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Stiffening of under-constrained spring networks under isotropic strain

Cheng-Tai Lee and Matthias Merkel
CNRS, Centre de Physique Théorique (CPT, UMR 7332), Turing Center for Living Systems,

Aix Marseille Univ, Université de Toulon, Marseille, France

Disordered spring networks are a useful paradigm to examine macroscopic mechanical properties
of amorphous materials. Here, we study the elastic behavior of under-constrained spring networks,
i.e. networks with more degrees of freedom than springs. While such networks are usually floppy,
they can be rigidified by applying external strain. Recently, an analytical formalism has been devel-
oped to predict the scaling behavior of the elastic network properties close to this rigidity transition.
Here we numerically show that these predictions apply to many different classes of spring networks,
including phantom triangular, Delaunay, Voronoi, and honeycomb networks. The analytical pre-
dictions further imply that the shear modulus G scales linearly with isotropic stress T close to the
rigidity transition. However, this seems to be at odds with recent numerical studies suggesting an
exponent between G and T that is smaller than one for some network classes. Using increased
numerical precision and shear stabilization, we demonstrate here that close to the transition a linear
scaling, G ∼ T , holds independent of the network class. Finally, we show that our results are not
or only weakly affected by finite-size effects, depending on the network class.

INTRODUCTION

Understanding macroscopic rigidity and how it de-
pends on the microscopic structure in amorphous ma-
terials such as fibrous networks, glasses, jammed col-
loids, and granular materials has been a long-standing
challenge in the field. While the macroscopic mechan-
ics of crystalline materials can be computed explicitly by
exploiting their spatially periodic microscopic structure,
this is not possible for disordered materials. In particular,
upon deformation disordered materials generally display
non-affine microscopic displacements, which are hard to
predict [1–11].

A classical way to predict the onset of rigidity in many
systems is to use Maxwell’s constraint counting, which
states that rigidity emerges whenever the constraints in
a system outnumber its degrees of freedom [12–14]. In
systems with pair interactions, this is equivalent to com-
paring the average connectivity z, i.e. the average num-
ber of pair interactions each particle is involved in, to the
number of degrees of freedom per particle, which is given
by the dimension of space, D. Such systems are predicted
to be rigid if z exceeds the isostatic point, z > zc := 2D.
In this case the system is called over-constrained. Oth-
erwise, for z < zc, the system is called under-constrained
or sub-isostatic, and is predicted to be floppy.

While Maxwell’s constraint counting predicts under-
constrained systems to be floppy, these systems can still
be rigidified, either through the application of external
strain or the presence of residual stresses [3, 6, 7, 11, 15–
21]. As a simple model to study such strain-induced
rigidity, we discuss here strain-induced rigidity in ather-
mal, under-constrained disordered spring networks [15,
17, 19, 22–24]. Strain-induced rigidification is illustrated
in Figure 1a for a network to which isotropic and shear
strain has been applied.

The mechanism creating strain-induced rigidity has
been discussed in the literature before [16, 17, 25, 26].
When approaching the transition from the floppy side, a

state of self-stress (SSS) forms right at the transition. A
SSS is a set of tensions that could be put on the springs
without any net forces on the nodes. The SSS that ap-
pears at the rigidity transition couples to isotropic strain,
and using known approaches it can be shown that this
induces a jump in the bulk modulus right at the transi-
tion (Figure 1b) [14, 15]. Meanwhile, the shear modulus
shows a continuous transition, whenever the SSS that
appears at the transition has no net overlap with shear
strain. Previously, the floppy side of the strain-stiffening
transition was discussed in the limit where the springs
are infinitely rigid [25, 26]. Here, we are interested in
the network mechanics of the rigid side of the transition
when spring constants are finite.

Recent work involving one of us proposed a theoretical
approach that allows to analytically predict the behavior
of the elastic properties of under-constrained materials
close to the strain-induced rigidity transition [15]. This
approach is based on a minimal-length function that for-
malizes the relationship between spring lengths and the
applied global strain. This minimal-length function both
reflects the critical point where the network starts to
rigidify and allows to predict the behavior of the elas-
tic network properties in the rigid regime. In Ref. [15],
this approach was numerically verified both on models
for disordered cellular materials and for packing-derived
spring networks. However, it has never been explicitly
tested for other classes of under-constrained spring net-
works.

The approach in Ref. [15] allows to predict the behav-
ior of the elastic moduli close to the transition, where
the bulk modulus B shows a discontinuity, while the
shear modulus G increases linearly with isotropic strain
ε (Figure 1b). One can show that as a consequence of
both, one would expect the shear modulus G to linearly
increase also with isotropic stress T close to the transi-
tion. This is also consistent with earlier work on stress-
induced rigidity [3, 16, 27]. However, more recent nu-
merical work [19] on under-constrained disordered spring
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FIG. 1. Under-constrained spring networks can be rigidified
by the external application of strain. (a) Network config-
urations and spring tensions for an example network under
either isotropic or shear strain. (b) Change of minimal net-
work energy E, bulk modulus B, and shear modulus G when
isotropically deforming a network across the rigidity transi-
tion, which occurs at the critical strain value ε∗. Below ε∗,
all springs can attain their rest lengths, the system is floppy,
and E = B = G = 0. Beyond ε∗, springs start to deviate from
their rest lengths. According to Ref. [15], the bulk modulus B
shows a discrete jump at ε∗, while G increases linearly and E
increases quadratically with the distance from the transition
point ε∗. (c) Two types of spring potentials are used in our
simulations, harmonic (left) and rope-like (right). ` and `0
denote spring length and rest length, respectively.

networks suggested that the value for the scaling expo-
nent between G and T can differ from one, depending
on the class of network studied. The reason for this de-
viation from the analytical predictions is so far unclear.
Other recent work proposed that the numerical results in
Ref. [15] could potentially be affected by finite-size effects
caused by a diverging length scale when shearing the sys-
tem [11]. Could similar finite-size effects be the reason
for this contradiction between predicted and numerically

obtained exponents between G and T?
Here, we numerically test the predictions from Ref. [15]

on several different classes of athermal spring networks.
These include phantom triangular, Delaunay, Voronoi,
and honeycomb networks, where we study two types of
spring potentials, harmonic and rope-like (Figure 1c). In
the following, we first summarize the analytical approach
from Ref. [15] in section I. We then test the analytical
predictions on the four different network classes in sec-
tion II, and show that they follow the predicted behav-
ior (section II B). In section II C, we furthermore show
that the scaling behavior of the coefficients appearing in
the minimal-length function with connectivity z depends
on the network class. We then numerically explore the
scaling behavior of the shear modulus G over isotropic
stress T with increased numerical precision and find a
scaling exponent of one, independent of network class
(section II D). Finally, we show that depending on the
network class, there is no or a weak system-size depen-
dence affecting these results (section II E).

I. THEORETICAL PREDICTIONS

We start by summarizing the approach of Ref. [15],
which allows to predict the scaling behavior of the elastic
properties of under-constrained spring networks close to
the rigidity transition.

In general, the formalism of Ref. [15] applies to any
disordered Hookean spring network of N springs, where
each spring i has a different spring constant ki and rest
length `0i. The energy of such a network is:

e =

N∑
i=1

ki (`i − `0i)2
, (1)

where `i is the length of spring i. The springs are con-
nected at movable nodes, around which they can freely
rotate. While the approach can be applied largely inde-
pendently of the precise boundary conditions, we focus
here on periodic boundary conditions with fixed system
size. Unless stated otherwise, we use dimensionless quan-
tities, where the length unit is Lc := (V/N)1/D with D
being the dimension of space and V the system volume.
We define the energy unit such that (

∑
i ki)/N = 1. Us-

ing dimensionless lengths will later allow us to describe
the effect of isotropic strain (section I C).

Here, to explain just the key ideas of the approach, we
focus for simplicity on the special case of a network with
homogeneous spring constants ki = 1 and rest lengths
`0i = `0:

e =

N∑
i=1

(`i − `0)
2
. (2)

The behavior of networks with heterogeneous spring
properties can be predicted by formally mapping them
onto Eq. (2) as discussed in appendix A.
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The elastic properties of disordered networks are in
general difficult to predict analytically. Formally, these
elastic properties can be computed from derivatives of
a minimal energy function emin(ε, γ) with respect to ex-
ternal isotropic strain ε or shear strain γ. This function
corresponds to the minimized system energy e({rn}, ε, γ)
with respect to the node positions rn at constant strain
variables ε, γ. However, applying strain to a disordered
network generally induces non-affine displacements of
the node positions, which are typically hard to predict
without numerical energy minimization. To nevertheless
make non-trivial predictions about the scaling of the elas-
tic properties, Ref. [15] introduced a different approach.
Instead of explicitly following the node motion, progress
can already be made by focusing on the relation between
spring lengths and external strain.

Note that while we focus in this section on harmonic
springs, the formalism can also be applied to networks
with rope-like pair interactions (Figure 1c). This is be-
cause a rope-like pair interaction can be perfectly mim-
icked by a chain of two or more harmonic springs [15]
(see also appendix D).

A. Key idea

To obtain an explicit expression for emin in terms of ex-
ternal strain, we first transform the expression in Eq. (2)
into a sum of two squares:

e = N
[(

¯̀− `0
)2

+ σ2
`

]
. (3)

Here, ¯̀= (
∑
i `i)/N and σ2

` = (
∑
i [`i − ¯̀]2)/N are aver-

age and variance of the spring lengths, respectively.
The expression in Eq. (3) allows us to more conve-

niently discuss the minimal network energy emin and its
behavior once we strain the system. Because e is the sum
of two squares, an energy minimum is attained whenever
both |¯̀− `0| and σ` are as small as possible. There are
two possibilities. First, if there is a set of node positions
such that both squares can simultaneously attain zero,
then the minimal energy is zero emin = 0. Because elas-
tic stresses and moduli correspond to derivatives of emin,
the system is floppy in this parameter regime. Second,
there might be no set of node positions such that both
terms |¯̀− `0| and σ` can simultaneously vanish. In this
regime, the system is typically rigid.

To access the value of emin in the rigid regime, we
need to understand how the system compromises between
minimizing |¯̀− `0| and σ` in Eq. (3). To this end, we
first need a way to express which combinations of ¯̀ and
σ` are geometrically possible. As shown in Ref. [15], this
can be done using a minimal-length function ¯̀

min(σ`),
which returns the minimally possible ¯̀ for a given σ`. In
other words, a combination of ¯̀ and σ` is geometrically
possible only if:

¯̀≥ ¯̀
min(σ`). (4)

For instance, for σ` = 0 it is possible to find only net-
work configurations with ¯̀ ≥ ¯̀

min(σ` = 0). Thus,
for `0 ≥ ¯̀

min(σ` = 0) the network will be floppy, be-
cause both squares in Eq. (3) can simultaneously vanish,
which implies that emin and its derivatives vanish. Con-
versely, for `0 < ¯̀

min(σ` = 0), the first term in Eq. (3)
can not vanish with σ` = 0, because only configura-
tions with ¯̀ ≥ ¯̀

min(σ` = 0) > `0 are possible. Thus,
`∗0 := ¯̀

min(σ` = 0) is the transition point between floppy
and rigid regime.

In general, the precise functional form of ¯̀
min(σ`) de-

pends on the network structure. However, we showed in
Ref. [15] that at the transition point to first order in σ`
this function can be expanded as

¯̀
min(σ`) = `∗0 − a`σ`, (5)

where `∗0 and a` are constants that encode the network
structure. Eq. (5) holds in the limit of small σ`, which
means that the system is close to the transition point,
where σ` = 0. We expect that deriving expressions for
`∗0 and a` from first principles is very hard for disordered
networks. Besides some exceptions, `∗0 and a` will need
to be determined numerically.

We briefly outline how Eq. (5) is a consequence of the
SSS that is created at the transition point (details in
Ref. [15]). At the transition point the N -dimensional
vector of all spring lengths `i is given by ` = `∗0e with
e = (1, · · · , 1). We consider a state of the network that is
slightly shifted into the rigid regime, where ` = `∗0e+δ`.
One can then show that the definition of an SSS implies
that δ` is perpendicular to it [15]:

t · δ` = 0. (6)

Here, t is the SSS created at the transition. To find the
minimal possible ¯̀, we first decompose both ` and t into
parts parallel and perpendicular to e: ` = ¯̀e + σ`m`

and t ∼ e+a`mt, where we use the normalization m2
` =

m2
t = N . Note that this defines a` as the coefficient of

variation of the SSS components. We then insert both
decompositions into Eq. (6) and obtain:

¯̀= `∗0 − a`σ`(m` ·mt)/N. (7)

Thus, to minimize ¯̀ for fixed σ`, the scalar product
m` ·mt needs to be maximized. In the presence of only a
single SSS, m` can be any normalized vector perpendic-
ular to e, and thus m` ·mt is maximized by m` = mt,
for which Eq. (7) becomes Eq. (5).

To derive an expression for the minimal energy emin

in the solid regime, we combine two parts: the energy in
Eq. (3) and the condition of geometrically possible com-
binations (¯̀, σ`) in Eqs. (4) and (5). First, Eq. (4) implies
that for fixed σ`, the energy in Eq. (3) is minimized when
¯̀= ¯̀

min(σ`). Combining this with Eq. (5), insertion into
Eq. (3), and minimization with respect to σ`, yields:

emin =
N

1 + a2
`

(`∗0 − `0)
2
. (8)
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This expression only depends on the spring number N ,
the rest length `0, and the two parameters `∗0 and a` that
encode the network structure. Note that from Eq. (8)
we see that the system energy is that of a single effective
spring with rest length `0.

B. Simple example network

To illustrate the ideas of the previous section, we dis-
cuss a simple example network (Figure 2a left). The net-
work consists of four springs with equal dimensionless
spring constants k = 1 and rest lengths `0. Two of the
springs are connected to fixed points (black dots) located
at positions (−1/2, 0) and (1/2, 0), respectively. The two
internal nodes (red dots) at positions rn with n = 1, 2 are
movable. We will use the ideas of the previous section to
derive an expression for the minimal energy emin.

For `0 ≥ 1/3, there are always configurations where all
springs can attain their rest lengths `i = `0 (Figure 2a
top). This implies that |¯̀− `0| = 0 and σ` = 0, i.e. both
terms in Eq. (3) can simultaneously vanish.

Conversely, for `0 < 1/3, the springs will be under
tension (Figure 2a bottom). Our 4-spring example net-
work is simple enough so that we can explicitly mini-
mize the energy with respect to the inner node positions
rn = (xn, yn) with n = 1, 2. This will allow us to first
directly test whether the minimal energy has the form
predicted by Eq. (8) in the previous section. The energy
of our example network is

e =

[(
x1 +

1

2
− `0

)2

+ 2
(
x2 − x1 − `0

)2

+

(
1

2
− x2 − `0

)2 ]
.

(9)

Here, to simplify the following discussion, we have set
y1 = y2 = 0. The energy e has a global minimum at
x1 = −(1 + 2`0)/10, x2 = (1 + 2`0)/10, where its value is

emin =
2

5

(
1− 3`0

)2
. (10)

This expression is indeed of the predicted form Eq. (8).
We now demonstrate how the minimal energy emin can

instead be obtained using the ideas of the previous sec-
tion. We first discuss which pairs of ¯̀ and σ` are geo-
metrically possible. To this end, we express ¯̀ and σ` in
terms of the internal degrees of freedom x1, x2:

¯̀=
1

3
+

1

4

(
x̃2 − x̃1

)
, (11)

σ2
` =

1

16

(
11x̃2

1 − 14x̃1x̃2 + 11x̃2
2

)
, (12)

where we defined x̃1 = x1 + 1/6 and x̃2 = x2−1/6. Both
Eqs. (11) and (12) are illustrated in Figure 2b. Curves
of constant ¯̀ correspond to lines inclined by 45◦, where
¯̀ increases as x̃1 decreases and x̃2 increases. Meanwhile,

FIG. 2. Illustration of the analytical formalism using a
4-spring example network. (a) The network can be rigidi-
fied by either decreasing the dimensional spring rest length
or increasing the system size, both of which has the effect
of decreasing the dimensionless parameter `0. Black and red
dots indicate fixed and movable nodes, respectively. (b) De-
pendence of average ¯̀ and standard deviation σ` of the four
spring lengths on the internal node positions rn = (xn, yn)
with i ∈ {1, 2} and y1 = y2 = 0. The axes are x̃1 = x1 + 1/6
and x̃2 = x2 − 1/6. Curves of constant ¯̀ are diagonal lines
(with increasing ¯̀: blue solid, black dashed, red dotted lines),
while curves of constant σ` are ellipses. The configuration of
minimal ¯̀ for given σ` is indicated by the red dot. Because
the linear size of the ellipse scales with σ`, the minimal ¯̀ for
given σ` decreases linearly with σ`.

curves of constant σ` correspond to ellipses centered at
x̃1 = x̃2 = 0, whose main axes scale with σ` and are ori-
ented at 45◦ angles with respect to the x̃1 and x̃2 axes
[28]. Thus, for a given value of σ`, any combination of
x1 and x2 can give rise to values for ¯̀ only in an inter-
val between ¯̀

min(σ`) (blue solid line) and ¯̀
max(σ`) (red

dashed line). The upper bound ¯̀
max(σ`) only exists be-

cause we set y1 = y2 = 0 before; without this constraint,
¯̀ can become arbitrarily large for a given σ` [29]. Mean-
while, the lower bound ¯̀

min(σ`) decreases linearly with
the distance between origin (black dot) and the intersec-
tion point (red dot) in Figure 2b, which is proportional
to σ`. As a consequence, using Eqs. (11) and (12):

¯̀
min(σ`) =

1

3
− σ`

3
. (13)

This is of the form of Eq. (5), where we identify `∗0 = 1/3
and a` = 1/3. Inserting this into Eq. (8), we obtain
indeed Eq. (10).

In our discussion here we included the internal degrees
of freedom x1, x2 to demonstrate their connection to ge-
ometrically possible combinations of ¯̀ and σ`, and to ob-
tain explicit values for `∗0 and a`. In general, however, the
approach from Ref. [15] does not require a discussion of
internal degrees of freedom. Equations (3)–(5) are suf-
ficient to understand the overall system behavior close
to the rigidity transition, unless one wants to derive the
values of the coefficients `∗0 and a` from first principles.
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C. Effect of isotropic strain

We now discuss how the effect of isotropic strain ε is
incorporated into the formalism. The 4-spring system in
Figure 2a transitions from floppy to rigid when decreas-
ing the dimensionless parameter `0. Such a decrease in
`0 can correspond either to a decrease in the dimensional
spring rest length while keeping the system size constant
(Figure 2a left), or to an increase in system size while
keeping the dimensional rest length constant (Figure 2a
right). Thus, `0 is a control parameter combining both
dimensional spring rest length and isotropic strain.

Let us consider simulations where the dimensional
spring rest length L0 is kept constant, but the system
size V is changing. In this case, the combined control
parameter `0 encodes isotropic strain. We define (linear)
isotropic strain as ε := (V/Vref)

1/D − 1, where the Vref

is the system volume right after creation of the network.
From our length non-dimensionalization follows that we
can convert between `0 and bulk strain ε via:

`0 =
L0

1 + ε

(
N

Vref

)1/D

. (14)

Inserting this equation into Eq. (8) provides an ex-
plicit expression of the dimensionless system energy on
isotropic strain ε.

D. Effect of shear strain

To understand how shear strain enters the formalism,
we first note that shearing the system does not change
the energy formula Eq. (3). However, shearing the sys-
tem will change the set of geometrically possible combi-
nations (¯̀, σ`). Thus, shear strain needs to be included
as a parameter in the minimal-length function ¯̀

min. In
Ref. [15] this function is Taylor expanded to second order
in shear strain, so that Eq. (5) becomes most generally:

¯̀
min(σ`, γ̂) = ˆ̀∗

0 − a`σ` + b1γ̂ + bγ̂2. (15)

For later compactness of notation, here we also substi-

tuted the notation of parameter `∗0 by ˆ̀∗
0.

Note that the linear order term in γ̂ appears only be-
cause disordered systems with a finite size generally dis-
play a small but finite anisotropy. Equation (15) can
be simplified by removing this anisotropy through defin-
ing a new shear variable γ = γ̂ − ∆γ0, where γ̂ = ∆γ0

is defined as the shear where the function ¯̀
min(σ`, γ̂) is

minimal: ∆γ0 = −b1/2b. Defining `∗0 := ˆ̀∗
0 − b21/4b, this

leads to the minimal-length function:

¯̀
min(σ`, γ) = `∗0 − a`σ` + bγ2. (16)

The anisotropy ∆γ0 is expected to disappear in the limit
of a large network size.

E. Elastic properties near the rigidity transition

Substituting Eq. (16) into Eq. (3) and minimizing with
respect to σ`, we obtain the following explicit energy ex-
pression in terms of the control parameters `0 and γ:

emin(`0, γ) =
N

1 + a2
`

(
`∗0 − `0 + bγ2

)2

. (17)

Derivatives of this expression with respect to `0 (which
is related to isotropic strain ε via Eq. (14)) and shear
strain γ allow to derive the following quantities, here for
the 2D case [15]:

T =
`∗0

1 + a2
`

(
`∗0 − `0 + bγ2

)
, (18)

σ =
4bγ

1 + a2
`

(
`∗0 − `0 + bγ2

)
, (19)

∆B =
(`∗0)

2

2 (1 + a2
`)

at γ = 0, (20)

G =
4b

1 + a2
`

(
`∗0 − `0 + 3bγ2

)
. (21)

Here, T , σ, ∆B and G are isotropic stress, shear stress,
bulk modulus discontinuity, and shear modulus, respec-
tively. These formulas hold close to the rigidity transition
in the region where Eq. (16) is accurate. As shown by
Eqs. (18)–(21), the three parameters `∗0, a`, and b fully
describe the macroscopic elastic behavior in this regime.

II. NUMERICAL RESULTS

While in Ref. [15] the analytical predictions in
Eqs. (18)–(21) were numerically tested on packing-
derived networks only, we test these predictions here on
a set of additional network classes. These include phan-
tom triangular and Delaunay networks (both with vary-
ing connectivity z), as well as honeycomb and Voronoi
networks (which both have fixed connectivity z = 3).
We probe the elastic properties of these networks under
isotropic (i.e. bulk) strain.

A. Network generation and energy minimization

Networks of freely hinging nodes are created in a pe-
riodic box following existing protocols [19, 30] (details in
appendix B). We probe the system by varying isotropic
strain ε. Each time, we first use bisection to detect
the transition point ε∗, before we carry out exponential
and/or linear sweeps in isotropic strain ε (details in ap-
pendix C). To ensure high precision in our energy mini-
mization, we use an optimized conjugate gradient scheme
that allows to reduce the average residual force per de-
gree of freedom to less than 10−12 [15].

Right after creation, where γ̂ = 0, the disordered net-
works will generally display an anisotropy. To remove
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FIG. 3. Behavior of bulk and shear moduli across the transition for four different classes of networks and comparison to
analytical predictions. (a)-(c) Sketches of network structures of phantom triangular (a, z = 3.2, W = 10), Delaunay (b,
z = 3.2, W = 12), Voronoi (c, z = 3, W = 12) and honeycomb (c, z = 3, W = 12) networks. In (a), the solid lines are springs
of length one, while the dashed ones are phantom springs, i.e. springs that cross one or more nodes without being connected
to them. We show phantom springs, which are actually straight, slightly curved only for better visualization. In (b), gray lines
indicate the removed springs from the initial full Delaunay network, leaving the black springs in the actual network. (d)-(i)
Numerically obtained bulk modulus B and shear modulus G at γ = 0 against increasing isotropic strain ε for different network
classes: phantom triangular (d, g, W = 40) and Delaunay (e, h, W = 20) networks with variable connectivity z, as well as
Voronoi (f, i, W = 70) and honeycomb (f, i, W = 60). Here, we use harmonic spring potentials, and we shear stabilized
the networks before the ε sweeps (appendix C). The discontinuity ∆B in the bulk modulus at the transition point and linear
scaling of G predicted from Eqs. (20) and (21) are indicated as solid bars and solid lines, respectively. (h inset) Log-log plot of
G against strain difference ε − ε∗, to resolve the vicinity of the transition point ε∗. Symbols are numerical data and lines are
analytical predictions.

this anisotropy, we need to shear the system to the state
γ̂ = ∆γ0 (i.e. γ = 0, see section I D). At this point, ac-
cording to Eq. (19), shear stress vanishes, σ = 0. Thus,
the anisotropy in the networks can be numerically re-
moved using shear stabilization [31]. Shear stabilization
means that shear strain is treated as an additional de-
gree of freedom during the energy minimization. Unless
stated otherwise, we always apply this method during
the bisection phase to search for the transition point,
so that our system right after the bisection phase is at
(ε, γ) = (ε∗, 0). During the subsequent ε sweeps, we keep
shear strain γ fixed (details in appendix C).

B. Elastic moduli close to the transition

To numerically characterize the nature of the transi-
tion, we first carry out a combination of exponential and
linear sweeps around the transition point ε∗ (details in
appendix C). In Figure 3, we plot bulk modulus B and
shear modulus G against isotropic strain ε for single net-
work realizations with varying connectivity z, where we
use harmonic spring potentials.

At the transition, all networks show a discontinuity
∆B in the bulk modulus, while the transition is contin-
uous in the shear modulus G. This is qualitatively con-
sistent with our analytical predictions (section I E) and
the behavior of packing-derived networks [15]. We also
observe that for both phantom triangular and Delaunay
networks the transition point ε∗ decreases with the aver-
age connectivity z.
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FIG. 4. Scaling of the parameters `∗0, a` and b with network connectivity z for phantom triangular (system size W = 40),
Delaunay (W = 20), Voronoi (W = 70; z = 3) and honeycomb (W = 60; z = 3) networks with harmonic spring potentials. The
parameters `∗0, a` and b are extracted for each network realization according to the protocols in section II B and appendix D.
For instance, (d inset) a` is extracted using a linear fit of σ` over ¯̀− `0, and (g inset) b is extracted using a linear fit of
G over ¯̀− `0. Error bars in all panels indicate the standard error of the mean. We use the first 5 data points away from
∆z = 0 to fit `∗0 and obtain 2.07−0.31∆z for phantom triangular and 1.30−0.30∆z for Delaunay networks (red dashed lines in
panels (a) and (b)). For the honeycomb network, the numerically obtained value for `∗0 is consistent with its theoretical value

`∗0 = 21/2/31/4 ≈ 1.0745, and the parameter a` is exactly zero, because σ` = 0 due to symmetry.

To compare these data to the prediction for the bulk
modulus discontinuity ∆B according to Eq. (20), we need
the values of `∗0 and a` for our simulations. To extract
`∗0, we insert the transition point strain value ε∗ into
Eq. (14). To extract a`, we plot σ` over ¯̀− `0 (inset
of Figure 4d) and perform a linear fit whose slope is a`
for small ¯̀− `0 (see appendix D). Note that for symme-
try reasons, the honeycomb lattice has σ` = 0 and thus
a` = 0. The resulting predictions for the bulk modulus
discontinuities ∆B are respectively indicated as horizon-
tal bars in Figure 3d-f. Indeed, our predictions match
well the discontinuities present in the simulation data for
all four network classes and all connectivities z.

Some of the data points right at the transition fall
below the analytically predicted value for ∆B. These
deviations occur in our data for the strain values clos-
est to the transition point, while ∆B values of the same

network at similar strain values match closely with our
analytical prediction. These deviations are likely due to
numerical residues, an effect that we observed before [15].

For the shear modulus, Eq. (21) predicts a continuous
transition with a linear scaling G ∼ (`∗0 − `0). Using
Eq. (14), this implies also a linear scaling G ∼ ∆ε :=
ε − ε∗ to lowest order in ∆ε. Indeed, this is what we
observed close to the transition (inset of Figure 4g). We
indicate this linear scaling also in Figure 3g-i. Note that
for larger ∆ε, non-linearities in ¯̀

min and in Eq. (14) cre-
ate deviations from this prediction.

Note that both honeycomb and Voronoi networks have
their transition points at ε∗ = 0. This means that these
networks have a SSS already right at creation. While this
is clearly the case for the honeycomb lattice, we show in
appendix E that it is also true for any Voronoi network.

Taken together, the elastic properties of the system



8

close to the transition, such as the transition point ε∗, the
magnitude of the discontinuity ∆B in the bulk modulus,
and the linear scaling coefficient for the shear modulus
G, can be predicted from the coefficients `∗0, a`, and b.

C. Scaling of `∗0, a` and b with connectivity z

In Figure 4, we plot the parameters `∗0, a` and b for
phantom triangular, Delaunay, Voronoi, and honeycomb
networks with harmonic spring potentials. For phantom
triangular and Delaunay networks, we show the depen-
dency on the connectivity z. For the disordered networks
(i.e. phantom triangular, Delaunay, and Voronoi) we av-
erage each time over 50 random realizations.

In both phantom triangular and Delaunay networks,
close to the isostatic point the parameter `∗0 exhibits a
linear dependence on ∆z with a negative coefficient (Fig-
ure 4a,b), which has also been observed in 2D packing-
derived networks [15].

We also examined the z-scaling exponents of a` and b
close to isostaticity (Figure 4d,e,g,h). For a`, we find for
phantom triangular networks a scaling exponent of ≈ 0.2,
for Delaunay networks, we find an exponent close to −1,
while we found an exponent of −0.5 in earlier work for
packing-derived networks. Meanwhile for b, we find for
phantom triangular networks an exponent of ≈ −0.5 or
smaller, for Delaunay networks an exponent of roughly
−2, while we have found before for packing-derived net-
works an exponent of −1. Hence, the scaling exponent
of both parameters strongly depend on network class.

Note that for a small fraction of the Delaunay net-
works, we did not observe a linear scaling between σ`
and ¯̀− `0, suggesting that the linear relation between
¯̀
min and σ` might be violated for these networks (ap-

pendix D). A more detailed examination suggests that
this could quite possibly be due to finite numerical cut-
offs required to identify the transition point, which would
make us miss the regime where this scaling is linear (ap-
pendix F). We excluded these networks from the aver-
ages shown in Figure 4. We stress that we only found
deviations from the linear ¯̀

min scaling for Delaunay net-
works with harmonic springs, while we could numerically
confirm the predicted linear scaling for all phantom tri-
angular and Voronoi networks, as well as the honeycomb
network.

D. The shear modulus scales linearly with isotropic
stress.

In the previous sections (I E and II B), we showed that
the shear modulus G scales linearly with the isotropic
strain beyond the transition point, ∆ε = ε − ε∗. More-
over, a finite bulk modulus discontinuity at ε∗ implies
that the isotropic stress T also scales linearly with ∆ε to
lowest order, which can be derived form Eqs. (14) and
(18). Hence, we would expect from the analytical predic-

tions in section I that the shear modulus scales linearly
with the isotropic stress:

G ∼ Tα with α = 1. (22)

However, recent numerical work has suggested different
values for α. For instance, reference [19] studied networks
with rope-like potentials, and for z = 3.2 the results sug-
gested an exponent of α ≈ 0.85 for phantom triangular
and α ≈ 0.9 for Delaunay networks, while α = 1 was
found for honeycomb and Voronoi networks.

To resolve this contradiction between the numerical
results from Ref. [19] and our analytical results from sec-
tion I and Ref. [15], we simulate here different kinds of
rope-like networks with a high numerical precision, where
we vary linear system size W by more than an order of
magnitude. Figure 5a shows the scaling of the shear mod-
ulus G against the isotropic stress T , both averaged over
50 realizations, for phantom triangular networks, where
we used two protocols. The open symbols correspond to
a protocol without any shear stabilization. This means
that no shear strain was applied after the creation of
the network, and the ε sweep was carried out at γ̂ = 0.
The closed symbols correspond to a protocol where we
used shear stabilization when searching for the transi-
tion point, and as a consequence the ε sweep was carried
out at γ = 0 (see section I D).

We find that indeed, for the protocol with shear sta-
bilization (closed symbols), the shear modulus G scales
linearly with isotropic stress T over many orders of mag-
nitude (Figure 5a for phantom triangular networks & in-
set for the other network classes). This observation is
independent of system size. However, without shear sta-
bilization (open symbols), at small stress T we observe
a plateau, whose value depends on system size. Away
from the plateau regions the curves largely collapse for
different system sizes.

The appearance of a plateau in G(T ) in the proto-
col without shear stabilization can be readily understood
from our analytical results. Eq. (21) states that G is pro-
portional to `∗0− `0 + bγ2, where (`∗0− `0) ∼ ∆ε ∼ T and
γ = γ̂ − ∆γ0. Without shear stabilization, γ̂ = 0 and
so γ = −∆γ0. This implies a plateau in G that is pro-
portional to ∆γ2

0 . In other words, the plateau in G(T )
is related to the small anisotropy in the disordered net-
works. Shear stabilization removes this anisotropy and
thus also the plateau in G(T ).

To test whether the plateaus that we find in Figure 5a
do not result form an averaging effect, we plot in Fig-
ure 5b the same curves for individual realizations for a
given system size. We find that the plateau is also present
in individual simulations, and that its height fluctuates
across realizations. This makes sense, because the net-
work anisotropy ∆γ0 also fluctuates across realizations.
Moreover, we find that the variance of ∆γ0 decreases
inversely proportional to the number of springs in the
system (Figure 5b), which scales as ∼ W 2. Hence, the
plateau in G(T ) corresponds to a finite-size effect. A
similar conclusion was drawn also in Ref. [32] following
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FIG. 5. The shear modulus G scales linearly with isotropic stress T for shear-stabilized networks. Without shear stabilization
an additional plateau appears at small T . (a) Dependence of G on isotropic stress T for phantom triangular networks with
z = 3.2 and rope-like spring potentials for varying system size W , where we either use shear stabilization (closed circles) or
not (open circles). All shear-stabilized networks show a linear scaling close to the transition point (at small T ). The gray
vertical line indicates the lowest T value probed in previous work [19]. (a inset) The linear scaling in G(T ) also appears for
shear-stabilized honeycomb (W = 60), Voronoi (W = 70) and Delaunay (W = 20) networks. Error bars in panel a & inset
indicate the standard error of the mean. (b) The G(T ) curves for individual phantom triangular networks with z = 3.2 and
W = 40 without shear stabilization also exhibit a plateau, confirming that the plateaus in panel a are not due to an averaging
effect. (b inset) The variance of the network anisotropy ∆γ0 (defined below Eq. (15)) across different randomly generated
networks for a given system size W scales inversely proportional with W 2.

FIG. 6. Plot of the isotropic strain range ∆εmax = εmax − ε∗
within which the ¯̀

min function scales linearly with σ`, shown
here for increasing system size W for phantom triangular net-
works, and for shear-stabilized packing-derived networks (in-
set). In both cases, we use z = 3.2 and rope-like potentials.
The range ∆εmax is quantified as explained in appendix G
and Figure 9. While for W & 60, the linear range of the
phantom triangular networks appear to show a weak power-
law dependence on W , there is no significant dependence on
system size for packing-derived networks. Error bars indicate
the standard error of the mean.

a different line of argument.

E. Linear range of ¯̀
min shows no or weak

system-size dependence

In recent work, it was pointed out that scaling ex-
ponents in spring networks under shear strain may be
affected by finite-size effects [11]. In particular, it was
suggested that for networks of size W , finite-size effects
could affect scaling exponents when shearing the systems
by ∆γ . W−1/ν beyond the transition point γ∗, where
ν > 0. This would correspond to a diverging length scale
ξ ∼ |∆γ|−ν . While in this article, we probe the system
mechanics with respect to isotropic strain ε instead, we
still wanted to check whether such finite-size effects could
affect our results.

The system mechanics with respect to isotropic strain
is crucially determined by how the minimal-length func-
tion ¯̀

min scales with σ` in Eq. (5) (section I, appendix
H). Hence, we were wondering whether the linear scaling
of ¯̀

min with σ` is only valid close to the transition point
with strains ∆ε < ∆εmax ∼ W−1/ν` for some ν` > 0. In
other words, we wondered whether the range ∆εmax of
linear ¯̀

min scaling would algebraically decrease to zero
with increasing system size W .

In Figure 6 we show the resulting dependency of ∆εmax

on system size W for both phantom triangular networks
and packing-derived networks, both with rope-like spring
potentials, where ∆εmax is quantified as described in ap-
pendix G. For the phantom networks, beyond an initial
quick decrease in ∆εmax for small W , we find that for
W ≥ 60 our data indicates a finite-size scaling exponent
in the range 1/ν` ∈ [0.04, 0.35]. Thus, the range of linear
scaling in the ¯̀

min function slowly decreases with system
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size. In contrast, for the packing-derived networks dis-
cussed in Ref. [15], we find a range of 1/ν` ∈ [−0.03, 0.08].
This means that the linear scaling range of ¯̀

min is sub-
ject to none, or at most a weak finite-size effect. Thus,
intriguingly, the effect of finite-size effects on the linear
scaling range of ¯̀

min appears to depend on the class of
network studied.

Given that strain-controlled transitions in spring net-
works have been shown to be critical transitions [4, 6,
7, 10, 11, 19], we wondered whether we would also ob-
serve a divergence in the fluctuations close to the tran-
sition. Focusing on the scaling behavior of a non-affine
motion parameter Γ with system size W and distance
to the transition point, ε − ε∗, we find indeed such a
divergence (appendix G). Moreover, we also find finite-
size effects with exponents of 1/νΓ ≈ 0.75 for phantom
triangular networks and 1/νΓ ≈ 0.6 for packing-derived
networks. Intriguingly, these exponents are very differ-
ent from what we observe for the linear scaling regime of
¯̀
min, i.e. νΓ 6= ν`. This suggests that the linear range of

¯̀
min is not controlled by the diverging length scale that

controls non-affine motion. A possible reason for this is
that close to the transition the non-affinity parameter Γ
mostly captures motions that are (to first-order) uncon-
strained by spring lengths, while ¯̀

min(σ`) characterizes
spring length behavior.

III. DISCUSSION

We studied the elastic behavior of sub-isostatic spring
networks that are rigidified by isotropic expansion, com-
paring numerical simulation results with analytical pre-
dictions from Ref. [15]. We first summarized the ap-
proach from Ref. [15], which proposed an analytical
framework to predict the behavior of the elastic net-
work properties using a minimal-length function ¯̀

min

(Eq. (16)). This minimal-length function allows to map
the physical problem of the strain-induced stiffening tran-
sition to the purely geometric problem of finding a min-
imal length. Because of this reduction to a geometric
problem, we expect these results to hold quite generally
for any athermal, under-constrained material with a fixed
connectivity.

The ¯̀
min formalism allows to make several predictions

of the elastic network behavior close to the transition
[15]. These predictions include the rigid-floppy bound-
ary with respect to shear and isotropic strain, the value
of the bulk modulus discontinuity at the transition, the
linear scaling coefficient of shear modulus with isotropic
tension, the value of the shear modulus discontinuity for
networks under shear strain, the coefficient of the linear
shear modulus scaling beyond this transition, and the co-
efficient describing the anomalous Poynting effect. All of
these predictions are based on the three parameters `∗0,
a` and b. In other words, Ref. [15] reduced the ques-
tion of quantitatively predicting the elastic properties of
disordered spring networks close to the transition to the

question of determining these three parameters a priori,
which we believe is a very hard problem that remains for
future work. However, by combining our predictions one
also obtains non-trivial parameter-free predictions that
apply to any athermal under-constrained material [15].

A key result required to derive all our predictions is
that close to the transition the minimal average spring
length ¯̀

min depends linearly on the standard deviation of
the spring lengths σ`. We have shown that this scaling
results from the appearance of a state of self-stress (SSS)
at the onset of rigidity [14]. We note that an equiva-
lent linear scaling has been reported before, in a system
of spheres close to the jamming point [33]. However, in
such a system each contact change will also change the
set of SSSs. Contact changes occur also in a host of other
systems, such as vitrimers [34]. Hence, investigating in
depth how varying connectivity affects the relation be-
tween ¯̀

min and σ` is an interesting question for future
research.

To numerically test the predictions, we first verified
the linear scaling of the minimal-length function near the
transition and extracted the three parameters `∗0, a` and
b for four different network classes, including phantom
triangular, Delaunay, honeycomb, and Voronoi networks.
Based on these parameters, we compute the bulk modu-
lus discontinuity ∆B, which predicts well our numerical
results for all network classes (Figure 3). Moreover, we
also recovered the predicted linear scaling of the shear
modulus G with isotropic tension T close to the transi-
tion.

Next we explored the scaling of the parameters `∗0, a`
and b with respect to connectivity z. We found that
the scaling of the parameters a` and b with the dis-
tance to isostaticity ∆z = 4 − z strongly depends on
the network class. The scaling exponent for a` can even
change sign, varying from −1 for Delaunay networks to
≈ 0.2 for phantom triangular networks (Figure 4, with
an exponent of −0.5 for packing-derived networks [15]).
The scaling exponent for b varies from −2 for Delau-
nay networks to −0.5 for phantom triangular networks
(Figure 4, with an exponent of −1 for packing-derived
networks [15]). This dependency on network class is not
too surprising, since the parameters `∗0, a` and b depend
on the microscopic network structure, which varies with
network class. In contrast, the value of `∗0 always showed
a linear dependency on ∆z, where intercept and slope
depend on network class.

One prediction of the formalism in Ref. [15] is a linear
scaling of the shear modulus G with the isotropic stress T
close to the transition point: G ∼ Tα with α = 1. This is
a direct consequence of the discontinuity ∆B in the bulk
modulus and of the linear scaling of the shear modulus G
with strain ∆ε. There are different ways to derive such a
linear scaling (e.g. [16, 27]); Ref. [15] showed that it can
be understood as a consequence of the linear scaling of
the ¯̀

min function with σ`. While in section I D we make
the assumption that ¯̀

min at its minimum is analytical in
γ, non-analytic behavior in γ would still lead to an inte-
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ger exponent α (appendix H). However, the prediction of
integer α seems to be at odds with recent numerical work,
which suggested that the value of α can be different from
one for networks with a rope-like interaction potential,
depending on the disordered nature of the network [19].
In particular, Ref. [19] found an exponent of α ≈ 0.85 for
phantom triangular networks and α ≈ 0.9 for Delaunay
networks with connectivity of z = 3.2.

To reconcile the two results from Refs. [15, 19], we
numerically studied the G(T ) scaling with an increased
numerical precision, and our results confirmed the an-
alytically predicted scaling exponent of α = 1 in both
phantom triangular and Delaunay networks (Figure 5a
and inset). We show that the result also depends on a
small random anisotropy in the generated network. In
the presence of such a finite anisotropy, we observed a
plateau in the shear modulus G(T ) for small isotropic
stress T , consistent with the analytic prediction, Eq. (21).
This plateau disappears when using shear stabilization
[31], which removes the network anisotropy by shearing
the network by a shear strain ∆γ0 (section I D). We
moreover show that the plateau disappears for larger sys-
tem sizes (Figure 5b inset). Hence, while without shear
stabilization large system sizes are required to probe the
behavior close to the transition, shear stabilization allows
to explore this regime already for smaller systems.

We see two possible reasons for the discrepancy in the
G(T ) scaling between Refs. [15, 19]. First, we used the
conjugate gradient minimizer code developed in Ref. [15],
which allows us to probe the system at least two orders
of magnitude closer to the transition point than Ref. [19]
(see gray vertical line in Figure 5a). For instance in phan-
tom triangular networks we observe an exponent of α < 1
for larger isotropic stress T & 10−3, which seems consis-
tent with the value of 0.85 given by Ref. [19], while we
observe an exponent of α = 1 for stress T smaller than
that. Second, we show that a small anisotropy in the gen-
erated network can lead to a plateau in the shear mod-
ulus curve G(T ), which could in turn affect the inferred
scaling exponent.

Previous work suggested that finite-size effects could
affect scaling exponents in spring networks [11]. This
can occur whenever the system size is on the order of
or smaller than a length scale that diverges close to the
transition point. While Ref. [11] focused on shear simu-
lations, we wanted to test whether such an effect could
also arise in our isotropic-strain simulations. To this end,
we numerically tested in what range around the transi-
tion point the linear scaling of the ¯̀

min function holds.
Our results suggest that this potentially depends on the
class of network studied. While in phantom triangular
networks, this range decreases weakly with system size,
we did not find a significant decrease in packing-derived
networks. This is also consistent with Figure 5a, which
suggests that G(T ) is largely independent of system size
W for the range of W probed.

Intriguingly, we found that non-affine motion Γ shows
a much stronger system-size dependence, suggesting that

it is controlled by a length scale that does not affect
the linear range of ¯̀

min. One possible reason for this
is that close to the transition point non-affine motions
are to linear order unconstrained in under-constrained
networks. Better understanding this difference in the
finite-size scaling behavior of Γ and ¯̀

min is an interesting
avenue for future research.
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Appendix A: Generalization to networks with
heterogeneous spring constants and rest lengths

In the main text, we focused on the case where all
springs share the same rest length `0 and the same spring
constant k. Here, we generalize this to networks where
rest length and spring constant may differ among the
springs, as in Eq. (1). Similar to Ref. [15], we introduce

re-scaled spring lengths ˜̀
i, re-scaled spring constants k̃i,

and an average spring rest length `0 in a way that allows
us to rewrite Eq. (1) in the form:

e =

N∑
i=1

k̃i
(
˜̀
i − `0

)2
. (A1)

For this to work, we need to define the re-scaled spring
lengths as

˜̀
i = `i

`0
`0i
. (A2)

This will accordingly give rise to a new re-scaled spring
constants

k̃i = ki

(
`0i
`0

)2

. (A3)

Finally, we choose to define `0 as the quadratic mean of
the `0i, weighted by the ki:

`0 =

√∑
i ki`

2
0i∑

i ki
. (A4)
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Using the re-scaling Eqs. (A2)–(A4), Eq. (1) can be ex-
actly re-expressed as Eq. (A1). This network energy can
be transformed into

e = N
[(

¯̀− `0
)2

+ σ2
`

]
. (A5)

Here, ¯̀and σ` are defined as the average and standard de-
viation of the re-scaled spring length ˜̀

i with the weight-
ing factors k̃i:

¯̀ :=

∑
i k̃i

˜̀
i∑

i k̃i
; σ2

` :=

∑
i k̃i

(
¯̀− ˜̀

i

)2

∑
i k̃i

. (A6)

The subsequent discussion in sections I A–I E remains un-
changed.

Appendix B: Network generation

Networks were created using the following protocols.

Phantom triangular (Figure 3a) [30]: Following
Ref. [19], a 2D triangular lattice of spacing 1 is first con-
structed by depositing three sets of W parallel filaments
each at angles of 0◦, 60◦ and 120◦ with the x-axis, respec-
tively. To reduce the connectivity from z = 6 to values
observed in e.g. collagen networks [35] of 3 ≤ z < 4,
we first detach at each node one filament, which is ran-
domly chosen among the three crossing filaments. This
creates a network of homogeneous connectivity z = 4. To
avoid system-spanning filaments, one spring is removed
at a random position on each filament, giving the average
connectivity z = 4 − 6/W . To further reduce the con-
nectivity to a defined value z, we implement an iterative
procedure. At each iteration, we randomly remove only
a few of the springs and then clear off all of the dangling
springs and isolated islands. This is repeated until the
desired connectivity z is reached.

Delaunay (Figure 3b): Delaunay networks are con-
structed from W 2 nodes that are placed at uncorrelated
random positions in a square box of side W . The connec-
tivity of initially z = 6 is decreased to the desired value
z by employing the same protocol using random cuts as
for the phantom triangular networks.

Honeycomb (Figure 3c): We construct a network of
W 2/3 regular hexagons with side length 1.

Voronoi (Figure 3c): Voronoi networks correspond to
the Voronoi tessellation of W 2/2 nodes at uncorrelated
random positions in a square box of side W .

In all four network classes, we set the dimensionless
spring rest lengths `0i to the respective initial spring
lengths before any deformation is applied, i.e. at (ε, γ̂) =
(0, 0). We set the dimensionless spring constants as
the inverse of the respective rest length at zero strain,
ki = 1/`0i.

Appendix C: Details of numerical strain sweeps and
computation of the elastic moduli

In this paper, we exclusively carry out sweeps of
isotropic strain ε. Before each sweep, we first identified
the transition point ε∗. To this end, we implemented a
bisection scheme, which we optimized by linearly interpo-
lating the transition point in each step. We defined net-
works as rigid whenever their isotropic stress T is above
a cutoff value of 10−10 (two orders of magnitude above
the tolerance for the residual force cutoff per degree of
freedom, 10−12). We use isotropic stress T as a criterion
for network rigidity, because it is much faster to compute
than an elastic modulus.

In the bisection to identify the transition point, we also
implemented the option to perform shear stabilization to
remove network anisotropy (sections I D and II A). This
is done by treating the shear strain γ̂ as an additional
degree of freedom during each energy minimization of
the bisection process. In any case, shear stabilization
was always turned off (i.e. shear remains constant) after
the transition point ε∗ has been identified.

We apply an exponential sweep of isotropic strain to
probe the scaling behavior of network mechanics close
to the transition point ε∗. In particular, we probed
strain values ε − ε∗ = 10−10+0.2k, where the step index
k ranged from 0 to 51 by default, with only two excep-
tions. First, in Figure 3, we apply the same exponential
sweep, yet with k ranging from 0 to 7 only, which is then
followed by a linear sweep. Second, for the Voronoi net-
works of size W = 70 (Figure 4 and Figure 5a inset) we
needed to increase the residual force cutoff for the energy
minimization to 10−10, and so we also raised the cutoff
in isotropic stress T to identify the transition point to
10−8. Accordingly, we changed the sweep to the values
ε− ε∗ = 10−8+0.2k with k ranging from 0 to 41.

We computed the elastic moduli using two different
methods. For not too big networks, we diagonalized
the Hessian of the system energy and used the resultant
eigenvalues to compute elastic moduli [15, 27, 36–38].
This approach produces a higher numerical precision and
was suitable for typical system sizes W < 100 (Figure 3
and 4). However, in Figure 5 we studied networks with
a large system size, and so we used a less time-intensive
way of computing the shear modulus G. We computed G
through a difference quotient of the shear stress over the
shear strain: G(ε, γ = 0) = [σ(ε,∆) − σ(ε,−∆)]/2∆,
where we numerically tuned and found the optimized
shear strain ∆ = 5 × 10−5. We also noticed that for
ε − ε∗ < 10−7 the shear modulus computed with this
method could deviate significantly from the true value.
We hence excluded these data points in Figure 5 and the
lowest isotropic stress there is accordingly T ≈ 10−7.
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Appendix D: Extraction of the parameters a` and b
of the minimal-length function

To extract a` from numerical data, one could just di-
rectly use the ¯̀

min(σ`) function (Eq.(5)). However, this
approach depends on the correct identification of the
transition point `∗0. While we can identify `∗0 with a rel-
atively high precision of ∼ 10−10, we could even remove
the dependency on `∗0 entirely when determining a`. To
this end, we note that in an energy-minimized state, the
energy is also minimal with respect to variation of σ`,
i.e. de/dσ` = 0. From Eq. (3), and using the insight
that ¯̀ = ¯̀

min(σ`) in the rigid regime, the minimization
condition reads:

de

dσ`
= 2N

[(
¯̀− `0

) d¯̀
min

dσ`
+ σ`

]
= 0. (D1)

Using Eq. (5), the derivative of the minimal-length func-
tion is d¯̀

min/dσ` = −a`. Taken together, we thus obtain
the linear relation:

σ` = a`
(
¯̀− `0

)
. (D2)

Based on Eq. (D2), examining the relation between σ`
and (¯̀− `0) (e.g. Figure 4d inset) allows both to effec-
tively verify the scaling of the minimal-length function
(Eq. (5)), and to extract the value of a`. This approach
does not involve the critical value `∗0 which we obtain with
a lower precision as compared to ¯̀ and σ` (as precise as
10−12).

To extract the parameter b, we use the derived shear
modulus formula (Eq. (21)), instead of directly using the
original minimal-length function (Eq. (16)) since we do
not shear the networks (i.e. γ = 0). As before, we intend
not to use the critical value `∗0. Thus, to replace the
term (`∗0−`0) that appears in the shear modulus formula
(Eq. (21)), we insert Eq. (D2) back into the minimal-
length function (Eq. (5)) and obtain

`∗0 − `0 =
(
1 + a2

`

) (
¯̀− `0

)
. (D3)

Combining this equation with the shear modulus formula
(Eq. (21)) yields

G = 4b
(
¯̀− `0

)
. (D4)

We used this equation to extract b from the plots of G
over ¯̀− `0 (Figure 4g inset).

By default we use the first 25 data points from an
exponential sweep to numerically fit Eqs. (D2) and (D4)
and extract the parameters a` and b. Note that a` in
Figure 6 is defined in the very same way, based on the
first 25 data points of an exponential sweep. Meanwhile
in Figure 3 we use only the first 5 data points due to
a decreased step number n in the exponential sweep of
isotropic strain (appendix C).

We note that rope-like spring potentials can be treated
as well with the analytical framework in section I, which
we took into account when computing ¯̀ and σ` here.

FIG. 7. Illustration of local force balance at any node n of a
Voronoi network, demonstrating that Voronoi networks have
a SSS at creation. Red dots are the internal nodes, while blue
dots are the neighboring random seeds used for the Voronoi
tessellation. Geometrically, node n is created as the circum-
center of the local triangle (gray dashed lines) formed by these
seeds, and the three local springs i, j and k (black segments)
are the vertical bisectors of the respective sides. The vectors
C1

i and C2
i refer to the two seed points at the side perpendic-

ular to spring i (and similarly for springs j and k). The node
n is force-balanced when the magnitude of the spring tensile
forces (fi, fj and fk, in black arrows) follow the proportional-
ity relation, Eq. (E1). These forces will form a closed triangle
that is similar to the local triangle by a rotation of 90◦, thus
giving zero net force, see also Eqs. (E2) and (E3).

While one way to treat rope-like spring potentials was
discussed in Ref. [15], where each spring is subdivided
into a series of shorter springs, we chose here an alterna-
tive approach. We used the fact that for rope-like spring
potentials, a spring i only affects the mechanics when
`i > `0i, while springs with `i < `0i do not contribute.
Thus, to compute ¯̀ and σ`, whenever for any spring i
the distance of the two connected nodes is smaller than
the rest length `0i, we set the spring length to `i = `0i.
This redefinition of `i does not affect the computation of
shear modulus G and tension T .

Appendix E: Any Voronoi network at creation has a
state of self stress.

We numerically found that Voronoi networks have a
critical isotropic strain very close to zero, ε∗ ≈ 0. Here
we show that the critical strain is indeed exactly zero,
by proving that there is a state of self stress right at
creation of these networks. In other words, at creation
(ε = 0) these networks can sustain finite tensions in a
subset of springs, while force balance is maintained at
the internal nodes.

The geometric structure of a Voronoi network allows
for the following set of spring tensions ti (with i being a
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spring index) to be a state of self stress:

ti = η|C2
i −C1

i |. (E1)

Here, η is some constant factor, the vectors C1
i and C2

i

refer to the two Voronoi seed points that are closest to
spring i (Figure 7; i.e. C1

i and C2
i are the two points that

generated the line that defines spring i), and | · | denotes
the length of a vector.

To show that the set of spring tensions ti form a state
of self stress, we demonstrate that they satisfy local force
balance at each node. To this end, we focus here on a
node n that is connected to springs i, j, k as shown in
Figure 7. The force that spring i exerts on the node n is
fi = tiei, where ei is the unit tangent vector of spring i
pointing away from node n. Furthermore, we have

fi = tiei

= η|C2
i −C1

i |ei

= η|C2
i −C1

i |
R(π/2) · (C2

i −C1
i )

|C2
i −C1

i |
= ηR(π/2) · (C2

i −C1
i ).

(E2)

Here, in the second line, we inserted the spring tensions
Eq. (E1). In the third line, we used the fact that spring
i is perpendicular to the segment connected by the two
seed points C1

i and C2
i , while the operator R(π/2) per-

forms a counter-clockwise rotation by an angle of π/2.
An analogous equation to Eq. (E2) holds also for the
forces by springs j and k. As a consequence, the sum of
these three forces is zero:

fi + fj + fk = 0. (E3)

In other words, force balance on node n holds. This proof
is also illustrated at the bottom of Figure 7; up to the
factor of proportionality η, the three forces fi,fj ,fk cor-
respond to the three triangle sides rotated by π/2, which
is why they add up to zero. Hence, Voronoi networks at
creation have a state of self stress given by Eq. (E1).

Appendix F: Apparent non-linear scaling of ¯̀
min in

some Delaunay networks

For Delaunay networks with harmonic spring poten-
tials, we observed that a fraction of the networks did
not seem to follow the linear relation (D2) between σ`
and (¯̀− `0) (blue and red data points in Figure 8a
inset). This is also apparent from the absence of a
plateau in σ`/(¯̀− `0) (compare blue and red with black
data points in Figure 8a). From our arguments in ap-
pendix D, it follows that this non-linearity also implies
a non-linear scaling of the minimal-length function ¯̀

min

with σ`, which would also affect the elastic network prop-
erties, Eqs. (18)-(21).

We wondered whether this non-linear scaling between
σ` and (¯̀− `0) was just due to finite numerical cutoffs,

or whether it reflects the real scaling behavior infinites-
imally close to the transition point. Numerical limita-
tions arise because we cannot probe the networks ar-
bitrarily close to the true transition point. Indeed, we
used a cutoff value of Tcutoff = 10−10 for the isotropic
stress T to numerically identify the transition point. In
other words, at the detected transition point we are al-
ready in the rigid regime by some small extent beyond
the true transition point. If the plateau in σ`/(¯̀− `0)
exists only close to the true transition point until some
isotropic stress value Tmax < Tcutoff , we will not detect
it since we missed that regime. To test if this could be
the case, we created histograms of the extent Tmax of the
plateau for different connectivity z (Figure 8b). For a
given network, we define Tmax as the isotropic stress of
the data point at which the quotient σ`/(¯̀− `0) first de-
viates by more than 10% from the value of this quotient
at the detected transition point. For networks where the
plateau ends below Tcutoff , we would find with this ap-
proach Tmax ≈ Tcutoff = 10−10. If there is a significant
excess of networks where we numerically do not observe
a plateau, this could be an indication that there is indeed
no plateau.

Figure 8b shows that for Delaunay networks with har-
monic springs, Tmax generally decreases with connectiv-
ity z, and that we only observe a peak around Tmax ≈
Tcutoff occur mostly for the two largest values of z. Even
in these cases, the peak is not very pronounced and may
very well arise from the integral of the real Tmax distri-
bution from 0 to Tcutoff . In other words, these networks
may possibly have a plateau which ends just too close to
the transition point for us to detect it.

This is also consistent with the observation that most
of these curves appear to collapse with the curves that do
show a plateau beyond the end of the plateau (Figure 8a).
This suggests that the non-linear scaling regime just cor-
responds to a regime governed by higher-order terms. In
future work, it will be interesting to see if these higher-
order terms could also be predicted from first principles.

Appendix G: Finite-size effects

In the main text, we examined the range of validity of
the linear scaling of ¯̀

min with σ`. In Figure 9 we show
how we determined this range using a 10% cutoff on the
ratio σ`/(¯̀− `0). We find in section II E that this range
does not or only weakly change with system size.

Strain-stiffening of spring networks has been shown to
be a critical transition when using shear strain as control
parameter, which includes diverging fluctuations when
approaching the transition point [6, 10, 11, 19]. We won-
dered whether we would also observe diverging fluctua-
tions when using isotropic strain as control parameter.
Analogous to previous work [6, 10, 11, 19], we quantify
fluctuations using a non-affinity parameter Γ, which we
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FIG. 8. (a) The quotient σ`/(¯̀− `0) plotted versus ¯̀− `0 for Delaunay networks with harmonic spring potentials, shown here
for three networks. These networks show either a linear (black diamonds) or non-linear (blue dots and red squares) scaling
between σ` and ¯̀− `0 close to the transition point (inset), where a linear scaling is reflected by a plateau in the quotient
σ`/(¯̀− `0). (b) Histograms of the extent Tmax of the plateau in the quotient σ`/(¯̀− `0) for Delaunay networks with harmonic
spring potentials of different connectivity z. We compute Tmax as the isotropic stress value where the quotient σ`/(¯̀−`0) starts
to show a deviation of more than 10 % from the one computed at the detected transition point.

FIG. 9. ∆εmax in Fig 6 is defined as the strain range where
the ratio σ`/(¯̀− `0) shows a deviation of less than 10% from
its value a` defined very close to the transition point (ap-
pendix C).

define as:

Γ =

∑
n (δuNA

n )2

NL2
cδε

2
. (G1)

Here, δuNA
n is the (dimensionful) non-affine displacement

of node n during an isotropic expansion by strain δε.
The factor Lc is the length unit defined below Eq. (1).
Because the affine transformation corresponds in our case
to uniform isotropic inflation, Eq. (G1) can be simplified
using dimensionless node positions r, so that in practise
we compute Γ as:

Γ(εk) =
(1 + εk)

2∑
n (rn,k − rn,k−1)

2

N (εk − εk−1)
2 . (G2)

Here, εk is the strain step with index k within a sweep,
and rn,k is the corresponding dimensionless position of
node n.

Using the same networks as in Figure 6, we numerically
studied Γ(ε) and its dependence on system size. For all
system sizes we observed a plateau in Γ(ε) (Figure 10a),
for both phantom triangular and packing-derived net-
works.

We examined how both height Γpl and extent ∆εpl of
the plateau depend on system size (Figure 10b,c). We
quantified the extent ∆εpl as the value of ε where Γ de-
viates by 10% from the plateau value, where we also
performed linear interpolation between neighboring εk
values. We found power law scaling with system size
of both plateau value Γpl ∼ WλΓ/νΓ and plateau ex-

tent ∆εpl ∼ W−1/νΓ . For the phantom triangular net-
works we found the plateau height exponent λΓ/νΓ ≈ 1.1
and for plateau extent 1/νΓ ≈ 0.75. For the packing-
derived networks, we found the plateau height exponent
λΓ/νΓ ≈ 0.5 and for plateau extent 1/νΓ ≈ 0.6.

These findings are consistent with the finite-size scal-
ing behavior of the non-affinity parameter Γ with respect
to shear strain γ [6, 10, 11, 19]: The non-affinity param-
eter generally diverges when approaching the transition
as Γ ∼ |∆γ|−λΓ with λΓ > 0, but a diverging length
scale ξΓ ∼ |∆γ|−νΓ with νΓ > 0 changes this behav-
ior for system sizes W . ξΓ. As a consequence, the
non-affinity parameter Γ(γ) has a plateau whose height
scales as Γpl ∼ WλΓ/νΓ , and whose extent scales as

∆γpl ∼ W−1/νΓ . Here we demonstrated that this be-
havior also appears when using isotropic strain instead
of shear strain as control parameter.

Noticeably, the 1/νΓ values are much larger than the
power-law exponent 1/ν` that characterizes the range of
the linear scaling of ¯̀

min (Figure 6; for phantom triangu-
lar networks 1/ν` ∈ [0.04, 0.35], while for packing-derived
ones 1/ν` ∈ [−0.03, 0.08]). This indicates that the linear
scaling regime of ¯̀

min is not controlled by the diverging
length scale ξΓ that governs the apparent divergence of
the non-affine motions.
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FIG. 10. Finite-size scaling of the non-affinity parameter Γ defined in Eq. (G1). (a) A plateau regime is observed in Γ at strain
values close to the transition point ε∗. Here we show only three example networks with W = 140 of different class. (b,c) As
system size W increases, the range ∆εpl of the plateau decreases as a power-law, while the plateau value Γpl increases as a
power-law. The plateau range ∆εpl here is defined as the strain difference between the transition point ε∗ and the point where
Γ shows a 10% deviation from its plateau value Γpl. Error bars indicate the standard error of the mean (≈ 50 networks for
each system size). Here we studied the same set of networks as in Figure 6.

Appendix H: General form of the minimal length
function

In Eq. (5), we Taylor-expanded the minimal length
function ¯̀

min to the second order in shear strain γ, while
treating the coefficient a` as independent of γ. Here we
discuss a more general form of ¯̀

min that can include po-
tentially non-analytic dependencies on γ:

¯̀
min = `∗0 − a`(γ)σ` + g(γ), (H1)

where the coefficient a`(γ) is a function of γ. We also
newly introduced the function g(γ), where we choose the
convention g(0) = 0; any offset can be absorbed into `∗0.
Note that Eq. (H1) reflects an arbitrary dependency of
¯̀
min on γ, while we keep the linear dependency on σ`.

Both a` and g do not need to be analytic, but they need
to be twice differentiable at γ = 0, or at least arbitrarily
close to γ = 0.

After minimizing the energy with respect to inner de-
grees of freedom and the standard deviation σ`, the re-
sultant energy e is:

e =
N

1 + a2
`

(∆`+ g)
2

(H2)

Here we defined ∆` := `∗0 − `0. Using G =
(d2e/dγ2)|γ=0/N we then obtain for the shear modulus:

G =
2

(1 + a2
`)

3

[
Q0 +Q1∆`+Q2∆`2

]
, (H3)

where Q0, Q1, and Q2 are coefficients that depend only
on a`, g, and their derivatives with respect to γ.

Note that according to Eq. (18), ∆` is proportional to
isotropic tension: T ∼ ∆`, which can be understood as
a consequence of the bulk modulus discontinuity. Since
the Qs in Eq. (H3) do not depend on ∆`, one already
observes from this equation that any scaling G ∼ Tα

needs to have α ∈ {0, 1, 2}. In this sense, the integer

scaling exponent between G and T is inherited from the
linear scaling of the ¯̀

min function with σ` in Eq. (H1).
Which of the three values α ∈ {0, 1, 2} is attained de-

pends on the coefficients Q0 to Q2 in Eq. (H3), which
are:

Q0 =
(
1 + a2

`

)2
g′

2
, (H4)

Q1 =
(
1 + a2

`

) [ (
1 + a2

`

)
g′′ − 4a`a

′
`g
′
]
, (H5)

Q2 = a`
(
1 + a2

`

)
a′′` +

(
1− 3a2

`

)
a′`

2
. (H6)

Here, for simplicity we used the superscripts ′ and ′′ for
the first and second derivatives with respect to γ, respec-
tively. From Eqs. (H3)–(H6) follows that the system has
finite shear modulus only if at least one of a` or g has a
finite first or second derivative with respect to γ at γ = 0.

With respect to the scaling exponent α we can say that
first, α = 0 only if g has a finite first derivative. This
corresponds to the case where there is a discontinuity
in the shear modulus at the transition point. In these
cases, the SSS that appears at the transition must have
finite overlap with the shear deformation, i.e. the network
is asymmetric (section I D, e.g. the non-shear stabilized
simulations in Figure 5). Second, α = 1 only if g′ = 0
(i.e. the network is symmetric) and g has a finite second
derivative. This is the typical case that we observe for
shear-stabilized networks. Third, α = 2 would appear if
the network is symmetric (g′ = 0), the second derivative
of g vanishes, and a` has finite first or second derivative.
This situation might appear at a bifurcation (where g′′

as bifurcation parameter crosses zero), possibly related
to a structural transition in the network.

Equations (H4)–(H6) include first and second deriva-
tives of g and a`, which may formally not exist at γ = 0.
An important possibility is that at least one of these
four derivatives might diverge as γ → 0. However, with
Eq. (H3) this would imply that generally also the shear
modulus G diverges as γ → 0, which to our knowledge
has not yet been observed in spring networks.
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[38] A. Lemâıtre and C. Maloney, Journal of Statistical

Physics 123, 415 (2006).

http://dx.doi.org/10.1209/0295-5075/87/34004
http://arxiv.org/abs/0907.0012
http://dx.doi.org/ 10.1016/j.bpj.2014.08.011
http://dx.doi.org/ 10.1016/j.bpj.2014.08.011
http://dx.doi.org/ 10.1073/pnas.1504258112
http://dx.doi.org/ 10.1073/pnas.1504258112
http://dx.doi.org/ 10.1039/c5sm01856k
http://dx.doi.org/ 10.1039/c5sm01856k
http://dx.doi.org/ 10.1038/srep19270
http://dx.doi.org/ 10.1038/srep19270
http://dx.doi.org/10.1103/PhysRevE.94.042407
http://dx.doi.org/10.1103/PhysRevE.94.042407
http://dx.doi.org/ 10.1038/nphys3628
http://dx.doi.org/ 10.1038/nphys3628
http://dx.doi.org/10.1103/PhysRevE.93.012407
http://dx.doi.org/10.1103/PhysRevE.93.012407
http://dx.doi.org/ 10.1016/j.bpj.2018.04.043
http://dx.doi.org/ 10.1016/j.bpj.2018.04.043
http://dx.doi.org/10.1103/PhysRevLett.122.188003
http://dx.doi.org/10.1103/PhysRevLett.122.188003
http://dx.doi.org/10.1039/D0SM00764A
http://dx.doi.org/10.1039/D0SM00764A
http://dx.doi.org/10.1080/14786446408643668
http://dx.doi.org/10.1080/14786446408643668
http://dx.doi.org/10.1080/14786446408643668
http://dx.doi.org/https://doi.org/10.1016/0020-7683(78)90052-5
http://dx.doi.org/https://doi.org/10.1016/0020-7683(78)90052-5
http://dx.doi.org/ 10.1088/0034-4885/78/7/073901
http://arxiv.org/abs/1503.01324
http://dx.doi.org/10.1073/pnas.1815436116
http://dx.doi.org/ https://doi.org/10.1016/S0370-1573(97)00069-0
http://dx.doi.org/ 10.1103/PhysRevLett.101.215501
http://dx.doi.org/ 10.1103/PhysRevLett.101.215501
http://arxiv.org/abs/0806.4571v1
http://dx.doi.org/10.1088/0034-4885/77/4/046603
http://dx.doi.org/10.1088/0034-4885/77/4/046603
http://dx.doi.org/ 10.1103/PhysRevE.99.042412
http://dx.doi.org/10.1007/s10035-019-0916-4
http://dx.doi.org/10.1007/s10035-019-0916-4
http://arxiv.org/abs/2102.11310
http://arxiv.org/abs/2102.11310
http://dx.doi.org/10.1103/PhysRevLett.95.178102
http://dx.doi.org/10.1103/PhysRevE.85.021801
http://dx.doi.org/10.1103/PhysRevE.85.021801
http://dx.doi.org/10.1103/PhysRevE.96.053003
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://dx.doi.org/10.1103/PhysRevE.89.022305
http://arxiv.org/abs/1308.3886
http://dx.doi.org/10.1103/PhysRevE.98.062411
http://dx.doi.org/10.1103/PhysRevE.98.062411
http://dx.doi.org/10.1088/1367-2630/aaaa13
http://dx.doi.org/10.1088/1367-2630/aaaa13
http://dx.doi.org/10.1039/c0sm01004a
http://dx.doi.org/10.1039/c0sm01004a
http://arxiv.org/abs/1009.3848
http://dx.doi.org/ 10.1103/PhysRevLett.109.095703
http://arxiv.org/abs/1203.3364
http://arxiv.org/abs/2110.04343
http://arxiv.org/abs/2110.04343
http://dx.doi.org/10.1103/PhysRevE.100.042609
http://dx.doi.org/10.1103/PhysRevLett.121.058003
http://dx.doi.org/10.1103/PhysRevLett.121.058003
http://arxiv.org/abs/1804.01723
http://dx.doi.org/10.1103/PhysRevE.82.051905
http://dx.doi.org/10.1098/rspa.1950.0133
http://dx.doi.org/10.1098/rspa.1950.0133
http://dx.doi.org/10.1119/1.1934059
http://arxiv.org/abs/https://doi.org/10.1119/1.1934059
http://dx.doi.org/10.1007/s10955-005-9015-5
http://dx.doi.org/10.1007/s10955-005-9015-5

	Stiffening of under-constrained spring networks under isotropic strain
	Abstract
	Introduction
	Theoretical predictions
	Key idea
	Simple example network
	Effect of isotropic strain
	Effect of shear strain
	Elastic properties near the rigidity transition

	Numerical results
	Network generation and energy minimization
	Elastic moduli close to the transition
	Scaling of 0, a and b with connectivity z
	The shear modulus scales linearly with isotropic stress.
	Linear range of min shows no or weak system-size dependence

	Discussion
	Conflicts of interest
	Acknowledgements
	Generalization to networks with heterogeneous spring constants and rest lengths
	Network generation
	Details of numerical strain sweeps and computation of the elastic moduli
	Extraction of the parameters a and b of the minimal-length function
	Any Voronoi network at creation has a state of self stress.
	Apparent non-linear scaling of min in some Delaunay networks
	Finite-size effects
	General form of the minimal length function
	References


