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Abstract—With the large deployment of WiFi networks, in-
door localization using WiFi fingerprinting with received signal
strength has been widely studied. One of the common localization
methods is weighted K-nearest neighbor method (WKNN), which
localizes the user to the weighted center of the K best matching
points. The performance of this method is affected by the choice
of parameter K. Once tuned, this parameter is usually applied
to all test samples. In this paper, we study how far localization
performance can be improved if this parameter is adapted for
different test points. We show with two public access datasets that
adapting parameter K for different test points can potentially
improve localization performance by over 45% compared to
the baseline of only choosing the closest neighbor. Additionally,
we analyze the dataset to obtain some stochastic thresholds for
dataset filtering and K selection.

Index Terms—WiFi Fingerprinting, RSS, WKNN

I. INTRODUCTION

With the rapid development of IoT, the need for indoor
localization has also increased [1]. Many techniques have
been applied for indoor localization such as Time of Arrival
(TOA), Received Signal Strength (RSS), Angle of Arrival
(AOA), Channel State Information (CSI), etc [2]. Among these
techniques, RSS is an accessible information which can be
obtained passively without needing additional hardware or
information exchange.

The existing localization methods can be roughly divided
into two categories: model-based and fingerprinting based
methods [3]. Model based methods estimate distance between
user and anchors with propagation models and then perform
triangulation. Fingerprinting methods explore the mapping
between positions and unique features such as RSS from
different WiFi access points or the CSI and localize the user
by matching its measurements to the dataset.

Various algorithms based on machine learning techniques
have been proposed for fingerprinting. Deep learning methods
train neural networks with RSS measurements and position
labels. Benefiting from the non-linear activation function and
adapting ability, these methods have shown excellent results in
region classification with sufficient training data and compu-
tation power [4]–[8]. There are other algorithms that provide
good localization performance with less data and resource
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requirement, such as Nearest Neighbor (NN) [9], [10], Support
Vector Machine (SVM) [11].

K Nearest Neighbor (KNN) algorithm as well as its variant
WKNN localize the user by finding K best matching neighbor
fingerprints and estimate the user position as the body center
of these neighbor points. The matching process can be done
with similarity functions [9], [10] or other data representation
methods [4], [5], [12]. By tuning parameter K, which is the
number of nearest neighbors considered, performance of KNN
can be improved comparing to only taking the nearest neighbor
into account [13].

Most papers in the literature consider a fix value of K
for all test samples. Localization performance can be further
improved if the choice of K is individualized to different test
samples. To adapt K value, an iterative method can be applied,
increasing K from 1 to a preset maximum value Kmax and
checking if the newly included point meets certain require-
ments. In [14], [15], a new neighbor is only included when the
distance between the user’s RSS vector and fingerprint of that
neighbor point is below a certain threshold. Additional to the
RSS distance threshold, a limit can be apply on the physical
distance [16], [17]. In [18] a wireless propagation model was
estimated with neighbor fingerprints and fingerprints are selec-
ted to minimize the error of estimation. In [19], a clustering
based selection method is proposed for positioning with visible
light communication.

These above methods show that an adaptive WKNN can
provide better performance than classic WKNN. However,
they do not show how far the performance can be improved
by adapting K. In this paper, we obtain the limit of adaptive
WKNN by solving a NP-complete problem and we show
that there is large potential on performance improvement.
Additionally, we propose to analysis the dataset during offline
phase and obtain some stochastic parameters to help choosing
K.

The remainder of the paper is organized as follows: Section
II presents system model and Section III presents the method
to obtain the performance limit of adapting WKNN. Section
IV analyzes the dataset for K selection. Section V presents
numerical results and Section VI concludes the paper.



II. SYSTEM MODEL

The fingerprinting process including two phases is shown in
Fig. 1. During the offline phase, a fingerprint dataset is built
by measuring the received power from different Access Points
(AP) at Nr predefined Reference Points (RP). Assuming there
are M fixed APs in the dataset, a RSS sample i is constituted
by the Received Signal Strength Indicator (RSSI) from all M
APs RSSi = [r1i , r

2
i , ..., r

M
i ]. A fingerprint Fi consists the

RSS vector and the corresponding position label.
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Figure 1. RSS Fingerprinting

During the online phase, a test sample searches for matching
fingerprints in the dataset with a similarity function which
quantifies how close two samples are in the feature space.
Commonly used similarity measures include Euclidean dis-
tance, Cosine similarity, Manhattan distance, Pearson Correl-
ation Coefficient,etc [20]. Using cosine similarity function to
demonstrate, similarity value between RSS sample i and j can
be obtained as:

si,j =

∑M
m=1 r

m
i r

m
j√∑M

m=1(r
m
i )2

√∑M
m=1(r

m
j )2

. (1)

To simplified the calculation of similarity values, positive
representation is obtained for RSS vector with thresholding
as:

P (rmi ) =


rmi −min, if APm is present in Fi

and rmi > τ

0, otherwise,
(2)

where min is the lowest RSSI value in the dataset and τ is the
threshold value which removes the RSSI values that are too
low .

For test sample j, K fingerprints with highest similarity are
selected whose coordinates are denoted as (xk, yk, zk) (k =
1, ...,K). WKNN algorithm estimates test sample position as
the weighted body center of these selected points.

The weight function allows better matching fingerprints to
contribute more to the position estimation. In this paper, the
weight function is chosen as:

wk = s2i,k (k = 1, ...,K). (3)

III. PERFORMANCE LIMIT OF WKNN WITH ADAPTIVE K

It is shown in the literature that adapting K for WKNN
can provide better localization performance than using a fix
K. In [16], [17], [19], performance improvement is achieved
by 1.43%, 1.70% and 8.96% on their own RSS fingerprinting
datasets, respectively. However, the full potential improvement
we can achieve with adaptive WKNN is yet unknown.

In this section, we obtain the performance limit of adaptive
WKNN by optimizing localization performance for each test
sample. This process is shown in Algorithm 1, in which Nr is
the number of RPs in the dataset. Given the RSS vector of a
user and the range of [1,Kmax], the value of K that provides
minimum localization error would be the optimal K for this
test sample. The mean error of all samples given their own
optimal K would be the performance limit we can achieve
with adaptive WKNN.

Algorithm 1 Pseudo code for obtaining performance limit of
adaptive WKNN
Require: Fj : fingerprint measured at test point j; F: finger-

prints from the dataset; Kmax: the range of K for WKNN
optimization;

Ensure: optimal K value Kj
opt and performance limit errjopt;

1: set Kj
opt = 1, compute initial localization error errjopt

with K = 1;
2: for i = 1; i ≤ Nr; i++ do
3: compute similarity value sj,i between user fingerprint

and all RPs in the dataset;
4: end for
5: sort RPs by decreasing order of similarity value;
6: for k = 1; k ≤ Kmax; k ++ do
7: compute user estimated position

(
x̂kj , ŷ

k
j , ẑ

k
j

)
and loc-

alization error errkj
8: if errkj < errjopt then
9: errjopt = errkj , Kj

opt = k
10: end if
11: end for

Using Algorithm 1, performance limit on two public access
WiFi RSSI datasets UJIIndoorLoc [21] and Alcala Tutorial
2017 Dataset [22] are obtained. To show the ratio of improve-
ment, a baseline is obtained by giving a uniform value of K
to all test samples which corresponds to the classic WKNN.

We first show the performance limit using cosine similarity
function for WKNN. As shown in Fig.2 and Fig.3, on both
datasets, localization error obtained by taking the optimal K
for each test sample is significantly reduced as the limit Kmax

increases. Comparing the result with optimal K and uniform
K, localization error is reduced by over 3 meters for Kmax >
15 in the UJIIndoorLoc dataset and for Kmax > 10 in the
Alcala dataset, which shows great potential of performance
improvement if K is properly selected for each test sample.

For comparison, localization performance is also obtained
with a random K selection. Given a predefined range of
[1,Kmax], we can randomly choose K for a given test sample
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Figure 2. Performance limit with adaptive WKNN:UJIIndoorLoc dataset
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Figure 3. Performance limit with adaptive WKNN:Alcala dataset

with equal probability for each value of K in the range. In
Fig.2 and Fig.3, black curves correspond to the baseline of
random K selection presenting the mean and the minimum
localization error among 3000 independent trials. For a larger
Kmax, random K performs better than fix K on average.

We also obtain the performance limit with Algorithm 1
using other common similarity functions [20] shown in Fig.4.
On both datasets, Cosine similarity and Pearson’s correlation
coefficient provide better performance than the other two
functions. In this paper, we will keep using Cosine similarity
function because it is relatively easier to calculate.

The performance limit introduced in this section is obtained
by solving the NP complete problem. We identify the optimal
K with the help of the test point position label. This is
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Figure 4. Performance limit with different similarity functions

not realistic since the user position is generally unknown.
However, this limit shows the huge potential improvement of
adapting parameter K and it leads to the open question of how
we can approach this limit by selecting an individual K for
each test sample.

IV. ADAPTIVE K BASED ON DATASET FILTERING

In this section, we discuss the problem of K selection and
analyze training set to provide stochastic thresholds that can
be used for K selection. By setting a range of K and applying
these thresholds, some fingerprints that are not well matching
the test sample can be excluded and hence adapting the number
of neighbors used for positioning.

From the results in Fig.2 and Fig.3, we can see that with
an uniform K, to a certain extend, increasing K compensates
the data incompleteness of the discrete dataset as well as
mitigating the error introduced by imperfect RSS. However,
when K becomes relatively large, the algorithm might select
far away fingerprints which can introduce large error because
the spatial relation of RSS vectors are not perfect. Therefore,
we analyze the training set and study the relation between
mathematical and physical space to get some insights for the
localization process.

In the section II, similarity function is introduced to search
for matching fingerprints in the dataset. Fingerprints with
higher similarity is expected to be closer to the test sample.
However, RSS is easily affected by the environment and it
can fluctuate quite a lot even in the same position [23]. Even
though it is hard to determine the exact distance between two
points given their RSS similarity value, we can obtain some
stochastic thresholds from analyzing the training set during
the offline phase.

On both UJIIndoorLoc and Alcala datasets, we obtain the
relation between similarity value and physical distance. The
empirical mean of cosine similarity over different physical
distance as well as the 95% confidence interval are shown in
Fig.5 and Fig.6. As shown in both figures, in general the mean
value of similarity decreases as horizontal physical distance
increases which is in line with the assumption of similarity
based localization methods.

Even with the large variance, we can still see that finger-
prints taken from close distance have relatively high similarity
values. For instance, 95% fingerprints within 10 meters radius
have similarity value above 0.5 and 0.25 in UJIIndoorLoc and
Alcala dataset, respectively. This information can be used to
determined whether or not a neighbor fingerprint is a good
match. If the similarity value between the test sample and a
fingerprint is below this threshold, this fingerprint is likely to
be far away from the test point and we can choose to not take
it into account for localization. This similarity threshold can
be noted as τs.

With the above similarity threshold, we can filter out
fingerprints that are likely to be far away. However, given
the large variance of similarity values, we still can not be
sure that all fingerprints with higher similarity than τs are
good matching points. For instance, in Fig.5, fingerprints with
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Figure 5. Mean cosine similarity over physical distance: UJIIndoorLoc dataset
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Figure 6. Mean cosine similarity over physical distance: Alcala dataset

similarity values of 0.6 can be taken from physical distance
of 1 meter or much further. Therefore, we introduce another
threshold τp. Using the highest similarity value in the dataset
as reference, we try to make sure that neighbor fingerprints
used for localization are matched to the test sample at a similar
level. This threshold can be tuned with experiments.

The proposed adaptive WKNN with dataset filtering is
detailed as follow:

Algorithm 2 Adaptive WKNN with dataset filtering
Require: Fj : fingerprint of test point j; F: fingerprints from

the dataset; K ′
max: the predefined range of K for adaptive

WKNN;
Ensure: Estimated position of test point j

1: for i = 1; i ≤ Nr; i++ do
2: Compute similarity value sj,i between user fingerprint

and all RPs in the dataset;
3: end for
4: Sort similarity values of different RPs in a descending

order and note the K ′
max highest values as s′j,k, k =

1, 2, ...K ′
max;

5: for k = 1; k ≤ K ′
max; k ++ do

6: if (s′j,k < τs) or (s′j,k < s′j,1τp) then
7: break;
8: end if
9: end for

10: Estimate test point position with WKNN (K=k).

V. SIMULATION RESULTS

To evaluate the performance limit of the proposed K se-
lection method, the upper limit Kmax need to be chosen. As
shown in Fig.2 and Fig.3, for the classic WKNN, K = 3 and
K = 2 provide the best result for the corresponding dataset,
so we would choose these two as the limit of iteration and
try to improve performance by filtering and reducing K for
certain test samples. Similarity threshold τs can be obtained
by dataset analysis in the previous section. From the lower
confidence bound of 10 meter distance, τs for UJIIndoorLoc
and Alcala dataset is set to be 0.5 and 0.25, respectively.

The last parameter τp can be tuned by experiment. Table I
presents localization error with different threshold value. 0.95
and 0.85 are chosen as parameter τp for the corresponding
dataset.

Table I
LOCALIZATION ERROR WITH DIFFERENT τp

τp 0.80 0.85 0.90 0.95 0.99
UJIIndoorLoc (m) 7.5 7.4 7.4 7.3 7.6

Alcala (m) 5.6 5.5 5.6 5.7 5.8

Performance comparison of several adaptive WKNN meth-
ods as well the performance limit obtained as section III are
shown in Table. II. The performance limit drawn with the
proposed method shows great potential on improving localiz-
ation performance of WKNN by optimizing the K for each
test sample. The proposed dataset filtering method improves
localization performance by applying simple thresholds on
similarity value. On the UJIIndoorLoc dataset, mean localiza-
tion error is reduced by 11% and on the Alcala dataset 9.8%
comparing to the classic nearest neighbor method.

Table II
LOCALIZATION PERFORMANCE COMPARISON

Dataset Method Mean error(m) Improvement(%)
UJIIndoorLoc NN 8.2 0
UJIIndoorLoc WKNN(K=3) 7.7 6.1
UJIIndoorLoc Limit 3.9 52.4
UJIIndoorLoc Dataset filtering 7.3 11.0

Alcala NN 6.1 0
Alcala WKNN(K=2) 5.7 6.6
Alcala Limit 3.3 45.9
Alcala Dataset filtering 5.5 9.8

VI. CONCLUSION AND PERSPECTIVE

In this paper, we tackle the problem of how adapting para-
meter K in the classic WKNN method can affect fingerprinting
performance. On two public access datasets, we show that
if the parameter K is optimized for each test sample instead
of setting a uniform value, a huge improvement over 45%
and 52% can be achieved, which is a lot more than what the
existing methods in the literature offer.

We also analysis the dataset to get insights for filtering the
dataset and selecting K. Even though the current improvement



is not yet close to the performance limit we obtained, as future
work, we plan to improve the adaptive method by further
investigating the relation among selected fingerprints.

.
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