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Abstract: For input redundant linear systems, it is possible to construct distinct inputs
producing identical outputs, from the same initial state. Thus selecting an output does not
determine uniquely the input, i.e., there exist degrees of freedom related to the choice of
inputs to generate a given output. These degrees of freedom can be used to enhance the
system performances without altering the output. However their determination might depend
on system parameters. When some of them are not known or uncertain, it may be difficult or
impossible to design distinct inputs leading to the same output. Considering uncertainties in
linear systems, this paper determines if such degrees of freedom exist independently from the
uncertain parameters and, in this case, provides a methodology to compute these inputs. This
corresponds to the new concept of robust input redundancy, which is defined and characterized
in this paper.

Keywords: Uncertainty, input redundancy, geometric control theory, robust control.

1. INTRODUCTION

Connecting more actuators than necessary to control a
system has many advantages: examples include resilience
to failure, yield improvement or state of health manage-
ment (Johansen and Fossen, 2013; Huang and Tse, 2007;
Kreiss et al., 2021). In the framework of disturbance de-
coupling problem, the disturbance can be view as a specific
input which should be without effect on the output (Stikkel
et al., 2003). This strategy leads to a so-called input redun-
dant (IR) system. Such a system has the ability to have
multiple input trajectories producing exactly the same
output trajectory, starting from the same initial state. It
thus contains degrees of freedom in the sense that selecting
the output trajectory does not determine the input one.
The methods using these degrees of freedom in order to
improve the system performances are referred as control
allocation (Bodson, 2002; Harkegard and Glad, 2005).
They require the knowledge of the degrees of freedom.
That is why their characterization is crucial. We mention
that the input redundancy is in fact the lack of left in-
vertibility (Kreiss and Trégouët, 2021; Ntogramatzidis and
Prattichizzo, 2007).

Recently, the property of IR has been characterized (Za-
ccarian, 2009; Serrani, 2012; Kreiss and Trégouët, 2021)
by the means of geometric control theory (Wonham, 2012;
Trentelman et al., 2012; Basile and Marro, 1992), and in
particular the notion of controlled invariant subspaces. At
the same time a parametrization of the degrees of freedom,
roughly speaking the input directions having no influence
on the output, is provided.

In practice, due to modelling errors, linearization or un-
known parameters, it is usual to deal with uncertainties.
When the determination of the degrees of freedom depends
on uncertain parameters, they become unusable and the

control allocation methods fail. Therefore, it is of utmost
importance to determine when input redundancy is not
affected by uncertainties, that is to say when the input
redundancy is robust. This notion will be defined properly
in this paper. Roughly speaking, the idea is to know if
there exist degrees of freedom which hold for all values of
the uncertainties, even if they are not known. In this case,
the system will be called robustly input redundant.

Because of the recent characterization of input redundancy
for Linear Time Invariant (LTI) systems, the presence
of uncertainties leads to an open problem. Two main
contributions, that are preliminaries for our work, should
be nevertheless pointed in the literature: (Bhattacharyya,
1983) and (Basile and Marro, 1987). We will position our
work with respect to these papers in a discussion presented
after detailing our contribution.

The aim of this paper is to introduce the notion of robust
input redundancy and to extend the geometric tools to
the case of uncertain systems, in order to characterize the
robust input redundancy. In particular, we will present
extensions of the following notions in this context: the
controlled invariant subspace, the weakly unobservable
subspace and the friends that are related.

The paper is organized as follows. Section 2 establishes
the context of the study and proposes the definition of
robust input redundancy. In Section 3, useful tools of the
geometric control theory for this paper are recalled. They
are extended to the framework of uncertain systems in
Section 4. Based on this extension, characterization of
robust input redundancy is provided in Section 5. Then,
Section 6 offers a comparison with existing results. Finally
examples are given is Section 7 in order to illustrate our
methodological contribution.
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Notations Let R and N denote the set of real numbers
and natural numbers respectively. In is the Identity matrix
of dimension n and 0n1×n2 is the matrix composed of
zeros of dimension n1 × n2. For a rectangular matrix M ,
its transpose is denoted by M⊤. Im {V } is the vector
space that is spanned by the columns of the matrix V
and Ker {V } is the kernel of the related application to the
matrix V . For a set V, dim(V) denotes its dimension and
VN stands for the Cartesian product V ×· · ·×V, N times.
For a set V ⊆ Rn and a rectangular matrix B ∈ Rn×m,
we use the notation B−1V = {u ∈ Rm, Bu ∈ V} for the
inverse image of V by the application B.

2. CONTEXT OF THE STUDY AND DEFINITION

Consider the following uncertain system Σ

ẋ(t) =A(θ)x(t) +B(θ)u(t), x(0) =: x0, (1a)

y(t) =C(θ)x(t) +D(θ)u(t), (1b)

where x(t), x0 ∈ Rn is the state, u(t) ∈ Rm is the input,
y(t) ∈ Rp is the output and θ ∈ Rρ, with ρ ∈ N, is the
constant uncertainty.

Suppose that a parametric representation of A(θ), B(θ),
C(θ), D(θ) is given, i.e.,[

A(θ) B(θ)
C(θ) D(θ)

]
=

[
Ã0 B̃0

C̃0 D̃0

]
+

ρ∑
i=1

θi

[
Ãi B̃i

C̃i D̃i

]
(2)

where ∀i ∈ {1, . . . , ρ}, θi is the i-th component of θ.

For the sake of simplicity let us rewrite (2) in a linear
representation with respect to θ. From (2), we can easily
derive the following form[

A(θ) B(θ)
C(θ) D(θ)

]
= (1−

ρ∑
i=1

θi)

[
Ã0 B̃0

C̃0 D̃0

]

+

ρ∑
i=1

θi

[
Ã0 + Ãi B̃0 + B̃i

C̃0 + C̃i D̃0 + D̃i

]
=

N∑
i=1

αi(θ)

[
Ai Bi

Ci Di

]
(3)

with N = ρ+ 1, α1(θ) = (1−
∑ρ

i=1 θi),[
A1 B1

C1 D1

]
=

[
Ã0 B̃0

C̃0 D̃0

]
, (4a)

and for all i ∈ {2, . . . , N}, αi(θ) = θi−1 and[
Ai Bi

Ci Di

]
=

[
Ã0 + Ãi−1 B̃0 + B̃i−1

C̃0 + C̃i−1 D̃0 + D̃i−1

]
. (4b)

Define also A = [A⊤
1 , . . . , A

⊤
N ]⊤, B = [B⊤

1 , . . . , B⊤
N ]⊤,

C = [C⊤
1 , . . . , C⊤

N ]⊤ and D = [D⊤
1 , . . . , D

⊤
N ]⊤.

Our goal is to determine when input redundancy can be
considered as robust to the vector of unknown parameters
θ, i.e., is independent from them. To this end and based
on the definitions given in (Kreiss and Trégouët, 2021), let
us introduce the robust input redundancy.

Definition 1. System Σ is robustly input redundant w.r.t.
θ if there exists an output y which can be produced by
(at least) two distinct inputs, for some x0 ∈ X and for
all θ ∈ Rρ, i.e., there exists x0 ∈ X and two distinct
input functions ua ̸= ub such that ∀θ ∈ Rρ, yua

(t, θ, x0) =
yub

(t, θ, x0) for all t ≥ 0.

3. BACKGROUND ON GEOMETRIC CONTROL
THEORY

Complete characterization of input redundancy is usu-
ally based on geometric control theory (see (Kreiss
and Trégouët, 2021; Serrani, 2012) for instance). Before
proposing a characterization of robust input redundancy
in Section 5, we recall now useful tools of this theory
(see (Anderson, 1975), (Trentelman et al., 2012) or (Won-
ham, 2012)).

For LTI systems captured by the quadruple (A,B,C,D),
consider a subspace V ⊆ Rn of the state space. V is called
(A,B)-invariant if

AV ⊆ V + Im {B}
or equivalently there exists F ∈ Rm×n, called a friend,
such that

(A+BF )V ⊆ V.
In addition, V is called output invisible if it also satisfies

CV ⊆ Im {D} ,
or equivalently if it reads

(C +DF )V = 0.

It can be shown that there exists a largest control invariant
and output invisible subspace of a system, denoted here by
V∗, namely the weakly unobservable subspace.

An algorithm to compute iteratively the set V∗ in a finite
number of steps has been provided in (Wonham and
Morse, 1970). It is noteworthy that this calculus avoids
the explicit expression of the matrix F . There exist several
techniques to design friends F , nevertheless, when the set
V∗ is not restrict to the trivial singleton, we can always
exhibit one friend (Anderson, 1975).

Finally, the IR property is closely related to the dimension
of the set

B−1V∗ ∩Ker {D} ,
as shown in (Kreiss and Trégouët, 2021).

4. EXTENSION OF GENERALIZED INVARIANT
AND OUTPUT INVISIBLE SUBSPACES

Let us associate tractable conditions to definitions intro-
duced in Sec. 2.

In the literature, the geometric objects we need for
the characterization were sometimes approached (Bhat-
tacharyya, 1983; Basile and Marro, 1987; Balas et al.,
2003), such as generalized controlled invariant subspace.
However, in (Basile and Marro, 1987; Balas et al., 2003),
the friend of V, F is possibly dependent on θ. For robust
input redundancy, as we want to characterized inputs
which are completely independent from θ, as detailed later,
we also need an independent friend from θ. In (Bhat-
tacharyya, 1983), matrices A, B or C cannot share the
same unknown parameter, which is quite restrictive, and
therefore (1) is not treated.

Let xu(t, θ, x0) and yu(t, x0, θ) be the state and output
generated by system parametrized by θ when applying the
input u, starting by the initial condition x0, respectively.
As a consequence, let us extend the notion of generalized
(A,B)-invariant and output invisible subspace of Σ.
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Definition 2. A subspace V ⊆ Rn is a generalized robust
(A(θ), B(θ))-invariant and output invisible subspace if for
any x0 ∈ V, there exists an input function u such that
∀θ ∈ Rρ,xu(t, θ, x0) ∈ V and yu(t, θ, x0) = 0 for all t ≥ 0.

A characterization of such a subspace is now provided:

Lemma 3. The following statements are equivalent

(i) V ⊂ Rn is a robust generalized (A(θ), B(θ))-invariant
and output invisible subspace;

(ii) V satisfies[
A
C

]
V ⊆ (VN × {0p×1}N ) + Im

{[
B
D

]}
. (5)

(iii) There exists a matrix F , called a robust friend of V,
such that([

A
C

]
+

[
B
D

]
F

)
V ⊆ VN × {0p×1}N . (6)

Proof 1. (i)⇒(ii): Let us assume that V is a general-
ized (A(θ), B(θ))-invariant and output invisible subspace.
For every x0 ∈ V, there exists an input function u
such that ∀θ ∈ Rρ, xu(t, θ, x0) ∈ V, then ẋ(0+) =
limt→0+

1
t (xu(t, θ, x0)−x0) ∈ V. It implies that there exists

u0 ∈ Rm, such that ∀θ ∈ Rρ, A(θ)x0 + B(θ)u0 ∈ V and
C(θ)x0 +B(θ)u0 = 0, which is equivalent to

∀i ∈ {1, . . . , N},
[
Ai

Ci

]
x0 +

[
Bi

Di

]
u0 ∈ V × 0p×1, (7)

by linearity of quadruple (A(θ), B(θ), C(θ), D(θ)) with
respect to quadruples (Ai, Bi, Ci, Di) (see (4)). Clearly, (7)
can be written as[

A
C

]
x0 +

[
B
D

]
u0 ∈ VN × {0p×1}N , (8)

leading to the inclusion in (5).

(ii)⇒(iii): Assume that the inclusion (5) holds. Let us
introduce the matrix V ∈ Rn×q as a basis of the set
V ⊂ Rn. For each column v of V , there exist N vectors
ṽj ∈ V, j = 1, · · · , N and a vector ũ ∈ Rm such that[

A
C

]
v =

[
B
D

]
ũ+

(
ṽ⊤1 · · · ṽ⊤N 01×p · · · 01×p

)⊤
.

We can deduce that there exist N matrices Yi ∈ Rq×q and
a matrix U ∈ Rm×q such that[

A
C

]
V =

[
B
D

]
U +

[
diag {V Y1; · · · ;V YN}

0pN×qN

]
.

The matrix V being a basis of V, the matrix V is full
column rank and V ⊤V is invertible. We introduce the gain

F = −U
(
V ⊤V

)−1
V ⊤, (9)

which is a friend and satisfied inclusion (6).

(iii)⇒(i): the implication is trivial by identifying a sat-
isfactory control as the state feedback u(t) = Fx(t) in
Definition 2.

Remark 4. It is important to note that the vector u0,
in the proof, is common for all the parameters θ ∈ Rρ,
or in other words to all the quadruples (Ai, Bi, Ci, Di)
in relation (8). The concatenation of the pairs (A,C)
and (B,D) in the inclusion (5) is characteristic of the
robustness in Definition 2.

Remark 5. The relation (9) highlights a possible robust
friend F , but this is not necessarily the unique solution.
We denote F (V) their set.

Let denote V(Σ) the set of subspaces V that satisfy (5) for
the system Σ.

Lemma 6. The set V(Σ) admits a unique maximal (in
the sense of standard ordering of subspaces by inclusion)
element, which is denoted by V∗(Σ). In other words, we
have that if V ∈ V(Σ), then V ⊆ V∗(Σ).

Proof 2. The proof is inspired by the development
in (Wonham and Morse, 1970). By definition, {0} ∈ V(Σ).
Thus, the set V(Σ) is not empty. Furthermore, V(Σ) is
closed by addition. Indeed, if Va and Vb belong to V(Σ),
then Va + Vb ∈ V(Σ). Since the elements of V(Σ) have
finite dimension, it induces that there exists a maximal
element in V(Σ). In fact, using Zorn’s Lemma (Zorn, 1935)
or (Wonham, 2012, Lemma 4.4), there exists an element
V∗(Σ) of greatest dimension; if V ∈ V(Σ), dim(V +
V∗(Σ)) ≤ dim(V∗(Σ)), which implies V ⊂ V∗(Σ). Let
us prove by contradiction that the maximal element in
V(Σ) is unique. Assume that there exist two distinct
maximal elements, then they are included in each others by
definition of the maximality and finally they are identical.

V∗(Σ) can be computed by Algorithm 1, recalling that
the operation B−1V for some matrix B and subspace
V refers to the inverse image of V by B where B is
not necessarily invertible. Note that MATLAB tools to
compute the geometric subspaces are developed in Marro
(2010).

Algorithm 1: Computation of V∗(Σ)

Data: Matrices A, B, C, D
Result: V∗(Σ)
Initialization;
V0 ← Rn; k = 0;
repeat

Vk+1 ←
[
A
C

]−1 (
VN
k × {0p×1}N + Im

{[
B
D

]})
;

(10)

k ← k + 1;
until Vk+1 = Vk;
return V∗(Σ) = Vk

This algorithm extends the one related to the LTI case
(see (Wonham and Morse, 1970)). Let us prove by recur-
rence that the sequence {Vk}k∈N is not increasing in the
sense of inclusion. We have V0 = Rn ⊇ V1. Assume that
Vk−1 ⊇ Vk and let us prove that Vk ⊇ Vk+1:

VN
k−1 ⊇VN

k ,

VN
k−1 × {0p×1}N ⊇VN

k × {0p×1}N ,

VN
k−1 × {0p×1}N + Im

{[
B
D

]}
⊇ VN

k × {0p×1}N + Im

{[
B
D

]}
,

and finally
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Vk =

[
A
C

]−1 (
(VN

k−1 × 0N) + Im

{[
B
D

]})
⊇[

A
C

]−1 (
(VN

k × 0N) + Im

{[
B
D

]})
= Vk+1. (11)

We can prove by recurrence also that Vk ⊇ V∗(Σ). V0 =
Rn ⊇ V∗(Σ). Assume that Vk ⊇ V∗(Σ) and let us show
that Vk+1 ⊇ V∗(Σ):

Vk+1 =

[
A
C

]−1 (
(VN

k × 0N) + Im

{[
B
D

]})
⊇[

A
C

]−1 (
((V∗(Σ))N × 0N) + Im

{[
B
D

]})
= V∗(Σ).

(12)

Finally, the sequence {Vk}k∈N is a non-increasing sequence
and there exists one integer K ≤ n − 1 such that Algo-
rithm 1 converges in finite time and such that VK+1 = VK ,
then VK belongs to V(Σ) and due to the maximality of
V∗(Σ), we have VK ⊇ V∗(Σ) ⊇ VK , that is the equality
VK = V∗(Σ).

Let us define V∗
i as the weakly unobservable subspace of

LTI system Σi(Ai, Bi, Ci, Di).

Lemma 7. The set V∗(Σ) satisfies the following inclusion:

V∗(Σ) ⊂
N⋂
i=1

V∗
i . (13)

Proof 3. Let us assume that the inclusion (5) holds. By
extracting block rows, we obtain[

Ai

Ci

]
V ⊂ (V × {0p×1}) + Im

{[
Bi

Di

]}
. (14)

We infer that the V∗(Σ) is then a weakly unobservable
subspace of the LTI system Σi(Ai, Bi, Ci, Di), that is
V∗(Σ) ⊂ V∗

i , ∀i = 1, · · · , N . We finally obtain the
inclusion (13) and ends the proof.

Remark 8. Let us note that the inclusion is not an equality
in general. Example 2 in Section 7 points out a case for
which this inclusion is strict.

5. CHARACTERIZATION OF ROBUST INPUT
REDUNDANCY

Thanks to the technical material developed in the previous
section, we can provide a technical theorem (Theorem 9,
which is an extension of (Trentelman et al., 2012, Theorem
7.11)) and the main result of the paper for the character-
ization of robust input redundancy.

Theorem 9. Let F ∈ F (V∗(Σ)) and let L be a matrix of
maximal rank such that

Im{L} =
N⋂
i=1

B−1
i V

∗(Σ)) ∩Ker {Di} . (15)

Let x0 ∈ V∗(Σ) and u be an input function, then the
output resulting from u and x0 is zero if and only if u has
the form

u(t) = Fx(t) + Lw(t), (16)

for some function w.

Proof 4. ⇒: Let us assume that the output is zero:
yu(t, θ, x0) = 0, ∀(t, θ) ∈ R+ × Rρ. We can deduce that

the state trajectory xu(t, θ, x0) belongs to the set V∗(Σ),
∀(t, θ) ∈ R+ × Rρ. We now introduce an auxiliary input
v(t) = u(t)−Fxu(t, θ, x0), that satisfies, ∀(t, θ) ∈ R+×Rρ:

ẋu(t, θ, x0) = (A(θ) +B(θ)F )xu(t, θ, x0) +B(θ)v(t),

0 = (C(θ) +D(θ)F )xu(t, θ, x0) +D(θ)v(t).

It yields that B(θ)v(t) ∈ V∗(Σ) and D(θ)v(t) = 0,
∀(t, θ) ∈ R+ ×Rρ. The dependency in θ of B(θ) and D(θ)
being linear, that results in

v(t) ∈
[
B
D

]−1

(V ∗(Σ))N × {0p×1}N.

The latter preimage set can be rewritten as follows:[
B
D

]−1

(V ∗(Σ))N × {0p×1}N

=

N⋂
i=1

B−1
i V

∗(Σ) ∩D−1
i {0p×1}

=

N⋂
i=1

B−1
i V

∗(Σ) ∩Ker {Di} . (17)

Using the definition of the matrix L (see (15)), there exists
a function w(t) such that v(t) = Lw(t). By computing the
original control u(t), Equation (16) holds.

⇐: This implication follows from the computation of the
state trajectory.

We are now ready to provide the main result of the paper:
the characterization of robust input redundancy.

Theorem 10. The following statements are equivalent

• Σ is robustly input redundant;

• dim
⋂

1,...,N

B−1
i V

∗(Σ) ∩Ker {Di} > 0.

Proof 5. Let us consider two trajectories xa and xb for
the uncertain system (1a)–(1b) related to two inputs ua

and ub respectively. Let us write the conditions to fit
the situation described in Definition 1 for robust input
redundancy. The two trajectories start from the same
initial condition: xa(0) = xb(0) = x0 ∈ Rn. In addition,
the error xa(t)− xb(t) satisfies the following dynamics for
any θ ∈ Rρ:

ẋa(t)− ẋb(t) =A(θ)(xa(t)− xb(t)) +B(θ)(ua(t)− ub(t)),

ya(t)− yb(t) =C(θ)(xa(t)− xb(t)) +D(θ)(ua(t)− ub(t)),

with the initial condition xa(0)− xb(0) = 0 being zero.

In order to impose the same outputs ya(t) = yb(t), the
error ya(t)−yb(t) = 0 is zero. The initial condition xa(0)−
xb(0) = 0 belongs to V∗. Applying Theorem 9, we infer
that

ua(t)− ub(t) = F (xa(t)− xb(t)) + Lw(t),

for some vector valued function w(t). The robust input
redundancy is equivalent to the fact that L does not have
a zero dimension. That ends the proof.

6. COMPARISON WITH EXISTING RESULTS

First of all, our results in the framework of uncertain
systems are an extension of the Linear Time Invariant
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framework. When there is no uncertain parameter, that is
ρ = 0 andN = 1, we recover the results of the literature for
LTI framework, that are shortly summarized in Section 3.

Paper (Bhattacharyya, 1983) introduces the notion of
generalized invariant subspaces and characterizes it when
each matrix depends on independent parameters, i.e., if θ
is an unknown parameter of A, it cannot be an unknown
parameter of B, C or D. Obviously, for this case, it is
possible to retrieve the results in (Bhattacharyya, 1983)
by applying our methodology. However, in Example 1 of
Section 7, we show that dim(V∗(Σ)) > 0 whereas the
strategy of (Bhattacharyya, 1983) does not apply.

7. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, several numerical examples are presented to
emphasize the derivation of the main results of this paper.

Example 1: Let us consider the following example given
by θ ∈ R and

ẋ =

[
1 0
θ 1

]
x+

[
1 0
0 θ

]
u, y = [0 1]x

The matrices A(θ) and B(θ) share a common uncertain
parameter and the example does not fit to the framework
considered in (Bhattacharyya, 1983). However, by apply-

ing Algorithm 1, we obtain that V∗(Σ) =

[
1
0

]
R, and by

applying the relation (9), we can exhibit F =

[
−1 0
−1 0

]
as

an associated friend to V∗(Σ). We can check that

(A(θ)+B(θ)F )V∗(Σ) =

[
0 0
0 1

]
V∗(Σ) =

[
0
0

]
= 0×V∗(Σ).

To answer the question of robust input redundancy, we
compute the set defined by (15):

B−1
i V

∗(Σ) =

[
1
0

]
R, Ker {Di} = R2, i = 1, 2,

and finally it allows us to identify a possible L =

[
1
0

]
using (15).

We can conclude that this system is robust input redun-
dant. In order to verify Definition 1, let us set θ = 2/3,

x0 =

[
1
1

]
, that is x0 ̸∈ V∗(Σ) and exhibit two distinct

inputs:

ua(t) =

[
0
1

]
+

[
−1 0
−1 0

]
xa(t);

ub(t) =

[
0
1

]
+

[
−1 0
−1 0

]
xb(t) +

[
1
0

]
2 sin(t),

which are depicted on Fig. 1 as well as the resulting state
trajectories xa(t) and xb(t). We clearly see that ua and ub

are different whereas ya(t) = yb(t), ∀t ∈ R≥0.

We also apply the same inputs for a different θ = −1/2,
starting from the same initial state. We observe on Fig. 2
that with a different θ these inputs also lead to the same
output.

Example 2: Consider the following system

0 2 4 6 8 10
-2

0

2

0 2 4 6 8 10
-1

0

1

Fig. 1. Input and state trajectories with θ = 2/3

0 2 4 6 8 10
-2

0

2

0 2 4 6 8 10
-1

0

1

Fig. 2. Input and state trajectories with θ = −1/2

ẋ =

[
1 θ
0 1

]
x+

[
1 0
0 1

]
u, y = [1 0]x,

with θ ∈ R.

By applying Algorithm 1, we obtain V∗(Σ) = {02×1}.
That induces that there does not exist a robust friend
F , as commented in (Bokor et al., 2002). Nevertheless, for
the two sets (A1, B1, C1) and (A2, B2, C2) given by (4), we

have V∗
1 = V∗

2 =

[
0
1

]
R. It results that the inclusion (13)

is strict. The matrix B has a full column rank, that
implies that B−1V∗(Σ) = {02×1} and consequently the set
defined by Equation (15) is reduced to the trivial singleton.
Thanks to Theorem 10, this uncertain system is not robust

input redundant, even if B−1
1 V∗

1 = B−1
2 V∗

2 =

[
0
1

]
R.

Example 3: this third example, considering two parame-
ters, is also taken from (Bokor et al., 2002).
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A(θ1, θ2) =


−1.05 + θ2 −2.55 + θ1 0 0 0 0

2.55 + θ1 −1.05 + θ2 0 0 0 0

0 0 −77.53 0 −8.8 0

0 0 39.57 −20.20 0 0

−169.66 + θ1 57.09 + θ1 0 0 −20.20 0

−0.01 0.01 0 0 0 −0.1


B(θ1, θ2) = [ 0 0 0 0 1 0 ]

⊤
, D(θ1, θ2) = 02×1,

C(θ1, θ2) =

[
−0.01 0.09 0.07 0 0 0
−0.48 −0.59 0 0 −49.51 −0.02

]⊤
and adding the constraints (θ1, θ2) ∈ R2. We obtain the

subspace V∗(Σ) = [ 0 0 0 1 0 0 ]
⊤ R, as expected. Thanks

to relation (9), one possible robust friend is obtained as
F = 01×6, which is an other possibility than the one
in (Bokor et al., 2002), that is FBokor = [ 0 0 0 1 0 0 ]. To
answer to the robust input redundancy, we can compute
the set defined in Equation (15). The matrix B being
independent of the parameter θ, we can check that

B−1V∗(Σ) = {0},
which ensures that the set (15) is also zero. This system
is not robust input dependent according to Theorem 10.
Note that the answer is negative even if the set V∗(Σ) is
not trivial.

8. CONCLUSIONS

The notion of input redundancy has been extended to un-
certain linear systems in order to determine when it can be
independent from uncertainties: this is called robust input
redundancy. A complete characterization of the notion has
been provided in this paper. This work opens the door
to various relevant extensions. Classical input redundancy
originates from several reasons. A proper taxonomy is
proposed in the LTI context. As the control problem has to
be dealt appropriately to the origin of redundancy, gener-
alizing the taxonomy for uncertain systems is a relevant
extension. Furthermore, the parameters are considered
constant in the paper. Looking at time varying ones is also
an interesting problem. Finally, we also plan in future work
to consider known and possibly time varying parameters,
and to characterize an adaptative input redundancy in this
context.
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