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Abstract
Active matter with local polar or nematic order is subject to the well-known Simha-Ramaswamy
instability. It is so far unclear how, despite this instability, biological tissues can undergo robust
active anisotropic deformation during animal morphogenesis. Here we ask under which conditions
protein concentration gradients (e.g. morphogen gradients), which are known to control
large-scale coordination among cells, can stabilize such deformations. To this end, we study a
hydrodynamic model of an active polar material. To account for the effect of the protein gradient,
the polar field is coupled to the boundary-provided gradient of a scalar field that also advects with
material flows. Focusing on the large system size limit, we show in particular: (a) the system can be
stable for an effectively extensile coupling between scalar field gradient and active stresses, i.e.
gradient-extensile coupling, while it is always unstable for a gradient-contractile coupling.
Intriguingly, there are many systems in the biological literature that are gradient-extensile, while we
could not find any that are clearly gradient-contractile. (b) Stability is strongly affected by the way
polarity magnitude is controlled. Taken together, our findings, if experimentally confirmed,
suggest new developmental principles that are directly rooted in active matter physics.

1. Introduction

Active matter is driven out of equilibrium by local injection of mechanical energy, which leads to new
properties as compared to inert matter. For instance, active matter with local polar or nematic order is
known to exhibit the well-known Simha-Ramaswamy instability [1]. This instability can lead to a
spontaneous onset of flows [2] or an instability of the homogeneously deforming state [1, 3], and it has
already been observed in several biological systems, including cytoskeletal gels [4], bacterial swarms [5, 6],
and cell monolayers in vitro [7]. However, it is so far unclear whether this instability appears also in vivo
during animal morphogenesis, and if not, how it is avoided.

One key process during animal morphogenesis is anisotropic tissue deformation, i.e. pure shear
deformation of developing tissue [8–10]. While such deformation can be driven from outside, it is often also
driven by active anisotropic stresses generated within the tissue itself [11–18]. To obtain reproducible active
anisotropic deformation, rotational symmetry needs to be broken; i.e. there needs to be some kind of
directional information encoded in the system, and biological tissues have several ways to do this. For
instance, cells in a tissue can possess a polarity, which is defined by an anisotropic distribution of certain
polarity proteins within the cell. In developing tissues, such cell polarity often exhibits large-scale ordered
patterns [19–21]. In some systems cell polarity can also induce an anisotropic distribution of the motor
protein myosin within the cells, and thus control active anisotropic stresses [11, 12]. Such active polar or
nematic materials should be prone to the Simha-Ramaswamy instability, and it is so far unclear what
prevents it during development.

Animal morphogenesis relies crucially on large-scale protein concentration patterns [8]. Such proteins,
called morphogens, are important for the long-range coordination among cells during morphogenesis. In
particular, in several tissues, morphogen gradients are also known to control the direction of cell polarity
[12, 19, 21–24]. However, it is so far unknown if such protein gradients could help stabilize anisotropic tissue
deformation.
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From a physics perspective, large-scale dynamics of biological tissues can be described using
hydrodynamic active matter models [25, 26]. Such models correspond to expansions describing deviations
away from a thermodynamic equilibrium state. They describe materials by averaging over their small-scale
features, focusing on the dynamics on long length and time scales. Indeed, in the recent past such
hydrodynamic models have been successful in describing the multiple interactions between actively driven
tissue deformation, cell polarity, and protein concentration fields [7, 17, 18, 20, 21, 27–34].

Here we use this approach to study under which conditions a gradient of a protein that advects with
tissue flows can help stabilize polarity-controlled anisotropic tissue deformation. We describe tissue flows by
a velocity field v, cell polarity by a polarity field p, and the protein concentration field by a scalar field c,
where we impose a gradient via the boundary conditions. Model details are described in section 2. To
examine this model, we first discuss the two limiting cases without polar field (section 3) and without scalar
field (section 4), before examining in detail the full model including both scalar and polar fields (section 5).
Finally, we discuss under which conditions diffusion and local polarity alignment can stabilize systems of a
finite size (section 6).

For the infinite-system-size limit, we find that gradient-contractile systems, i.e. systems with an effective
contractile coupling between scalar field gradient and active stresses, are always unstable. Stable tissue
deformation is only possible in gradient-extensile systems. Intriguingly, up to one potential exception,
effective gradient-extensile coupling is the only coupling that we could find in the biology literature across a
multitude of multi-cellular animals. We further show that the stability of deformation strongly depends on
how the magnitude of cell polarity is controlled. Taken together, our work suggests new potential
developmental principles that are directly rooted in active matter physics.

2. Model

2.1. Bulk dynamics
We study in 2D the interaction of a scalar field c(r) describing a protein concentration field, a polar field p(r)
describing cell polarity, and a velocity field v(r) describing tissue flows (figure 1(a)).

For the scalar field c we focus on simple advective, diffusive dynamics:

dc

dt
= D∂2

i c, (1)

where we write the advective time derivative as dc/dt= ∂c/∂t+ vi(∂ic), and ∂i denotes the partial derivative
with respect to the spatial coordinate ri. Here and in the following, we use Einstein notation, and we label
spatial dimensions by Latin indices i, j.

To describe polarity dynamics, we introduce an effective free energy:

F =

ˆ [
F(p)+

K

2
(∂jpi)(∂jpi)

]
d2r, (2)

where the free energy density F(p) controls the polarity magnitude p= |p|, and the second term in the
integrand controls local polarity alignment, where K > 0. The latter is the Frank free energy in the
one-constant approximation [35]. Unless stated otherwise, we will set:

F(p) =
A

2
p2 +

B

4
p4, (3)

where B> 0 and A can be either positive or negative. The case A< 0 corresponds to a polarity with a finite
preferred magnitude (FPM), whereas A> 0 corresponds to a polarity with a zero preferred magnitude (ZPM;
figure 1(b)).

We use the following polarity dynamics [26, 36]:

Dpi
Dt

=
1

γ
hi − νṽijpj +β∂ic. (4)

Here, the time derivative is a co-rotational derivative defined as Dpi/Dt= ∂pi/∂t+ vj(∂jpi)+Ωijpj with the
flow vorticity Ωij = (∂ivj − ∂jvi)/2. The first right-hand-side (rhs) term represents the relaxation of the
polarity free energy with γ > 0 being a rotational viscosity and hi =− δF

δpi
being the molecular field. The

second rhs term is a shear alignment term with coefficient ν and pure shear rate ṽij = (∂ivj + ∂jvi)/2, where
here and in the following, a tilde indicates the symmetric, traceless part of a tensor. For ν < 0, polarity tends
to locally align with the extending direction of shear flow, while for ν > 0, polarity tends to locally align with
the contracting direction of shear flow. The last rhs term is a coupling to the gradient of the scalar field with

2
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Figure 1. (a) Schematic representation of the system: the gradient of a scalar field c (left) directs a polar field p (center), which
induces active anisotroic stresses, causing flows v (right). Conversely, the flows affect the scalar and polar fields. (b) Free energy
densities for the two different polarity models discussed here, which describe polarity with zero and finite preferred magnitude,
respectively.

coefficient β. Because the dynamics is invariant with respect to the transformation (p,β) 7→ (−p,−β), we
set in the following without loss of generality β > 0.

We study tissue flow that is governed by incompressible viscous dynamics. We define the stress tensor as

σij = 2ηṽij −Πδij +σ
p
ij + σ̃a

ij, (5)

where η is the shear viscosity, Π is the hydrostatic pressure, the passive stress due to the polarity p is

σ
p
ij =

ν

2
(pihj + pjhi)−

1

2
(pihj − pjhi), (6)

and we use the following expression for the active stress:

σ̃a
ij = α

(
pipj −

p2

2
δij

)
. (7)

We use this stress tensor together with force balance and the incompressibility condition:

∂iσij = 0 (8)

∂ivi = 0. (9)

In most of the following, we focus on the infinite-system-size limit, neglecting diffusion D and Frank
coefficient K. We discuss the effect of finite D and K only in section 6. Moreover, we neglect the passive stress
σ
p
ij. This corresponds to the limit of a small polarity free energy, F → 0, while keeping F/γ constant.

Otherwise, the passive stress σp
ij can be absorbed into a redefinition of α and the hydrostatic pressure.

While more coupling terms between c, p, and v could be added to this model [25, 26], we focus here on
the terms directly supported by experimental data on animal morphogenesis [11, 12, 17, 20–22, 32]. Note
that the role of the scalar field in this model is different from earlier work, where it represented a
concentration of active agents or chemical fuel, and thus scaled the active stresses [25, 37]. Instead, here the
scalar field acts as an aligning field for the polarity [1, 3], while also being advected by tissue flows.

2.2. Boundary conditions
We study the dynamics in a rectangular periodic box of prescribed time-dependent dimensions Lx(t)× Ly(t).
Because of incompressibility, Lx(t)Ly(t) = const., and prescribing Lx(t) corresponds to prescribing the
average shear rate tensor ṽ0ij(t) with:

ṽ0xx(t) =
1

Lx

dLx
dt

, (10)

the other diagonal element is ṽ0yy =−ṽ0xx, and the off-diagonal elements vanish, ṽ0xy = ṽ0yx = 0.

3
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The boundary conditions are periodic for all fields, except for a modification for the scalar field c at the
vertical boundary. We set for all y ∈ [0,Ly):

c(0,y) = c(Lx,y)− cb (11)

with fixed cb. We introduce this modification to ensure that a linear profile c= xcb/Lx is stationary.
When prescribing not the box dimensions but an external stress anisotropy σ̃ext

ij (t), equation (5) implies

that the system will shear with rate ṽ0xx(t) = (σ̃ext
xx (t)−〈σ̃a

xx〉)/2η. We use σ̃ext
ij = 〈σ̃ij〉, where σ̃ij is the

symmetric, traceless part of σij, and 〈·〉 is the spatial average over the system. In the following, we will study
stability for any constant ṽ0xx(t). Two specific cases are: (a) a system with fixed size, ṽ0xx = 0, and (b) a freely
deforming system, σ̃ext

ij (t) = 0, which has the box deformation rate ṽ0xx(t) =−〈σ̃a
xx〉/2η.

2.3. Dimensionless dynamics
We non-dimensionalize the dynamics, equations (1)–(11), by choosing cb as unit for the scalar field,

√
|A|/B

as polarity unit, Lx(0) as length scale, |αA|/B as stress scale, and ηB/|αA| as time scale. In the rest of this
article, we use the accordingly rescaled dimensionless quantities. The dimensionless dynamical equations are

dc

dt
= D∂2

i c (12)

Dpi
Dt

=−g(p)

τ
pi − νṽijpj +β∂ic+κ∂2

j pi (13)

0= ∂2
i vj − ∂jΠ

′ + sgn(α)∂i(pipj). (14)

∂ivi = 0. (15)

Here, we defined g(p) = F ′(p)/|A|p such that with our choice in equation (3):

g(p) = sgn(A)+ p2. (16)

Here we have introduced the sign function, sgn(A) := A/|A|. We moreover introduced the dimensionless
time scale τ = γ/|A| over which the polarity magnitude relaxes, a polarity alignment coefficient κ= K/γ,
and we set Π ′ =Π+ p2/2.

In dimensionless units, the modified boundary condition becomes c(0,y) = c(Lx,y)− 1, the box
deformation rate for the freely deforming system is ṽ0xx =−sgn(α)〈p2x − p2y〉/4, and we define the box shear
lx(t) := Lx(t)/Lx(0)≡ Lx(t).

3. Scalar field only

We first discuss the special case without polar field. This can also be regarded as the limit where the polarity
relaxes to the scalar field gradient adibatically fast:

pi = ∂ic. (17)

More precisely, this corresponds to the limit β →∞ while keeping βτ = 1, and using the polarity potential
F(p) = p2/2 (i.e. g(p) = 1). As a consequence, the active stress is given by the gradient of the scalar field
σ̃a
ij = sgn(α) [(∂ic)(∂jc)− (∂kc)2δij/2], like in Active Model H [38].
Example numerical solutions of the dynamics for the freely deforming system are shown in figure 2(a):

gradient-contractile systems, α> 0, are unstable, while gradient-extensile systems, α< 0, are marginally
stable.

3.1. Fixed system size, ṽ0xx = 0
We first perform a linear stability analysis for a non-deforming system, ṽ0xx = 0, by perturbing the scalar field
c around the linear profile:

c= c0 + δc, (18)

where we defined the linear profile c0 as:

c0(r, t) =
x

lx(t)
(19)

4
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Figure 2. Linear stability for the scalar-only system, i.e. where pi = ∂ic. (a) Numerical solutions of the dynamics with a slightly
perturbed initial state. The system is unstable for gradient-contractile coupling (left), and marginally stable for gradient-extensile
coupling (right). The dashed dark line represents a c-isoline. (b), (c) Illustration of the linearized dynamics when the scalar field is
perturbed by a mode with wave vector angle ϕ= π/2. (b) Unstable behavior for gradient-contractile coupling, sgn(α) = 1, and
(c) stable behavior for gradient-extensile coupling, sgn(α) =−1. (d) Growth rate of a perturbation with given wave vector
orientation ϕ.

with r= (x,y). We obtain for the growth rate ω of a perturbation with wave vector k= k(cosϕ, sinϕ)
(figure 2(d), appendix B.2):

ω(k) :=
∂tδc(k, t)

δc(k, t)
= sgn(α) sin2ϕ. (20)

Thus, consistent with earlier work [39], the system is linearly unstable for gradient-contractile systems
(α> 0), while it is marginally stable for gradient-extensile systems (α< 0), where the only modes that do not
decay over time are those with wave vector angles ϕ= 0 and ϕ= π. The magnitudes of growth and decay
rates can thus be up to±1 in dimensionless units, which is four times the magnitude of the free deformation
rate, which is ṽfreexx =−sgn(α)/4.

Intuitively, the difference in behavior between gradient-extensile and gradient-contractile cases is
illustrated in figures 2(b) and (c), which represent the behavior of a perturbation with wave vector angles
ϕ= π/2. A perturbation δc of the scalar field (red symbols in figures 2(b) and (c)) induces to first order a
perturbation in the active stress nematic of δσ̃a

xi ∼ kiδc, which have angles of±π/4 (black double arrows).
For the gradient-extensile case (α< 0, figure 2(c)), this stress perturbation generates flows (blue arrows) that
advect regions with positive δc in positive x direction, leading to a local decrease in c due to the overall c
gradient. Hence, for the gradient-extensile case this perturbation decays. Analogously, for the
gradient-contractile case, advection leads to an amplification of the π/2 mode (figure 2(b)).

3.2. Deforming system, ṽ0xx ̸= 0
For a deforming system, the linear profile c0 (equation (19)) becomes distorted by the system’s overall
deformation, which means that it is not a stationary state with respect to the lab frame anymore. However,
stationarity is still possible with respect to ‘co-deforming’ coordinates r̄= (x̄, ȳ), which we define as (see
appendix A):

5
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x̄=
xLx(0)

Lx(t)
≡ l−1

x (t)x (21)

ȳ=
yLy(0)

Ly(t)
≡ lx(t)y. (22)

These coordinates thus map any point r in the system at time t to its affinely rescaled position r̄ at time zero.
As a consequence, the linear profile c0 does not become distorted when written in co-deforming coordinates

c0(̄r, t) = x̄. (23)

Hence, in co-deforming coordinates c0 can be regarded as stationary.
Co-deforming coordinates are useful also because they help us solve the linearized dynamics of the

system, which is required to analyze the system’s stability (appendix A.3). We find that the solutions of the
linearized dynamics are ‘co-deforming Fourier modes’:

δc(̄r, t) =

ˆ
δc(k̄, t)eīk·̄r d2k̄. (24)

We call k̄ a co-deforming wave vector. A co-deforming Fourier mode with wave vector k̄ is distorted over
time by the overall system deformation (figure 3(d), appendix A.1):

kx(k̄, t) = l−1
x (t)k̄x (25)

ky(k̄, t) = lx(t)k̄y. (26)

These relations will introduce a time dependence in the growth rate of co-deforming Fourier modes.
For the deforming scalar-only system, we obtain for the growth rate of a co-deforming Fourier mode

with wave vector k̄ (see appendix B.2):

ω(k̄, t) :=
∂tδc(k̄, t)

δc(k̄, t)
= sgn(α)

sin2ϕ(k̄, t)

l2x(t)
. (27)

Here, the angle ϕ of the lab-frame wave vector k depends on k̄ and t through equations (25) and (26). As a
consequence of the time-dependent right-hand side of equation (27), the solutions δc(k̄, t) are generally not
exponential in t any more. However, we can still discuss the stability of the system. Indeed, like in the case
with fixed system size, the system is unstable in the gradient-contractile case, α> 0, while it is marginally
stable in the gradient-extensile case, α< 0.

4. Polar field only

We now revisit the limit where the scalar field plays no role, β= 0, i.e. where our systems becomes a polar
active matter system. While such systems have been discussed before in the literature [1, 2, 25], we will shed
light on a few new aspects.

Example simulations of a freely deforming system with fixed polarity magnitude are shown in figure 3(a):
we find unstable behavior independent of the sign of the shear alignment ν.

In our discussion below, we focus here on the extensile case, α< 0. For β= 0 these results can be directly
mapped to the contractile case.

4.1. Fixed system size, ṽ0xx = 0
Here we focus exclusively on the case of a finite preferred polarity magnitude (FPM, figure 1(b)). For fixed
system size, ṽ0xx = 0, there are no stationary solutions with finite polar order for ZPM.

We briefly revisit the stability of the polar ordered state [1, 2]:

p0 = x̂, (28)

v0 = 0. (29)

The system is unstable for every value of the shear alignment coefficient ν [1]. To prepare for the later
sections, we now revisit the intuitive explanation of this for the limit of τ → 0, where the polarity magnitude
is fixed to one, |p|= 1 (figures 3(b) and (f), appendix B.3.1).

6
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Figure 3. Linear stability of the polar-only system, β= 0. (a) Simulations of a freely deforming system with fixed-magnitude
polarity and extensile active stresses, for two different values of the shear alignment parameter ν. (b) Growth rate ω of a
perturbation with angle ϕ in a system with a fixed polarity magnitude (i.e. sgn(A) =−1 and τ → 0) for three different ν values.
(c)–(e) Schematics illustrating the perturbation dynamics for three different ϕ (section 4.1). (f) Perturbation growth rate
maximized across all wave vectors, ωmax, for fixed system (blue) and freely deforming system (purple). The dashed lines represent
the growth rates of the respective bend modes (ϕ= 0). Green stars correspond to the ν values used for the simulations in panel a.
(g) Illustration of the change of the wave vector kmeasured in the lab frame (arrow) for a given co-deforming mode k̄ as the
system is sheared from lx(t) = 1 (A) to lx(t) = 2 (B; compare equations (25) and (26)). (h) Perturbation angle ϕmeasured in the
lab frame versus the box shear lx , for three different co-deforming angles ϕ̄. (i) Change of the growth rates ω of three co-deforming
perturbation modes (same as in panel (h) as the box width lx changes during the box deformation. The co-deforming ϕ̄= π/4
mode transiently experiences a positive growth rate (positive ω values between ‘+’ signs). Fixed polarity magnitude, ṽ0xx = 1/8,
ν= 3. (j)–(m) Stability phase diagrams for (j), (k) fixed polarity magnitude and (l), (m) zero preferred polarity magnitude with
τ = 10, where red, gray, and yellow respectively indicate unstable regions, stable regions, and stable regions with transiently
growing modes. The green dashed line in (j) represents the deformation rate of the freely deforming system. Black lines marking
phase boundaries are analytical curves derived in appendix B.3. (k)–(l) Maximal perturbation amplification factor S in the stable
regions with transiently growing modes. Orange star in (k) corresponds to the parameters used for panel i.

7
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For ν < 1 the bend mode ϕ= 0 is unstable (figure 3(b) and blue dashed line in figure 3(f)) [2]. The
mechanism driving this instability is illustrated in figure 3(c): For fixed polarity norm, perturbations in the
polarity are exclusively orientational, i.e. δp is oriented along the y axis (green arrows). This affects the linear
perturbation in the active stress tensor δσ̃a

ij, which is in general given by:

δσ̃a
xi = αp0δpi. (30)

For δp oriented along the y axis, equation (30) implies that δσ̃a
ij is oriented at angles of±π/4 with respect to

the x axis (black arrows). This active stress perturbation creates flow (blue arrows), which for ν < 1 acts
through a combination of co-rotational and shear alignment effects to amplify the perturbation δpy.

For ν ⩾ 1, where the bend mode is stable, there are always other unstable modes [1]. To see this, we first
discuss the mode with ϕ= π/4 (figure 3(d)). In this case, the angle of the wave vector k is parallel or
perpendicular to the angle of the active stress perturbation δσ̃a

ij, and thus no flow appears due to
incompressibility. However, when slightly decreasing ϕ below π/4 (figure 3(e)), flow appears, which acts
through the co-rotational effect to amplify δpy. This co-rotational effect always dominates over the shear
alignment when approaching ϕ= π/4. As a consequence, there are always perturbations with angles ϕ below
π/4 whose growth rate are positive.

These results do not fundamentally change when allowing for a finite value of the polarity magnitude
relaxation time, τ > 0, i.e. a ‘soft’ polarity magnitude. For ν < 1 the fastest growing mode is still the bend
mode, whose growth rate is unaffected by τ . For ν > 1, the growth rate of the fastest growing mode decreases
with increasing τ . However it is still positive for any τ (figure B7). Hence, the system with fixed size is always
unstable, also for finite τ .

4.2. Deforming system, ṽ0xx ̸= 0
For a deforming system with given box shear rate ṽ0xx the stationary, homogeneously deforming state is:

p0 = p0x̂, (31)

v0,i = ṽ0ijrj, (32)

where the value of the stationary polarity magnitude p0 depends on the given box shear rate ṽ0xx. In this
section we discuss the stability of this stationary state using co-deforming perturbations (section 3.2,
appendix A).

4.2.1. Finite preferred polarity magnitude (FPM)
For simplicity, we focus here on fixed-magnitude polarity (τ → 0). For fixed box shear rate ṽ0xx the growth
rate of a solution of the linearized dynamics with co-deforming wave vector k̄ is (appendix B.3.1):

∂tδpy(k̄, t)

δpy(k̄, t)
= ω(ϕ) with ω(ϕ) :=−1

2
cos(2ϕ)

[
ν cos(2ϕ)− 1

]
+ 2νṽ0xx. (33)

Here, ϕ= ϕ(k̄, t) is the angle of the wave vector measured in the lab frame, k, which varies with time t
according to equations (25) and (26) (figures 3(g) and (h)). Only bend and splay modes,
ϕ̄ ∈ {0,π/2,π,3π/2}, have angles ϕ that are independent of time: ϕ= ϕ̄ (figure 3(h)).

The linear stability phase diagram according to equation (33) is shown in figure 3(j) depending on box
shear rate ṽ0xx and shear alignment ν. Red regions indicate unstable systems, such as systems with fixed size,
ṽ0xx = 0, as we have seen in the previous section, and freely deforming systems, ṽ0xx = 1/4 (green dashed line).
Dark gray regions indicate stable systems, which occur for deformation rates ṽ0xx larger than the free
deformation or for negative deformation rates ṽ0xx < 0. The latter corresponds to the case where the
boundary conditions force the system to deform perpendicular to the free deformation.

In the yellow parameter regions in figure 3(j), the system is stable except for only transiently growing
modes. In these regions, both bend and splay modes are decaying, while a co-deforming perturbation mode
with given k̄ that is neither bend nor splay mode can transiently experience a positive growth rate. This
happens as the angle of the corresponding wave vector measured in the lab frame, ϕ(k̄, t), which varies as the
box is sheared, passes through a regime of angles with a positive growth rate ω(ϕ) (figures 3(b) and (g)–(i)).
For positive (negative) ṽ0xx, all angles ϕ(k̄, t) ultimately approach splay (bend) modes for t→∞, which have
negative growth rates. Hence, the mode grows only transiently.
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The amplitude of a transiently growing co-deforming mode will only increase by some maximal
amplification factor until it decreases again (figure 3(i)). This factor attains the same maximal value S for all
co-deforming modes k̄ that pass both positive zeros in the ω(ϕ) curve (figure 3(b)):

S= exp

[ˆ t2

t1

ω
(
ϕ(ϕ̄, t)

)
dt

]
, (34)

where t1 and t2 are the times when ω(ϕ(ϕ̄, t)) passes zero (marked by ‘+’ signs in figure 3(i)). In figure 3(k),
we plot the maximal amplification factor depending on ν and ṽ0xx. This amplification factor is affected by two
parameters, the area of the positive region in ω(ϕ) (figure 3(b)) and the speed by which it is traversed, which
is set by the box shear rate ṽ0xx (figures 3(g) and (h)). The latter is the reason that we see a diverging
amplification factor as ṽ0xx → 0 (figure 3(k)).

4.2.2. Zero preferred polarity magnitude (ZPM)
For ZPM, there is no stationary state with finite polar order in the regime where νṽ0xxτ ⩾−1 (white region in
figure 3(m). Stabilizing polarity in these regions would require higher-order terms in the polarity free energy
[40], which we neglect for brevity here. We focus here on the parts of the parameter space where a stationary
state finite polarity magnitude p0 exists, where p0 =

√
−1− νṽ0xxτ .

We find that the linear stability diagram for systems with ZPM is quite different from systems with a fixed
polarity norm (compare figures 3(j) and (m)). For instance, large parts of the regime with ν < 0 are unstable
for ZPM, which is different from the case with a fixed polarity norm, where the system is stable in this
regime. This difference comes mostly from the fact that the polarity norm p0 can become much larger than
one for ZPM (appendix B.3.2). As a consequence, the perturbation growth rate is dominated by the flow
created by the active stress, which scales as∼ p20 and destabilizes polarity in this regime (appendix B.3.2).
Conversely, it can be shown that for ν ⩾ 1 the system is always stable (appendix B.3.2). Taken together, in the
regime of zero preferred polarity magnitude, the linear stability phase diagram is significantly affected by the
fact that the polarity magnitude p0 is influenced by the box shear rate through shear alignment.

4.3. Comparison to system with scalar field only
In polar-only systems (this section, 4), the system’s behavior is symmetric with respect to whether the active
stress is extensile or contractile. However, this was not true in scalar-only systems (section 3) [38, 39]. Where
does this difference come from?

To address this question, we map the scalar field gradient to an effective polar field q with qi = ∂ic. This
transforms the scalar field dynamics, equation (12) into:

Dqi
Dt

=−ṽijqj, (35)

and the active stress becomes σ̃a
ij = α(qiqj − q2δij/2). Thus, for an incompressible system, the scalar field

dynamics corresponds to the dynamics of a polar field in the limit of no magnitude control, τ →∞, and
with a shear alignment coefficient of+1. Indeed, using our fixed-system-size results for the polar system in
this limit (figure B7), we can retrieve our stability results for both extensile and contractile cases of the scalar
system. Hence, it is the effective positive shear alignment coefficient of+1 that breaks the
extensile/contractile symmetry in the scalar-only system.

5. Scalar and polar field

Here we examine the general case where the interactions between scalar, polar, and flow fields play a role. We
discuss the stability of the homogeneously deforming state given by

c0 =
x

lx(t)
, (36)

p0 = p0x̂, (37)

v0,i = ṽ0ijrj. (38)

In the full system, the polarity magnitude p0 generally depends on time, because it is coupled to the scalar
field gradient, which is constantly becoming flatter. Thus, to simplify our discussion in this section, we
choose a time-dependent β that compensates for the flattening gradient:

β(t) = β0lx(t). (39)

9
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Figure 4. Linear stability of the non-deforming full system. A coupling to a scalar field gradient can suppress the instability of an
active polar system. This stabilization is more efficient for ZPM than for FPM. (a) Result summary: For contractile active stresses,
the system is always unstable (left). However, for extensile active stresses, the presence of the scalar field can stabilize the system
(right). (b) Stationary polarity magnitude p0 vs. β0τ shown for finite (dark green) and zero (light green) preferred polarity
magnitude. (c) Stiffness ratio G vs. β0τ shown for both types of polarity. (d), (e) Maximal perturbation growth rate ωmax shown
depending on coupling to the scalar field gradient, β0, and shear alignment, ν, for (d) fixed polarity magnitude (τ → 0) and (e)
zero preferred polarity magnitude with β0τ = 1. The system with fixed polarity magnitude is always unstable (red region), even
for strong coupling to the scalar field gradient, whereas the system with zero preferred polarity magnitude can be marginally
stabilized (light gray regions) by a strong enough coupling to the scalar field gradient β0. The black solid curves indicate the
places where the bend mode growth rates cross zero. (f) Perturbation growth rate ω/p20 over wave vector angle ϕ in the limit of
strong coupling to the scalar field, β0 ≫ p30, shown for finite (dark green) and zero (light green) preferred polarity magnitude.
Solid curves: β0τ = 10−2, dashed curves: β0τ = 5. (g) Stress perturbation angle θσ over wave vector angle ϕ, shown for the same
cases discussed in panel e. (h)–(k) Sketches illustrating the linear stability in the limit of strong coupling to the scalar field,
β0 ≫ p30, for finite (h), (i) and zero (j), (k) preferred polarity magnitude. Perturbation angles are 0< ϕ < π/4 in (h), (j) and
π/4< ϕ < π/2 in (i), (k).

In this case, the state defined by equations (36)–(38) is stationary in co-deforming coordinates, where p0 is
implicitly set by:

g(p0) =
β0τ

p0
− νṽ0xxτ. (40)

We prove in appendix B.1 that gradient-contractile systems, i.e. systems with β > 0 and α> 0, are always
unstable (figure 4(a) left). In the present section, we thus focus our discussion on the gradient-extensile case,
β > 0 and α< 0 (figure 4(a) right), where we show that the scalar gradient can indeed stabilize the
Simha-Ramaswamy instability under certain conditions. Such a stabilization depends in particular on how
polarity magnitude is controlled; it is more effective for ZPM than for FPM.
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5.1. Fixed system size, ṽ0xx = 0
5.1.1. Finite preferred polarity magnitude (FPM)
We first discuss the limit of a fixed polarity norm, τ → 0, where p0 = 1. In this case, the system behavior
depends only on two dimensionless parameters, ν and β0. We find that in this case the system is always
unstable (figure 4(d) left), which we explain in the following.

We discuss two limits, weak and strong coupling of polarity to the scalar field gradient, β0. Weak
coupling, β0 � p30 (appendix B.4.1), corresponds to the polarity-only case, which we discussed in section 4.
In this case, polarity was always unstable for fixed system dimensions (compare figure 4(d) right to
figure 3(d)).

In the limit of strong coupling to the scalar field gradient, β0 � p30, one might expect the same result as
for the scalar-only system, section 3, which was marginally stable in the gradient-extensile case. However, we
find that this is not the case, and the full system is unstable instead (figure 4(d) right). To intuitively
understand why, consider a given perturbation δc of the concentration field along any wave vector with angle
0< ϕ < π/4 (red symbols in figure 4(h)). The polarity perturbation δp (green arrows) will adjust to δc
adiabatically quickly for strong coupling β0. However, because of the fixed polarity magnitude, δp will point
in±ŷ direction. As a consequence, the perturbation in the active stress tensor δσ̃a

ij is oriented along angles of
±π/4 (black arrows, using equation (30)). The resulting flow (blue arrows) has a component that points in
−x̂ direction in regions where δc is positive. Thus, due to convection and the gradient in c0(x), the amplitude
of δc increases. Hence, the system is unstable for fixed polarity magnitude.

These ideas generalize to the case of a finite polarity relaxation time τ . For given scalar field perturbation
δc, and strong coupling to the scalar field, β0 � p30, the polarity perturbation δp relaxes adiabatically to
(appendix B.4.1):

δpx = iGp0kxδc (41)

δpy = ip0kyδc (42)

with

G=
g(p0)

g(p0)+ p0g ′(p0)
. (43)

Thus, the polarity perturbation δp does not locally align parallel to the gradient of δc. Instead, the angle θp of
the polarity perturbation is given by (precise definition of θp in appendix B.4.1):

tanθp =
1

G
tanϕ. (44)

The prefactor G arises in equations (41) and (42), because for a finite preferred polarity norm, the polarity
free energy F(p) panelizes perturbations δpx stronger than perturbations δpy. In other words, G is the ratio
between the effective stiffnesses associated with changes in polarity away from the stationary state along y and
x axes. Using equation (40) with ṽ0xx = 0, the value of G depends on the product β0τ only (figure 4(c)); for
finite preferred polarity magnitude, G increases from G= 0 at β0τ → 0 to maximally G→ 1/3 at β0τ →∞.

The stiffness ratio G controls the stability of the system. To see this, we discuss the flow created by the
polarity perturbation δp, whose x component is given by (appendix B.4.1):

δvx =−p20Ĝ sinϕ sin
(
2[θσ −ϕ]

)
δc. (45)

Here, Ĝ> 0, and θσ is the angle of the active stress perturbation nematic δσ̃a
ij (precise definitions in

appendix B.4.1). Thus, the relative direction between active stress perturbation angle θσ and wave vector
angle ϕ determines the direction of the flow in x direction. Because the flow in equation (45) advects the
scalar field, the system is unstable whenever δvx/δc< 0. Thus, equation (45) implies that the system is
unstable whenever ϕ < θσ , where θσ can be obtained using equation (30) as: θσ = θp/2.

For example for fixed polarity magnitude, i.e. β0τ → 0, we have G= 0 (figure 4(c)), which implies with
equation (44) that θp = π/2. Further, θσ = θp/2= π/4, and thus the modes with ϕ < θσ = π/4 are unstable
(figures 4(f) and (g)).

Also for finite β0τ there will always be angles ϕ for which ϕ < θσ . This is because for ϕ� 1, equation (44)
implies that θσ = θp/2' ϕ/(2G). Since we have G< 1/3 (figure 4(c), appendix B.4.1), it directly follows
that ϕ < ϕ/(2G) = θσ for small ϕ (see dashed dark curve in figure 4(g)), and thus the system is unstable.

Taken together, for finite preferred polarity magnitude (FPM), the system is always unstable, even in the
limit of strong coupling to the scalar field gradient. This is ultimately because G< 1/3, i.e. because polarity
perturbation is less than 1/3 as stiff along the y axis than along the x axis.
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Figure 5. Linear stability of the deforming full system. Stability phase diagrams depending on shear alignment ν and box shear
rate ṽ0xx. (a)–(c) Fixed polarity magnitude (τ → 0) for β0 = (0.1,1,10). As the coupling β0 to the scalar field gradient increases,
the extent of unstable regions (red) shrink. (d)–(f) Zero preferred polarity magnitude (β0τ = 1). As β0 increases, the extent of
the marginally stable region (light gray) increases. The dashed green curves indicate the deformation rate of the freely deforming
system. In panel d, this line is undefined for some negative ν, because polarity for the freely deforming system would diverge
there. Phase boundaries displayed as solid black curves are derived in appendix B.4.2. Note the different scaling of the color map
between panels (a)–(c) vs. (d)–(f).

5.1.2. Zero preferred polarity magnitude (ZPM)
For ZPM and weak coupling to the scalar field, β0 � p30, there is no polar-only case that we can directly
compare to, because the stationary state has zero polarity in this case. However, we find that the system is
unstable for negative ν (figure 4(e)), which is due to an unstable bend mode (indicated by the solid black
curve).

In the limit of strong coupling to the scalar field gradient, β0 � p30, stability is again controlled by the
stiffness ratio G. However, because for ZPM the stiffness ratio G is more isotropic, attaining values closer to
one (figure 4(c)), the system can become marginally stable (figures 4(j) and (k)). This can be seen following
the same line of argument as for FPM. In particular, it can be shown that the system is marginally stable
whenever G⩾ 1/2, i.e. whenever polarity perturbation is at least 1/2 as stiff along the y axis than along the x
axis (see appendix B.4.1). This is the case whenever β0τ ⩽ 2 (figures 4(c) and (f)), i.e. when polarity
magnitude relaxation is fast enough as compared to the effect of the scalar field gradient.

5.2. Deforming system, ṽ0xx ̸= 0
5.2.1. Finite preferred polarity magnitude (FPM)
Here we focus on the case of fixed polarity norm, τ = 0. In this case, the polar-only system had two stable
regions for νṽ0xx < 0 (figure 3(j)). However, when adding a weak coupling to the scalar field, β0 � p30, these
previously stable regions now turn into regions with transiently growing modes (figure 5(a)). This is because
when including the scalar field, an additional ω(ϕ) branch appears, and thus more modes that could
potentially grow. In particular, while perturbations in the polar field δpy relax to zero relatively quickly, any
perturbation in the scalar field δc induces a small perturbation in the polarity of δpy =−ikyβ0δc/ω. This
polarity creates flows that then advect the scalar field. As a consequence, a scenario qualitatively similar to the
one discussed in figure 4(h) arises. Here, this gives rise to growing modes with 0< ϕ < π/4 that are only
transiently growing, because the system is deforming. Their amplification factor is small, S≈ 1, because the
magnitude of the growth rate is proportional to β0 in this case.
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When increasing the coupling β0, the region of parameter space where the system is stable with
transiently growing modes is expanding (see figures 5(b) and (c)). In the limit β0 � p30, modes with
0< ϕ < π/4 are again unstable for the same reason as discussed in section 5.1.1 (figure 4(g)). In this limit,
we have transiently growing modes, whose amplification factor S is independent of shear alignment ν and
scales as S∼ 1/|ṽ0xx|.

5.2.2. Zero preferred polarity magnitude (ZPM)
For ZPM and weak coupling to the scalar field gradient, β0 � p30, stability is somewhat similar to the
polarity-only case (compare figures 3(m) and 5(d)). The main difference is that most of the regions of
parameter space without stationary state in the polarity-only system become unstable when adding a weak
coupling to a scalar field gradient. Increasing the coupling to the scalar field β0 generally leads to an
expansion of the parameter regime with marginal stability (see figures 5(e) and (f)).

6. System size effects

Until now we have discussed the limit of infinite system size, where neither diffusion D nor polarity
alignment κ= K/γ can suppress large-wavelength perturbations with k→ 0. However, a finite system size
limits the wavelength from above, which can allow diffusion and polarity alignment to stabilize the system.
Here we discuss under which conditions they can do so, focusing on the case of a fixed system size and a fixed
polarity magnitude. In this case, the system was always unstable in the infinite-system-size limit
(section 5.1.1).

For the limits of scalar-only and polar-only dynamics, the stability criteria are already known. For the
scalar-only limit, an otherwise unstable gradient-contractile system is stabilized whenever [39]

Dk2 > 1, (46)

where we use dimensionless units (section 2.3), i.e. rates are in units of |α|/η. For the polar-only limit, for
example in the extensile case, local polarity alignment can stabilize the system only when [2]

κk2 >

{
1
2 (1− ν) for ν ⩽ 1/2 and

1/(8ν) for ν > 1/2.
(47)

For the full system with interacting scalar and polar fields, we derive the minimal diffusion term required
to stabilize the system in appendix C. For instance, for the gradient-extensile case we find that diffusion can
stabilize the system only if

β+κk2 >

{
1
2 (1− ν) for ν ⩽ 1/2 and

1/(8ν) for ν > 1/2.
(48)

This means that for diffusion to stabilize the system, the gradient alignment β needs to be strong enough to
dominate the polar field dynamics. If equation (48) is fulfilled, a finite value of the diffusion constant can
stabilize the system: Dk2 > Dcritk2 > 0 (the analytical expression for Dcritk2 is reported in appendix C). Thus,
while those systems that fulfill equation (48) can be stabilized by diffusion alone (i.e. with κ= 0), a system
can never be stabilized by polarity alignment alone (i.e. with D= 0). This is due to the instability that arises
from the coupling of scalar and polar fields (see adiabatic limit discussed in section 5.1.1). We find that this is
also true in the gradient-contractile case (appendix C).

In figure 6, we report the magnitude of Dcritk2 for varying β, ν, and κk2. For instance, for ν= 0 and
without polarity alignment, κ= 0, the critical diffusion Dcritk2 decreases monotonically with the alignment
of polarity to the scalar field, β (blue solid curve in figure 6(a)), which intuitively makes sense since diffusion
and β both act together to stabilize the instability of the polar-only system. However, for larger values of the
polarity alignment κk2, we find that Dcritk2 can also monotonically increase with β (red and green solid
curves in figure 6(a)). In this regime, the polar-only limit is not unstable any more, and diffusion is required
to compensate for the instability that arises from the coupling of scalar and polar field (section 5.1.1).

Finally, we summarize the stability criteria for the gradient-extensile and gradient-contractile cases in
figures 6(b) and (c), respectively. As expected, the critical diffusion term is generally larger in the
gradient-contractile case than in the gradient-extensile case.
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Figure 6. Stabilization of the system by diffusion and local polarity alignment, for fixed system size with fixed polarity norm.
(a) Minimal diffusion Dcritk2 required to stabilize a gradient-extensile system depending on β and polarity alignment κk2. (b),
(c) Minimal diffusion Dcritk2 required to stabilize the system depending on β and shear alignment ν for (b) gradient-extensile and
(c) gradient-contractile systems. In the white regions, the system cannot be stabilized by diffusion. Polarity alignment is set to
κ= 0. The color bar of panel c applies to panel b as well.

7. Discussion

The homogeneously deforming state of polar or nematic wet active matter is subject to the well-known
Simha-Ramaswamy instability [1, 2]. This raises the question how, despite this instability, active anisotropic
tissue deformation can be robust during animal morphogenesis [8]. Animal morphogenesis is known to be
organized by large-scale protein concentration patterns (e.g. morphogen gradients) [8]. Under which
conditions could such patterns stabilize anisotropic tissue deformation? To address this question, we
examined whether a scalar field gradient can stabilize the homogeneously deforming state of an active polar
material, even when the scalar field is advected by material flows.

Focusing on the limit of a large system size, we showed that the homogeneously deforming state is always
unstable in gradient-contractile systems, i.e. when the active anisotropic stress is, mediated by the polarity,
contractile along the direction of the gradient. However, the system can be marginally stable in the
gradient-extensile case. This is true both when the active anisotropic stress is controlled directly by the scalar
field gradient (section 3, figure 2) and when this control is mediated through the polar field (section 5,
figure 4). Intriguingly, in the biology literature we found many instances of animal morphogenetic systems
where the effective coupling between controlling morphogen gradient and tissue deformation is
gradient-extensile [12, 13, 41–46]. However, so far we could identify almost no instance of a
gradient-contractile coupling. This predominance of gradient-extensile systems in developing animals has
been remarked once before in the biology literature [47], and our results provide an explanation purely based
on active matter physics.

The only example we have found where something akin to a gradient-contractile coupling has been
proposed is convergent-extension of the notochord in the ascidian Ciona intestinalis [48]. However, evidence
is sparse, and the deforming tissue is very small consisting only of 40 cells, which would facilitate other
mechanisms of stabilization (see below).

In our study, gradient-extensile systems can only becomemarginally stable. They do not become strictly
stable because for perturbations parallel to the gradient direction, the scalar field decouples from flow, and
scalar field perturbations along this direction are marginal, i.e. they do neither grow nor shrink. This will be
different in more realistic systems, where protein gradients are created, e.g. by secretion, diffusion, and
degradation [8, 49, 50].

We further showed that the stability of gradient-extensile systems strongly depends on how the polarity
magnitude is controlled, where we compare the cases of finite and ZPM (section 5, figure 4, 5). Both kinds
have examples in biological tissues. Finite-preferred-magnitude (FPM) polarity resembles Core/Frizzled
planar cell polarity (PCP), which is believed to emerge without any cell-external cues [51]. Meanwhile,
zero-preferred-magnitude (ZPM) polarity resembles Fat PCP [52] and actin polarity in the Drosophila germ
band [22, 24], which are believed to show no polarization in the absence of external cues. We demonstrate
that for FPM, the response of polarity perturbations to scalar field perturbations is more anisotropic than for
ZPM, which affects the generated active stresses and material flows. As a consequence, systems with ZPM are
generally more stable than systems with FPM. However, in both cases the coupling of the polar field to the
scalar field gradient generally has a stabilizing effect.

We also demonstrated the emergence of parameter regions with transiently growing perturbation modes.
These arise because for systems under pure shear deformations the solutions to the linearized dynamics are
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co-deforming modes, whose wave vectors are changing during the overall system deformation. As a
consequence, the growth rate of the perturbation modes can change over time. We identified parameter
regions where some perturbation modes decay, while for other modes the amplitude only transiently grows
before decaying forever. To characterize the stability of the system in these regions, we introduce a maximal
amplification factor S, which these modes experience while their amplitude grows.

While we discussed here one potential mechanism to stabilize the Simha-Ramaswamy instability during
animal morphogenesis, there may be other mechanisms as well. First, in most of our article we focused on
the infinite system size limit. For finite polar-only systems, polarity alignment K, possibly in combination
with the boundary conditions for the polarity, can also stabilize the system. There is a maximal tissue size
scale Lc ∼

√
K/γṽ, where ṽ is the free tissue deformation rate, beyond which polarity alignment becomes

insufficient to stabilize the system [2] (section 6). Combining known orders of magnitude for active
fly wing deformation ṽ∼ (10−2 . . .10−1) h−1 [17], and a measured PCP alignment rate in the wing,
K/γ ∼ (1 . . .10) µm2 h−1 [21], we obtain Lc ∼ 10 µm, which is on a similar order as values measured in
monolayers of different mouse cell lines of Lc ∼ 40 µm [7]. However, many developing tissues have sizes of
∼(10 . . .100) µm, suggesting that an effective cell polarity alignment is not necessarily sufficient to stabilize
the Simha-Ramaswamy instability. When including diffusion and polarity alignment in our calculations for
the full system of interacting scalar and polar fields, we find that when scalar and polar fields interact,
polarity alignment alone is never sufficient to stabilize the system, at least for fixed polarity norm, while
diffusion can be (section 6). This is interesting given that there are biological systems where diffusion is not
believed to occur, such as during Drosophila germ band extension.

Second, the Simha-Ramaswamy instability occurs only in wet active matter, i.e. when momentum (and
angular momentum [53]) is conserved. In other words, active tissue deformation could also be stabilized,
e.g. by friction ζ with a substrate whenever the hydrodynamic length scale Lh =

√
η/ζ is sufficiently small as

compared to Lc. This could be relevant for instance for Drosophila germ band extension [54]. However, many
morphogenetic tissue deformation processes, may be better described as wet active matter. This includes for
instance vertebrate limb bud elongation [16] and morphologically similar processes [13], as well as hydra
morphogenesis [15].

Third, active oriented materials may be stabilized by lifting the condition of incompressibility [55].
Indeed, developing tissues can show some degree of compressibility. For instance a finite tissue bulk viscosity
can arise from cell division and death [56]. However, such a bulk viscosity may become visible only on time
scales above the cell division time, which is typically on the order of hours or days. This is also the
approximate range of typical anisotropic tissue deformation processes during development. Thus, a bulk
viscosity due to cell division would be relevant in particular for slow tissue deformation processes. Moreover,
layered 2D tissues called epithelia may additionally exhibit limited 2D compressibility through variation of
layer height or cell extrusion. However, a finite compressibility alone is not necessarily sufficient to stabilize
deforming systems. For instance, while for a polar-only system with fixed size, a finite bulk viscosity can
indeed stabilize the system for sufficiently large value of ν, this stabilizing effect only acts on angles other
than multiples of π/2, i.e. it does not act on bend or splay modes. Consequentially, for deforming systems, a
finite bulk viscosity would help stabilize regions with transiently growing modes (e.g. yellow regions in
figure 3(j)), but it would not stabilize unstable regions (e.g. red regions in figure 3(j)). For instance, a freely
deforming polar-only system is unstable also if the tissue is compressible (green dashed line in figure 3(j)).

Our work prompts for different kinds of experiments on animal morphogenetic systems to test our ideas.
First, are really all active anisotropic tissue deformation processes gradient-extensile? So far, there are many
systems where the precise role of morphogens for tissue deformation is still unknown [15–18, 57]. In many
systems, it is believed that scalar field gradients control the orientation anisotropic deformation, but more
experimental evidence is required. Also, is notochord convergent-extension of Ciona intestinalis indeed a
counter example, i.e. a gradient-contractile system? If so, it is possibly not the only one. How is tissue
deformation stabilized in these systems?

Second, relatively little is currently known about what kinds of polarity are used to control tissue
deformation, i.e. whether they are ZPM or FPM polarity. In the few systems where more is known, it appears
that ZPM polarity controls tissue deformation [12, 41], which in our analysis leads to a more robust
behavior. Is this kind of polarity indeed more often used to control tissue deformation in morphogenesis?

Third, many parameter values are still unknown, even in the best-studied biological systems. For
instance, while something like a shear alignment effect has been observed in a few systems now [7, 20, 21, 34,
58–61], we are aware of only two systems where the shear alignment parameter ν has been measured, the
Drosophila wing [20, 21, 58] and certain cell monolayers in vitro [7, 34, 61]. Measuring parameters like this
in more developmental systems will allow to quantitatively test our predictions.

While a foundational motivation of active matter physics has always been to better understand collective
motion in living systems [62], a lot remains to be learned at the direct interface with biology. Here, we
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provide an example for how active matter physics may reveal fundamental principles for animal
morphogenesis.
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Appendix A. Co-deforming coordinates

A.1. Definition
In order to more conveniently solve the linearized dynamics (appendix A.3), we introduce co-deforming
coordinates (̄r, t̄) = (x̄, ȳ, t̄). These coordinate map to the lab coordinates (r, t) = (x,y, t) in the following way:

ri = sij(̄t)̄rj (A1)

t= t̄, (A2)

where s(̄t) is a time-dependent shear tensor, given by

s(̄t) =

(
lx(̄t) 0
0 l−1

x (̄t)

)
. (A3)

Thus, while at some time t, lab coordinates range from 0⩽ x< Lx(t) and 0⩽ y< Ly(t), co-deforming
coordinates map these affinely to the box dimensions at time zero, with 0⩽ x̄< Lx(0) and 0⩽ ȳ< Ly(0).

As a direct consequence of equations (A1) and (A2), partial derivatives of some quantity q transform as:

∂̄jq :=
∂q(̄r, t̄)

∂ r̄j
= (∂iq)sij (A4)

∂̄tq :=
∂q(̄r, t̄)

∂ t̄
= ∂tq+(∂iq)ṡijr̄j, (A5)

where ∂iq := ∂q(r, t)/∂ri, ∂tq := ∂q(r, t)/∂t, and ṡij := dsij/dt= dsij/d̄t. Thus, the partial time derivative in
co-deforming coordinates, ∂̄tq, i.e. for fixed r̄, includes a term related to the box shear rate as compared to
the partial time derivative with respect to lab coordinates.

Moreover, with the co-deforming Fourier transformation of a quantity q defined as in equation (24), we
have the usual derivation rule, where the Fourier transform of ∂̄jq(̄r, t̄) is ik̄jq(k̄, t̄). From equations (24)
and (A1) also follows that a given co-deforming Fourier mode with wave vector k̄ corresponds to a lab frame
Fourier mode with wave vector k with components

ki = k̄js
−1
ji , (A6)

because then we have k̄ · r̄= k · r.

A.2. Velocity
To obtain the mapping for the velocity field, we consider a tracer particle that is perfectly advected with the
flows. The velocity of that tracer particle corresponds to a total time derivative vi = dri/dt, for which we
obtain by insertion of equation (A1):

vi = ṡijr̄j + sijv̄j, (A7)
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where v̄i = dr̄i/dt= dr̄i/d̄t is the co-deforming velocity, with r̄(̄t) being the tracer trajectory in co-deforming
coordinates. The first term in equation (A7) corresponds to a motion due to the affine transformation
according to box coordinates. Thus, v̄i can be interpreted as the non-affine component of the flow field.

To obtain a transformation formula for the convective derivative, we consider again our tracer and the
presence of some spatio-temporal field q. The convective derivative corresponds to the total derivative of the
value of q that the tracer locally sees. Thus, we expect analogous expressions for the convective derivative in
both lab and co-deforming systems, q̇ := dq/dt= dq/d̄t. Indeed, using equations (A4)–(A7), we obtain:

q̇= ∂tq+ vi(∂iq) = ∂̄tq+ v̄i(∂̄iq). (A8)

A.2.1. Dynamical equations
The dynamical equations for scalar and polar fields, equations (12) and (13), in co-deforming coordinates
are:

dc

d̄t
= 0 (A9)

dpi
d̄t

=−g(p)

τ
pi − νṽ0ijpj +βs−1

ij ∂̄jc−
1

2

[
(ν+ 1)s−1

li sjk +(ν− 1)s−1
lj sik

]
∂̄lv̄kpj. (A10)

Here, we left out diffusion and polarity alignment, and we use the box shear rate ṽ0ij = (ṡjks
−1
ki + ṡiks

−1
kj )/2,

which is for the box shear tensor defined in equation (A3):

ṽ0 =

(
l̇x/lx 0
0 −l̇x/lx

)
. (A11)

We do not rewrite in co-deforming coordinates the incompressible Stokes’ equations, equations (14)
and (15), because this will not be required in what follows.

A.3. Linearized dynamics around the homogeneously deforming state
We linearize the dynamics around the homogeneously deforming state, given by

c0 = x̄ p0 = p0x̂ v̄0 = 0. (A12)

Using co-deforming coordinates will facilitate dealing with the advective terms when solving the linearized
dynamics.

To fix a value for p0 at some time point t, we use equations (A10) and (A12) with the stationarity
condition dpx/dt= 0:

g(p0) =
βτ

p0lx(t)
− νṽ0xxτ. (A13)

For constant β and a deforming box, the state p0 given by this equation is only transiently stationary, due to
the time-dependent lx. However, in the adiabatic limit where polarity relaxation is much faster than box
deformation, τ |ṽ0xx| � 1, the homogeneous dynamics will generally be close to the state p0 given by
equation (A13). In the main text, we circumvent these issues by setting

β(t) = β0lx(t). (A14)

with constant β0. In this case equation (A13) always defines a stationary solution of the dynamics.
We consider the following perturbation to linear order:

c= x̄+ δc (A15)

p= p0x̂+ δp (A16)

v̄= δv̄. (A17)

Insertion into equations (A9) and (A10) yields to first order in co-deforming Fourier space:

∂̄tδc(k̄, t̄) =−δv̄x (A18)
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∂̄tδpx(k̄, t̄) =

(
− 1

τ

[
g(p0)+ g ′(p0)p0

]
− νṽ0xx

)
δpx + iβl−1

x k̄xδc− iνp0k̄xδv̄x (A19)

∂̄tδpy(k̄, t̄) =

(
− 1

τ
g(p0)+ νṽ0xx

)
δpy + iβlxk̄yδc−

ip0
2

[
(ν+ 1)l2xk̄yδv̄x +(ν− 1)l−2

x k̄xδv̄y
]
. (A20)

Using the co-deforming coordinates allowed us to simplify the advective terms, which otherwise lead to
spatially dependent coefficients. Here, for simplicity, we left out the diffusion and local polarity alignment
terms.

To close the system of equations, equations (A18)–(A20), we need to obtain an expression for δv̄ by
solving the incompressible Stokes’ equations, equations (14) and (15). We insert the expression for the
lab-frame velocity equation (A7) into these equations, and obtain after lab-frame Fourier transformation of
the linearized dynamics:

δv̄m =
is−1
mi kl
ηk2

(
δij −

kikj
k2

)
δσ̃a

lj. (A21)

Here, k is the magnitude of the lab-frame wave vector k. Using that to linear order the active stress δσ̃a
lj is

given by equation (30), we obtain:

δv̄x =
il−1
x

k
sgn(α)p0 sin(ϕ)δΦ (A22)

δv̄y =− ilx
k
sgn(α)p0 cos(ϕ)δΦ (A23)

with δΦ= sin(2ϕ)δpx − cos(2ϕ)δpy, and ϕ being the angle of the lab-frame wave vector k. Note that a
transformation of equations (14) and (15) into co-deforming coordinates, followed by a linearization and a
co-deforming Fourier transformation leads to the same result.

Inserting the velocity perturbation, equations (A22) and (A23), into the linearized dynamics,
equations (A18)–(A20), we obtain:

∂̄tδc=−Dk2δc− il−1
x

k
sgn(α)p0 sinϕ sin2ϕ δpx +

il−1
x

k
sgn(α)p0 sinϕcos2ϕ δpy (A24)

∂̄tδpx = iβkcosϕ δc+

[
− 1

τ

(
g(p0)+ g ′(p0)p0

)
− νṽ0xx +

sgn(α)p20
2

ν sin2 2ϕ−κk2
]
δpx

− sgn(α)p20
2

ν sin2ϕcos2ϕ δpy (A25)

∂̄tδpy = iβk sinϕ δc− sgn(α)p20
2

sin2ϕ
(
ν cos2ϕ− 1

)
δpx

+

[
− 1

τ
g(p0)+ νṽ0xx +

sgn(α)p20
2

cos2ϕ
(
ν cos2ϕ− 1

)
−κk2

]
δpy. (A26)

The derivatives on the left-hand sides are partial derivatives for constant co-deforming wave vectors k̄. Thus,
solutions to the linearized dynamics are co-deforming Fourier modes with time-dependent amplitude. The
right-hand side is written in terms of angle ϕ and magnitude k of the lab-frame wave vector out of
convenience only.

Appendix B. Linear stability of the homogeneously deforming state

Here, we discuss the linear stability of the homogeneously deforming state based on the linearized dynamics,
equations (A24)–(A26).
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B.1. Gradient-contractile systems (sgn(α) = 1) are always unstable
Here we show that the system is always unstable for sgn(α) = 1 and β > 0, and for vanishing diffusion and
polarity alignment. This is because in this case there is a co-deforming mode with wave vector direction
ϕ̄= π/2 that is permanently growing. For this specific angle, this corresponds to a lab-frame wave vector
with the same angle, ϕ= π/2.

To prove that there is a mode with ϕ= π/2 that is permanently growing, we show that for this angle the
characteristic polynomial P(ω) of the matrix describing the linearized dynamics, equations (A24)–(A26), has
at least one positive zero. For ϕ= π/2 this polynomial is:

P(ω) = sgn(α)βl−1
x

[
βl−1

x +
1

τ
g ′(p0)p

2
0

]
+ sgn(α)βl−1

x p0ω−ω

[
− 1

τ

(
g(p0)+ g ′(p0)p0

)
− νṽ0xx −ω

]
×
[
− 1

τ
g(p0)+ νṽ0xx +

sgn(α)p20
2

(ν+ 1)−ω

]
, (B1)

where we also used equation (A13) to simplify the absolute-order term in ω (first term on the right-hand
side).

The polynomial P(ω) has at least one positive root, because first, P(0)> 0, since the absolute term is
positive for sgn(α) = 1. Second, the coefficient in front of the cubic term in ω is negative, so that
P(ω)→−∞ for ω →∞. Thus, using the intermediate value theorem, it follows that P(ω) has at least one
positive zero. As a consequence, any gradient-contractile system is always unstable.

Of course, this does not preclude that it could in principle be possible to stabilize gradient-contractile
systems when including diffusion and/or polarity alignment in a system with a finite size.

B.2. Scalar field only
Here we briefly discuss the limit where sgn(A) = 1, B= 0, i.e. g(p) = 1, and τ → 0 while βτ = 1. In this limit,
polarity relaxation is much faster than box deformation, and equation (A13) is solved by

p0 = l−1
x . (B2)

Moreover, polarity perturbation away from this state relaxes adiabatically fast towards the scalar field
perturbation. Using the linearized dynamics for the polarity, equations (A25) and (A26):

δpx = ikcosϕ δc (B3)

δpy = ik sinϕ δc. (B4)

Insertion in the linearized dynamics of the scalar field, equations (A24), yields:

∂̄tδc= sgn(α)l−2
x sin2ϕ δc. (B5)

B.3. Polar field only
Here, we discuss the case where β= 0, i.e. where the scalar field is irrelevant. We focus on the extensile case,
sgn(α) =−1.

B.3.1. Fixed magnitude, sgn(A) =−1, τ → 0
In the case of fixed polarity magnitude, sgn(A) =−1 and τ → 0, we have p0 = 1 and δpx = 0. In this limit,
equations (A25) and (A26) yield:

∂̄tδpy = ω(ϕ)δpy with (B6)

ω(ϕ) = 2νṽ0xx −
1

2

[
ν cos2 (2ϕ)− cos2ϕ

]
. (B7)

In order to plot the analytical boundaries of the phase diagram in figure 3(j), we study the growth rates of (a)
the bend mode, ω(ϕ= 0), (b) the splay mode ω(ϕ= π/2), and (c) the maximum growth rate ω maximized
over all angles, ωmax. When at least one of the bend or the splay mode has a positive growth rate, the system is
unstable. Otherwise, when both modes have negative growth rates, the system is either stable when ωmax is
negative, or stable with transiently growing modes whenever ωmax is positive.
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Figure B7.Maximal perturbation growth rate, ωmax, for a polar-only system with fixed system size and finite preferred polarity
magnitude. We plot three different values of polarity relaxation timescale, τ . As τ →+∞, the growth rates in the ν > 1 regime
converge to zero.

The growth rates of bend and splay modes are:

ω(ϕ= 0) = 2νṽ0xx −
1

2
(ν− 1) (B8)

ω(ϕ= π/2) = 2νṽ0xx −
1

2
(ν+ 1). (B9)

The maximum of ω(ϕ) over all angles ϕ is:

ωmax =

{
ω(ϕ= 0) for ν ⩽ 1/2

2νṽ0xx + 1/(8ν) for ν > 1/2.
(B10)

In the phase diagram in figure 3(j), there are two kinds of solid curves which define the boundaries of regions
of different behavior. The first kind of curve, defined over the whole ν range, satisfies the ω(ϕ= 0) = 0
equation. This curve defines the boundaries of unstable regions as ω(π/2)< ω(0) for every (ν, ṽ0xx). The
second kind of curve, only present for ν > 0.5, is the ωmax = 0 curve, which defines the region of transiently
growing modes. Above this curve, both bend and splay modes have negative growth rates, but the maximal
growth rate is positive.

B.3.2. Zero preferred magnitude, sgn(A) = 1
Here we derive analytical expressions for the phase boundaries in figure 3(m). For zero preferred polarity
magnitude, a finite polarity magnitude

p0 =
√
−1− νṽ0xxτ (B11)

exists only for large enough box shear rate |ṽ0xx|> 0, in particular νṽ0xxτ < 1. When this condition is not met,
the polarity in the stationary state has zero magnitude.

Diagonalizing the 2× 2 matrix that corresponds to the dynamics of δpx and δpy, equations (A25)
and (A26), we find the ϕ-dependent amplitude growth rates ω:

ω1,2 =
1

2

[
T ±

√
T 2 − 4D

]
, where (B12)

T (ϕ) =
p20
2

(
cos2ϕ− ν

)
− 2

τ

(
1+ 2p20

)
(B13)

D(ϕ) =
p20
τ

[(
ν+

4

τ

)(
1+ p20

)
− cos2ϕ

(
ν cos2ϕ+ p20

)]
. (B14)

Based on equation (B12), a mode with angle ϕ grows in amplitude only if T (ϕ)> 0 orD(ϕ)< 0.
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As we argued in the section before, a system is in the unstable regime whenever the bend (ϕ= 0) or the
splay (ϕ= π/2) mode grows. To see when this is the case, we first remark that T (0)> T (π/2) while
D(0)<D(π/2). Thus, the bend mode will always be growing when the splay mode is, and so the bend mode
is sufficient to decide whether the system is in the unstable regime. Moreover, we find that
D(0) = p20[−2T (0)− 4p20/τ ]/τ , from which follows that wheneverD(0)⩾ 0 then T (0)⩽ 0. Taken together,
this means that the system is in the unstable regime if and only ifD(0)< 0. Indeed, we find that the criterion
D(0) = 0 defines the boundaries of all unstable regimes in figure 3(m), where for a given parameter point
(ν, ṽ0xx), the polarity magnitude p0 needs to be inserted from equation (B11).

Further, if the system is not unstable, forD(0)⩾ 0, the regime could be either stable or stable with
transiently growing modes. To know if there are transiently growing modes, we need to know if there is any ϕ
with a positive ω, i.e. with T (ϕ)> 0 orD(ϕ)< 0. However, we haveD(0)⩾ 0 and thus T (0)⩽ 0. Moreover,
the maximum of T (ϕ) is at ϕ= 0. Thus, we have T (ϕ)⩽ 0 for any ϕ outside the unstable regime. As a
consequence, any regime with transiently growing modes needs to have an angle ϕ for whichD(ϕ)< 0.
Whether this is the case depends on the sign of ν. First, for ν ⩾ 0, the minimum ofD(ϕ) is at ϕ= 0. Thus,
outside of the unstable regime, where T (0)< 0 and thusD(0)> 0, the value ofD(ϕ) can never be negative
for any ϕ. Thus, for ν ⩾ 0, there are no stable regimes with transiently growing modes (see figure 3(m)).
Second, for ν < 0, it can be shown that the minimum ofD(ϕ) is not at ϕ= 0 only if p20 <−2ν. In these cases,
the minimal value ofD(ϕ) is

Dmin =
p20
τ

[(
ν+

4

τ

)(
1+ p20

)
+

p40
2ν

]
. (B15)

Taken together, for T (0)< 0 and ν < 0 the system has transiently growing modes only if p20 <−2ν and
Dmin < 0.

B.4. Scalar and polar field
In this section we focus exclusively on the extensile case, sgn(α) =−1.

B.4.1. Fixed system size, strong coupling to the scalar field
Here we discuss the limit of strong coupling to the scalar field. To more clearly understand what are the
correct parameter regimes for strong and weak coupling to the scalar field gradient, we re-express the
linearized dynamics using the following definitions:

δc̃ := ikp0δc (B16)

β̃ :=
β0
p30

=
g(p0)

τp20
. (B17)

The last equation on the second line follows directly from the stationary-state requirement for p0,
equation (A13), for fixed system size. We now use these two definitions to simplify the linearized dynamics,
equations (A24)–(A26):

1

p20
∂̄tδc̃=− sinϕ sin2ϕ δpx + sinϕcos2ϕ δpy (B18)

1

p20
∂̄tδpx = β̃ cosϕ δc̃−

[
β̃G−1 +

ν

2
sin2 2ϕ

]
δpx +

ν

2
sin2ϕcos2ϕ δpy (B19)

1

p20
∂̄tδpy = β̃ sinϕ δc̃+

1

2
sin2ϕ

(
ν cos2ϕ− 1

)
δpx −

[
β̃+

1

2
cos2ϕ

(
ν cos2ϕ− 1

)]
δpy. (B20)

In equation (B19), we have also used the definition of G(p0), equation (43). From equations (B19) and (B20),
we see directly that β̃ compares the scalar field coupling strength (and the polarity magnitude control) with
the flow-induced feedback. Thus, the correct limit for a strong scalar field coupling is β̃ � 1, i.e. β � p30.

For strong scalar field coupling, β̃ � 1, equations (B19) and (B20) imply that polarity relaxes
adiabatically fast towards:

δpx = iGp0kxδc (B21)

δpy = ip0kyδc. (B22)
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These equations can be used to obtain a criterion for the stability of the system. Indeed, combining
equations (A18), (A21), (30), (B21) and (B22), we obtain:

∂tδc= p20 sin
2ϕ

[
2(1−G)cos2ϕ− 1

]
δc. (B23)

From this equation directly follows that the system is marginally stable whenever G⩾ 1/2.
Alternatively, to allow for the more intuitive explanation in the main text, we introduce an angle θp,

which globally characterizes the orientation of δp. However, for a given perturbation mode with wave vector
k, the direction of δp will spatially depend on the phase of the Fourier mode. We remove this ambiguity by
dividing δp by ikδc, defining the angle θp by

δp

ikδc
= p̂

(
cosθp
sinθp

)
, (B24)

where p̂> 0. From equations (B21), (B22) and (B24) then follows for the norm p̂= p0Ĝ, where
Ĝ= [G2 cos2ϕ+ sin2ϕ]1/2, and for the angle:

tanθp =
1

G
tanϕ. (B25)

This is equation (44) in the main text. We proceed similarly to define the angle of the active stress
perturbation nematic, θσ . More precisely, we define θσ as the angle of the nematic−δσ̃a

ij/(ikδc):

− δσ̃a

ikδc
= σ̂

(
cos2θσ sin2θσ
sin2θσ −cos2θσ

)
, (B26)

where σ̂ > 0. Together with equations (30) and (B24), we have indeed

θσ =
θp
2
. (B27)

and σ̂ =−αp0p̂=−αp20Ĝ. Insertion of equation (B26) into the equation for the velocity perturbation δv̄x,
equation (A21), and noting that for fixed system size δv̄x = δvx, yields:

δvx =−p20Ĝ sinϕ sin
(
2[θσ −ϕ]

)
δc. (B28)

Together with equation (A18), this results in

∂tδc= p20Ĝ sinϕ sin
(
2[θσ −ϕ]

)
δc. (B29)

Hence, the system is unstable whenever there is a ϕ with positive sinϕ sin
(
2[θσ −ϕ]

)
.

B.4.2. Deforming system
In this part we derive the analytical curves that define the unstable regions in figure 5. As discussed in
appendix section B.3, the system is in the unstable regime, whenever a mode grow with ϕ= 0 or with
ϕ= π/2 grows.

For ϕ= 0, the linearized dynamics of δpy, (A26), decouple from those of δc and δpx, equations (A24)
and (A25). We find for the growth rate of the orientational perturbations, δpy:

ω(ϕ= 0) =−β0
p20

+ 2νṽ0xx −
p20
2
(ν− 1). (B30)

Moreover, for ϕ= π/2, the linearized dynamics of δc and δpy decouples from that of δpx, where it can be
directly shown that the maximum growth rate of the ϕ= π/2 modes is always smaller than ω(ϕ= 0). Thus,
the ϕ= 0 growth rate decides whether the system is in the unstable regime or not. Hence, all boundaries to
the unstable regime are given by ω(ϕ= 0) = 0 (all black solid curves in figure 5). To obtain a relation
between ν and ṽ0xx, for the fixed norm case, p0 was set to one (figures 5(a)–(c)), while for ZPM polarity, the
polarity magnitude p0 was eliminated using equation (40) (figures 5(d)–(f)).
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Appendix C. System size effects

Here we report analytical results for the minimal diffusion term, Dcritk2 required to stabilize the system,
depending on the parameters β and ν, the magnitude of the polarity alignment term κk2, and the sign of the
activity sgn(α). We focus on a non-deforming system with fixed polarity magnitude. As discussed in the
main text, without diffusion or polarity alignment the system is always unstable in this case.

The linearized perturbation dynamics read

∂̄tδc=−Dk2δc+
isgn(α)

k
sinϕcos2ϕ δpy (C1)

∂̄tδpy = iβk sinϕ δc+

[
sgn(α)

2
cos2ϕ

(
ν cos2ϕ− 1

)
−β−κk2

]
δpy. (C2)

The perturbation growth rates ω1,2(ϕ) are the eigen values of the coefficient matrix. Denoting trace and
determinant of this matrix by T (ϕ) and U(ϕ), respectively, we have:

ω1,2(ϕ) =
1

2

[
T (ϕ)±

√
T 2(ϕ)− 4U(ϕ)

]
. (C3)

The system is stable only iff both ω1 and ω2 are negative, i.e. iff T < 0 and U > 0, for all angles ϕ.
As a consequence, we find after some calculation that for gradient-extensile activity, sgn(α) =−1,the

system can be stabilized by diffusion iff

β+κk2 >

{
(1− ν)/2 for ν ⩽ 1/2 and

1/8ν for ν > 1/2.
(C4)

In both cases, the critical value of the diffusion term is given by

Dcritk
2 = β

[
− 1+ 4(β+κk2)+ 4

√
(β+κk2)

(
β+κk2 − [1− ν]/2

)]−1

. (C5)

For gradient-contractile activity, sgn(α) = 1, the system can be stabilized by diffusion iff

β+κk2 >

{
(1+ ν)/2 for ν ⩾−1/2 and

−1/8ν for ν <−1/2.
(C6)

For ν ⩾−1/2 or whenever ν <−1/2 and β+κk2 > (1− ν)/6 the critical value of the diffusion term is

Dcritk
2 =

β

β+κk2 − [1+ ν]/2
. (C7)

Meanwhile, whenever ν <−1/2 and (1− ν)/6> β+κk2 >−1/8ν the critical value of the diffusion term is

Dcritk
2 = β

[
− 1− 4(β+κk2)+ 4

√
(β+κk2)

(
β+κk2 + [1− ν]/2

)]−1

. (C8)
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