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Abstract. Deep learning has become increasingly prevalent in a wide range of engineering 

contexts. In this work, we tried to make a connection between the groundwater engineering 

community and the field of deep learning. Natural convection in porous media is usually 

simulated using common numerical modeling tools with high computational costs. In this 

work, we aim to use supervised learning in input-output pairs (porous media characteristics- 

heat map distribution) in an image regression task, employing an encoder-decoder 

convolutional neural network (ED-CNN) to develop a meta-model that is able to predict the 

distribution of heat map resulting from a natural convection process in porous media or to 

estimate the characteristics of the porous domain when the heat map distribution is given. 

In order to achieve this objective, a training data set of  samples is prepared using Comsol 

Multiphysics numerical modeling and is trained with the proposed encoder-decoder CNN. 

We also employed several evaluation metrics such as root mean squared error (RMSE), 

coefficient of determination (𝑅2-score) to assess the robustness of the developed network. 

We observed promising results in both approaches, as well as accuracy and speed, 

indicating the network's relevance in a variety of groundwater engineering applications to 

come in the future. 

Keywords: natural convection; porous media; convolutional neural network; encoder-

decoder. 

1 Introduction 

Natural convection is an important concept in porous media problems [1]. It is encountered in 

several applications such as in heat storage in aquifers, CO2 sequestration in geological 

formations, geothermal energy extraction, and geological deposition of nuclear waste. Physics-

based numerical models are commonly used for simulating natural convection in porous media. 

Despite the effectiveness of these models in most cases, they encounter some critical challenges. 

One key challenge is the computational time cost, which is more noticeable at large time and 

space scales, especially in repetitive runs. In recent years, several meta-models, such as 

polynomial chaos expansions and feed-forward neural networks, have been proposed in order to 

reduce the simulation time of natural convection models. These meta-models have demonstrated 

acceptable performance in low-dimensional domains, but they do not scale well to high-

dimensional problems [2]. To overcome this challenge, we propose the use of a convolutional 

neural network (CNN) architecture [3]. We apply the proposed ED–CNN in the context of 
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'image-to-image regression to (a) estimate the entire heat distribution resulting from a specified 

permeability or (b) estimate the permeability from a heat map. 

2 Methodology 

We first develop a numerical model based upon a hypothetical square porous media example, 

generating heat map distribution images as training data. Each image references a unique value 

of a porous domain characteristic, known as the Rayleigh number. The generated data are then 

trained and validated using an encoder-decoder CNN, and results are analyzed using various 

methods. 

2.1 Example description and governing equations   

A hypothetical, two-dimensional saturated square porous media is considered. As demonstrated 

in Fig. 1, Dirichlet temperature boundary conditions are assigned to the side walls. 𝑇𝐿 and 𝑇𝑅 

have constant values and 𝑇𝐿 > 𝑇𝑅. We also consider Neumann boundary conditions for the 

bottom and the upper boundaries, which emphasizes impermeable and thermally adiabatic 

conditions. The flow is assumed to be steady-state with a Newtonian and incompressible fluid 

following Darcy's law. The test case is a homogeneous media, with equal hydraulic and thermal 

properties considered as Rayleigh number (Ra). The natural convection in porous media is 

explained by the heat transfer equation showing the energy balance, the continuity equation for 

mass balance, coupled with a variable fluid density function. The governing equations are [4]:  
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Where 𝑢(
𝑚

𝑠
) and 𝑣(

𝑚

𝑠
) are velocity in the 𝑥 and 𝑦 directions, respectively, 𝑝 is the pressure, and 

𝑇 is temperature. The dimensionless Rayleigh value is defined while 𝑘 (𝑚2) is hydraulic 

conductivity, 𝜌𝑐  (𝑘𝑔/𝑚3) is the fluid density, 𝛽(1/𝐾) is the fluid thermal expansion, 𝑔(𝑚/𝑠2) is 

the acceleration due to gravity, ∆𝑇 (K) is the temperature gradient between the left and right 

walls (i.e., 𝑇𝐿 −  𝑇𝑅), 𝐻 (𝑚) is the size of the domain, 𝜇 (𝑘𝑔/𝑚. 𝑠) is the fluid viscosity, and 𝛼 

(𝑚2/𝑠) is the medium equivalent thermal diffusivity coefficient.  



 

Fig.1. Schematic of the problem domain 

2.2 Training Data preparation 

In order to train the CNN models, we generated data using a COMSOL Multiphysics model, 

solving the above-mentioned equations, which takes about 600 minutes to reach a steady state. 

Using uniform probability distribution, sampling is done using Latin hypercube sampling, and 

independent Rayleigh numbers are chosen on the interval [10, 210] to generate 2000 heat map 

images. To train an image-to-image regression model, we converted the Rayleigh value numbers 

to 32×32 images using Numpy and Matplotlib packages, each representing a specific Rayleigh 

value pertaining to a heat map image and pixel values of images are normalized between 0 and 

1 in the preprocessing step of neural network training. All pixels of Rayleigh images have the 

same values for each image due to homogeneity; this is because we are developing a 

methodology, and though it might seem counterintuitive, we are using a homogeneous case as a 

first step. The input-output pairs are used to train an encoder-decoder CNN. 

2.3 Encoder-Decoder CNN 

We employ an encoder-decoder architecture for this problem, consisting of two separate 

subnetworks; encoder is a subnetwork that extracts features through a contracting process, 

followed by a decoder, which reconstructs the image [5],[6]. Decoder CNNs usually have the 

same network architecture as encoders, except that they are oriented in the opposite direction 

[7]. They recover the spatial resolution lost at the encoder by deconvolution and up-sampling 

and construct output maps based on the feature maps from the encoder [8],[9]. After data 

preparation, we trained the model with a maximum number of 2,000 samples, where 50% are 

used for training, 30% for validation, and 20% for testing. We developed two ED-CNNs, one as 

a meta-model and the other as an optimizer. The meta-model is trying to estimate the heatmap 

distribution as an output while the input Rayleigh parameter images are fed to the model. 

Furthermore, a similar methodology has also been employed to develop a model that acts as an 

optimizer to estimate the Rayleigh number from the heat distribution. The ED-CNN models have 

been developed using Keras and Tensorflow python machine learning libraries. Fig.2 shows our 

proposed ED-CNN [2], which is constructed using convolutional layers, each of which is 

followed by a batch normalization layer, which regularizes the network while enhancing the 



accuracy [10] Two times, down-sampling and rebuilding is done using two pooling layers and 

two upsampling layers, respectively in the middle of the network. Furthermore, the activation 

function is rectified linear unit (Relu), but the sigmoid function is also used in some layers, and 

the loss function is mean squared error. The model is trained with 300 epochs using batch size 

24 and the learning rate of 0.0001 with Adam optimizer.  

 
Fig 2. The architecture of the proposed encoder-decoder CNN 

3 Result and discussion 

3.1  CNN as meta-model 

Different numbers of training input-output images (including 100, 500, 1000, and 2000) 

generated from the numerical model are employed to train the proposed networks. Two 

evaluation criteria are used to assess the performance of the developed ED-CNN modes: (1) the 

root mean squared error (RMSE) [11], and (2) the coefficient of determination (𝑅2-score), a 

number that shows a good prediction as it gets closer to 1 [12]. 
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Fig3.a illustrates RMSE decay with different numbers of sample sets. It is apparent from the plot 

that training the network with about 60 epochs could be enough to reach a stable value of errors. 

Increasing the number of samples to 2000, the RMSE converges to an acceptable value of 

0.0186. Fig3.b shows 𝑅2-score changes with the number of samples. As it is apparent from the 

plot, increasing the number of samples from 100 to 2000 samples slightly improves the accuracy, 

which is more than 0.97, conforming the RMSE plot results. As an example of the results, the 

performance of ED-CNN used as the meta-model is visualized for a specific value of the 

Rayleigh number in Fig4 using different numbers of sample sets to assess the effect of the 

number of samples. In this figure, we compare the CNN's predicted heat map with the numerical 

modeling result, which shows a prediction with a decreasing error as we increase the samples 

from 100 to 2000. Using only 100 images shows a noticeable spatial error with a total error of 



0.05, but increasing samples to 2000 decreases the total error to about 0.01. The spatial 

distribution of the error, that is, the absolute value of the difference between CNN and numerical 

model predictions of temperature, is calculated pixel by pixel. In the meta-model case, we can 

see that in the middle of the domain, errors are more prominent. 

  
Fig 3. a) RMSE(K) and b) 𝑅2-score ED-for CNN as meta model 
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Fig 4.  Real and predicted heat map comparison for different number of samples for CNN as meta-model 

3.2 CNN as an optimizer 

To evaluate the proposed network for parameter estimation, the same performance metric, 

RMSE and 𝑅2-score are employed. Fig5 a. illustrates the RMSE decay with the number of 

epochs. It can be inferred from the plot that increasing the number of samples from 100 to 500 

significantly decreases the error while using more than 500 does not affect the RMSE noticeably; 

this fact is also approved by Fig5. b, while using 500 samples instead of 100, enhances the 𝑅2-

score from 0.59 to a value of more than 0.98. The other assessment method is shown in Fig. 6 

as a scatter plot, comparing the predicted and actual values using a maximum training data of 

2000. As it is apparent from the plot, the majority of predicted and real cases cluster around the 

45° line, approving the network's effectiveness. Furthermore, an exemplary table of random 

predicted and test values also confirms the robustness of the network showing a deficient relative 

error.  

 

  
Fig5. a) RMSE(-) and b) 𝑅2-score for ED-CNN as optimizer 

 



 
Fig 6. Real and predicted Rayleigh value scatter plot 

 

Table 2. Relative error of real and predicted Rayleigh value for random test cases 

Real Rayleigh number 
Predicted Rayleigh 

number 
Relative error (%) 

49.11 50.16 2.13 

56.25 57.30 1.86 

60.0 60.8 1.33 

89.4 89.8 0.44 

117.5 117.7 0.17 

192.68 190.16 1.30 

 

4. Conclusion 

In this paper, we have developed an encoder-decoder CNN to achieve a meta-model and 

optimizer for natural convection problems in porous media, considering the time cost and 

accuracy of the model. We initially generated 2000 heat map images; The data is then trained 

using similar architectures as meta-model and optimizers. It is apparent from the accurate results 

that the proposed methodology can be employed as a tool for estimating natural convection heat 

distribution as a meta-model and estimating the properties of the porous cavity in inverse 

modeling. It is also observed that this network is trained in about 40 minutes while the numerical 

modeling process takes more than 600 minutes, which means it saves time, more than 93% 

compared to numerical modeling tools, showing its robustness in solving the time cost problem. 

In summary, this network can be used as a meta-model and optimizer and should be also useful 

for uncertainty analysis. 
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