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(LOV), Villefranche-sur-mer, France

Keywords—Zooplankton, Volume, Biomass, Copepod, Geometrical model,
in situ imaging.

1



Abstract

Accurate plankton biomass estimations are essential to study ma-
rine ecological processes and biogeochemical cycles. This is particu-
larly true for copepods, which dominate mesozooplankton. Such esti-
mations can efficiently be computed from organism volume estimated
from images. However, imaging devices only provide 2D projections
of 3D objects. The classical procedures to retrieve volumes, based on
the Equivalent Spherical Diameter (ESD) or the best-fitting ellipse,
are biased. Here, we present a method to correct these biases. First
a new method aims to measure body area and fit an ellipse. Then,
the body of copepods is modeled as an ellipsoid whose 2D silhouette
is mathematically derived. Samples of copepod bodies are simulated
with realistic shapes/sizes and random orientations. Their total vol-
ume is estimated from their silhouettes using the two classical meth-
ods and a correction factor is computed, relative to the known, total,
volume. On real data, individual orientations and volumes are un-
known but the correction factor still holds for the total volume of a
large number of organisms. The correction is around -20% for the
ESD method and +10% for the ellipse method. When applied to a
database of ∼150,000 images of copepods captured by the Underwa-
ter Vision Profiler, the corrections decreased the gap between the two
methods by a factor of 54. Additionally, the same procedure is used
to evaluate the consequence of the bias in the estimation of individ-
ual volumes on the slopes of Normalised Biovolume Size Spectra and
show that they are, fortunately, not sensitive to the bias.

Introduction
Plankton forms an extremely diverse community (de Vargas et al., 2015)
and its members are keystone components of Earth’s biosphere. First, pho-
tosynthetic plankton is responsible for about half of the fixation of car-
bon dioxyde from the atmosphere and therefore produces an equally large
amount of dioxygen (Behrenfeld et al., 2001). The death and excretion
of planktonic organisms result in massive amounts of carbon being se-
questered to the seabed in the form of “marine snow”; this “biological
carbon pump” is therefore an important contributor to the regulation of
climate (Volk and Hoffert, 1985). Plankton is also a critical component
of many marine food webs: it directly supports some of the largest fish-
eries on earth, off the coast of Chile for example (Thiel et al., 2007), and
some emblematic species such as corals. Finally, because plankton sim-
ply drifts, it cannot escape the conditions of the water mass it is embed-
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ded in. This makes planktonic organisms very sensitive to environmental
change. Therefore, the contribution of plankton to the important processes
described above will be influenced by the changes in Earth’s climate (Hays
et al., 2005).

To quantify these roles of plankton and their possible change in time, ac-
curate estimations of its biomass are needed. Major efforts have been made
in that direction, to aggregate estimates from various techniques in pan-
oceanic databases (Buitenhuis et al., 2013; Moriarty and O’Brien, 2013).
These assessments are unfortunately fraught with uncertainties due, for
example, to the difficulty of sampling plankton in open and deep seas, re-
sulting in an uneven coverage, and to the differences between sampling
techniques. Recently, the use of quantitative imaging instruments, i.e. au-
tomated cameras that take pictures at high frequency in a controlled man-
ner that allows the computation of concentrations, have been highlighted
as a one promising avenue for the estimation of plankton biomass and bio-
diversity at global scale (Lombard et al., 2019). However, most of these
instruments take two-dimensional pictures, which reduce the organism to
its projection on the imaged plane. The volume of organisms is estimated
from this imperfect representation, mostly using two classic approaches
detailed below (a spherical equivalent or an ellipsoidal approximation)
and then converted to carbon biomass through a factor (their carbon den-
sity). For any organism that is not perfectly spherical, both approaches
induce an error in the volume and therefore the biomass, that has been
neglected so far.

Several of these quantitative imaging instruments target mesozooplank-
ton (organisms between ∼ 200 µm and ∼ 2 mm in size), which are ma-
jor contributors to biogeochemical fluxes in the ocean (Buitenhuis et al.,
2006). Within mesozooplankton, copepods represent about 85% of organ-
isms (Longhurst, 2007) and contribute largely to the carbon flux by grazing
on smaller plankton, producing fecal pellets and dead carcasses that sink.
The intensity of that flux is proportional to the biomass of organisms, par-
ticularly those present in the surface, mixed layer (Buitenhuis et al., 2006).
Because copepods are not spherical but rather ellipsoidal (Fig. 1), the es-
timation of their volume by imaging instruments is affected by the afore-
mentioned projection error.

The purpose of the present work is to quantify the error in the estima-
tion of the total volume of copepods from a collection of two dimensional
images and to propose a correction of this estimation. This error can poten-
tially change current estimations of carbon biomass in those organisms sig-
nificantly, and its relationship with the carbon flux they generate. Both are
important parameters of global biogeochemical models (Buitenhuis et al.,
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(a) (b)

Figure 1: Examples images of copepods and theirs ellipse fits: (a) top or
bottom view, (b) side view. On these projections, the bodies of copepods
can be well approximated by ellipses, which we assume to be ellipsoids
in 3 dimensions (see Appendix S1). Ellipse fits on copepod images are ob-
tained by ZooProcess (Gorsky et al., 2010) in red, affected by the antennae,
and our method in green, that fits the prosome of the copepod better.
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2006). We start by reviewing the two standard methods to estimate the
volume of planktonic objects from their two-dimensional projection and
detail the magnitude of errors they induce. We then present our correc-
tion method, followed by an application to a global data set of copepod
images collected by the Underwater Vision Profiler (Picheral et al., 2010).
Finally we conclude and present perspectives for this work.

Standard volume estimations
To safely infer a volume in three dimensions from a shape projected in two
dimensions, the following assumptions are made:

• The distance between imaged objects and the camera is the same for
all objects (or differences are negligible).

• One of the two following statements is true.
– The size of the object is negligible compared to its distance from

the camera. Hence, even if the camera has a perspective acquisi-
tion geometry, it can be approximated well enough by a parallel
one.

– The acquisition system follows a line scanner principle (then, its
acquisition geometry is intrinsically parallel);

With these hypotheses, the imaging process can be schematically repre-
sented as in Fig. 2. All in situ plankton imagers presented in Lombard
et al. (2019) satisfy these conditions.

Then, an hypothesis on the three dimensional shape of the object has
to be made. Two standard approaches exist: a spherical equivalent and an
ellipsoidal hypothesis.

Using a spherical equivalent (MESD)
There is a unique disk with the same area A as the organism’s projected
silhouette (the silhouette of the organism as observed on the image), and
its diameter is ESD = 2

√
A
π
. The Equivalent Spherical Diameter estimation

method (MESD) makes the assumption that the volume of the organism can
be approximated by the volume of the sphere of diameter ESD, that is

VESD =
4

3
π

(
ESD

2

)3

. (1)
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Camera

Figure 2: Representation of the geometrical setup of the imaging, with
some notations: r1, r2, and r3 the true semi-axes of an ellipsoidal object,
with r1 ≥ r2 ≥ r3 by convention; ρ1, ρ2 the semi-axes of the projected el-
lipse, with ρ1 ≥ ρ2 by convention; A the area of the projected shape.

If the organisms were indeed spherical and the 3-D-to-2-D acquisition sys-
tem performs a parallel projection, then VESD would be the exact volume.

For ellipsoidal objects, like copepods, the projection silhouette is an el-
lipse of semi-axes ρ1 and ρ2, with ρ1 ≥ ρ2 by convention (see Fig. 2). Its area
is equal to πρ1ρ2. Therefore, the equivalent diameter is ESD = 2

√
ρ1ρ2. In

that case, the error of theMESD estimation can range from large underes-
timation to even larger overestimation, when the copepod is elongated in
the direction of the optical axis (Fig. 3).

Using a best-fitting ellipse (MELL)
A common alternative toMESD is to fit an ellipse shape on the projection
and construct an ellipsoid in three dimensions (MELL). It should be more
appropriate for objects of ellipsoidal shape, such as copepods (assuming
the antennae and urosome are thin/small enough for their influence on the
volume to be negligible). It proceeds as follows: (i) an ellipse is fitted on
the object silhouette, defining two semi-axes: ρ1 and ρ2 (Fig. 2), (ii) the
smallest semi-axis of the fitted ellipse (ρ2) is duplicated to form the triplet
of semi-axes of an ellipsoid, (iii) the volume is computed as

VELL =
4

3
πρ1ρ

2
2. (2)

Despite the fact that the estimation of the silhouette shape is more ap-
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Front Side Top Oblique

Method Front Side Top

True 754
MESD 243 905 1947

-68% +20% +158%
MELL 188 452 1257

-75% -40% +67%

Figure 3: Examples of volume estimations and errors made byMESD and
MELL for an ellipsoid E with (r1, r2, r3) = (12, 5, 3) (see Fig. 2 for the defini-
tion of ri). The first row displays the simulated ellipse from various view-
ing angles. The table gives, in black, the rounded values of the volume
for each method and, in colour, the percentage of under/over estimation
compared to the true value, which is computed from the ris. The indi-
vidual volume estimation error is invariant to scaling (see Appendix S2),
therefore any ellipsoid respecting r2/r1 = 5/12 and r3/r1 = 3/12 would
lead to the same error percentages. The lower right plot shows the volume
computed with each method for viewpoints regularly sampled along an
arc turning around the ellipsoid; note that theMESD estimation is always
greater than or equal to theMELL one.

7



propriate than withMESD, it still leads to errors due to the projection from
3D to 2D (Fig. 3). We can remark that, within this ellipsoid model frame-
work, VELL is always lower than or equal to VESD. Indeed, we assume ρ1 ≥ ρ2,
therefore

√
ρ1ρ2 ≥ ρ2

⇔√ρ1ρ2
3 ≥ ρ1ρ

2
2

⇔VESD ≥ VELL

with equality when the projection silhouette is a circle.

Proposed method
Instead of proposing a novel volume estimation method, our approach was
to study the errors made by the standard methodsMESD orMELL in order
to propose a procedure to compensate for these errors. Thus, the figures of
past studies could be re-interpreted in light of the proposed corrections and
marine ecologists could apply these corrections to future studies, sticking
to their standard estimation method of choice.

However, we noticed that copepod antennae, when visible, can affect,
sometimes dramatically, the measurement of the projected area of their
prosome (which constitutes the bulk of their volume) or the fitting of an
ellipse to their silhouette (Fig. 1). Therefore, as a preliminary step, we pro-
pose area estimation and ellipse fitting approaches tailored to copepods,
to eliminate that source of error. The area estimation is based on a form of
mathematical morphology opening that first performs an erosion to dis-
card the antennae and then a dilation to recover the area of the copepod
prosome. The proposed ellipse fitting method relies on the same opera-
tions for discarding the antennae and ensuring a better fit of the ellipse
(see Appendix S3 for details).

Principle for correction of total volume
To derive the correction to apply to a volume estimated withMESD orMELL,
we model the body of a copepod by an ellipsoid (i.e. in three dimensions),
study how an ellipsoid projects onto a plane, estimate the volume from its
projection usingMESD andMELL, and compare it with the known, ground-
truth volume of the ellipsoid model. This process is performed on many
ellipsoids, projected at many angles, and the correction is computed on
the overall, total, volume because it is impossible to retrieve the projection
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angle and 3-D shape from only the projected silhouette of an object in a
single imaging plane.

This process amounts to (i) neglecting the volume of the antennae and
urosome, which is an assumption implicitly made by the existing methods;
(ii) not considering acquisition phenomena such as optical response and
electronic noise, hence reducing the imaging process to the 3-D to 2-D pro-
jection onto the camera sensor plane, because those processes are not gen-
eral (i.e. camera-dependent) and most often not characterised for plankton
cameras; (iii) considering the acquisition projection parallel, which is most
often the case in our applicative context (see section Section “Standard
volume estimations”) and simplifies the theoretical study (some supple-
mentary materials still considers the more general perspective case, before
applying it to the parallel case).

Silhouette of a projected ellipsoid
An ellipsoid centered on the origin is composed of the ensemble of 3-D
points x verifying

xᵀMx = 1 (3)
where M is a real, symmetric, positive definite, 3×3-matrix whose ele-
ments are denoted by mij . The volume of the ellipsoid is defined by

V =
4

3

π√
det(M)

. (4)

MatrixM encodes the overall size, shape (semi-axes ratios) and orientation
of the ellipsoid. It can be written using a block matrix notation

M =

[
M11 Mᵀ

21

M21 m33

]
(5)

where m33 is a scalar (the dimensions of the other terms follow). If the
ellipsoid is aligned on the axes of the coordinate system, then its form is

M =

1/r2
1 0 0

0 1/r2
2 0

0 0 1/r2
3

 (6)

where the ri’s are the semi-axes.
In Appendix S1, it is shown that the silhouette of the parallel projection

of an ellipsoid is an ellipse, the two semi-axes of which are defined by

ρi =

√
m33

λi
, i ∈ {1, 2} (7)
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where

λi =
(

tr(P ) + σi
√

∆
)
/2, (8)

P = m33M11 −Mᵀ
21M21, (9)

|σi| = 1 and σ1σ2 = −1, (10)
∆ = tr(P )2 − 4 det(P ) (11)

where tr(P ) is the trace of P , det(P ) is its determinant, and the σi’s are
chosen so that ρ1 ≥ ρ2.

From these developments, we therefore have analytical (i.e. exact) defi-
nitions of an ellipsoid, its volume, its projection as an ellipse, the semi-axes
and area of this projected ellipse.

Simulation of copepod bodies
By generating random ellipsoids that realistically represent copepod body
shapes, observations of their projections on images can be simulated ex-
actly, since the ρi’s are functions of M (i.e. the semi-axes of the observed
elliptical silhouette depends on the ellipsoid size, shape, and orientation).

The simplest choice to generate ellipsoids would be to draw the semi-
axes from independent uniform distributions within appropriate ranges
—valid ranges can be found in the literature (e.g. Conway, 2012)— and
the orientation angle from an unconstrained uniform distribution. How-
ever, those parameters should ideally be adapted to the data set at hand,
since copepod sizes, shapes, and acquisition viewpoints (or orientations)
are related to environmental and imaging conditions. In the following,
we propose a way to generate ellipsoids that follow a realistic, parametric
copepod body model.

To generate random ellipsoids, one can directly generate random ma-
trices M as defined in section Section “Silhouette of a projected ellipsoid”.
Alternatively, random axis-aligned ellipsoids can be generated, which are
then randomly rotated. The advantage of this later procedure is that con-
straints are more easily imposed to create copepod bodies with realistic
proportions.

Following Eq. (6), axis-aligned ellipsoids are defined by the three semi-
axes r1, r2, and r3. Since ellipsoids will be randomly rotated next, these
values can be chosen such that r1 ≥ r2 ≥ r3 without loss of generality.
To generate random values of r1, r2, and r3, we need to define one Proba-
bility Density Function (PDF, or “distribution”) per ri. These PDFs must
be defined in accordance with the reality of copepod body shapes, either
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generically (e.g., according to the literature) or from the data at hand. Gen-
erating an ellipsoid then amounts to drawing one random semi-axis per
PDF. If the semi-axes respect the ordering condition, then the ellipsoid is
validated; otherwise, it is discarded, and a new round of random drawing
must be performed. As such, the random process is of dimension three
(r1, r2, r3) with two conditions (r1 ≥ r2 and r2 ≥ r3).

Fortunately, the process can be simplified by noting that the error made
by theMESD or theMELL method on the total volume estimation is (almost)
invariant to scaling (see Appendix S2). In other words, the error computed
from N ellipsoids defined by (r1,n, r2,n, r3,n), n ∈ [1..N ] is (almost) equal
to the error computed by the same ellipsoids each scaled by a constant
αn strictly positive (i.e. defined by (r1,n/αn, r2,n/αn, r3,n/αn)). Choosing
αn = r1,n amounts to normalizing the ellipsoids so that their largest semi-
axis is equal to one. Thus, the random process becomes two-dimensional
(defined only by the axes ratios r2/r1 and r3/r1) with only one condition
(r2/r1 ≥ r3/r1); the three, per-axis PDFs are replaced by two axes-ratio
PDFs. This has two nice consequences: a statistical one and a practical
one. Statistically speaking, to describe a random process through simula-
tion, one needs “exponentially” more samples as the dimension increases
(this is known as the curse of dimensionality). The number of samples,
N , is limited by computational constraints; thus, reducing the dimension
provides a higher quality description for the sameN . Practically speaking,
the shift from drawing semi-axes to drawing semi-axes ratios means that
the proposed method only depends on the shape of copepods (prosome
height over prosome length and prosome width over prosome length), not
on their overall size, which can be considered more general (size varies
across regions) and more stable.

The remaining question is how to define the PDFs of the semi-axes ra-
tios r2/r1 and r3/r1? As for the per-axis PDFs, two reasonable options are
literature-based and data-based. The literature may provide enough de-
tails to choose a PDF family (e.g., Gaussian) and set the parameters for
each ratio (e.g., mean and variance for Gaussian). Alternatively, the ratios
can be measured on physical samples or on images in which the copepods
are seen from side (r2/r1 ratio) and from the top or bottom (r3/r1 ratio).
Then, the required PDFs can be fitted on these measurements in a paramet-
ric (e.g., Gaussian, Beta, Gaussian mixture (Redner and Walker, 1984)) or
non-parametric way (e.g., Kernel Density Estimation, KDE (Parzen, 1962;
Scott, 1979)).

Finally, these ellipsoids, generated to match copepod body shapes, must
be rotated to simulate a random acquisition viewpoint. In the absence of a
strong a priori on the orientation of copepods relative to the camera, these
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rotations can simply be uniformly random, in all directions. But the proce-
dure can easily be adapted to generate rotations favoring preferred orien-
tations.

Corrected total volume
Once a set of N random ellipsoids with realistic proportions and various
orientations is generated, their projection silhouettes are computed follow-
ing Eq. (7), their volumes are estimated usingMESD (from the area of the
silhouettes) andMELL (from the semi-axes of the silhouettes), and the er-
ror between the total, true, volume of all ellipsoids and the sum of the es-
timated volumes is computed as

T∗ =

∑N
n=1 V

n
∗∑N

n=1 V
n

=
W∗
W

(12)

where the V ns are the true volumes of the generated ellipsoids and the V n
∗ s

are the corresponding estimated volumes by method “∗” (ESD or ELL).
Therefore,W is the true total volume of all ellipsoids in the simulation and
W∗ is the estimated total volume.

Once T∗ has been estimated from simulated ellipsoids, it can be used
to correct the total volume estimated from P actual images of copepods as
follows

Ŵ∗ =

∑P
p=1 Ṽ

p
∗

T∗
=
W̃∗
T∗

(13)

where Ṽ p
∗ is the set of volumes estimated from the acquired images by

method “∗’, W̃∗ is their total, and Ŵ∗ is the corrected total estimated vol-
ume.

Note that the proposed correction formula in Eq. (13) provides no ob-
jective element to prefer theMESD method over theMELL method, or vice
versa. Indeed, the respective correction factors theoretically allow to per-
fectly retrieve the true total volume. In practice though, theMESD method
might be a better option since the area measurement it relies on is more ro-
bust (i.e., less sensitive to acquisition noise and grayscale variations) than
the ellipse fit performed in theMELL method.

An algorithmic description of the proposed method is given in Ap-
pendix S4.
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Extension to size spectra
Plankton images are often used to estimate the size of organisms and, in
particular, to compute Normalised Biomass (or Biovolume) Size Spectra
(NBSS). Indeed, the slope of these spectra is a proxy for the efficacy of
the energy transfer from small to large organisms within an ecosystem
(Sprules and Barth, 2016). An NBSS obviously depends on the measure-
ment of the size of the organisms it encompasses and, therefore, its slope
may be affected by the error in the size estimation due to the 3-D to 2-D
projection. We will test this through a simulation procedure, similar to the
one described above, and compare the slope value computed from the vol-
umes of randomly generated ellipsoids (considered as the true value) to
that derived from estimations of volume from their projections usingMESD

andMELL .
Since the NBSS depends on absolute sizes, the simulator based on stan-

dardised ellipsoids, defined by r1 = 1 and two semi-axes ratios, must be
reverted to use directly r1, r2, and r3, although this is a less favorable sta-
tistical context (see section Section “Simulation of copepod bodies”). As
mentioned previously, the distributions of r1, r2, and r3 can be defined from
the literature or estimated from measurements. Then the constructed el-
lipsoids must be rotated, either uniformly or along a preferred orientation.

Experimental results

Data set
We applied the proposed method to a collection of 158,487 copepod im-
ages from the Underwater Vision Profiler 5 (UVP5) (Picheral et al., 2010).
Images are grayscale, with a pixel size varying from 0.086 to 0.174 mm
depending on the generation and configuration of the UVP5. These pixel
sizes are used to rescale all measurements to millimeters before computa-
tion. For each image, the area measurement and the ellipse fit had been
performed with the original image analysis software (ZooProcess). They
were carried out again following the new image processing method de-
scribed in Appendix S3. When the newly estimated volume from either
MESD or MELL was below 0.1 mm3, the copepod silhouette detection was
considered erroneous and the image was excluded from the data set. Im-
ages of partially cropped copepods (i.e. with a part of the body outside of
the image) were also excluded, since they would bias the estimation of the
area and the semi-axes. Around 2,500 images were excluded (<2% of the
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data set), leaving 155,936 copepod images for the following.

Total volume
As explained above, simulating copepod bodies for a correction of their
overall volume requires PDFs for the two semi-axes ratios r2/r1 and r3/r1

and a rotation angle. We assumed uniform random orientation of cope-
pods in the water column, since the data set is large, covers different depths
and locations on the globe, and we do not know of any justification for a
preferred orientation relative to the camera. The procedure for the axes-
ratio is described below.

Estimating shape parameters

The axes ratios were measured on 295 images in which copepods were seen
from the side and 265 images in which they were seen from the top or bot-
tom. To build these samples, operators manually selected images in which
the orientation of the copepod was clear, while constraining the selection
to obtain distributions in latitude similar to those of the whole data set and
distributions in length similar between the side and top/bottom samples
(see Appendix S5). The constraint on latitude was meant to avoid biasing
the samples towards a particular environment, since copepod morphology
varies latitudinally. The constraint in prosome length should ideally have
been checked against the whole data set, to avoid estimating the axes ra-
tios on biases samples of the ∼150k images. However, the true prosome
length, or 2 × r1 in the 3-D ellipsoid, is unknown; only 2 × ρ1, the major
axis of the projected ellipse, can be estimated. While r1 ' ρ1 in the side
and top/bottom views, r1 > ρ1 in any other view, so only the distribution
of ρ1 in the side and top/bottom views can be compared.

The PDFs for r2/r1 and r3/r1 were then estimated from the measure-
ments using a KDE with a Gaussian kernel of optimal width (Scott, 1979)
(see Fig. 4).

Computing the correction factor

Once the axes ratio PDFs were fitted to the manually selected data, we used
the simulation procedure presented above to compute the error in the es-
timation of volume T∗, for both methods. We generated over 108 ellipsoids
in order to cover the shape and orientation parameters space with a high
enough resolution and, using Eq. (12), we obtained TESD = 122% and TELL =
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(a) (b)

r2/r1 r3/r1

Figure 4: Distributions of r2/r1 (a) and r3/r1 (b) fitted on our data set. The
markers are the normalized histograms of the samples and the solid lines
are the Gaussian Kernel Density Estimates.

87%. In other words, on average,MESD overestimated the true volume by
22% whileMELL underestimated it by 13%.

Let us note that, as expected, TESD is higher than TELL, since we showed
that theMESD volume is always greater than or equal to theMELL volume.
Also, the correction factors are then simply computed as 1/TESD and 1/TELL.

These correction factors were obtained under the assumption that they
were invariant to ellipsoid scaling (Appendix S2). To verify that this is rea-
sonable, we performed a similar simulation in the (less convenient) three
parameters space (r1, r2, r3), also using 108 ellipsoids. For that purpose, the
distributions of r1, r2, and r3 were needed. The generation of these distribu-
tions is detailed in the section regarding NBSS, below. In this framework,
the errors in volume estimation were T 3D

ESD = 129%, so +6% compared to
TESD, and T 3D

ELL = 84%, -3% compared to TELL. Part of this discrepancy may
come from a coarser coverage of the parameters space in this three param-
eters case. It can be concluded that, indeed, the assumption of invariance
to ellipsoid scaling made in the proposed method is reasonable.

Estimating and correcting the total volume

We estimated the total volume of the∼150k copepods in our data set using
various approaches: theMESD orMELL method, as computed originally by
ZooProcess (ZP) or using our improved method (Appendix S3), and with
or without the corrections using the factors defined above. This is a total
of eight estimations, presented in Table 1 and Fig. 5.

In theory (i.e. copepods are ellipsoids, the imaging system has perfect
lenses and infinite resolution, surface measurements and ellipse fits are ex-
act, the simulation parameters match the reality, an infinite number of sam-
ples are generated), we should obtain the same total volume estimations
fromMESD andMELL after correction. Naturally, this is not the case in prac-
tice but we can assess the effectiveness of the proposed volume correction
by checking how the discrepancy between the MESD or MELL estimations
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Figure 5: Total volume estimated byMESD (blue) orMELL (red) estimated
with ZooProcess (ZP) or our improved measures, uncorrected (W̃) or
corrected (Ŵ). The discrepancy between methods is highlighted by the
dashed line. The proposed correction does diminish this discrepancy, al-
though there is no way to tell which result would be more realistic between
MESD orMELL before correction.
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Table 1: Table of the estimated volumes. The “Gap” column represents
the absolute value of the difference between MESD or MELL volumes. W̃ :
estimated volume without correction; Ŵ : volume corrected with the pro-
posed method; ZP subscript: the surfaces and ellipse fits were performed
using classical methods, as used in ZooProcess. Without ZP subscript:
the surfaces and ellipse fits were performed using the proposed improved
approaches (see Appendix S3).

MESD MELL Gap
Unit: ×105mm3

W̃∗ZP 7.51 4.79 2.72
Ŵ∗ZP 6.16 5.51 0.65
W̃∗ 5.57 3.95 1.62
Ŵ∗ 4.57 4.54 0.03

decreases after applying the correction. This gap is divided by 4 when
using the ZooProcess measurements and by 54 when using the improved
versions. The fact that the corrected volumes (ŴESD and ŴELL) seem to
converge is no proof that either one is the truth, but it at least suggests that
the proposed correction method brings a significant improvement.

The impact of the improved area and ellipse measurement can also be
gauged in the same way. The discrepancy is divided by 2 when comparing
W̃∗ZP and W̃∗, and by 22 when comparing the corrected versions, Ŵ∗ZP
and Ŵ∗. This illustrates that some accuracy can also be gained in these
image processing steps. Overall, if we compare the current state of the
art (uncorrected total volumes obtained using classical image processing
in ZooProcess) and the corrected total volumes obtained using improved
image processing, the discrepancy is divided by 91, bringing theMESD and
MELL estimations very close to each other.

Normalized Biovolume Size Spectrum (NBSS)
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Figure 6: (a) Relationship between r2 and r1 from 254 copepods seen from
the side, for r1 >1 mm. (b) Relationship between r3 and r1 from the 173
copepods seen from the top or bottom, for r1 >1 mm. The colored dashed
line are linear regressions fits, significant in both cases (p<0.01, R2=88% for
(a) and R2=75% for (b)). The color scale of points represents the density
of samples.

Estimating shape parameters

As explained above, NBSS relies on absolute volumes and the distributions
of the three semi-axes (r1, r2, and r3) have to be estimated. They could have
been estimated directly on the 295 + 265 samples used to estimate the dis-
tributions of ratios above. However, the distribution of r1 for the 295 cope-
pods viewed from the side shows a bias towards larger sizes, because it is
difficult to tell whether a copepod is indeed viewed from its side when it is
small (see Appendix S5). This bias has limited influence on the estimation
of the distributions of the ratios, r2/r1 and r3/r1, since the both relation-
ships r1 vs. r2 and r1 vs. r3 are fairly linear (Fig. 6). Therefore, it was
safely dismissed for the correction of the total volume, above, which relied
solely on those ratios. This is not possible anymore. Instead, we build the
distribution of r1 from the ∼150k measurements of ρ1, its projection in the
2D plane, which can be seen as an underestimated version of r1. To cor-
rect for the underestimation, we multiply the values of ρ1 by a constant,
Cr ' 1.12. This value is computed from the median r1/ρ1 ratios observed
in the previous simulation of the 108 ellipsoids projected as ellipses.

For a smoother distribution of r1, a fourth-order polynomial is fitted
on the log-distribution in the range ∼ [1.5, 5.5] mm, and extrapolated out-

18



r1 [mm]

Figure 7: Estimation of the distribution of r1 as Cr × ρ1. The blue and
orange points are the (normalised) histogram values. The black curve is
the fourth-order polynomial fit in log-space on the blue points only (size
range within which the UVP5 images copepods in a quantitative manner).

side of this interval (Fig. 7). The lower limit (1.5 mm) corresponds to the
start of the continuously decreasing section; before this, copepods are dif-
ficult to identify on UVP5 images and are undersampled. The higher limit
(5.5 mm) is the point beyond which the density of samples is too low, mak-
ing the distribution very noisy.

The values of r2 and r3 are then deduced from the value of r1, following
Fig. 6, were it can be seen that (i) r2 and r3 increase linearly with r1, (ii) the
variance around the linear fit also increases with r1.

Finally, the values of ris are generated as follows: a value of r1 is drawn
from its estimated distribution (Fig. 7), then values of r2 and r3 are drawn
from a normal distribution with mean (µ) and standard deviation (σ) com-
puted from r1: µ2 = 0.3×r1 +0.18, µ3 = 0.21×r1 +0.26, σ = 0.05×r1 (from
the fits on Fig. 6). Only samples respecting the condition r1 ≥ r2 ≥ r3 are
kept.

Comparison of NBSS

Following the procedure described above, a set of 108 realistic ellipsoids
are generated, with r1 ∈ [1,6] mm. The actual ellipsoid volumes are used
to compute the simulated ground-truth NBSS. Each ellipsoid is also pro-
jected, its volume is estimated with both MESD and MELL, and the corre-
sponding NBSS are computed. In all three cases, the bin size is 0.1 mm3 in
log space. To assess whether the volume computation method influences
the estimation of energetic transfer in the ecosystem, the slopes of a lin-
ear fit to each NBSS in the interval [1.7, 12.2] mm3 (or [1.5, 2.9] mm) are
computed (Fig. 8).

The ground-truth NBSS is between theMELL andMESD ones (in the lin-
ear part at least). More importantly, the three slopes are very close to each
other: -1.2 for the ground-truth vs. -1.1 for MESD and -1.2 for MELL. To
compare this with the range of natural variability in the data set, we com-

19



puted the NBSS from images collected in polar (absolute value of latitude
in [60◦,90◦]) and temperate (absolute value of the latitude in [20◦,40◦])
regions, between 0 and 150m depth. The slopes of these NBSS were -0.7
(polar) and -1.4 (temperate) withMESD and -0.7 and -1.6 withMELL. The
amplitude of natural variability is therefore much larger than the variabil-
ity induced by the volume estimation method. Therefore, despite the er-
rors the estimation methods induce on individual volume (Fig. 3), both
MESD andMELL seem to be valid approaches to compute NBSS and to infer
the energetic transfer efficiency through a linear fit.

Discussion
We proposed a method to improve the standard estimations of the volume
of copepods on images, which are based on a spherical equivalent or an
ellipse fit. Our method relies on (i) more accurate measurements made
on the projected silhouette and (ii) a correction factor computed from the
error on the total volume due to the projection from 3D to 2D.

For the measurements, we proposed a method to estimate the projected
area or to fit an ellipse on the copepod body only (Appendix S3), to avoid
large biases caused by the antennae (and, more rarely, the urosome). Ne-
glecting the volume of the antennae and urosome compared to that of the
prosome seems appropriate in first order, and it is essentially what the stan-
dard ellipse fit does when it is not affected by antennae. Still, the validity
of this assumption would need to be tested. The volumes of these different
parts seem difficult to measure experimentally but could be assessed from
detailed 3D scans of individuals, which we now have the technology for.
A second aspect to test is whether our method indeed fits the projected sil-
houette better than the standard one. We noticed its does, on many images
similar to Fig. 1 (see Appendix S3). The fact that we observed a signifi-
cant reduction of the discrepancy between the total volume estimated with
MESD andMELL when using this approach compared to the classic one also
suggests a gain in accuracy. However, to assess its absolute performance,
a ground-truth segmentation should be performed on a large number of
images, by having human operators paint over the pixel of the image that
belong to the prosome of the copepod. Then, a pixel-level match between
this ground-truth and the two automated approaches (the classic one and
ours) could be computed. This extremely labor-intensive effort was con-
sidered to be out of the scope of this study, especially since the proposed
method is already a clear improvement over the classic one in the worst
cases (Fig. 1 and Appendix S3).
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Figure 8: Simulated Normalized Biovolume Size Spectra (NBSS): simu-
lated ground-truth (GT) in black; estimation fromMELL (resp.MESD) in red
(resp. blue). The x-axis is given in volume (mm3) but also in Equivalent
Spherical Diameter (ESD, mm) for comparability with other work. The
dashed lines show the linear fits (which are offset vertically to improved
readability.
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The core of this study is the correction of the error due to the 3D to 2D
projection on the estimation of the total volume of copepods, and its appli-
cation to the UVP5 data set. A potential weakness of this application is that
the distributions of semi-axes ratios were estimated from a relatively small
number of images (<300 for each). Since identifying copepods in a given
orientation is very time consuming (and somehow subjective), a useful
alternative would be to train a classifier that could automatically identify
copepods seen from given angle within the total data set. Copepods were
isolated from other organisms through a combination of machine learning
and human classification, through the EcoTaxa application (Picheral et al.,
2017). The same tools were used to train a custom classifier for side vs.
top/bottom vs. other angle copepods. While it accelerated the collection of
the examples in the sample sets, it did not achieve great accuracy, largely
because of the overwhelming dominance of copepods seen from “other
angles”.

The other assumption was in the the choice of an uniform orientation
distribution. While copepods in a given environment may orient them-
selves in a particular manner, vertically towards the surface for example (Ben-
field et al., 2000), information on such behaviour is very scarce. It is, how-
ever, very likely to change with location, depth, time of day, organism
age, condition, etc. Since our data set contains >150k organisms of var-
ious sizes, from different locations and times, it is currently not possible
to assume an overall distribution different from a uniform one. In situ
imaging instruments that do not disturb the water they image, particu-
larly those that image the organisms from the side or in three dimensions
(e.g. through holography (Katz et al., 1999)), could yield more informa-
tion on this orientation behaviour. From such data, a data-driven estima-
tion of the orientation distribution could be performed. From 3D imagery
in particular, or from realistic 3D models of copepods, 2D views can be
generated and an image-to-orientation predictor can be trained. With such
data, a last alternative could be to use an Augmented Auto-Encoder Con-
volutional Neural Network (Sundermeyer et al., 2018) to generate a view
of the organism with consistent orientation from inputs taken from various
angles, hence isolating the orientation information in the innermost layer
and allowing consistent measurements on the output image.

Finally, when working on either the semi-axes ratios (for the total vol-
ume) or the semi-axes themselves (for the NBSS), we did not take into ac-
count the joint links between the three parameters r1, r2, and r3. Indeed, the
data at hand only allow to study the links between r1 and r2 (side views),
and between r1 and r3 (top/bottom views). We did not have access to the
triplet (r1, r2, r3) for any given copepod. For this purpose, again, 3D im-
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agery from a multi-camera system is necessary.
Overall, we showed that estimating the volume of copepods with an

Equivalent Spherical Diameter assumption leads to overestimating their
total volume by about 20%, while using a ellipse fit on the projection under-
estimates it by about 10%. Given that mesozooplankton represent a carbon
biomass of 0.19 PgC in the first 200 m globally and that copepods domi-
nate this biomass (Moriarty and O’Brien, 2013), such variations would be
far from negligible for global biomass estimates from images. On a data
set of 150k copepod images from the UVP5, we showed that the proposed
correction method can drastically reduce the discrepancy between the two
standard estimations, especially when used in conjunction with the im-
proved area and ellipse measurements. Despite these discrepancies in the
total volume, a similar simulation approach showed that the same meth-
ods yield accurate NBSS slopes, likely because the cumulated error in each
size bin is similar, leading to the same slope across bins. Both methods are
therefore acceptable to estimate energy transfer from size spectra measured
on 2D images.
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S1 Projection of an ellipsoid

S1.1 Geometrical setup
A centered ellipsoid is defined by all 3-dimensional vectors verifying

xᵀMx = 1 (14)
where M is a positive definite1 3 × 3-matrix whose elements are denoted
by mij . Let (i, j, k) denote an orthonormal basis, and let O denote the ori-
gin. To study how this ellipsoid projects onto a plane using perspective
projection, let us define (i) an optical center e

e =

 0
0
−ε

 (15)

where ε > 0 is such that e is outside the ellipsoid, and (ii) a projection
plane Π described by its normal

n =

0
0
1

 (16)

and its distance δ, ε > δ > 0, to the origin such that Π does not intersect the
ellipsoid. The plane Π is equipped with the orthonormal basis (u, v) where
u and v correspond to i and j respectively. Its origin OΠ is located at the
intersection between Π and the segment linking e to O. All these elements
are illustrated on Fig. S1.1.

S1.2 Ellipsoid silhouette in 3-D
For some unit vector d, let x be defined as

x = e+ τd (17)
with τ > 0 and d ·n > 0. The ellipsoid silhouette as seen from e is given by
the set of vectors d such that the half-line described by x when τ varies is
tangent to the ellipsoid2.
The point x is on the ellipsoid if and only if

(dᵀMd)τ 2 + (2dᵀMe)τ + (eᵀMe− 1) = 0, (18)
1positive definite matrices are, by definition, symmetric
2for such a vector d, there is a corresponding value for τ
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Figure S1.1: Geometrical setup of the ellipsoid model. The camera is rep-
resented by its optical center e, the sensor plane Π, and the sensor orthonor-
mal coordinate system (OΠ, u, v). The global orthonormal coordinates sys-
tem is represented by (O, i, j, k). The axes i and u are parallel, and so are
j and v. The ellipsoid center is at distance δ from Π and ε from e. Without
loss of generality (for our problem), the ellipsoid center is atO, and e is on
the axis k with the optical axis aligned with k. Consequently, OΠ is also on
the axis k.
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which is of the form
ατ 2 + βτ + γ = 0. (19)

Therefore, the half-line described by x is tangent to the ellipsoid if and only
if Eq. (19) has a unique solution3, that is if and only if β2− 4αγ = 0, which
is equivalent to

dᵀSd = 0 (20)
where S is equal to

S = Me eᵀM + (1− eᵀMe)M. (21)

The ellipsoid silhouette is defined by the solutions of Eq. (20) respecting,
as mentioned earlier, the following two conditions: |d| = 1 and d · n > 0.

Let Sε be defined as
Sε =

1

ε2
S. (22)

Note thatSε can be used in Eq. (20) in place ofS. To propose a more explicit
form of Sε, let us use the following block matrix formulation

M =

[
M11 Mᵀ

21

M21 m33

]
(23)

whereM11 is a 2× 2-matrix,M21 is a 1× 2-vector, andm33 is a scalar. Using
such a block formulation, we have

e eᵀ =

[
011 0ᵀ

21

021 ε2

]
(24)

where 0ij denotes a matrix of zeros matching the dimension of Mij .
Then

Me eᵀM = ε2
[
Mᵀ

21M21 m33M
ᵀ
21

m33M21 m2
33

]
. (25)

Similarly
eᵀMe = ε2m33. (26)

Therefore

Sε =

[
Mᵀ

21M21 m33M
ᵀ
21

m33M21 m2
33

]
−
(
m33 −

1

ε2

)
M (27)

=

[
Mᵀ

21M21 −m′33M11 (m33 −m′33)Mᵀ
21

(m33 −m′33)M21 (m33 −m′33)m33

]
(28)

3for completeness, note that this unique solution is τ = − β
2α .
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where m′33 is defined as
m′33 = m33 −

1

ε2
. (29)

So finally
Sε =

[
Mᵀ

21M21 −m′33M11 (1/ε2)Mᵀ
21

(1/ε2)M21 (1/ε2)m33

]
. (30)

S1.3 2-D silhouette
As mentioned earlier, Eq. (20) defines the silhouette of the ellipsoid in
a perspective projection setup. On plane Π, this silhouette is defined by
points p such that, for all solutions d to Eq. (20),{

p = e+ τ ′d
(p− e) · n = ε− δ (31)

where τ ′ is a scalar4. The first equation of (31) is equivalent to

d =
1

τ ′
(p− e). (32)

Equation (20) can now be rewritten in terms of p (and Sε as noted earlier)
as follows

(p− e)ᵀSε(p− e) = 0. (33)
The point p can be written as

p = OΠ + q (34)

where q is a vector whose third component is equal to 0. Using a block
formulation, we have

q =

[
q1

0

]
(35)

and
Sε =

[
S11 Sᵀ

21

S21 s33

]
. (36)

Then, Eq. (33) is equivalent to

qᵀ1Pq1 +Qq1 = r (37)
4combining the two equations of (31) together, one gets τ ′ = (ε− δ)/(d · n)
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where 5

P = S11, (38)
Q = 2(ε− δ)S21, (39)
r = −(ε− δ)2s33. (40)

One recognizes the equation of an ellipse which can be put into the fol-
lowing standard form

(q1 − c)ᵀ
(

1

r −Qc/2
P

)
(q1 − c) = 1 (41)

where c = −P−1Qᵀ/2 is the center of the ellipse.

S1.4 Semi-axes for perspective projection
Let λ1 and λ2 be the two (positive) eigenvalues of P , λ1 ≤ λ2. Then the
semi-minor and semi-major axes of the ellipse defined by Eq. (41) are

ρi =

√
r −Qc/2

λi
, i ∈ {1, 2}. (42)

Gathering everything together, ρi can be rewritten in terms ofM as follows

r = −(1− δ/ε)2m33, (43)

Q = 2
ε− δ
ε2

M21, (44)

P = Mᵀ
21M21 −

(
m33 −

1

ε2

)
M11, (45)

c = −P−1Qᵀ/2, (46)
λi = (tr(P ) + σi

√
∆)/2, (47)

|σi| = 1 and σ1σ2 = −1, (48)
∆ = tr(P )2 − 4 det(P ) (49)

where tr(P ) is the trace of P , det(P ) is its determinant, and the σi’s are
chosen so that ρ1 ≥ ρ2.

5in case P is definite negative, P , Q and r must be replaced with their opposite
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S1.5 Semi-axes for parallel projection
From the previous section, it follows that, for a parallel projection (i.e.
ε = ∞), the semi-minor and semi-major axes have the following simpler
expression

ρi =

√
m33

λi
, i ∈ {1, 2} (50)

and
P = m33M11 −Mᵀ

21M21, (51)
while λi, σi, and ∆ are unchanged. Note that δ no longer appears in the
equations.
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S2 Invariance of volume estimation error to scal-
ing

S2.1 Individual volume
This section has no direct practical application. It only presents develop-
ments useful in Appendix S2.2.

For an axis-aligned ellipsoid, M is diagonal. The diagonal components
are related to the semi-axes ri as follows

mii = r−2
i , i ∈ {1, 2, 3}. (52)

The ellipsoid volume is then classically given by

V =
4

3
πr1r2r3 (53)

=
4

3

π
√
m11m22m33

. (54)

For a general ellipsoid (i.e., any orientation), the volume is

V =
4

3

π√
det(M)

(55)

where det(M) is the determinant of M . Let V∗ denote an estimation of the
true volume V , where ∗ is ESD or ELL here. The relative error in volume
estimation is defined as

E∗ =
V∗
V
. (56)

For writing Eq. (56) for the MESD, it should be reminded that, since the
projection silhouette is an ellipse of area πρ1ρ2, the equivalent radius is
equal to √ρ1ρ2. Then, the relative errors of theMESD orMELL methods are

EESD = (ρ1ρ2)3/2
√

det(M) See Eq. (1) (57)
EELL = ρ1ρ

2
2

√
det(M). See Eq. (2) (58)

The following section demonstrates the invariance of these individual vol-
ume estimation errors to scaling, a mathematical result that strongly im-
pact the practical procedure (see Section “Simulation of copepod bodies”).

S2.2 Invariance of individual volume estimation error to
scaling

This section has no direct practical application. It only presents develop-
ments useful in Appendix S2.3.
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S2.2.1 Common remarks
The purpose is to show that EESD and EELL do not depend on the absolute
volume of the ellipsoid, which is a function of (r1, r2, r3), but rather on the
ellipsoid proportions (r2/r1, r3/r1). One way to prove this statement is to
show that E∗(αM) = E∗(M) for any α > 0. Indeed, if this holds, then choos-
ing α equal to r2

1 implies that αM is defined by the triplet (1, r2/r1, r3/r1).
Let ρ, resp. λ, be a generic notation for ρ1 and ρ2, resp. λ1 and λ2. The

other useful reminders are

ρ =

√
m33

λ
(59)

λ : eigenvalue of P (60)
P = m33M11 −Mᵀ

21M21. (61)

Let us add a subscript α to these quantities to denote their expressions
when M is replaced with αM . We have

m33,α = αm33 (62)
Pα = α2P. (63)

It is also clear that if λ is an eigenvalue of P , then βλ is an eigenvalue of
βP (Px = λx⇒ βPx = βλx) for any β 6= 0. Therefore,

λα = α2λ. (64)

Hence, it can be concluded that

ρα =
ρ√
α
. (65)

Finally, note that we have the following property on the matrix determinant

det(αM) = α3 det(M) (66)

if M is a 3× 3-matrix.

S2.2.2 MESD method
As a reminder, the relative error in volume estimation of theMESD method
is

EESD(M) = EESD(r1, r2, r3, ξ) (67)
= (ρ1ρ2)3/2

√
det(M). (68)
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Then

EESD(αM) = (ρ1,αρ2,α)3/2
√

det(αM) (69)

=
(ρ1ρ2)3/2

√
α3

√
α3 det(M) (70)

= EESD(M). (71)

S2.2.3 MELL method
As a reminder, the relative error in volume estimation of theMELL method
is

EELL(M) = EELL(r1, r2, r3, ξ) (72)
= ρ1ρ

2
2

√
det(M). (73)

Then

EELL(αM) = ρ1,αρ
2
2,α

√
det(αM) (74)

=
ρ1ρ

2
2

α
√
α

√
α3 det(M) (75)

= EELL(M). (76)

S2.3 Invariance of total volume estimation error to scaling
Let V i, i ∈ [1..n], be a set of (true) ellipsoid volumes, and let V i

∗ and E i∗ be
some corresponding estimated volumes by the method “∗” and the asso-
ciated individual volume estimation errors, respectively. The total volume
estimation error is

T∗ =

∑
i V

i
∗∑

i V
i

=
V̄∗
V̄

(77)

where X̄ denotes the average of X . Now, suppose that each ellipsoid vol-
ume is scaled by a factor αi (U i = αiV

i), for example as a result of the
normalization of the ellipsoids by dividing their semi-axes ri1, ri2, and ri3 by
ri1. How will the estimated volumes U i

∗ vary with respect to V i
∗ ? From Ap-

pendix S2.2, we know that E i∗ = V i
∗/V

i is invariant to ellipsoid scaling when
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“∗” is ESD or ELL. Therefore, U i
∗/U

i must still be equal to E i∗, which implies
that U i

∗ = αiV
i
∗ . Hence, the total volume estimation error after scaling is

T ′∗ =

∑
i U

i
∗∑

i U
i

=

∑
i αiV

i
∗∑

i αiV
i

=
αV∗

αV
. (78)

The covariance between two random variables, say a factor α and a volume
V , can be written in terms of expected values as follows

Cov(α, V ) = E[αV ]− E[α] E[V ]. (79)

The situation of practical interest here is when α is related to the normal-
ization of the ellipsoids, in which case V and α are not independent (which
would otherwise immediately guarantee that Cov(α, V ) = 0). Indeed,

α =
1

r3
1

(80)

V =
4

3
πr1r2r3. (81)

However, they are not correlated (i.e., there relationship is not linear).
Consequently, their covariance is equal to zero and

E[αV ] = E[α] E[V ]. (82)

The same conclusion can be drawn regarding the estimated volume V∗. If
the number of samples n is large enough, these results can be safely ex-
tended to average values so that

αV ' ᾱV̄ (83)
αV∗ ' ᾱV̄∗. (84)

In the end,
T ′∗ '

ᾱV̄∗
ᾱV̄

= T∗. (85)

This concludes the proof that, if the number of involved volumes is high
enough, the total volume estimation error is largely invariant to scaling.
As a consequence, the randomly generated ellipsoids used to determine
the total volume correction factor (see Sections “Simulation of copepod
bodies” and “Corrected total volume”, and, in particular, Eq. (12)) can be
safely normalized, for example by dividing their semi-axes by their largest
one.
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S3 Improved surface estimation and ellipse fit-
ting

S3.1 Common steps
The general idea of the improved methods proposed in this appendix is to
get rid of the antennae (and tail) before measuring the copepod silhouette
surface or fitting an ellipse onto it. It is assumed that the binary mask of the
copepod has been determined previously. We propose to compute the In-
ner Distance Map (IDM) of this mask and to erode it using a threshold. We
fix the threshold to max(IDM)/2.1 in our experiments. This step allows to
get rid of the antennae. Note that the binary mask could have been eroded
directly using mathematical morphology. However, it would make use of
a discrete so-called structural element (typically a discretized disk), which
would lead to a coarser eroded shape. Given the small size of a copepod
in our images, this could have a negative impact on the subsequent steps.
Next, to recover the original copepod body size, the outer distance map of
the eroded mask is computed and thresholded using the same threshold
as the one used for erosion. This amounts to dilate the eroded mask, but
again in a finer way than if using mathematical morphology. The various
steps are illustrated in Fig. S3.1.

S3.2 Surface estimation
The copepod surface estimation is performed by counting the number of
pixels of its binary mask. The improved version simply counts the pixels
of the mask obtained in Appendix S3.1 as opposed to counting the pixels
in the original binary mask which includes the antennae.

S3.3 Ellipse fitting
When an object is described by a binary mask of pixels, the most classical
ellipse fitting method interprets the pixels as the samples of a point cloud.
The covariance matrix of the cloud is computed. Its eigenvectors represent
the best fitting ellipse orientation while its eigenvalues represent the semi-
axes of the ellipse. A simple improvement of this method (or any other
ellipse fitting method as a matter of fact) consists in rescaling the ellipse so
that its area matches the object area. This is implemented by the software
ImageJ that ZooProcess (ZP), the software used to process UVP images,
uses. However, if this improvement allows to correct the fitted ellipse sur-
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(a) Input image (b) Binary mask (c) Inner dist. map

(d) Eroded dist. map (e) Outer dist. map (f) Dilated body

Figure S3.1: Copepod body mask computation as a common preliminary
step for surface estimation and ellipse fit. Reading the figure in lexico-
graphical order, each image is the result of the processing of the previous
one. They are: (a) the input grayscale image, (b) the binary mask obtained
by thresholding, (c) the inner distance map, (d) the eroded mask obtained
by thresholding, (e) the outer distance map, and (f) the dilated mask ob-
tained by thresholding (same threshold).
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face (which can be enough for some applications), it does not help that
much for copepod volume estimation. Indeed, the precision of the small
semi-axis is crucial, and it is not improved by the surface adjustment. As a
reminder, theMELL estimation of the volume is:

VELL =
4

3
πρ1ρ

2
2 =

4

3
πρ1ρ2︸ ︷︷ ︸
Surface

ρ2︸︷︷︸
Minor

semi−axis

. (86)

Alternatively, the ellipse could be fitted on the grayscale version of the ob-
ject, that is using the pixel intensities as sample weights when computing
the covariance matrix. However, we found that this alternative does not
work well on the copepod images of our data set.

Whatever the ellipse fitting method is, the starting point is the copepod
mask. The fitting methods get distracted by the antennae, which can result
in very bad ellipses (see the red ellipses in Fig. S3.2). Therefore, we pro-
posed to fit an ellipse on the mask obtained in Appendix S3.1 instead of the
original binary mask which includes the antennae (see the green ellipses
in Fig. S3.2).
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Figure S3.2: Multiple examples of ellipse fit based on the original mask in
green and for the new proposed method in red. We see that when antennae
are not visible, the result is almost the same, but when they are visible, the
classic method is not appropriate.
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S4 The proposed method, step-by-step
This section gathers the results of the different sections into a step-by-step
procedure for estimating the total volume of copepods given a data set of
2-D views. It is composed of two stages: a learning stage which has to be
performed once for all, or whenever the expert thinks the proposed simu-
lation procedure must be adapted to the data, and a “usage” stage which
can be applied at will.

S4.1 Learning stage
1. Generate random ellipsoid samples that realistically represent a generic

population of copepods, or a population following some characteris-
tics inferred from the data set. The randomness must be constrained
by the expert knowledge in the form of specific simulation parameters.

2. Compute the total volume of the ellipsoid samples. This represents
the true total volume. See Eqs. (4) and (12).

3. For each ellipsoid sample, compute the projection ellipse (see Eq. (7))
and the estimated volume using either theMESD (see Eq. (1)) or the
MELL method (see Eq. (2)).

4. Sum all the estimated volumes to get the estimated total volume.
5. Compute the total volume estimation error T∗ from the true and es-

timated total volumes (see Eq. (12)). This is the final product of the
learning stage.

S4.2 “Usage” stage
1. For each copepod image of a data set, determine the copepod silhou-

ette using an image segmentation method. On UVP images, a simple
binarization using a fixed threshold is enough.
1.a. For the MESD method, compute the silhouette area A (see Ap-

pendix S3.2) and the corresponding estimated volume (see Eq. (1)).
1.b. For theMELL method, fit an ellipse onto the silhouette (see Ap-

pendix S3.3). Let ρ1 and ρ2 be the semi-major and semi-minor
axes, respectively. Then compute the corresponding estimated
volume (see Eq. (2)).

2. Sum all the estimated volumes to get the estimated total volume W̃∗
where ∗ is either ESD or ELL.
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3. Compute the corrected total volume estimation Ŵ∗ by dividing W̃∗
with T∗ from the learning stage (see Eq. (13)).

S4.3 Algorithmic details

S4.3.1 Uniformly random rotations
This section defines the rotation matrices used to simulate random orien-
tations of ellipsoids.

In order to generate an ellipsoid with a uniformly random orientation,
we generate a random rotation matrix R and rotate an axis-aligned ellip-
soid with it. The generation of an axis-aligned ellipsoid is described in
Section “Simulation of copepod bodies”. If the axis-aligned ellipsoid is
represented by a matrix M (see Section “Principle for correction of total
volume”), then the rotated ellipsoid is represented by the matrix

Mrot = RMRᵀ. (87)

A general rotation matrix can be defined using three elementary rotation
matrices

R = Rz(Φ)Ry(Θ)Rx(Ψ) (88)
with Ri(α), i ∈ {x, y, z}, defines the rotation by angle α around axis i. To
generate a random rotation matrix, one has to randomly choose the angle
triplet (Ψ,Θ,Φ). In order to guarantee the uniformity of the ellipsoid ori-
entations, the angles Ψ, Θ, and Φ must be distributed adequately, that is

Ψ = U [0, 2π[ (89)
Θ = arccos(1− 2U [0, 1[)− π

2
(90)

Φ = U [0, 2π[ (91)

where U [a, b[ is the uniform distribution between a (included) and b (ex-
cluded).
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S5 Distribution of selected sample images
To define the real-world distribution of the semi axes of the ellipsoid repre-
senting the body of copepods (r1, r2, and r3) as well as a the ratios between
them, defining the shape of the ellipsoid (r2/r1 and r3/r1), 295 copepods
seen from the side (on which r1 and r2 are measurable) and 265 copepods
seen from the top or bottom (on which r1 and r3 are measurable) were
manually curated from a collection of >150k images.

To make sure that these small samples were representative of the whole
data set, we check their latitudinal and size (i.e. r1) distributions.

Figure S5.1: Kernel density estimate of the latitudinal distribution of the
images of all copepods and of the side or top/bottom views.

The shape of the latitudinal distribution of the side and top/bottom
views matches well that of the total data set (Fig. S5.1). The side views
shows and excess at high latitude, likely linked with a bias in the size dis-
tribution (see below; copepods are larger at high latitudes), and a linked
under-representation elsewhere. The pattern is opposite for the top-bottom
views. However, no region is completely missed in the samples and even
some details of the distribution (such as the two peaks around -40◦) are
captured. Therefore, we consider them representative enough.

r1 [mm]

Figure S5.2: Distribution of the length of the semi-major axis of the ellipse
fitted in the two views of the copepods. The vertical axis is the number of
observations, in log10 scale. The horizontal axis is the semi-major axis r1,
which is equal to ρ1 in these viewpoints and approximates the half of the
prosome length, in millimeters.

The theoretical expectation for the length distribution is an exponential
decay (Sprules and Barth, 2016), i.e. a linear decrease, in log-scale. This is
approximately true once the lower detection limit of the camera is passed,
after ∼ 1 mm (Fig. S5.2). However, the distribution of side views shows
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an excess in the size range 2 to 3.5 mm. This is likely due to the fact that
telling that a copepod is viewed from the top/bottom can be determined
from the geometry of its antennae relative to its body, no matter its size;
making sure that a copepod is viewed from the side requires additional
details, which are easier to asses on larger individuals, inducing a bias in
the manual selection of images. As explained in the main text, this has little
consequence on the estimation of the distribution of the semi-axes ratios
(r2/r1 and r3/r1) but does now allow the estimation of the distribution of
r1 from these samples only.
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