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Abstract—Weighted K nearest neighbor (WKNN) algorithm
provides good result for indoor localization by searching for
matching fingerprints in the dataset. However, due to the nature
of this method, computation load increases as the size of dataset.
In this paper, we propose a hierarchical localization method to
reduce the computation load during the online phase. A two-
level structure first localizes the user to a smaller subset and then
position estimation is obtained by WKNN with feature extraction.
On a public accessed WiFi fingerprinting dataset, the proposed
method achieves a 98% reduction without sacrificing localization
performance.

Index Terms—Hierarchical localization, WiFi Fingerprinting,
RSS, Principal Component Analysis (PCA), Auto-Encoder (AE),
Feature Extraction, WKNN

I. INTRODUCTION

With the increasing number of smart phones and wearable
devices, indoor positioning has become a topic of interest [1].
Many techniques have been proposed for indoor localization
such as time of arrival (TOA), angle of arrival (AOA), channel
state information (CSI), received signal strength (RSS), etc
[2]. Comparing to other techniques, RSS has the advantage of
being accessible as it does not require additional hardware or
synchronization to measure.

Current localization methods can be roughly divided into
two categories: propagation model based and fingerprinting
based methods [3]. Model based methods estimate distance
with propagation model and apply triangulation for position-
ing. Fingerprinting is a localization solution that exploits the
mapping between measurements and positions. RSS meas-
urements from different transmitters such as WiFi Access
Points (APs) together provide fingerprints for discrete points
in the physical space. With a large number of transmitters and
measurements, fingerprinting can mitigate the error caused by
RSS fluctuations.

Various algorithms based on machine learning techniques
have been proposed for fingerprinting. Deep learning methods
have shown excellent results in region classification with suf-
ficient training data and computation power [4], [5]. There are
other algorithms that provide good localization performance
with less data and resource requirements, such as k-Nearest
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Neighbor (KNN) [6], [7] and Support Vector Machine (SVM)
[8]. These methods suffer from complexity problem during the
online phase. Computation time and cost increase with the size
of the fingerprinting dataset. This problem can be improved
by limiting the number of fingerprints being matched during
the online phase [7], [9] or reducing the dimension of each
fingerprint [10].

In this paper, we propose a practical and scalable hier-
archical localization method to improve the computation load
without decreasing localization performance. First, we explore
the hierarchical nature of big datasets and divide them into
subsets with smaller number of fingerprints using position la-
bels given by the dataset. For each subset, a limited number of
representative vectors are generated to increase classification
accuracy with a small cost of complexity. Feature extraction
is then performed in each subset using principal component
analysis (PCA) or auto-encoder (AE). After being classified to
a subset, feature dimension of the test RSS sample would be
reduced using the corresponding transform matrix or encoder
model. Comparing to the commonly applied flat structure
which matches the user fingerprint to all fingerprints in the
dataset, the proposed method largely reduces both the number
and the length of fingerprints being matched during the online
phase and hence reduces computation cost.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on reducing computation cost
for fingerprinting. Section III presents notations and system
model. Section IV explains the proposed hierarchical indoor
localization method with feature extraction. Section V presents
numerical results for performance evaluation, and Section VI
concludes the paper.

II. RELATED WORK

Over the recent years, different solutions have been pro-
posed in the literature to cope with the computation load
problem of fingerprinting on large datasets. Reducing the size
of fingerprinting dataset can effectively reduce complexity.
By diving the dataset into different subsets using position
labels provided by the dataset [11] or clustering algorithms
[71, [12], the matching process is limited to one of the subsets
which reduces the amount of fingerprints being matched. In
a previous result, we used k-means clustering based radio



mapping to reduce the number of fingerprints related to each
reference point [13].

Other attempts on reducing data dimension focus on re-
ducing the size of the feature vector with feature selection
and feature extraction. Feature selection uses prior knowledge
to select a smaller number of features while keeping the
original meaning of them. Jia, Huang, Gao et al. prove that
when the number of APs increases beyond a certain threshold,
localization performance can not be significantly improved
[14], providing theoretical support for feature selection in
fingerprinting. In paper [15], 30 strongest APs as well as their
ID are selected as new features. AP selection can also be
performed by minimizing the correlation of selected APs [16].

Feature extraction however, projects the original data into a
lower dimensional space. In [8], Principal component analysis
(PCA) is used to reduce RSS vector size from 520 to 50 with
a minor toll on classification accuracy. Accurate localization
can be achieved combining two feature extraction methods:
Fisher discriminant analysis (FDA) and PCA [17]. High floor
classification accuracy was achieved using an auto-encoder to
reduce RSS vector length and training a deep neural network
with the reduced data [18]. In [10], a fingerprint is formed by
combining 200 RSSI measurements from 4 APs which makes
different features in the vector highly correlated and both PCA
and auto-encoder (AE) are used for feature extraction.

To our knowledge, previous contributions on reducing data
dimension focus only on either reducing the number or the
length of fingerprints. Feature extraction tools are usually
applied on the entire dataset and not tailored for different
parts of the dataset. Furthermore, many auto-encoder based
approaches perform localization as position label classification
rather than regression. Our work aims to fill these gaps.

III. SYSTEM MODEL

The process of fingerprinting includes an offline dataset
creation phase and an online localization phase as shown in
Fig.1. During the offline phase, a fingerprint dataset is built
by measuring the received power from different WiFi access
points at a series of reference points (RP). Assuming there are
M fixed APs in the dataset, a RSS sample ¢ is constituted
by the received signal strength indicator (RSSI) of these APs:
RSS; = [r},r?,...,rM].

During the online phase, a test sample searches for a match-
ing fingerprint in the dataset. This process can be achieved
with similarity functions [6], [7] or other data representation
methods [4], [5], [19]. Similarity functions quantify how close
two samples are in the feature space. Commonly used similar-
ity measures include Euclidean distance, Manhattan distance,
Pearson Correlation Coefficient, etc [20]. In this paper, we
adopt the cosine similarity as it provides good performance
which will be shown in our numerical results and it is simple
to calculate. Similarity value between two samples ¢ and j can
be obtained as:
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In the dataset we used [21], RSSI is expressed in dbM in
negative domain. To simplified the calculation of similarity
values, positive representation is obtained for RSS value with
thresholding as:

" — Toin, f APp is present in RSS;
P(r™) = and ri">T
0, otherwise,
(2)

where 7,,;, 1s the lowest RSSI value in the dataset and 7 is
the threshold value which removes the RSSI value below this
threshold.

For test sample j, K fingerprints with highest similarity are
selected and WKNN algorithm estimates test sample position
as a weighted average of these selected fingerprints. For the
indoor environment, vertical label is often a discrete value such
as floor number, we can simply just take the floor label of the
best matching fingerprint.

A weight function is then used assuming that fingerprints
with higher similarity are closer in the physical space. In this
paper, the weight function is chosen as:

(k=1,..,K). 3)

2
Wk = S5
IV. PROPOSED METHOD

In this section, the proposed hierarchical localization and
feature extraction methods will be presented. During the
offline phase, different subsets of fingerprints are created using
position labels. Then test sample is then localized with a two-
level method during the online phase. Feature extraction is
performed on each subset using PCA or AE aiming to better
capture the different relationship between features.

A. Feature extraction

In this subsection, two feature extracting methods are
presented which reduce the length of feature vectors by
projecting the original data to a lower dimension space.

To improve performance of AE, different dimensions of the
feature vectors are put into the same scale using min-max
scaling as follow:

N(r) = ——Tmin_ )

T"max — Tmin



where 7,,,;, and 7,4, are the minimum and maximum RSS
value in the dataset, respectively. After scaling, the range of
each RSS value becomes [0, 1].

1) Feature extraction with PCA: For a fingerprint dataset
with N measurements and M APs, the size of feature matrix
X is Nx M.PCA finds p (p < M) principal components that
are orthogonal vectors on which data has the largest variance.

After shifting the mean value of each feature vector to zero,
the covariance matrix of original data X can be obtained as:
Qusxm = X TX . To obtain the principle components, we
first calculate M eigenvectors of matrix (. Then we sort
the eigenvectors in descending order of the corresponding
eigenvalues. The first p eigenvectors form the projection matrix
T'. The reduced dataset can be obtained as:

Nxp = XNxmTarxp (5)

2) Feature extraction with auto-encoder: The structure of
an auto-encoder is shown in Fig.2. The network has a symmet-
rical structure made up with two parts: encoder and decoder.
Usually both the encoder and decoder can have several hidden
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Figure 2. Structure of auto-encoder

layers. To demonstrate the process, we take the simple case in
which there is only one hidden layer of each part. Given an
input vector RSS with the size 1 x M, the encoder generates
a code z with smaller dimension p as:

z=0(WFRSST +b,), (6)

where o is a nonlinear activation function that allows the
neural network to learn the nonlinear mapping of the data.
Commonly used activation functions include sigmoid function,
Rectified Linear Unit (ReL.U), etc. W, and b, correspond to the
weight matrix (M x p) and bias vector (p x 1) of the encoder.
Weights and biases are usually initialized randomly, and then
updated iteratively during training through backpropagation.

The decoder then takes the code z and try to reconstruct
the input as RSS’ :

RSS = (o'(WTz+b)7, (7

where the activation function o', weight Wy and bias by
can be unrelated to the ones in the encoder. The network is
trained in an unsupervised manner by minimizing the error of
reconstruction:

1
AN m m 2
L(RSS, RSS') = 37— mz;l(r —™2 . (®)
For a stacked auto-encoder, we can set hidden layer size as
M > Ky > Ky = p for reducing vector size from M to p.

B. Two-level hierarchical localization with feature extraction

A fingerprinting dataset covering large area can be divided
into small subsets using geometric information provided by
the dataset. For example, a dataset covering multiple buildings
and floors can be split into subsets each containing one floor
of one building. If region labels are not provided, we can
apply clustering algorithms on fingerprint coordinates to create
additional classification labels. The process of dataset division
is shown in Fig.3.

{Rv}, Rv}, -+, Rv{}

k-means clustering

Feature extraction X m,xpuT 1 (Mxp)

X, (M)

o | 92 e
k-means clustering {Ry 2 Ry 0ty R 2 :

X5 o T (Oxp)

Feature extraction

XZ (n,xM)

f Ryt 2. L
{Rv,, Rvg, +++ RV}

k-means clustering

il

Feature extraction X’( (/U(p\'T( (Mp)

XC (nexM)

C Subsets

X (NxM)

Original fingerprint dataset

Representative vectors
Reduced data subsets
Transformation matrix

Figure 3. Dataset division

After diving the dataset into C' smaller subsets, a centroid
fingerprint is usually generated for subset classification. How-
ever, one centroid might not be able to well represent the
diversity in each subset. To improve classification accuracy, we
apply k-means clustering on the RSS samples of each subset
to further divide them into k. clusters and obtain a centroid
on each cluster. This way, k. diverse representative vectors
{Rvk};zc:l are obtained to represent each subset. Increasing
the number of representative vectors improves classification
accuracy which is worthy of the small additional computation
cost since a misclassification in this early step would result in
large localization error.

In each subset, feature extraction is performed separately
using PCA or AE to better capture the different distribution
of APs over space.

For localizing a user, a two-level structure shown in Fig.4 is
adopted as opposed to a flat structure which directly localizes
the test sample using the entire fingerprint dataset.

The first level of the hierarchical localization structure
localizes the test sample into one of the subsets using Nearest
Neighbor (NN) algorithm. Then the dimension of test sample
is reduced with transformation matrix or auto-encoder from
the corresponding subset. The second level of localization is
performed within each subset with reduced data. Test sample
position is estimated using WKNN presented in the previous
section.

V. PERFORMANCE EVALUATION

In this section, performance of the proposed method is
evaluated on a public access WiFi RSS fingerprinting dataset
UllIndoorLoc [21]. This dataset includes three multi-floor
building with 520 APs in total providing a training set with
19937 samples and a test set with 1111 samples. Floor height
of 4 meters is taken to calculate vertical localization error.
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A. Parameters setting

In the UJIIndoorLoc dataset, RSSI is represented as negative
integer values ranging from -104 dBm (extremely poor signal)
to 0 dBm. A positive default value 100 is used to denote
when an AP was not detected. This value does not reflect the
received signal strength or distance to the AP but it will greatly
affect the calculation of similarity. Positive representation is
drawn from the original data with threshold set as —95 using
equation (2). We experimented with different threshold values
from —130 to —80 dBM but the details of parameter tuning
is out of the scope of this paper.

Auto-encoders with two layers are applied for feature ex-
traction for both flat and hierarchical structure. The first hidden
layer size is 100 and the second hidden layer size is set to p
which corresponds to expected feature length after extraction.
Two single layer auto-encoder were trained separately and then
stacked together and fine-tuned as one deep network. As future
work, further optimization and hyper-parameter tuning can be
performed.

Localization performance of four different similarity func-
tions over different value of K is shown in Fig.5. As shown
in the figure, cosine similarity and Pearson Correlation Coeffi-
cient provide better results than other two similarity functions.
Since cosine similarity is easier to compute, we choose it as
similarity function in this paper. Parameter X' = 3 is also
chosen for WKNN to obtain localization results.

Euclidean

---------- Cosine similarity -
Pearson correlation coefficient e

————— Manhattan distance e

Mean localization error (m)

1 2 3 4 5 6 7 8 9 10
Value of K for WKNN

Figure 5. Localization performance over different similarity functions and
values of K

B. Results and analysis

Considering data of one floor in one building to be a
subset, the entire dataset can be divided into 13 subsets using
floor and building labels. For each subset, k. representative
vectors are obtained for subset classification. Since we use
the k-means clustering algorithm with random initialization to
generate representative vectors, Monte Carlo simulations are
conducted. In our simulations, building classification accuracy
with different value of k. is always around 100%. Floor
classification results are shown in Fig.6. Comparing to using
one centroid vector (k. = 1), a larger number of representative
vectors can improve floor classification accuracy. However, for
k. > 60, accuracy slowly decreases as k. increases. If we
use all samples in each subset for classification, we can only
achieve 92.89% accuracy due to the fluctuation of RSS. The
standard deviation of accuracy over 2000 independent trails
also decrease as k. increases.

To balance between computation load and accuracy, in this
paper, k. = 10 is chosen. With 130 representative vectors in
total, we managed to achieve floor classification accuracy of
95.23% using Nearest Neighbor (NN) method, which outper-
forms the result with flat structure using the entire dataset and
some other results in the literature as shown in Table I.
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Figure 6. Floor classification accuracy over different values of k.

Table 1
COMPARISON OF CLASSIFICATION RESULTS

Method Building accuracy (%)  Floor accuracy (%)
Proposed method 100 95.35
Nearest neighbor on flat structure 100 92.89
WKNN [22] 100 93.74
Deep neural network[11] 99.91 92.80

Localization performance under different data dimension
using PCA or AE feature extraction is shown in Fig.7. The
results of AE are presented as the mean and standard devi-
ation of different trails. With limited computation power, we
conducted 10 trails. The original data has the feature vector
size of M = 520 and reduced feature vector size p is the



in range of [100,300]. For both PCA and AE, hierarchical
localization allows further reduction than flat structure with
similar performance. For large feature vector size, hierarchical
localization has a slightly smaller mean error than the flat
structure due the higher floor classification accuracy. For the
limited number of trails we ran, in general PCA provides better
performance than AEm especially for small feature vector
size (p < 100). Performance of AE could be improved with
optimization and tuning of the networks.
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Figure 7. Average localization error under different feature dimension

The comparison of localization performance and computa-
tion complexity of WKNN combined with different reduction
method is shown in Table II, in which cost* corresponds
to number of operations need to calculate similarity matrix
between test sample and fingerprints being matched in the
dataset. Reduction ratio shows how much the computation cost
is reduced using the corresponding method comparing to flat
localization with the original dataset.

Complexity of WKNN algorithm is O(MN) in terms of
multiplication for similarity calculation and O(/NK) in terms
of similarity comparison, where M is the length of sample
vectors, N is the number of samples and K (K <« N) is
the number of neighbors chosen for localization [23]. Given a
fixed K, the main factor that impacts complexity is the number
operations needed to calculate the similarity matrix. Using
feature extraction tools to reduce RSS vector size to p is just a
simple multiplication between test RSS vector RSS:x s and
projection matrix T, which has the complexity of O(Mp)
in the worst case. Since this complexity is relatively small
and it does not grow with the number of test and training
samples like WKNN, for simplification we will not take that
into account in the complexity analysis.

With feature extraction, sample vector size can be reduced
from M to p (p < M) resulting in a lower complexity
for similarity computation. Applying feature extraction tools
directly on the flat structure can reduce computation cost with
the ratio of (M —p)/M. For p = 30, the reduction is 94.22%
with an increased localization error. Using AE for feature
extraction results in a larger localization error which could
be improved if the network is further optimized.

Assuming the dataset is evenly distributed on each floor,
adopting the hierarchical structure, the whole dataset is divided
into C' = 13 subsets reducing the number of samples being
compared for position estimation to N/C' from the original
size N = 19854. Computation cost of the hierarchical struc-
ture can be written as O(MC + MN/C) considering one
subset centroid for classification [7]. In this paper, k. = 10
representative vectors are obtained for each subset to improve
classification accuracy instead of using just one centroid, so
MCk,. similarity calculations are needed for subset classific-
ation. To compare with our previous results, we also apply
k-means clustering based radio mapping on the full dataset
which reduces the number of training samples to N’ = 4202
and perform localization with a flat structure.

Table II
PERFORMANCE OF DIFFERENT LOCALIZATION METHODS

Method Mean error(m) Cost* Reduction(%)
Flat structure 7.62 MN 0

Flat structure+PCA 9.03 pN 94.22
Flat structure+AE 9.16 pN 94.22
Hierarchical structure 7.50 MCke + MN/C 91.65
Hierarchical structure+PCA 7.51 MCke + pN/C 98.90
Hierarchical structure+AE 8.73 MCke + pN/C 98.90
K-means radio mapping[13] 7.67 MN’ 78.84

Using hierarchical structure with PCA feature extraction
provides the best result allowing us to reduce computation
cost to 98.90% with very little increase in localization error.
There is more potential in cost reduction by combining k-
means radio mapping and the proposed hierarchical method
which can be explore in future work.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a hierarchical fingerprinting
and feature extraction method to reduce the computation cost
without sacrificing localization performance. With a two-level
localization, the user is first classified to a subset of the radio
map and then WKNN is applied to estimate user position
within the subset. This method reduces computation cost for
over 90% while slightly decreases localization performance.
Applying feature extraction individually in each subset can
further reduce the cost up to 98% without sacrificing localiz-
ation performance.

For subset division, we used floor and building labels given
by the dataset which produces a fix number of subsets. Other
division method can be studied in the future as well as
the trade-off between cluster number, classification accuracy
and overall localization error. For feature extraction tools,
we compared PCA to auto-encoder. In the given dataset,
PCA provides better performance. As future work, further
optimization and tuning of the auto-encoder for each subset
can be investigated.
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