution of the system (4.14) with ini-
tial condition (x0

1,x
0
2,x

0
3) satisfying x0

i ≥ 0 for i = 1,2,3. Let (z1(t),z2(t)) be the solution
of the system

dx1

dt
= r1x1

(
1− x1

K1

)
+β (−(γ21 + γ31)x1 + γ12x2 + γ13K3) =: f1(x1,x2),

dx2

dt
= r2x2

(
1− x2

K2

)
+β (γ21x1− (γ12 + γ32)x2 + γ23K3) =: f2(x1,x2),

(4.15)

with initial condition (z1(0),z2(0)) = (x0
1,x

0
2). Then, when ε → 0, we have

xi(t,ε) = zi(t)+oε(1), i = 1,2 uniformly for t ∈ [0,+∞] (4.16)

and, for any t0 > 0, we have

x3(t,ε) = K3 +oε(1), uniformly for t ∈ [t0,+∞]. (4.17)

Proof 10 When ε → 0, the system (4.14) is a slow-fast system, with two slow variables,
x1 and x2, and one fast variable x3. We consider the dynamics of the fast variable in the
time scale τ = 1

ε
t. One obtains

dx3

dτ
= r3x3

(
1− x3

K3

)
+ εβ (γ31x1 + γ32x2− (γ13 + γ23)x3). (4.18)

In the limit ε → 0, we find the fast dynamics

dx3

dτ
= r3x3

(
1− x3

K3

)
. (4.19)

The slow manifold is given by the positive equilibrium point of the equation (4.19), i.e x3 =
K3, which is GAS in the positive axis. Tikhonov’s theorem [26, 28, 29] ensures that after a
fast transition toward the slow manifold, the solutions of (4.14) are approximated by the
solutions of the reduced model (4.15), obtained by replacing x3 = K3 into the dynamics of
the slow variable. The approximations (4.16) and (4.17) follow from Tikhonov’s theorem.

4.2.1 Global stability of the reduced model (4.15)

For β = 0 the system (4.15) is uncoupled and there exists an equilibrium (K1,K2) in-
terior to the positive quadrant which is GAS. The problem is whether the equilibrium
continues to be positive and GAS for any β or not. Clearly, when β is sufficiently
small, from elementary perturbation theory it follows that there always exists an interior
equilibrium. First, we start by studying the existence of equilibrium of system (4.15)
(see Prop. A.1). Second, in Theorem A.4, we prove the global stability of System
(4.15). We denoted E ∗(β ,0+) := (x∗1(β ,0

+),x∗2(β ,0
+)) the equilibrium of (4.15) and

X∗T (β ,0
+) := x∗1(β ,0

+)+ x∗2(β ,0
+)+K3 the total equilibrium population.
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4.2.2 Perfect mixing

For the behavior of the reduced model (4.15) for large migration rate, i.e when β → ∞,
we prove the following result:

Proposition 4.7 We have:

lim
β→+∞

E ∗(β ,0+) =
K3

δ3
(δ1,δ2),

where δ1,δ2 and δ3 are given by:
δ1 = γ12γ13 + γ12γ23 + γ32γ13,
δ2 = γ21γ13 + γ21γ23 + γ31γ23,
δ3 = γ21γ32 + γ31γ12 + γ31γ32.

(4.20)

Proof 11 Denote: E ∗(∞,0+) = K3
δ3
(δ1,δ2). The equilibrium point E ∗(β ,0+) is the solu-

tion in the positive cone R2
+, of the equation Fβ = 0, where

Fβ : R2→ R2, (x1,x2) 7−→ ( f β

1 (x1,x2), f β

2 (x1,x2)),

where f β

1 and f β

2 are defined by the first and the second equation of the right hand of
(4.15) respectively. Taking the limit β → ∞, of Fβ gives

F∞ : R2→ R2, (x1,x2) 7−→ ( f ∞
1 (x1,x2), f ∞

2 (x1,x2)) ,

where {
f ∞
1 (x1,x2) =−(γ21 + γ31)x1 + γ12x2 + γ13K3,

f ∞
2 (x1,x2) = γ21x1− (γ12 + γ32)x2 + γ23K3.

(4.21)

Since the matrix Γ = (γi j)3×3 is irreducible, the solution of the equation F∞ = 0 is given
by E ∗(∞,0+). Therefore, when β → ∞, the equilibrium E ∗(β ,0+) tend to E ∗(∞,0+).

Corollary 4.8 Consider the total equilibrium of (4.14) when ε→ 0. Then, when β →∞,
the total equilibrium population X∗T (β ,0

+) := x∗1(β ,0
+)+ x∗2(β ,0

+)+ x∗3(β ,0
+) tend to:

X∗T (+∞,0+) =
K3

δ3
(δ1 +δ2 +δ3). (4.22)

Proof 12 As the equilibrium E ∗(β ,0+) tend to K3
δ3
(δ1,δ2) when β → ∞, then

lim
β→∞

X∗T (β ,0
+) = lim

β→∞

(x∗1(β ,0
+)+ x∗2(β ,0

+)+ x∗3(β ,0
+)) =

K3

δ3
(δ1 +δ2 +δ3).

4.2.3 Total population abundance

In this part, our aim is to compare the total equilibrium population X∗T (β ,0
+) of (4.14)

with the sum of three capacities, by analyzing the stable positive equilibrium E ∗(β ,0+)
of (4.15). When there is no migration (i.e β = 0) the total equilibrium population equal
to K1+K2+K3. First for all, we give some proprieties of the total equilibrium population
X∗T (β ,0

+).
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Lemma 4.9 The total equilibrium population X∗T (β ,0
+) of (4.14) satisfies the following

relation:

X∗T (β ,0
+) = K1 +K2 +K3 +β

(
−(γ21 + γ31)x∗1(β ,0

+)+ γ12x∗2(β ,0
+)+ γ13K3

α1x∗1(β ,0
+)

(4.23)

+
γ21x∗1(β ,0

+)− (γ12 + γ32)x∗2(β ,0
+)+ γ23K3)

α2x∗2(β ,0
+)

)
.

Proof 13 The equilibrium point E ∗(β ,0+) of the reduced model (4.15) satisfies:
0 = r1x∗1(β ,0

+)

(
1− x∗1(β ,0

+)

K1

)
+β (−(γ21 + γ31)x∗1(β ,0

+)+ γ12x∗2(β ,0
+)+ γ13K3),

0 = r2x∗2(β ,0
+)

(
1− x∗2(β ,0

+)

K2

)
+β (γ21x∗1(β ,0

+)− (γ12 + γ32)x∗2(β ,0
+)+ γ23K3).

(4.24)
Dividing the first equation in (4.24) by α1x∗1(β ,0

+) and the second by α2x∗2(β ,0
+), we

obtain
x∗1(β ,0

+) = K1 +β
−(γ21 + γ31)x∗1(β ,0

+)+ γ12x∗2(β ,0
+)+ γ13K3

α1x∗1(β ,0
+)

,

x∗2(β ,0
+) = K2 +β

γ21x∗1(β ,0
+)− (γ12 + γ32)x∗2(β ,0

+)+ γ23K3

α2x∗2(β ,0
+)

.
(4.25)

Taking the sum of these expressions gives the total equilibrium population for reduced
model, and by approximation (4.17) we deduce the relation (4.23)

Lemma 4.10 The derivative of the total equilibrium population X∗T (β ,0
+) at β = 0 is

given by:

dX∗T
dβ

(0,0+) =
−(γ21 + γ31)K1 + γ12K2 + γ13K3

r1
+

γ21K1− (γ12 + γ32)K2 + γ23K3

r2
. (4.26)

Proof 14 By differentiating the equation (4.23), at β = 0, we get

dX∗T
dβ

(0,0+) =
−(γ21 + γ31)x∗1(0,0

+)+ γ12x∗2(0,0
+)+ γ13K3

α1x∗1(0,0
+)

+
γ21x∗1(0,0

+)− (γ12 + γ32)x∗2(0,0
+)+ γ23K3)

α2x∗2(0,0
+)

,

(4.27)

which gives (4.26), since x∗1(0,0
+) = K1 and x∗2(0,0

+) = K2.

In the remainder of this section, we denote:
c1 = K1r2(γ12 + γ31 + γ21)+K2r1(γ21 + γ32 + γ12),
c2 =−K1r2γ21K2−2K1r2γ12K2−K1

2r2γ31−K1r2γ31K2−K1
2r2γ21−

K1r2γ13K3−K2r1γ32K1−2K1
2r2γ12−K2

2r1γ12 +K2r1γ23K3
−K2r1γ12K1−K2

2r1γ32,
c3 = K1r2γ13K3K2 +K1r2γ12K2

2 +K1
3r2γ12 +2K1

2r2γ12K2 +K1
2r2γ13K3.

(4.28)

As the matrix Γ= (γi j)3×3 is irreducible, then c1 > 0 and c3 > 0. We denote: ξ1 =
c2
c1
,ξ2 =

c3
c1
,∆ = ξ 2

1 −4ξ2 and mi, i = 1, . . . ,5 defined as follow:
m1 =−ξ1−

√
∆, m2 =−ξ1 +

√
∆ if ∆≥ 0,

m3 =−2m1(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3),
m4 =−2m2(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3),
m5 = 2ξ1(γ12 + γ21 + γ31)+4(γ12K1 + γ12K2 + γ13K3).

(4.29)
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Notice that: ξ2 > 0, and if ∆ = 0 then m3 = m4 = m5.
We consider the regions in the set of parameters ξ1 and ξ2, denoted J0 := J −

0 ∪
J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< depicted in Fig. 1 and defined by:

J0 := J −
0 ∪J +

0 :


J −

0 =
{
(ξ1,ξ2) : ξ2 =

ξ 2
1
4 ,ξ1 < 0

}
,

J +
0 =

{
(ξ1,ξ2) : ξ2 =

ξ 2
1
4 ,ξ1 > 0

}
.

(4.30)

J> := J −
> ∪J +

> :


J −

> =
{
(ξ1,ξ2) : ξ2 >

ξ 2
1
4 ,ξ1 < 0

}
,

J +
> =

{
(ξ1,ξ2) : ξ2 >

ξ 2
1
4 ,ξ1 ≥ 0

}
.

(4.31)

J< := J −
< ∪J +

< :


J −

< =
{
(ξ1,ξ2) : 0 < ξ2 <

ξ 2
1
4 ,ξ1 < 0

}
,

J +
< =

{
(ξ1,ξ2) : 0 < ξ2 <

ξ 2
1
4 ,ξ1 > 0

}
.

(4.32)

We can now state our main result:

Figure 1: The domain J0 := J −
0 ∪J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< in
the set of parameters ξ1 and ξ2.

Theorem 4.11 Consider the total equilibrium population X∗T (β ,0
+) of (4.14) when ε→

0. Let dX∗T
dβ

(0,0+) be the derivative of X∗T (β ,0
+) at β = 0 given by (4.26). Let J0 :=

J −
0 ∪J +

0 ,J> := J −
> ∪J +

> and J< := J −
< ∪J +

< be the domains depicted in Fig.
1 and defined by (4.30), (4.31) and (4.32) respectively. Then,

1. if (ξ1,ξ2) ∈J<∪J +
0 ∪J +

> , then, for all β ≥ 0:

X∗T (β ,0
+) =

{
> K1 +K2 +K3 i f dX∗T

dβ
(0,0+)> 0,

< K1 +K2 +K3 i f dX∗T
dβ

(0,0+)< 0.
(4.33)

2. Let (ξ1,ξ2) ∈J −
0 . Let m5 be given in (4.29).
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(a) if (2K1 +ξ1)m5 < 0 then there exist unique β ∗ = α1ξ1(2K1+ξ1)
m5

> 0 such that:
if dX∗T

dβ
(0,0+)> 0 then X∗T (β ,0

+) =

{
> K1 +K2 +K3 i f 0≤ β ≤ β ∗,
< K1 +K2 +K3 i f β ≥ β ∗.

if dX∗T
dβ

(0,0+)< 0 then X∗T (β ,0
+) =

{
< K1 +K2 +K3 i f 0≤ β ≤ β ∗,
> K1 +K2 +K3 i f β ≥ β ∗.

(4.34)

(b) if (2K1+ξ1)m5≥ 0 with m5 6= 0 then the total equilibrium population X∗T (β ,0
+)

satisfies to (4.33).

(c) if m5 = 0, then x∗1(β ,0
+) = K1,x∗2(β ,0

+) = K2 and x∗3(β ,0
+) = K3 for all

β ≥ 0. Therefore, X∗T (β ,0
+) = K1 +K2 +K3 for all β .

3. Let (ξ1,ξ2) ∈J −
> . Let m1,m2,m3 and m4 be given in (4.29).

(a) if m3(m1− 2K1) > 0 and m4(m2− 2K1) > 0, then there exist two values of
migration rate β ∗1 = α1m1(m1−2K1)

m3
> 0 and β ∗2 = α1m2(m2−2K1)

m4
> 0 such that:

if dX∗T
dβ

(0,0+)> 0 then X∗T (β ,0
+) =


> K1 +K2 +K3 i f β ∈ [0,β1]∪

[β2,∞[,
< K1 +K2 +K3 i f β ∈ [β1,β2].

if dX∗T
dβ

(0,0+)< 0 then X∗T (β ,0
+) =


< K1 +K2 +K3 i f β ∈ [0,β1]∪

[β2,∞[,
> K1 +K2 +K3 i f β ∈ [β1,β2].

(4.35)

(b) if m3(m1−2K1)≤ 0 with m3 6= 0 and m4(m2−2K1)> 0 or m3(m1−2K1)> 0
and m4(m2− 2K1) ≤ 0 with m4 6= 0 then there exist unique β ∗ such that, the
total equilibrium population X∗T (β ,0

+) satisfied to (4.34).

(c) if m3(m1−2K1)≤ 0 and m4(m2−2K1)≤ 0 with m3 6= 0 and m4 6= 0 then, the
total equilibrium population X∗T (β ,0

+) satisfied to (4.33).

(d) if m3 = 0 or m4 = 0, then x∗1(β ,0
+) = K1,x∗2(β ,0

+) = K2 and x∗3(β ,0
+) = K3

for all β ≥ 0. Therefore, X∗T (β ,0
+) = K1 +K2 +K3 for all β .

Proof 15 By Equation (4.23), the equality X∗T = K1 +K2 +K3 is equivalent to β = 0 or

−(γ21K1r2 + γ31K1r2 + γ12K2r1 + γ32K2r1)x∗1x∗2 + γ12K1r2x∗2
2

+γ13K3K1r2x∗2 + γ21K2r1x∗1
2 + γ23K3K2r1x∗1 = 0

(4.36)

Thus (x∗1,x
∗
2) is the solution of the following algebraic system:
−(γ21K1r2 + γ31K1r2 + γ12K2r1 + γ32K2r1)x∗1x∗2 + γ12K1r2x∗2

2

+γ13K3K1r2x∗2 + γ21K2r1x∗1
2 + γ23K3K2r1x∗1 = 0,

x∗1 + x∗2 = K1 +K2.

(4.37)

By the second equation of (4.37), we get x∗2 = K1 +K2− x∗1. Substitute x∗2 into the first
equation in (4.37) to obtain the following quadratic equation of x∗1:

(x∗1)
2 +ξ1x∗1 +ξ2 = 0, (4.38)

where the coefficients ξ1 = c2/c1 and ξ2 = c3/c1 are given in (4.28).
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(1) If (ξ1,ξ2) ∈J<, then ∆ < 0, and the equation (4.38) admits no solutions, there-
fore, the system (4.37) admits no solutions. If (ξ1,ξ2) ∈J +

0 , then ∆ = 0, so the equation
(4.38) admits x∗1 =−ξ1/2 as solution which is negative. The case where (ξ1,ξ2) ∈J +

> ,
we have ∆ > 0 and the equation (4.38) admits two negative solutions. Thus, if (ξ1,ξ2) ∈
J<∪J +

0 ∪J +
> , then, the inequalities (4.33) are satisfied.

(2) Let (ξ1,ξ2) ∈J −
0 . The equation (4.38) admits the positive solution x∗1 =−ξ1/2.

By the second equation of (4.37), we deduce that x∗2 = K1 +K2 +
ξ1
2 . So the system (4.37)

admit unique solution given by (−ξ1
2 ,K1 +K2 +

ξ1
2 ). If we replace this last solution in the

first equation of (4.15) we obtain β ∗= α1ξ1(2K1+ξ1)
m5

with m5 6= 0. So, if 2K1+ξ1
m5

> 0 then β ∗

is positive and the inequalities (4.34) are satisfied, otherwise, β = 0 is the unique solution
of the equation X∗T = K1 +K2 +K3, and (4.33) is satisfied. If m5 = 0, then if we replace
the solution (−ξ1

2 ,K1 +K2 +
ξ1
2 ) in the first equation of (4.15) we obtain −ξ1

2 = K1. Thus
X∗T (β ,0

+) = K1 +K2 +K3 for all β .
(3) Let (ξ1,ξ2) ∈J −

> , therefore, ∆ > 0 and c2 < 0, then the equation (4.38) admit
two positive solutions given by x∗11 =

m2
2 and x∗12 =

m1
2 . By the second equation of (4.37),

we deduce: x∗21 = K1+K2− m2
2 , and x∗22 = K1+K2− m1

2 respectively. So the system (4.37)
admit two positive solutions given by: (x∗11,x

∗
21) and (x∗12,x

∗
22). If we replace the first (resp.

the second ) solution in the first equation of (4.15) we obtain β ∗1 = α1m1(m1−2K1)
m3

( resp.

β ∗2 = α1m2(m2−2K1)
m4

).

We discuss the existence of β ∗1 and β ∗2 with respect to singe of m1(m1−2K1)
m3

and m2(m2−2K1)
m4

respectively. In particular, if β ∗1 and β ∗2 are positive then the inequalities (4.35) are sat-
isfied. If m3 = 0 (resp. m4 = 0), then if we replace the solution (m1

2 ,K1 +K2 +
m1
2 ) (resp.

(m2
2 ,K1+K2+

m2
2 ) ) in the first equation of (4.15), we obtain that m1

2 =K1 (resp. m2
2 =K1).

Thus, X∗T (β ,0
+) = K1 +K2 +K3 for all β .
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Let S be a set of the non negative solution of the equation X∗T (β ,0
+) = K1 +K2 +K3,

which can be summarized as follows:

If ∆ > 0 then



If ξ1 ≥ 0 then S = {0},

If ξ1 < 0 then



If m3(m1−2K1)≤ 0, with m3 6= 0 and
m4(m2−2K1)≤ 0 with m4 6= 0, then S = {0},

If m3(m1−2K1)> 0 and m4(m2−2K1)≤ 0) or
(m3(m1−2K1)≤ 0 and m4(m2−2K1)> 0

then S =
{

0,α1m1
(m1−2K1)

m3

}
or

S =
{

0,α1m2
(m2−2K1)

m4

}
respectivly .

If m3(m1−2K1)> 0 and m4(m2−2K1)> 0 then
S = {0,α1m1

(m1−2K1)
m3

,α1m2
(m2−2K1)

m4
},

If m3 = 0 or m4 = 0 then S = R+.

If ∆ = 0 then


If ξ1 < 0 then



If m5(2K1 +ξ1)≥ 0 with m5 6= 0 then S = {0},

If m5(2K1 +ξ1)< 0, then S =
{

0,α1ξ1
2K1+ξ1

m5

}
,

If m5 = 0 then S = R+.
If ξ1 ≥ 0 then S = {0}.

If ∆ < 0 then S = {0}.

Remark 4.12 In Theorem 4.11, if dX∗T
dβ

(0,0+) = 0, then we discuss according to the sign
of the second derivative of the total equilibrium population. In the appendix B, we have
added the explicit calculations of the second derivative of X∗T defined by (4.23).

In our result of Theorem 4.11, we prove the numerical results of [13] under the hy-
pothesis that one growth rate is much larger than the other two. In particular, we prove
the existence of two positive values of β solutions of X∗T = K1 +K2 +K3.

In [14, Prop. 4.5], Elbetch et al. have shown that, the equilibrium E∗(β ,ε) of(1.1)(1.2)
(1.3) does not depend on β if and only if (K1, . . . ,Kn)

T ∈ kerΓ. In this case we have
E∗(β ,ε) = (K1, . . . ,Kn) for all β and for all ε > 0. Therefore, for three-patch model
(4.14), we have the result:

Proposition 4.13 Consider the domains J −
0 and J −

> defined in (4.30) and (4.31) re-
spectively. Let m3,m4 and m5 be given in (4.29). We have

1. Let (ξ1,ξ2) ∈J −
0 . The hypothesis in item 2 (c) of Theorem 4.11 is equivalent to

(K1,K2,K3)
T ∈ kerΓ, i.e m5 = 0 if and only if (K1,K2,K3)

T ∈ kerΓ.

2. Let (ξ1,ξ2) ∈J −
> . The hypothesis in item 3 (d) of Theorem 4.11 is equivalent to

(K1,K2,K3)
T ∈ kerΓ, i.e m3 = 0 or m4 = 0 if and only if (K1,K2,K3)

T ∈ kerΓ.

Proof 16 For the proof, we prove the first point, the second is shown in the same way
as the first. If (ξ1,ξ2) ∈J −

0 , then the system (4.37) admits unique solution given by
(−ξ1

2 ,K1 +K2 +
ξ1
2 ). Suppose that m5 = 0 i.e

ξ1(γ12 + γ21 + γ31)+2(γ12K1 + γ12K2 + γ13K3) = 0. (4.39)

19



As ξ1 =−2K1, so the equation (4.39) becomes

−(γ21 + γ31)K1 + γ12K2 + γ13K3 = 0. (4.40)

By the second equation of the reduced model (4.15) at equilibrium, we obtain:

γ21K1− (γ12 + γ32)K2 + γ23K3 = 0. (4.41)

The sum of Equation (4.41) and (4.40) gives

γ31K1 + γ32K2− (γ13 + γ23)K3 = 0. (4.42)

The equations (4.40), (4.41) and (4.42) show that (K1,K2,K3)
T ∈ kerΓ.

Now, suppose that (K1,K2,K3)
T ∈ kerΓ, then by the equation (4.40) we have:

0 =−(γ21 + γ31)K1 + γ12K2 + γ13K3 =
1
2
((γ21 + γ31)ξ1 +2(γ12K2 + γ13K3))

=
1
2
(ξ1(γ12 + γ21 + γ31)+2(γ12K1 + γ12K2 + γ13K3)) =

1
2

m5.

Hence, m5 = 0, which completes the demonstration of the first point.

5 The general case
In this section, we consider the model of multi-patch logistic growth, coupled by asym-
metric migration terms (1.1)(1.3)(1.11). Our goal is to generalize some results of the
previous sections. First, we start by the following situation:

5.1 All growth rates but one are much larger than the last one
We assume that the growth rates r2, . . . ,rn are much larger than r1. The model (1.1)(1.3)(1.11)
is written under this assumption as:

dx1

dt
= r1x1

(
1− x1

K1

)
+β ∑

n
j=1, j 6=1

(
γ1 jx j− γ j1x1

)
,

dxi

dt
=

ri

ε
xi

(
1− xi

Ki

)
+β ∑

n
j=1, j 6=1

(
γi jx j− γ jixi

)
, i = 2, · · · ,n,

(5.1)

where ε is assumed to be small positive number. We have the following theorem:

Theorem 5.1 Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (5.1) with initial
condition (x0

1, . . . ,x
0
n) satisfying x0

i ≥ 0 for i = 1, . . . ,n. Let z(t) be the solution of the
differential equation

dx1

dt
= r1x1

(
1− x1

K1

)
+β (ξ −µx1) =: ϕ(x1), (5.2)

with µ = ∑
n
j=2 γ j1,ξ = ∑

n
j=2 γ1 jK j and initial condition z(0) = x0

1. Then, when ε→ 0, we
have

x1(t,ε) = z(t)+oε(1), uniformly for t ∈ [0,+∞) (5.3)

and, for any t0 > 0, we have

xi(t,ε) = Ki +oε(1), i = 2, . . . ,n, uniformly for t ∈ [t0,+∞). (5.4)
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Proof 17 Consequence direct of proof of Theorem 4.1.

As a corollary of the previous theorem, we have the following result which give the limit
of the total equilibrium population X∗T (β ,ε) of the model (5.1) when ε goes to zero:

Corollary 5.2 We have:

X∗T (β ,0
+) := lim

ε→0
X∗T (β ,ε) =

K1

2
+K2 + . . .+Kn−

β

2α1
µ (5.5)

+
1

2α1

√
µ2β 2 +(4α1ξ −2r1µ)β + r2

1.

In particular, the derivative of the total equilibrium population (5.5) at β = 0 is given by:

dX∗T
dβ

(0,0+) =
−µK1 +ξ

r1
. (5.6)

By taking the limit of (5.5) when β → ∞, we get that the total equilibrium population
X∗T (β ,0

+) tend to:

X∗T (+∞,0+) = K2 + . . .+Kn +
ξ

µ
. (5.7)

We consider the regions in the set of the parameters µ and ξ , denoted J0 and J1 defined
by:

J0 = {(µ,ξ ) : ξ > µK1} , J1 = {(µ,ξ ) : ξ < µK1} (5.8)

We have the following result which gives the conditions for which patchiness is beneficial
or detrimental in the model (5.1) when ε goes to zero.

Corollary 5.3 Consider the total equilibrium population X∗T (β ,0
+) defined in (5.5). Let

J0 and J1 be the domains defined by (5.8). Then, we have

• If (µ,ξ ) ∈J0 then X∗T (β ,0
+)> ∑

n
i=1 Ki, for all β > 0.

• If (µ,ξ ) ∈J1 then X∗T (β ,0
+)< ∑

n
i=1 Ki, for all β < 0.

• If ξ = µK1, then x∗i (β ,0
+) = Ki, i = 1, . . . ,n, for all β ≥ 0. Therefore X∗T (β ,0

+) =

∑
n
i=1 Ki for all β ≥ 0.

Remark 5.4 The condition µK1 = ξ is equivalent to (K1, . . . ,Kn)
T ∈ kerΓ. Indeed, if

(K1, . . . ,Kn)
T ∈ kerΓ then

n

∑
j=1, j 6=i

γi jK j− γ jiKi = 0, (5.9)

The first equation of (5.9) gives µK1 = ξ .
Now, when ε→ 0, if µK1 = ξ , then (K1, . . . ,Kn) is a equilibrium of (5.1), i.e Γ(K1, . . . ,Kn)

T =
0, so (K1, . . . ,Kn)

T ∈ kerT .

5.2 One growth rate is much larger than all other
We propose here to study the model (1.1) (1.3)(1.11) with the hypothesis that rn much
larger than r1, . . . ,rn−1. On can write the model in the following way:

dxi

dt
= rixi

(
1− xi

Ki

)
+β ∑

n
j=1, j 6=n

(
γi jx j− γ jixi

)
, i = 1, · · · ,n−1,

dxn

dt
=

rn

ε
xn

(
1− xn

Kn

)
+β ∑

n
j=1, j 6=i

(
γn jx j− γ jnxn

)
,

(5.10)

where ε is assumed to be small positive number. We have the theorem:
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Theorem 5.5 Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (5.10) with initial
condition (x0

1, . . . ,x
0
n) satisfying x0

i ≥ 0 for i = 1, . . . ,n. Let z(t) be the solution of the
system:

ẋ = ψ(x)+β (Lx+KnV ) =: ϒ(x), (5.11)

with initial condition zi(0) = x0
i for i = 1, . . . ,n−1, x = (x1, . . . ,xn−1)

T ,L := (γi j)n−1×n−1
is the sub matrix of the matrix Γ, obtained by dropping the last row and the last column
of Γ, V is the vector defined by V := (γin)n−1×1 and

ψ(x) = (r1x1(1− x1/K1), · · · ,rn−1xn−1(1− xn−1/Kn−1))
T . (5.12)

Then, when ε → 0, we have

xi(t,ε) = zi(t)+oε(1), i = 1, . . . ,n−1 uniformly for t ∈ [0,+∞) (5.13)

and, for any t0 > 0, we have

xn(t,ε) = Kn +oε(1), uniformly for t ∈ [t0,+∞). (5.14)

Proof 18 The same proof of Theorem 4.1.

5.2.1 Global stability of the reduced model (5.11)

Our goal in this part, is to prove the global stability of the system (5.11). First, we start
by the following proposition:

Proposition 5.6 The positive cone Rn−1
+ is positively invariant for (5.11).

Proof 19 Assume that x j ≥ 0 for all j and there exist i such that xi = 0. We have

dxi

dt
= β

(
∑
i 6= j

γi jx j + γinKn

)
≥ 0. (5.15)

Hence, on the boundary of Rn−1
+ , the vector field associated to (5.11) either is tangent to

the boundary of Rn−1
+ , or points inward. The system (5.11) is cooperative. Indeed, it has

a jacobian matrix with no negative off-diagonal elements, given by:

Jϒ(x) = diag(ri−2αixi)+βL. (5.16)

According to [30, Proposition B.7, page 267], no trajectory comes out of Rn−1
+ . There-

fore, Rn−1
+ is positively invariant for (5.11).

For the boundedness of the solutions of the reduced model (5.11) we prove:

Proposition 5.7 For any non-negative initial condition, the solutions of System (5.11)
remain bounded, for all t ≥ 0. Moreover, the set

Λn−1 =

{
(x1, . . . ,xn−1) : x1 + . . .+ xn−1 ≤

µ∗2
µ∗1

}
, (5.17)

where µ∗1 = mini {1+βγni} and µ∗2 = ∑
n−1
i=1

(ri+1)2

αi
+βγinKn, is positively invariant and is

a global attractor for the system (5.11).
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Proof 20 To show that all solutions are bounded, we consider the quantity defined by
XT (t) = x1(t)+ . . .+ xn−1(t). So, we have

ẊT (t) =
n−1

∑
i=1

rixi

(
1− xi

Ki

)
−β

n−1

∑
i=1

γnixi +β

(
n−1

∑
i=1

γin

)
Kn. (5.18)

By Equation (A.5), the equation (5.18) becomes

ẊT (t)≤
n−1

∑
i=1
−xi +

(ri +1)2

αi
−β

n−1

∑
i=1

γnixi +β

(
n−1

∑
i=1

γin

)
Kn. (5.19)

Therefore
ẊT (t)≤−µ

∗
1 XT (t)+µ

∗
2 , for all t ≥ 0, (5.20)

which gives

XT (t)≤
(

XT (0)−
µ∗2
µ∗1

)
e−µ∗1 t +

µ∗2
µ∗1

, for all t ≥ 0. (5.21)

Hence

XT (t)≤max
(

XT (0),
µ∗2
µ∗1

)
, for all t ≥ 0. (5.22)

Therefore, the solutions of System (5.11) are positively bounded and defined for all t ≥ 0.
From (5.21) it can be deduced that the set Λn−1 is positively invariant and it is a global
attractor for the system (5.11).

Lemma 5.8 Assume that the matrix Γ is irreducible. The reduced model (5.11) does not
admits the origin as equilibrium.

Proof 21 We suppose that the origin is a equilibrium of (5.11), then ϒ(0) = 0, which
equivalent to V T = 0, i.e γ1n = . . .= γn−1,n = 0. So, we obtain a contradiction since Γ is
irreducible.

Theorem 5.9 Assume that the two matrices L and Γ are irreducible. The reduced model
(5.11) admits unique equilibrium point in the interior of the positive cone Rn−1

+ \ {0}
which is GAS.

Proof 22 To show the global stability of the reduced model (5.11) in this case, we use the
following result of Hirsch [23]. If the cooperative system

ẋ = F(x), (5.23)

has the following proprieties:

• JF(x) is irreducible for any x≥ 0,

• JF(x)≤ JF(y) for any x≥ y≥ 0, and

• all solutions are bounded,

then either the origin is globally stable or else there exists a unique positive equilibrium
point and all the trajectories in Rn

+ \{0} tend to it. Here JF(x) is the Jacobian of F(x).
The jacobian matrix of the reduced model (5.11) is given by (5.16), which is irre-

ducible because L is also. Moreover, if Jϒ(x) ≤ Jϒ(y) then diag(ri− 2αixi) ≤ diag(ri−
2αiyi) which gives xi ≥ yi for all i, i.e x≥ y≥ 0. By Lemma 5.7, all solutions are bounded
and the reduced model (5.11) does not admits the origin as equilibrium by Lemma 5.8.
Hence, the reduced model (5.11) is globally stable according to Hirsch [23]. We denote
by E ∗n−1(β ,0

+) this equilibrium.
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5.2.2 Perfect mixing

For the behavior of the reduced model (5.11) for large migration rate, i.e when β → ∞,
we obtain:

Proposition 5.10 we have:

lim
β→+∞

En−1(β ,0+) =
Kn

δn
(δ1, . . . ,δn−1).

Proof 23 Denote En−1(∞,0+) = Kn
δn
(δ1, . . . ,δn−1). The equilibrium point En−1(β ,0+) is

the unique solution in the positive cone of the equation Ψβ = 0, where

Ψβ (x) := ψ(x)+β (Lx+KnV ) = 0. (5.24)

Taking the limit β → ∞, in (5.24) we get

Ψ∞(x) := Lx+KnV = 0. (5.25)

By Lemma 2 of Elbetch et al. [14], the equation Ψ∞ = 0 admits En−1(∞,0+) as unique
solution. Therefore, when β → ∞, the equilibrium En−1(β ,0+) tend to En−1(∞,0+).

As a corollary of the previous proposition, we obtain

Corollary 5.11 The total equilibrium population X∗T (β ,0
+) of (5.10) satisfies:

X∗T (+∞,0+) =
Kn

δn

n

∑
i=1

δi.

Moreover, if the matrix Γ is symmetric, then X∗T (+∞,0+) = nKn.

Proof 24 Consequence direct of the formula En−1(∞,0+) and the approximation (5.14).

5.3 Two blocks of patches, where the growth rates of the first block
are much larger than of the second one

We propose here to study the model (1.1)(1.3)(1.11). We have the theorem:

Theorem 5.12 Let (x1(t,ε), . . . ,xn(t,ε)) be the solution of the system (1.1)(1.11) with
initial condition (x0

1, . . . ,x
0
n) satisfying x0

i ≥ 0 for i = 1, . . . ,n. Let z(t) be the solution of
the system:

ẋ = ψ(x)+β (Lx+UK) =: ϒ(x), (5.26)

with initial condition zi(0) = x0
i for i= 1, . . . ,m, x= (x1, . . . ,xm)

T ,L := (γi j)m×m is the sub
matrix of the matrix Γ, obtained by dropping the n−m last row and the n−m last column
of Γ,U := (γi j)m×(n−m) is the sub matrix of the matrix Γ, obtained by dropping the n−m
last row and the m first column of Γ, K is the vector defined by K := (Km+1, . . . ,Kn)

T , and

ψ(x) = (r1x1(1− x1/K1), · · · ,rmxm(1− xm/Km))
T . (5.27)

Then, when ε → 0, we have

xi(t,ε) = zi(t)+oε(1), i = 1, . . . ,m uniformly for t ∈ [0,+∞) (5.28)

and, for any t0 > 0, we have

xi(t,ε) = Ki +oε(1), i = m+1, . . . ,n uniformly for t ∈ [t0,+∞). (5.29)

Proof 25 The same proof of Theorem 4.1.
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5.3.1 Study of the reduced model (5.26)

It is clear that the positive cone Rm
+ is positively invariant for the model (5.26), and for

any non-negative initial condition, the solution of the reduced model is bounded, for all
t ≥ 0. Now, we prove the result:

Lemma 5.13 Assume that the matrix Γ is irreducible. The reduced model (5.26) does not
admits the origin as equilibrium.

Proof 26 We suppose that the origin is a equilibrium of (5.26), then ϒ(0) = 0, which
equivalent to UK = 0, i.e γi j = 0 for all i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . ,n}. So, we
obtain a contradiction since Γ is irreducible.

Theorem 5.14 Assume that the two matrices L and Γ are irreducible. The reduced model
(5.26) admits unique equilibrium point in the interior of the positive cone Rm

+ \{0} which
is GAS, denoted by Em(β ,0+).

Proof 27 We use Theorem of Hirsch [23] as in proof of Theorem 5.9.

The behavior of the reduced model (5.26) for large migration rate, i.e β →∞, is given by:

Proposition 5.15 we have:

lim
β→+∞

Em(β ,0+) =−L−1UK.

Proof 28 Denote Em(∞,0+) :=−L−1UK. The equilibrium point Em(β ,0+) is the unique
solution in the positive cone of the equation Ψβ = 0, where

Ψβ (x) := ψ(x)+β (Lx+UK) = 0. (5.30)

Taking the limit β → ∞, in (5.30) we get

Ψ∞(x) := Lx+UK = 0. (5.31)

Since, the matrix L is invertible, then the equation Ψ∞ = 0 admits Em(∞,0+) as unique
solution. Therefore, when β → ∞, the equilibrium Em(β ,0+) tend to Em(∞,0+).

6 Conclusion
The aim of this paper is to study the effect of the dispersal on the dynamic of the total
equilibrium population under the hypothesis that some growth rates are much larger than
the other in the multi-patch logistic model.

In Section 3, we consider the two-patch model in the case when one growth rate is
much larger than the second one. First, by perturbation arguments, we give a approxima-
tion of the solutions of the system in this case. Next, we compare the total equilibrium
population with the sum of two carrying capacities.

In Section 4, first, we study three-patch model under the assumption that two growth
rates are much larger than the third one. We compute the derivative at β = 0 of the total
equilibrium population and also we give the formula of perfect mixing. Next, we compare
the total equilibrium population with the sum of the three carrying capacities. Second, we
study three-patch model under the assumption that one growth rate is much larger than
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the two other. Our results prove the numerical simulation of [13]. In particular, we prove,
under certain conditions on the parameters of the system, the existence of two positive
values of β solutions of the following equation:

Total equilibrium population=Sum of three carrying capacities.

In Section 5, we generalize some results of the sections 3 and 4. In particular, we
determine the reduced models and we prove their global stability using Hirsch’s theorem
[23] in the following cases:

• All growth rates but one are much larger than the last one.

• One growth rate is much larger than all other.

• Two blocks of patches, with the growth rates of the first block are much larger than
of the second one.

We give also the formula of the perfect mixing for the three previous cases.
Some questions important remain open: for example, for three-patch logistic model,

is it possible to a complete comparison between the total equilibrium population and the
sum of the three carrying capacities without the hypothesis that some growth rates are
much larger than the other. I think this question is difficult and requires a lot of work and
mathematical tools.

A Global stability of the reduced model (4.15)

In this section, we prove the global stability of the reduced model (4.15). First, we start
by study the existence and uniqueness of equilibrium points. We have the result:

Proposition A.1 Assume that the matrices Γ = (γi j)3×3 and

L =

[
−(γ21 + γ31) γ12,

γ21 −(γ12 + γ32)

]
are irreducible. Then, the reduced model (4.15) ad-

mits a unique equilibrium in the interior of the positive cone R2
+ \{0} for all β .

Proof 29 The equilibrium of (4.15) is a solution of the following system of equations:
0 = r1x1

(
1− x1

K1

)
+β (−(γ21 + γ31)x1 + γ12x2 + γ13K3),

0 = r2x2

(
1− x2

K2

)
+β (γ21x1− (γ12 + γ32)x2 + γ23K3).

(A.1)

The system (A.1) does not admits the origin as solution. Indeed, we suppose that the
origin is a solution of (A.1), then γ13 = γ23 = 0. So, we obtain a contradiction since Γ is
irreducible. Note that, as the matrix L is irreducible, then γ12 6= 0 and γ21 6= 0. Solving
the first equation of (A.1) with respect to x2 and the second with respect to x1 we get:

P1 : x2 =
α1

βγ12
x2

1 +
β (γ21 + γ31)− r1

βγ12
x1−

γ13

γ12
K3.

P2 : x1 =
α2

βγ21
x2

2 +
β (γ12 + γ32)− r2

βγ21
x2−

γ23

γ21
K3.

(A.2)

The two equations of (A.2) define simply the two isoclines of (4.15). The isocline P1 is
a parabola, which is convex downward and intersect the first axis in two points. Indeed,
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the equation P1(x1) = 0 must have two real roots and one of them must be a non-positive
root and the other is non-negative. Likewise for the other isocline, P2 is a parabola,
which is convex leftward and intersect the second axis in two points, one is non-positive
and the other is non-negative. So, these two isoclines have a unique intersection in the
interior of the positive cone denoted E ∗(β ,0+) which is depend a the migration rate ( see
figure 2).

O x1

E ∗(β ,0+)

x2
P1

P2

O x1

E ∗(β ,0+)

x2
P1

P2

O x1

E ∗(β ,0+)

x2
P1

P2

Figure 2: All possible configurations for the isoclines of the system (A.1) (in red for x1
and in blue foor x2) for certain parameters. The equilibrium points are the intersection
between these two isoclines, this intersections contains the positive point E ∗(β ,0+).

In the following, our aim is to show the global stability of the equilibrium E ∗(β ,0+).
For this, we need some results. First, for the non-negativity and boundedness of the
solutions of the reduced model (4.15), we have the following result:

Lemma A.2 For any non-negative initial condition, the solutions of system (4.15) remain
bounded, for all t ≥ 0. Moreover, the set

Λ =

{
(x1,x2) : x1 + x2 ≤

ξ ∗2
ξ ∗1

}
, (A.3)

where ξ ∗1 = min{1+βγ31,1+βγ32} and ξ ∗2 = (r1+1)2

α1
+ (r2+1)2

α2
+β (γ13+ γ23)K3, is pos-

itively invariant and is a global attractor for the system (4.15).
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Proof 30 To show that all solutions are bounded, we consider the quantity defined by
XT (t) = x1(t)+ x2(t). So, we have

ẊT (t) = r1x1

(
1− x1

K1

)
+ r2x2

(
1− x2

K2

)
+β (−γ31x1− γ32x2 +(γ13 + γ23)K3) (A.4)

For all ri and Ki positive, we have the following inequality

rixi

(
1− xi

Ki

)
≤−xi +

(ri +1)2

αi
i = 1,2. (A.5)

Substituting Equation (A.5) in the equation (A.4), we get

ẊT (t)≤−x1 +
(r1 +1)2

α1
− x2 +

(r2 +1)2

α2
+β (−γ31x1− γ32x2 +(γ13 + γ23)K3). (A.6)

Therefore
ẊT (t)≤−ξ

∗
1 XT (t)+ξ

∗
2 , for all t ≥ 0, (A.7)

which gives

XT (t)≤
(

XT (0)−
ξ ∗2
ξ ∗1

)
e−ξ ∗1 t +

ξ ∗2
ξ ∗1

, for all t ≥ 0. (A.8)

Hence

XT (t)≤max
(

XT (0),
ξ ∗2
ξ ∗1

)
, for all t ≥ 0. (A.9)

Therefore, the solutions of system (4.15) are positively bounded and defined for all t ≥ 0.
From (A.8) it can be deduced that the set Λ is positively invariant and it is a global
attractor for the system (4.15).

We have also the following property:

Lemma A.3 System (4.15) admits no periodic solution.

Proof 31 Let fi be the right hand side of the system (4.15). Then

∂ f1

∂x1
+

∂ f2

∂x2
= r1 + r2−2(α1x1 +α2x2)−β (γ21 + γ31 + γ12 + γ32)

=−
(

dP1

dx1
+

dP2

dx2

)
< 0.

So, by Dulac’s Criterion [22, Theorem 4.1.1], the system (4.15) admits no periodic solu-
tion.

Theorem A.4 The equilibrium E ∗(β ,0+) of (4.15) is GAS for all β .

Proof 32 The Jacobian matrix of the system (4.15) at E ∗(β ,0+) is given by:

J(E ∗) =
[

θ1 βγ12
βγ21 θ2

]
, (A.10)
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where θ1 = r1−2 r1
K1

x∗1(β ,0
+)−β (γ21+ γ31), and θ2 = r2−2 r2

K2
x∗2(β ,0

+)−β (γ12+ γ32).
We have:

0 <
dP1

dx1
(x∗1(β ,0

+),x∗2(β ,0
+)) = 2

α1

βγ12
x∗1(β ,0

+)+
β (γ21 + γ31)− r1

βγ12
,

=− 1
βγ12

(
r1−2

r1

K1
x∗1(β ,0

+)−β (γ21 + γ31)

)
,

=− 1
βγ12

θ1.

Therefore, θ1 < 0. By the same method, we obtain that θ2 < 0. This implies that tr(J(E ∗))=
θ1 +θ2 < 0, where tr means the trace.
It’s clear that, at the equilibrium E ∗:

dP1

dx1
(E ∗)>

(
dP2

dx2
(E ∗)

)−1

, (A.11)

which gives
θ1

−βγ12
>
−βγ21

θ2
. (A.12)

Thus, detJ(E ∗) = θ1θ2−β 2γ12γ21 > 0. Hence by the Routh-Hurwitz criteria for stability,
the real parts of the the eigenvalues value of the Jacobian matrix are negative, proving
that E ∗ is asymptotically stable. Lemmas A.2 and A.3 imply that there cannot be any non-
trivial closed paths lying in the interior of the positive quadrant and hence the stability
must be global.

B The second derivative of the total equilibrium popula-
tion (4.23) at β = 0

We consider the reduced model (4.15). The steady state (x∗1(β ,0
+),x∗2(β ,0

+)) is the
solution of the set of algebraic equations:

0 = r1x∗1(β ,0
+)

(
1− x∗1(β ,0

+)

K1

)
+β (−(γ21 + γ31)x∗1(β ,0

+)+ γ12x∗2(β ,0
+)+ γ13K3),

0 = r2x∗2(β ,0
+)

(
1− x∗2(β ,0

+)

K2

)
+β (γ21x∗1(β ,0

+)− (γ12 + γ32)x∗2(β ,0
+)+ γ23K3).

(B.1)
The derivative of (B.1) with respect to β gives

0 =

[
r1−2

r1

K1
x∗1(β ,0

+)−β (γ21 + γ31)

]
dx∗1
dβ

(β ,0+)+β
dx∗2
dβ

(β ,0+)

−(γ21 + γ31)x∗1(β ,0
+)+ γ12x∗2(β ,0

+)+ γ13K3,

0 =

[
r2−2

r2

K2
x∗2(β ,0

+)−β (γ12 + γ32)

]
dx∗2
dβ

(β ,0+)+β
dx∗1
dβ

(β ,0+)

+γ21x∗1(β ,0
+)− (γ12 + γ32)x∗2(β ,0

+)+ γ23K3.

(B.2)

For β = 0,x∗1(0,0
+) = K1 and x∗2(0,0

+) = K2, the equations (B.2) become
0 =−r1

dx∗1
dβ

(0,0+)− (γ21 + γ31)K1 + γ12K2 + γ13K3,

0 =−r2
dx∗2
dβ

(0,0+)+ γ21K1− (γ12 + γ32)K2 + γ23K3.
(B.3)
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Therefore 
dx∗1
dβ

(0,0+) =
1
r1

(−(γ21 + γ31)K1 + γ12K2 + γ13K3) ,

dx∗2
dβ

(0,0+) =
1
r2

(γ21K1− (γ12 + γ32)K2 + γ23K3) .
(B.4)

The derivative of (B.2) with respect to β gives

0 =

[
r1−2

r1

K1
x∗1(β ,0

+)−β (γ21 + γ31)

]
d2x∗1
dβ 2 (β ,0

+)−2
r1

K1

(
dx∗1
dβ

(β ,0+)
)2

−(γ21 + γ31)
dx∗1
dβ

(β ,0+)+β
d2x∗2
dβ 2 (β ,0

+)+
dx∗2
dβ

(β ,0+)− (γ21 + γ31)
dx∗1
dβ

(β ,0+)

+γ12
dx∗2
dβ

(β ,0+),

0 =

[
r2−2

r2

K2
x∗2(β ,0

+)−β (γ12 + γ32)

]
d2x∗2
dβ 2 (β ,0

+)−2
r2

K2

(
dx∗2
dβ

(β ,0+)
)2

−(γ12 + γ32)
dx∗2
dβ

(β ,0+)+β
d2x∗1
dβ 2 (β ,0

+)+
dx∗1
dβ

(β ,0+)− (γ12 + γ32)
dx∗2
dβ

(β ,0+)

+γ21
dx∗2
dβ

(β ,0+).

(B.5)
Hence

0 =

[
r1−2

r1

K1
x∗1(β ,0

+)−β (γ21 + γ31)

]
d2x∗1
dβ 2 (β ,0

+)+β
d2x∗2
dβ 2 (β ,0

+)

−2
r1

K1

(
dx∗1
dβ

(β ,0+)
)2

−2(γ21 + γ31)
dx∗1
dβ

(β ,0+)+(1+ γ12)
dx∗2
dβ

(β ,0+),

0 =

[
r2−2

r2

K2
x∗2(β ,0

+)−β (γ12 + γ13)

]
d2x∗2
dβ 2 (β ,0

+)+β
d2x∗1
dβ 2 (β ,0

+)

−2
r2

K2

(
dx∗2
dβ

(β ,0+)
)2

−2(γ12 + γ32)
dx∗2
dβ

(β ,0+)+(1+ γ21)
dx∗1
dβ

(β ,0+).

(B.6)

For β = 0,x∗1(0,0
+) = K1 and x∗2(0,0

+) = K2, the equations (B.6) become

0 =−r1
d2x∗1
dβ 2 (0,0

+)+2
r1

K1

(
dx∗1
dβ

(0,0+)
)2

−2(γ21 + γ31)
dx∗1
dβ

(0,0+)

+(1+ γ12)
dx∗2
dβ

(0,0+),

0 =−r2
d2x∗2
dβ 2 (0,0

+)−2
r2

K2

(
dx∗2
dβ

(0,0+)
)2

−2(γ12 + γ32)
dx∗2
dβ

(0,0+)

+(1+ γ21)
dx∗1
dβ

(0,0+),

(B.7)

where
dx∗1
dβ

(0,0+) and
dx∗2
dβ

(0,0+) are given by (B.4). Therefore


d2x∗1
dβ 2 (0,0

+) =
2

K1

(
dx∗1
dβ

(0,0+)
)2

− 2
r1
(γ21 + γ31)

dx∗1
dβ

(0,0+)+
1
r1
(1+ γ12)

dx∗2
dβ

(0,0+),

d2x∗2
dβ 2 (0,0

+) =
2

K2

(
dx∗2
dβ

(0,0+)
)2

− 2
r2
(γ12 + γ32)

dx∗2
dβ

(0,0+)+
1
r2
(1+ γ21)

dx∗1
dβ

(0,0+).

(B.8)
The sum of the equations in (B.8) give the second derivative of the total equilibrium.
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