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Abstract Modeling Approach

Network model with short-term plasticity

The retina is the first stage of visual processing. The efficient coding theory
postulates that it compresses relevant visual information before sending it SFimnliaes _ .
to the brain. A long-standing hypothesis is that retinal ganglion cells, the s(t) 1. Convolution of stimulus and temporal kernel
retinal output, do not send signals about the visual scene per se, but signal X = B, Al, A2
only surprising events [1], such as mismatches between observation and -~ VT
expectation formed by previous inputs. A striking example of this is the Fx (t) — [OéX * S] (t)
Omitted Stimulus Response (Box 1) [2]. In this context, the main question of

2. Bipolar and amacrine cells integrate the
signal into their membrane potential

this study is:

which cellular mechanisms enable these
computations ?
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How can a local circuit detect ’surprise’ and O
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Box 1: The Omitted Stimulus Response 3. Ganglion cells pool over the network.
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W peaktime N N 0'5 00 e Simulated Firing Rate 4. Ganglion cell voltage response is transformed
missing flash . .- slope 1.02 R(t) into a firing rate

flash o ' - flash period [ms]

— cell response A Simple circuit with one excitatory (B), one delayed inhibitory (A2) and one

_ _ _ _ adapting inhibitory unit (Al) to form predictive responses .
The retina emits an Omitted Stimulus Response when an expected

flash in a periodic sequence is missing. The time-point of this
response scales linearly with the period of stimulus, signaling the
precise time when the next flash was expected.

Box 2 : Dvnamic Synapse

The occupancy n of the vesicle pool follows the i
kinetic equation:

Experimental Approach
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Electrophysiology T ad |
The retina is stimulated with sequences S S— The synaptic weight is scaled by n The vesicle occupancy varies
of periodic dark flashes. | Ty e— with different frequencies of
Ganglion Cell spiking is recorded via R [3] the stimulus.
multi-electrode arrays. Shown below are o o 1 ? | s d . . .
the firing rates of individual -cells, 1\\ Lh 9 &} 142 -ON bipolar cell Mechanistic Explanation Simulation e
averaged over multiple trials ,\ N IR \— OFF bipolar cell 1. Delayed inhibitory input via A2 — without adaptation
Rerv ~ l\_‘.\ 0.5
Pharmacology 77 QDTN Amacrine cel ERISE TROOHNG TREpANS Rer dam. [\ —
7 7 Bl \ \/ | end. %00 o
Pharmacological compounds selectively ) 0 )Y I 1— Ganglion Cell _ _ > ’e S
block cvnantio ransmission: . L e 2. Dynamically adapting synapse of Al " [;\ £
yhap ' 11 11 111 Spikes enables the circuit to have a fine 0 — s o
» onto ON bipolar cells I N N Electrodes temporal prediction by /: \ " -+ slope 0.93
; s B g 300 @ === 8lope 0.23
e onto OFF .blp()l.{:ll‘ cells | Retinal architecture and e Adapting the weight of T e e
e from glycinergic amacrine cells Recording Setup inhibitory inputs to the Simulated response of the mechanistic
Results stimulus frequency model can reproduce an Omitted
iy Stimulus Response including its
N 5 * Changing the amplitude and  predictive timing. Simulations without
R Omitted Stimulus Responses in 3 different peak-time of the rebound the Al unit predict a peak but do not
2. : £ retinal ganglion cells before (black) and response. capture the scaling with period.
el S s after (colored) application of
K= h',, ...slope 0.65 pharmacological compounds.
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» ON bipolar cell inhibition Conclusions & Perspectives
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T - Ranzels i ISR The retina encodes complex and rapidly moving visual scenes via its hierarchical,
= bl 240 i . . .
S Aa\__ H multilayered structure where most neurons respond by a graded variation of their
2 - ZZZ@%SEE o7 » OFF bipolar cells have no Tnelinpljane potentlal mthout spiking (except ganghm} cells). Here, we ShO’EN’ that
:eDIi ‘ e T direct effect on the OSR inhibition via amacrine cells can enable the retina to encode surprise by
z s : st 31000 S0 . . . A) evoking a response to a change in the stimulus input vial delayed inhibition and
el Ll A "slope 085 » clycinergic amacrine (A) 5 P 5 P y

inhibition cancels

.. .. B) adapting the timing of this response to the stimulus via short-term plasticity.
predictive timing (B) pLINg g P P y

12 Hz 10 Hz
delay [ms]

et an B e Besides temporal predictions on a spatially uniform stimulus, the retina has been
— control response = Bl Blocked — OFFE blocked — gly AC blocked shown to anticipate motion and to respond to changes in trajectories. Can we

extrapolate the mechanism proposed here to a more general setting, where amacrine
Ref cells enable the anticipation of a moving object [4] while short-term plasticity allows
€1erences to detect fast changes n 1ts trajectory 7
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