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A NON-EQUILIBRIUM MULTI-COMPONENT MODEL WITH MISCIBLE CONDITIONS

This paper concerns the study of a full non-equilibrium model for a compressible mixture of any number of phases. Miscible conditions are considered in one phase, that lead to non symmetric constraints on the statistical fractions. These models are subject to the choice of interfacial and source terms. We show that under a classical assumption on the interfacial velocity, the interfacial pressures are uniquely defined. The model is hyperbolic and symmetrizable under non-resonance conditions. Classes of entropy-consistent source terms are then proposed.

Introduction

The present paper concerns the modelling of multiphase compressible flows which arise in many industrial applications, especially in the nuclear safety framework. Among several senarii that are studied (see IRSN website [START_REF]Accident de perte de réfrigérant primaire (aprp) avec défaillances multiples[END_REF]), the Loss Of Coolant Accident (LOCA) involves these types of flow. It is a brutal rupture in the coolant circuit that creates phase transition waves in the loop and leads to the appearance of vapor inside the liquid, these phases interacting with the ambiant air. Other types of accidents require to consider more phases, for instance in vapor explosion type scenarii [START_REF] Berthoud | Vapor explosions[END_REF]. Consequently, a model must account for the dynamical and the thermodynamical disequilibrium.

A wide range of multiphase flow models has been proposed since decades, especially in the two-phase flow situation, see for instance [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF][START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF][START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] for the Baer-Nunziato two-fluid approach and [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF] for the homogeneous (in terms of velocity) models. More recently, three-phase flows have been investigated with full non-equilibrium models in the immiscible [START_REF] Hantke | Closure conditions for a one temperature non-equilibrium multicomponent model of baer-nunziato type[END_REF][START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Hérard | A class of compressible multiphase flow models[END_REF] and miscible [START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF] conditions, and also with homogeneous models [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF]. Among all these models, two classes can be distinguished: the majority of them is based on the multifluid approach [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF][START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF][START_REF] Hantke | Closure conditions for a one temperature non-equilibrium multicomponent model of baer-nunziato type[END_REF][START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF][START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF], where each component has its own velocity field. The second one are the homogeneous models [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF] where all the component share the same velocity.

In the multifluid approach, the dynamics of each component is described by an Euler-type model and the different systems are coupled through interfacial nonconservative terms and source terms which model the return to the equilibrium. Closure conditions have been investigated in the immiscible case in [START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF][START_REF] Hérard | A three-phase flow model[END_REF] respectively for two-phase and three-phase flow. Analysis of this model for a two-phase flow has been done for instance in [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF][START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF], and a generalization with all these features has been proposed in [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF]. More recently, these type of results have been investigated with miscible conditions in [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF].

Date: June 17, 2022. For the sake of clarity, let us precise that the term "phase" refers to a state of the matter, "component" to a chemical substance and "field" to a component in a given phase. For instance, an hybrid mixture of liquid water, vapor water and an inert gas is composed of three fields, two phases and two components.

The present work focuses on the modelling of a N -phase mixture of M fields, with N ≤ M , where all the miscible part of the fluid is contained in the N th phase. That is a physically relevant situation where this latter phase would be the gaseous phase, and no miscibility can be observed for another state of the matter. These miscible components are then supposed to be perfectly intricate like ideal gases, and so all their statistical frations are equal [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF] ∀k ≥ N, α k = α N .

Since we consider that no void can occur, the global volume constraint is

(2)

N k=1 α k = 1, with α k ∈ [0; 1] for all k = 1, ..., N .
The outline of the article is the following. The first part presents the model by introducing the thermodynamical framework, the system of equations and the evolution equation of the mixture entropy. Then we demonstrate the uniqueness of the pressure interfacial terms under classical hypotheses concerning the interfacial velocity. In the third part, the analysis of the convective system is investigated, by studying its hyperbolicity and the symmetrization. Finally, admissible forms of source terms are detailed, in order to satisfy the second principle of thermodynamics.

Model

2.1. Thermodynamical framework. The fluid is composed of N ≥ 2 phases that are immiscible, where only the N th phase can contain several components of number K ≥ 1. The fluid is then composed of M = N + K -1 fields. In other words, we consider a mixture of N phases and M fields, where the phase N contains all the miscible components of the fluid. We define K the set of fields, and thus we have #K = M . 1 2 3 ... N, N+1, ..., M 2.1.1. Equations of state. Each field k ∈ K is depicted by its phasic specific volume τ k > 0 and its specific energy e k > 0. The thermodynamical behaviour of each phase k is fully described by its intensive entropy function

(τ k , e k ) → s k (τ k , e k ) defined on Ω k ⊂ (R + * ) 2
, that is a complete EoS. By adopting the Gibbs formalism, each entropy function s k complies with the following differential form

(3) T k ds k = de k + p k dτ k ,
where the phasic temperature

T k = T k (τ k , e k ) and pressure p k = p k (τ k , e k ) are defined by (4) 1 T k = ∂s k ∂e k τ k , p k = T k ∂s k ∂τ k e k ,
and the phasic chemical potential by the relation ( 5)

µ k = -T k s k + p k τ k + e k .
2.1.2. Volume constraints and mixture entropy. We now turn to the description of the thermodynamical behaviour of the mixture. The volume conservation plus the miscibility hypotheses give the following relations on the statistical fractions ( 6)

N k=1 α k = 1 α k = α N for k ≥ N ,
thus the derivatives verify ( 7)

N -1 k=1 ∂ x α k = -∂ x α N .
These constraints are fundamental to manage the different mathematical proofs. We define the state vector of the field k by

Y k = (α k , ρ k , v k , e k ),
where ρ k = 1/τ k and v k is the phasic velocity. For a given mixture state (τ, e), the mixture entropy is defined as a combination of the phasic entropies with weights

m k = α k ρ k . Denoting Y = k∈K Y k , it reads (8) σ(Y) = k∈K m k s k (Y k ).
Finally, the specific total energy of the phase k is noted

E k = e k + v 2 k /2.

2.2.

Set of partial differential equations. Following the models in [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF], the fluid equations contain N transport equations on α k , for k = 1, ..., N

∂ t α k + V I (Y)∂ x α k = Φ k (Y), (9) 
plus, for k ∈ K, the following Euler-type systems

(10) ∂ t (m k ) + ∂ x (m k v k ) = Γ k (Y), ( 11 
) ∂ t (m k v k ) + ∂ x (m k v 2 k + α k p k ) + l∈K l̸ =k P k,l (Y)∂ x α l = S q,k (Y), ( 12 
) ∂ t (m k E k ) + ∂ x (m k v k (E k + p k ρ k )) + l∈K l̸ =k P k,l (Y)V I (Y)∂ x α l = S E,k (Y),
Source terms Φ k , Γ k , S q,k , S E,k must be chosen in agreement with the second law of thermodynamics. Let us emphasize at the (Φ k ) k=1,...,N are only defined for the N first statistical fractions.

Exchanges between the different fields are accounted by non conservative terms in equations ( 9), [START_REF] Hérard | A class of compressible multiphase flow models[END_REF] and [START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF], involving interfacial velocity V I and interfacial pressures (P k,l ), defined for k ̸ = l. These terms must be specified in order to close the system, which will be done in Section 2.3.

Remark 1. Following recent works [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF], we consider that source terms and interfacial closures only depend on Y. These could depend on the derivatives of Y, as suggested for instance in [START_REF] Hérard | An hyperbolic two-fluid model in a porous medium[END_REF][START_REF] Saurel | A multiphase model with internal degrees of freedom: application to shock-bubble interaction[END_REF].

Since we consider a closed system, the total mass, momentum and energy exchanges must balance, thus the source terms must verify [START_REF] Hérard | Pressure relaxation in some multiphase flow models[END_REF] k∈K

Γ k (Y) = 0, k∈K S q,k (Y) = 0, k∈K S E,k (Y) = 0.
Moreover, as we consider no vacuum occurence, the source terms on the void fractions verify ( 14)

N k=1 Φ k (Y) = 0.
Besides, the interfacial pressure terms (P k,l ) should cancel each other [START_REF] Hérard | An hyperbolic two-fluid model in a porous medium[END_REF] k∈K l∈K l̸ =k

P k,l (Y)∂ x α l = 0,
in order to preserve the mixture conservative equations on momentum and energy.

2.2.1. Entropy production. The mixture entropy has been defined in [START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF], and it is well known [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF] that it verifies the following equation ( 16)

∂ t σ(Y) + ∂ x f σ (Y) = A σ (Y, ∂ x Y) + RHS σ (Y),
where f σ (Y) = k∈K m k s k v k is the entropy flux and the production terms are defined by ( 17)

A σ (Y, ∂ x Y) = k∈K 1 T k (v k -V I ) l∈K l̸ =k P k,l (Y)∂ x α l + p k ∂ x α k ,
that correspond to the interfacial contribution, and

RHS σ (Y) = k∈K 1 T k S E,k (Y) -Γ k (Y)e k -v k (S q,k (Y) - 1 2 Γ k (Y)v k ) + ρ k ∂e k ∂ρ k (ρ k Φ k (Y) -Γ k (Y)) + k∈K s k Γ k (Y) + ρ k ∂s k ∂ρ k (Γ k (Y) -ρ k Φ k (Y)) ,
which correspond to the source terms contribution. According to the second law of thermodynamics, these production terms have to be non-negative. By following the work in [START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF][START_REF] Hérard | A three-phase flow model[END_REF] in the two and three-phase flow context, our concern here is to determine constraints such as [START_REF]Accident de perte de réfrigérant primaire (aprp) avec défaillances multiples[END_REF] A σ (Y, ∂ x Y) = 0, corresponding to the minimal entropy dissipation model, which is the subject of the following section. The second term RHS σ relies on the source terms, that we will study later on, see 4.

2.3.

Definition of the interfacial pressures. The system of partial derivative equations ( 9)-( 12) requires an unique definition of the pressure interfacial terms. The work has been done for immiscible two, three and then N -phase flow in [START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF][START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF], or more recently for hybrid mixtures in [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF].

For this purpose, we postulate that the interfacial velocity is a convex combination (using Galilean invariance) of the phasic velocities [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] V

I (Y) = k∈K β k (Y)v k , with (20) 
k∈K β k (Y) = 1 β k (Y) ≥ 0 ∀k ∈ K .
Determining the interfacial pressures (P k,l ) as it is done in [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF] is out of reach due to reasons coming from the miscibility constraints. However, these constraints allow to consider another set of pressure terms that we define here.

Let us introduce the interfacial terms (K k,l ), defined for k = 1, ..., M and l = 1, ..., N -1. For the sake of clarity, we allow ourselves to write the initial pressure terms (P k,l ) for k = l. The definition is then

(21) K k,l = P k,l (1 -δ k,l ) - M j=N P k,j (1 -δ k,j ),
and the following notation for the same indices

(22) χ k,l = δ k,l - M j=N δ k,j =    0 if k ≤ N -1 and k ̸ = l, 1 if k = l, -1 if k ≥ N for all l ≤ N -1,
.

where δ k,l is the Kronecker symbol. We now introduce the following lemma that contains fundamental rewriting techniques used in this paper. Lemma 1. For all k = 1, ..., M and l = 1, ..., N -1, we have the two relations

(23) l∈K l̸ =k P k,l ∂ x α l = N -1 l=1 K k,l ∂ x α l , (24) 
l∈K l̸ =k P k,l ∂ x α l + p k ∂ x α k = N -1 l=1 (K k,l + χ k,l p k )∂ x α l ,
Proof. By using miscibility constraints [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF] and relation [START_REF] Drew | Mathematical modeling of two-phase flow[END_REF], we can rewrite the sum as

l∈K l̸ =k P k,l ∂ x α l = N -1 l=1 P k,l (1 -δ k,l )∂ x α l + M j=N P k,j (1 -δ k,j )∂ x α j (25) = N -1 l=1 P k,l (1 -δ k,l )∂ x α l + ∂ x α N M j=N P k,j (1 -δ k,j ) = N -1 l=1 P k,l (1 -δ k,l )∂ x α l - N -1 l=1 ∂ x α l M j=N P k,j (1 -δ k,j ) = N -1 l=1 P k,l (1 -δ k,l ) - M j=N P k,j (1 -δ k,j ) ∂ x α l = N -1 l=1 K k,l ∂ x α l ,
where K k,l has been defined in [START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF]. The second relation can be deduced by the first one, we just need to express the term

p k ∂ x α k in function of the (∂ x α l ) 1≤l≤N -1 , that is (26) p k ∂ x α k = N -1 l=1 χ k,l p k ∂ x α l ,
where χ k,l is defined by [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF]. Then we deduce the relation [START_REF] Saurel | A multiphase model with internal degrees of freedom: application to shock-bubble interaction[END_REF]. □

These relations allow us to rewrite any expression involving (∂

x α l ) 1≤l≤M in terms of the first N -1 quantities (∂ x α l ) l≤N -1 .
Using Lemma 1, the momentum and energy equations ( 11)-( 12) can be rewritten

(27) ∂ t (α k ρ k v k ) + ∂ x (α k ρ k v 2 k + α k p k ) + N -1 k=1 K k,l ∂ x α l = 0, ( 28 
) ∂ t (α k ρ k E k ) + ∂ x (α k ρ k v k (E k + p k /ρ k )) + N -1 k=1 K k,l V I ∂ x α l = 0,
Thereby, we have reduced the number of interfacial unknowns. Indeed, there was M (M -1) coefficients (P k,l ) and now there are M (N -1) effective coefficients (K k,l ). We can now rewrite the minimal entropy dissipation condition [START_REF]Accident de perte de réfrigérant primaire (aprp) avec défaillances multiples[END_REF] in function of the (K k,l ).

Lemma 2. The term

A σ (Y, ∂ x Y) reads (29) A σ (Y, ∂ x Y) = k∈K 1 T k (v k -V I ) N -1 l=1 (K k,l + χ k,l p k )∂ x α l ,
with (χ) k,l defined by [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF].

Proof. It consists in rewriting [START_REF]Accident de perte de réfrigérant primaire (aprp) avec défaillances multiples[END_REF] in function of the N -1 firsts (∂ x α k ), using Lemma 1. □

Let us now give the main result of this paper.

Proposition 1. (Minimal entropy production due to the interfacial states) Let us assume that (15) hold true. If all the phasic temperatures are positive, then for any convex combination [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF], the interfacial pressure terms (K k,l ) are uniquely defined.

Proof. The idea of the proof is very similar to [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF]. We determine equations thanks to

(1) The independence of the derivatives (

∂ x α k ) (2)
The independence of the relative velocities (v k+1 -v k )

Then we obtain N -1 linear systems, one for each l = 1, ..., N -1, in the variables (K k,l ) k=1,...,M .

According to [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF], the (∂ x α l ) 1≤l≤N -1 must be independant. Using this and Lemma 2, imposing A σ (Y, ∂ x Y) = 0 is equivalent to write for l = 1, ..., N -1 the following relations (30)

k∈K 1 T k (v k -V I )(K k,l + χ k,l p k ) = 0.
Using the convex combination [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF], we rewrite the difference v k -V I as

(31) v k -V I = k-1 i=1 i j=1 (-β j )(v i -v i+1 ) + M -1 i=k M j=i+1 (β j )(v i -v i+1 ),
that allows us to rearrange (30) in terms of the independant differences

(v i -v i+1 ). Introducing c i = i j=1 β j , c i = M j=i+1 β j , for i = 1, ..., M -1, we obtain the following relations (32) i k=1 1 T k c i K k,l - M k=i+1 1 T k c i K k,l = i k=1 1 T k c i χ k,l p k - M k=i+1 1 T k c i χ k,l p k ,
for l = 1, ..., N -1 and i = 1, ..., M -1. We define for the same indices

d i l = i k=1 a k c i χ k,l p k - M k=i+1 a k c i χ k,l p k and a i = 1 T i .
We obtain the final system defined by the following equations for l = 1, ..., N -1 and i = 1, ..., M -1

(33) i k=1 c i a k K k,l - M k=i+1 c i a k K k,l = d i l .
In other words, for any l = 1, ..., N -1, there are M -1 equations for M unknows that are the (K k,l ) 1≤k≤M . This can be compensated by adding the constraint (15) that gives, using [START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF] and the independence of (∂

x α l ) l≤N -1 , for l = 1, ..., N -1 (34) k∈K K k,l = 0.
Then we have N -1 linear systems of size M × M , for each l ∈ {1, ..., N -1}, that are

(35) AK l = d l , with • A =        c 1 a 1 -c 1 a 2 -c 1 a 3 • • • -c 1 a M c 2 a 1 c 2 a 2 -c 2 a 3 • • • -c 2 a M . . . . . . c M -1 a 1 c M -1 a 2 • • • c M -1 a M -1 -c M -1 a M 1 1 • • • • • • 1        , • K l = (K 1,l , K 2,l , ..., K M,l ) ⊤ , • d l = (d 1 l , d 2 l , ..., d M l ) ⊤
. Finally, we need to show that A is regular so the (K k,l ) are uniquely determined. Let us note D = det A. The idea of the proof is to develop this determinant on the last row, then express the minors of size M -1 with a second order determinant thanks to M -3 developments.

We remind here two relations that we will need. For i = 1, ..., M -1, we have

(36) c i + c i = 1, c i+1 -c i = -β i .
By developing D on the last row and factorizing by āi , we get

(37) D = M i=1 (-1) M +i āi D i ,
where D i is the minor formed by deleting the last row and the ith column, and āi = M j̸ =i a j . For i = 1, ..., M -1, we have (38)

D i = det                c 1 -c 1 • • • -c 1 -c 1 • • • -c 1 c 2 c 2 • • • • • • -c 2 . . . -c i-1 -c i-2 . . . . . . c i-1 -c i-1 . . . c i -c i c i+1 c i+1 . . . . . . . . . c M -1 c M -1 • • • c M -1 c M -1 • • • -c M -1               
, that we can rewrite with the columns

C j = (-c 1 , ..., -c j-1 , c j , ..., c M -1 ) ⊤ ∈ R M -1 as (39) D i = det C 1 C 2 ... C i-1 C i+1 ... C M .
Then, D i can be reduced to a second order determinant with M -3 operations:

• C 1 ← C 1 -C 2 and a development along C 1 is done i -2 times, • C n ← C n -C n-1 and a development along C n is done M -(i + 1) times,
where n is the size of the considered minor.

It appears a factor (-1) for each second type operation, thus we have (40)

D i = (-1) M -(i+1) det c i-1 -c i-1 c i -c i ,
so, thanks to relations (36), we can express the latter determinant as

D i = (-1) M -(i+1) (-β i ) (41) = (-1) M -i β i ,
for i = 2, ..., M -1. On the other hand, the cases i = 1 and i

= M give D 1 = c 1 and D M = c M -1 .
Coming back to (37), we get

(42) D = ā1 c 1 + ā M c M -1 + M -1 i=2 (-1) M +i āi (-1) M -i β i , that simplifies into (43) D = ā1 c 1 + ā M c M -1 + M -1 i=2 āi β i > 0.
Since i β i = 1 and a i > 0 for all i = 1, ..., M , then det A > 0 and the interfacial terms (K k,l ) are fully determined. □ Remark 2. Even if the approach differs from [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF], we verified at different stages of the proof that the results were in agreement with these references.

Remark 3. (Preservation of the pressure equilibria) An important feature is the preservation of an initial steady state where the fluid is supposed to be at the thermodynamical equilibrium : the phasic pressures verify the Dalton's law, the phasic temperatures are equal to each other and the velocities are equal to zero. A detailed explanation is given in [START_REF] Hérard | Pressure relaxation in some multiphase flow models[END_REF]. This must be verified, but it seems difficult to achieve without an explicit expression of the interfacial pressure terms.

Analysis

In this section, we investigate the hyperbolicity and the symmetrization of the system.

3.1. Hyperbolicity. First, we consider the convective system associated to ( 9)-( 12) and rewrite it in the primitive variables w = (α 1 , ..., α N -1 , w 1 , ..., w M ), where

w k = (ρ k , v k , p k ). For k = 1, ..., N we have (44) ∂ t α k + V I ∂ x α k = 0, and for k ∈ K (45) ∂ t ρ k + ρ k α k (v k -V I )∂ x α k + v k ∂ x ρ k + ρ k ∂ x v k = 0, ( 46 
) ∂ t v k + 1 α k ρ k l∈K P k,l ∂ x α l + p k ∂ x α k + v k ∂ x v k + 1 ρ k ∂ x p k = 0, ( 47 
) ∂ t p k + ρ k α k (v k -V I ) l∈K l̸ =k C 2 k,l ∂ x α l + ρ k c 2 k ∂ x v k + v k ∂ x p k = 0,
where C k,l and c k are respectively the interfacial sound speed and the phasic sound speed, defined by

C 2 k,l = -(∂p k /∂e k )P k,l /ρ 2 k + (∂p k /∂ρ k ) , (48) 
c 2 k = ∂p k /∂ρ k + p k /ρ k + p k /ρ 2 k (∂p k /∂e k ). Then, we express the (∂ x α l ) 1≤l≤M in function of the (∂ x α l ) l≤N -1 by using Lemma 1, it reads (49) ∂ t α k + V I ∂ x α k = 0, ∂ t ρ k + ρ k α k (v k -V I ) (1 - M j=N δ k,j )∂ x α k - M j=N δ k,j N -1 l=1 ∂ x α l (50) +v k ∂ x ρ k + ρ k ∂ x v k = 0 (51) ∂ t v k + 1 α k ρ k N -1 l=1 (K k,l + χ k,l p k )∂ x α l + v k ∂ x v k + 1 ρ k ∂ x p k = 0 (52) ∂ t p k + ρ k c 2 k ∂ x v k + ρ k α k (v k -V I ) N -1 l=1 γ k,l ∂ x α l + v k ∂ x p k = 0, with γ k,l = C 2 k,l (1 -δ k,l ) - M j=N C 2 k,j (1 -δ k,j
) and K k,l defined by [START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF]. Note that we used the argument from Lemma 2 for the velocity equation.

Thus we have the following quasi-linear system (53)

∂ t w + B(w)∂ x w = 0, where B(w) ∈ M N -1+3M (R) is the block matrix (54) B(w) =     V I I N -1 0 ... 0 A 1 B 1 ... ... A M B M     .
The matrices

A k ∈ M 3,N -1 (R)and B k ∈ M 3 (R) are defined by (55) A k =    ρ k α k (v k -V I )(e ⊤ k (1 - M j=N δ k,j ) -1 ⊤ N -1 M j=N δ k,j ) 1 α k ρ k β ⊤ k ρ k α k (v k -V I )γ ⊤ k    , (56) B k =   v k ρ k 0 0 v k 1/ρ k 0 ρ k c 2 k v k   ,
where

• e k is the kth unit vector in R N -1 , with the convention e k = 0 if k ≥ N ,

• 1 N -1 is the vector in R N -1 whose components are all equal to 1,

• the vectors β k , γ k ∈ R N -1 are defined, for l = 1, ..., N -1, by

β k = K k,1 + χ k,1 p k , ... , K k,N -1 + χ k,N -1 p k ⊤ (57) 
γ k = γ k,1 , ... , γ k,N -1 ⊤ . ( 58 
)
We remark that the phasic matrices B k do not differ from the immiscible case [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF], but the A k matrices do change. The eigenstructure of B is exactly the same than in this latter case, thus we only remind here the elements and refer to [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF] for more details.

The eigenvalues are:

• λ I,k = V I , k = 1, ..., N -1 • λ k = v k and λ k,± = v k ± c k , k = 1, ..., M .
Remark 4. The nature and properties of these characteristic fields are as expected, see [START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF] for their analysis in the two-phase framework. We emphasize that the nature of V I remains unknown, and so its Riemann invariants, that obviously depend on its definition. One can refer to [START_REF] Coquel | Closure laws for a two-fluid twopressure model[END_REF] where different closures for V I are investigated for a two-phase mixture, allowing to define unique jump relations.

We now turn to the determination of the eigenvectors. The matrix R composed of the right eigenvectors has a block structure and reads

(59) R =     R 0 I 0 ... 0 R 1 I R 1 ... ... R M I R M     ,
The phasic problems are well known and so R k is. For R k I , we introduce the following notations (60)

κ 0 = M l=1 α l σ l , κ k = M l=1,̸ =k α l σ l , k = 1, ..., M (61) 
σ k = δ 2 k -c 2 k and δ k = v k -V I . Thus we have (62) R k I = κ k ρ k    α k c 2 k β ⊤ k -δ 2 k γ ⊤ k -(α k β ⊤ k -γ ⊤ k )δ k /ρ k -σ k (e ⊤ k (1 - M j=N δ k,j ) -1 ⊤ N -1 M j=N δ k,j ) + α k β ⊤ k -γ ⊤ k    , (63) 
R 0 I = κ 0 I N -1 , R k =   1 1 1 -c k /ρ k 0 c k /ρ k c 2 k 0 c 2 k   .
The matrix R is regular under the following well known condition (64)

σ k ̸ = 0, ⇐⇒ V I ̸ = v k ± c k ∀k = 1, ..., M
called the non-resonance condition.

Proposition 2. The system (9)-( 12) is hyperbolic under the non-resonance condition (64).

The non-resonance condition appears when a genuinely non linear field associated to v k ± c k overlaps the coupling wave V I . In such a situation, the vector space is not anymore spanned by the eigenvectors.

3.2. Symmetrization. The proof of the symmetrization relies on the same arguments than in [START_REF] Coquel | Two properties of two-velocity two-pressure models for two-phase flows[END_REF][START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF] and is exactly the same than in the generalized immiscible case of N phases [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF]. We build a symmetric positive definite matrix P = P (w) such that P B is symmetric, by using the block structure of B and its left and right eigenvectors matrices. We remind here the general idea.

First we define P k the symmetrizer of the phasic problem by (65)

P k =   1 0 -1/c 2 k 0 0.5(ρ k /c k ) 2 0 -1/c 2 k 0 1.5/c 4 k   ,
that is a symmetric positive definite matrix. Moreover it is such that P k B k symmetric. We then define P k,α under the non-resonance condition (64) by ( 66)

P k,α = L ⊤ k (Λ k -V I I 3 ) -1 R ⊤ k P k A k
, where L k is the left eigenvectors matrix of B k and Λ k is the eigenvalues matrix of B k . We remind that these matrices verify

L k B k R k = Λ k and L k R k = I 3 .
Thus we can define the symmetrizer for B, that is

(67) P =     N P α I N -1 P ⊤ 1,α ... P ⊤ M,α P 1,α P 1 ... ... P M,α P M     ,
where P α I N -1 must be speficied. The cornerstone is that (V 1 P k,α + P k A k ) ⊤ = P ⊤ k,α B k , that traduces the symmetry of the first row and column of block of P B.

It relies on the fact than P ⊤ k,α A k is a symmetric matrix, since

P ⊤ k R k = L ⊤ k . Now we prove that P is positive definite. Let a ∈ R N -1+3M such as a = (a α , a 1 , ..., a M ), with a α ∈ R N -1 . (68) a ⊤ P a = P α N -1 k=1 N -1 i=1 a α,i + (P ⊤ k,α a k ) i /P α 2 + M k=1 1 P α a ⊤ k Qa k ,
where Q = P α P k -P k,α P ⊤ k,α . Let us determine a condition on P α such as the terms a ⊤ k Qa k are non-negative. We consider the Cholesky decomposition of

P k = C k C ⊤ k and we define E k = C -1 k P ⊤ k,α P k,α C ⊤ k
, that is a symmetric matrix. Thus, there exists T k such that

T k E k T ⊤ k = D k = diag(µ k 1 , µ k 2 , µ k 3 ), where (µ k i ) 1≤i≤3 are the eigenvalues of E k . Thus we have (69) a ⊤ k Qa k = b ⊤ k (P α I 3 -D k )b k = 3 i=1 b k,i (P α -µ k i ), with b k = T ⊤ k C ⊤ k a k . Choosing P α > max i,k |µ k i | > 0 the term a ⊤ k Qa k is non- negative and is positive for a k ̸ = 0, so a ⊤ Qa is.
Finally, the system (49)-( 52) is symmetrizable and according to Kato's theorem [START_REF] Kato | The cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF], there exists a local-in-time smooth solution to the associated Cauchy problem.

Admissible source terms

We investigate in this section some conditions on the source terms in order to satisfy the second principle of thermodynamics.

We omit the dependence in Y of the source terms for the sake of readability. We first give the form of each source term, and then we determine conditions on each contribution.

Firstly, let us remark that the mechanical transfer source terms Φ k verify

(70) ∀k ≥ N, Φ k = Φ N , N k=1 Φ k = 0,
that is a consequence of the miscibility and saturation constraints. This allows us to use a similar rewriting than ( 23) and ( 24), which will be useful later.

The mass transfer term Γ k is defined as a sum of dyadic contributions

(71) Γ k = l∈K l̸ =k Γ kl ,
where Γ kl represents the mass transfer from phase k towards phase l. In practical modelling, some of these terms may be equal to zero, for example if the phase k is a non-condensable gas.

The momentum contribution is decomposed into a drag term and a mass transfer term

(72) S q,k = l̸ =k D kl + l̸ =k Γ kl v kl .
Last, the total energy source term contains thermal transfer, drag effects and mass transfer (73)

S E,k = l̸ =k Ψ kl + l̸ =k v kl D kl + l̸ =k Γ kl H kl + l̸ =k P k,l Φ l ,
plus this last term, coming from the choice of modelling we made at the beginning of the paper. Indeed, by choosing the derivatives in space for α l in the energy equation [START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF], the associated source term S E,k contains a mechanical contribution, that is not the case for example in [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF].

Let us remark some relations on these contributions. First, the dyadic contributions of (71), (72) and (73) must verify

(74) Γ kl = -Γ lk , D kl = -D lk , Ψ kl = -Ψ lk .
Those from (73) give

v kl D kl = -v lk D lk ,
that impose v kl = v lk , thanks to the independance of the D kl . Similarly, we have H kl = H lk . Now we can regroup the contributions according to their nature (75)

RHS σ = RHS Φ σ + RHS Γ σ + RHS D σ + RHS Ψ σ .
In order to ensure the entropy growth, each of these four term must be positive.

• Admissible mechanical contribution Φ RHS Φ σ = k∈K a k l̸ =k P k,l Φ l + ρ 2 k ∂e k ∂ρ k Φ k -ρ 2 k ∂s k ∂ρ k Φ k = k∈K a k l̸ =k P k,l Φ l + p k Φ k = k∈K a k l≤N -1 (K k,l + χ k,l p k )Φ l = N -1 l=1 M k=1 a k (K k,l + χ k,l p k ) Φ l .
We obtain the condition, for all l = 1, ..., N -1

(76) M k=1 a k (K k,l + χ k,l p k ) Φ l ≥ 0.
• Amissible mass transfer contribution Γ By using the relation

µ k = e k -T k s k + p k /τ k , we have RHS Γ σ = k a k l̸ =k (H kl + v 2 k 2 -v k v kl )Γ kl - k l̸ =k a k µ k Γ kl .
By setting Knowing that a k (β lk + a l (1 -β lk )) > 0, the final condition is (79) (v l -v k )D kl ≥ 0.

H kl = v k v l
• Admissible thermal transfer contribution

RHS Ψ σ = k∈K l>k Ψ kl (a k -a l ),
and so the constraint is that for k ̸ = l, (80) Ψ kl (T l -T k ) ≥ 0.

Finally, these class of source terms comply with the second principle of thermodynamics. In practical cases, see [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF] for instance, the condition on the mechanical contribution Φ l can be given more precisely, and we refer to these papers for more details.

Conclusion

We have addressed in this paper the study of a Baer-Nunziato-like model for a compressible N -phase flow with miscibility conditions. The main result concerns the closure laws of the pressure interfacial terms. We demonstrate that under classical conditions on the interfacial velocity, the interfacial pressure terms are uniquely defined. Explicit expressions of these terms can be given in practical situations for given values of M and N , see for instance [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF].

Then, the hyperbolicity and symmetrization of the convective system have been investigated. The system is hyperbolic under the classical non-resonance condition. The symmetrization gives the local-in-time existence of a smooth solution.

Finally, we have determined constraints on the source terms in order to satisfy the second principle of thermodynamics. Results are the same than in practical models where M and N are given. The missing explicit expressions of the interfacial terms Φ k may be overcome in practical situations, see [START_REF] Hérard | A three-phase flow model with two miscible phases[END_REF][START_REF] Hérard | A four-field three-phase flow model with both miscible and immiscible components[END_REF].

If we turn to approximation of solutions of system ( 9)-( 12), recent works investigated relaxation schemes dedicated to the two-phase Baer-Nunziato model with strong properties, see [START_REF] Coquel | A positive and entropy-satisfying finite volume scheme for the baer-nunziato model[END_REF], and also in the three-phase immiscible barotrope case [START_REF] Saleh | A relaxation scheme for a hyperbolic multiphase flow model. Part I: barotropic eos[END_REF]. It would be interesting to extend these works to the two-phase three-field case and to begin a numerical study.

1

 1 

2 and v kl = v k +v l 2 ,v

 22 the first sum is equal to zero. Hence, it imposes(77) ∀k ̸ = l, (a k µ k -a l µ l )Γ kl ≥ 0, that is equivalent to (78) ∀k ̸ = l, ( kl D kl -v k l̸ =k D kl .We assume the following form for v kl to comply with the Galilean invariance principlev kl = β kl v k + (1 -β kl )v l , with β kl + β lk = 1 and β kl ∈ [0; 1]. Then we impose for k ̸ = l a k (1 -β kl + a l (1 -β lk ))(v l -v k )D kl ≥ 0 ⇐⇒ a k (β lk + a l (1 -β lk ))(v l -v k )D kl ≥ 0.
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