
HAL Id: hal-03697710
https://hal.science/hal-03697710

Submitted on 17 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic typing for lexical semantics. A case study: the
genitive construction
Nicholas Asher, Pascal Denis

To cite this version:
Nicholas Asher, Pascal Denis. Dynamic typing for lexical semantics. A case study: the genitive
construction. A. Varzi and L. Vieu. Formal Ontology in Information Systems. Proceedings of the
Third International Conference (FOIS 2004), IOS Press, pp.165-176, 2004. �hal-03697710�

https://hal.science/hal-03697710
https://hal.archives-ouvertes.fr

Dynamic Typing for Lexical Semantics
A Case Study: the Genitive Construction

Nicholas ASHER, Pascal DENIS∗

The University of Texas at Austin

Introduction

In recent years, there has been a considerable amount of effort in computational work on
lexical semantics that seeks to automate the acquisition of disambiguated senses for words.
Similar work is less popular in theoretical lexical semantics but still widely practiced through-
out the discipline. We believe that this approach is fundamentally mistaken. The only way to
build large scale lexicons that are linguistically and practically useful is to use simultaneously
the techniques of underspecification and type theory, informed by ontological analysis. These
techniques include not only a rich type lattice of simple types but also complex types whose
operations of introduction and exploitation (or elimination) must be understood in the form
of logical rules. Types put constraints on underspecified lexical meanings or rather constitute
them. In fact, the semantic types of the lexicon reflect in a simplified manner our common
sense ontology as it surfaces in our language. We think not only that ontological analysis is
crucial for lexical semantics but that a careful study of the meanings of words also reveals
important principles of common sense ontology.

Through the process of semantic composition, words with highly underspecified mean-
ings may acquire more determinate meanings; on our view semantic composition typically
adds to the content supplied by the basic lexical elements. We countenance not only de-
ductive, monotonic rules for types but also non-monotonic rules whose conclusions can be
overridden by discourse context; these rules and their associated types are intended to capture
the preferred meanings of words in a given context.

Such a project, if it succeeds, provides a novel and general view of the lexicon. It will
also allow us to make predictions about word meanings in particular contexts. We also hope
that it will be possible to acquire information about types and rules automatically by learning
from annotated corpora. We summarize our view in the following principles:

• The lexical entry for a word is underspecified but simple—one particular lambda expres-
sion that may even include rhetorical information but which is typically underspecified.

• We offset these simple lexical entries with a rich account of types including simple types,
functional types and complex types that resemble restricted conjunctions. All variables in
the λ-term of a lexical entry are typed.

• The process of composition and predication are type-driven processes, involving not only
type checking but also type merging and various coercion operations which are construed
as operations of type introduction or exploitation often of complex types.

∗We would like to thank Laure Vieu and three anonymous reviewers for their comments on this paper.

• Following the Curry-Howard isomorphism between proofs and types but extending it to
complex types, type checking and type merging are understood as rules of introduction
and exploitation in a deductive logic. We will also have nonmonotonic rules for type
exploitation to capture preferred meanings in a given context. These rules can affect the
logical form of the λ-terms.

• The dividing line between lexical and non lexical or encyclopedic knowledge has to do
more with how the knowledge is expressed (as types lexically; in a much more expressive
formalism encyclopedically). So indeed in terms of content Quine and Fodor ([1], [2])
may be right: there is no distinction in terms of content between lexical and encyclopedic
information, though the information may have a privileged epistemic status in virtue of
the fact that it is grammaticalized.

This paper illustrates these principles on a case study, namely the genitive construction.
We will also relate our work to past efforts, in particular the Generative Lexicon of Puste-
jovsky. We agree with Pustejovsky that the lexicon should have a generative approach to
meaning, but in particular we give this notion of generation a dynamic twist. As already de-
tailed in [3], we don’t agree with the formalization of GL of [4], which frankly leaves a lot
to be desired. GL is not clear on what lexical information is and on lexical processes, from
our perspective. Finally and specifically, we think that the system of types employed in [4] is
too restrictive; we will show how in particular the so-called qualia have to be replaced with a
much more dynamic notion of typing.

1 The type composition logic (TCL)

Lexical entries for us contain semantic information of two kinds. The first is a λ-term with
a model theoretic interpretation, while the second is a typing context. A typing context for
a term t determines an assignment of types to all subterms of t. It is the types that are as-
signed to the various variables in the λ-term that will affect how it combines with other terms
in the composition of a logical form. In earlier semantic theories, the composition process
was largely a matter of applying a λ-term to its arguments, and the standard λ-calculus with
functional types due to Church sufficed. Our composition logic is more complex. It contains
a system of types and rules for introducing and exploiting these types. Our system of types
extends the λ-calculus for functional types with complex types like the •-types (“dot-types”)
of Asher and Pustejovsky ([3]), and types that generalize the qualia structures that Puste-
jovsky and others have argued for. As one of us argued in [5], [3], and as already outlined
in [4], •-types are useful to model many copredications, which are constructions where two
predications with incompatible typing constraints are made on a single argument as in:

(1) a. Mary picked up and mastered three books on mathematics. [physical object and
informational content]

b. Most cities that vote democratic passed anti-smoking legislation last year. [popu-
lation and legislative entity]

The idea is that an object •-type α • β has two aspects, the aspect of being α and the aspect of
being β and that the predication of a property to an object may hold in virtue of that aspect.

Preferential readings of similar typing conflicts have motivated Pustejovsky’s introduc-
tion of qualia, for which Asher and Pustejovsky provide a complex type similar to the •-
type, the so-called qualia constructs (or QCs). Qualia are also an Aristotelian idea; roughly
Pustejovsky’s qualia for any object correspond to the four metaphysical αιτια or explanatory

causes of an object’s existence. While we are Aristotelians with respect to restricted predica-
tion, we believe that the lexicon is not restricted to encoding Aristotelian causes of objects.
We will move away from qualia here, and so we will just introduce this type via its special
operator and call it a ⊗-type (“product-type”).

The •-type and ⊗-type resemble conjunctive types and our natural deduction rules for
exploiting them and introducing them will resemble something like conjunction elimination
and introduction. But our rules are quite a bit more complicated than the introduction and
elimination rules for simple conjunctive types, as they add material to logical form, as well
as revise the types of variables. Besides these rules, we’ll assume the presence of a type
hierarchy with a subtyping relation v that defines a partial order on the set of types and
a greatest lower bound operation u on the set of types. u has the usual properties—e.g.,
idempotence, commutativity, and α v β iff α u β = α. We will capture incompatibility
between types in terms of their common join, ⊥. Our type language takes as fundamental the
notion of a term together with a typing context that our rules can revise or extend. We note by
c(t : α) that the type assignment t : α is in the typing context c, by c ∗ (t : α) that the context c
is revised in the assignment t : α (which boilds to simply adding this assignment, c + (t : α),
if t is not defined in c).

We assume there are simple types and two sorts of complex types, •- and ⊗-types as well
as their associated functional types (e.g. α −−◦ β) corresponding to λ-expressions:

(2) a. P T: e the general type of entities and t the type of truth values. Below
σ, τ range over all simple types, the subtypes of e as well as e and t.

b. F T: If σ and τ are types, then so is (σ −−◦ τ)

c. D T: If σ and τ are types, then so is (σ • τ)

d. P T: If σ and τ1, . . . τn are types, then so is (σ⊗R1,...Rn (τ1 . . . τn)) (where
Ri is a relation over (σ, τi)).

Our Type Composition Logic (TCL) combines the usual λ-terms familiar from composi-
tional semantics with a set of type assignments, of the form x : σ, x :σ • τ, or x : (σ ⊗R1,...Rn

(τ1 . . . τn)). Constraints on types will also be available; for instance, we may need to know
that σ is a subtype of τ, something we express as σ v τ or that two types are compatible,
which we write as σ u τ , ⊥.

Let us add a little more here regarding the new ⊗-types. Like Asher and Pustejovsky’s
QCs, but unlike •-types, these new types are “asymmetric”. That is, a complex type like
x : (σ ⊗R1,...Rn (τ1 . . . τn)) combines on its left an intrinsic type σ that defines the nature of the
thing denoted by the variable and on its right a set of dependent types τ1 . . . τn correspond-
ing to eventualities that are conventionally (but defeasibly) associated to that thing. Each of
these dependent types τi is associated with a particular relation Ri that encodes the generic
explanatory cause linking τi to σ. The main point of departure from [4] and [3] lies in that
these relations Ri will not be restricted to qualia roles, as was the case with QCs.

Following [3], we also make sure that some minimal information about syntactic structure
can be exploited in our rules; for instance, we will have a formula head (ψ), where ψ is a term
telling us that ψ is derived from some projection of the head or the head itself of the syntactic
structure whose meaning we are currently trying to build up. They advance the following
principle:

(3) Head Typing Principle: Given a compositional environment X with constituents A and
B, and type assignments A : α and B : β (in the type contexts for A and B, respectively)
that clash, if A is the syntactic head in the environment, then the typing of A must be
preserved in any composition rule for A and B to produce a type for X.

We now introduce the rules for the TCL. As usual a λ-expression denotes a functional
type, i.e., a α −−◦ β type. Such rules should be understood as reduction rules, thereby giving
rise to equivalent term expressions. The first rule is Application and corresponds in terms of
the type calculus to a rule of Modus Ponens for −−◦. Application is defined in terms of a
context, c, which provides typing assignments to both the variable in the applicand and the
argument.

(4) Application:
λxφ[t], c(x : α, t : α)

φ[t/x], c

The contexts that accompanies the rule of Application and other operations may be updated
or combined, as the result of a rule being applied. We will refer to this second rule as Merging
Contexts (noted with the symbol “∧”).

(5) Merging Contexts:
λxφ, c[t, c′]
λxφ[t], (c∧c′)

For applications whose typing contexts are not locally satisfied, but are consistent with
the types available in the type semilattice from the lexicon (cf. [4], [6]), we have the rule
of Type Accommodation. This third rule covers what results in type unification, in which a
supertype can unify with a subtype yielding the subtype as the result.

(6) Type Accommodation:

λxφ[t], c(x : α, t : β), α u β , ⊥
λxφ[t], c ∗ (x, t : α u β)

These are the basic rules for computing with types. We will also assume more specific rules
for complex ⊗-types which are relevant for the analysis of the genitive construction. We will
discuss these additional rules in section (4).

2 A quick comparison with “classic” GL

In [3], it was shown how these rules can be used to model dynamic type shifts in copredication
and coercion phenomena. These are phenomena already introduced in classic GL but our
approach is quite different. To give a quick overview of the differences, we need to recall that
in classical GL, there are four types of information:

1. Argument Structure: Specification of number and type of logical arguments.

2. Event Structure: Definition of the event type of a lexical item. Sorts include , -
, and .

3. Qualia Structure: A structural differentiation of the predicative force for a lexical item.

4. Lexical Inheritance Structure: Identification of how a lexical structure is related to other
structures in the type lattices.

Our approach makes use of argument structure and event structure, but it understands these
as types and the relations between types determine the lexical inheritance structure. GL orig-
inally only countenanced qualia though in [4] dot objects are also introduced.

The qualia structure of a word specifies four aspects of its meaning:

◦ : the relation between an object and its constituent parts;
◦ : that which distinguishes it within a larger domain;
◦ : its purpose and function;
◦ : factors involved in its origin or “bringing it about”.

In way of illustration, below is the qualia structure for the word door:

(7)















































 : aperture(y)
 : physobj(x)
 : walk through(P,w,y)
 : make(T,z,x)















































A quick look at this qualia structure reveals some obvious technical problems of classical GL.
Formulas rather than actual types are taken to be the values of the various qualia features.
Classic GL’s use of AVMs and other tools of unification indicates that the construction of a
logical form should proceed by unification, but it’s unclear how unification is to proceed on
these structures. We can unify AVMs but how are we supposed to use the information in one
of the qualia to interpret (8) in the sense that enjoy the book is preferably interpreted as enjoy
reading the book?

(8) Sheila enjoyed {the book/the sonata/strong coffee}

In classic GL, there’s no clear answer to our question. In contrast in the current system,
the information within these formulas is added to the logical form by using one of the ⊗-
Exploitation rules. That is, in our system complex type exploitation results in the addition of
information to logical form. Our system also makes clear that what drives the explanation of
the phenomena of logical metonymy are type mismatch and then type exploitation or intro-
duction to correct the mismatch, whereas that’s not at all clear in classic GL. Our approach
also makes clear that qualia are just a special case of complex types, which leads us to the
next criticism—that either the qualia are far too restrictive a set of relations to be really use-
ful in determining the meaning of sentences like (8) or the relations that are associated with
the qualia are too vague to be useful. While problems of overgeneration with qualia have
been noticed (see e.g. [7]), our point is that they don’t postulate a rich enough system of re-
lations for interpreting many constructions. One type of construction that we help us put our
argument to the test is the genitive construction.

3 The genitive construction

The genitive construction offers us a nice point of comparison to test how our more flexible
typing system fares in contrast to the “classic” GL. We will in particular look at the account
proposed by [8] that explicitly appeals to GL.

Let’s start with some simple English examples of the genetive constructions:

(9) a. Bill’s mother

b. Mary’s ear

c. The girl’s car

Interpreting phrases like (9) requires us to compute a relation between the two nominal refer-
ents that are introduced, respectively, by the specifier NP (aka genitive NP or possessum) and
the head noun (aka the possessor) (see e.g. [9]). The main problem is that this relation is often
not directly specified by the grammar, and as a result these constructions give rise to many

interpretations (i.e., many different relations can be inferred). For instance, depending on the
context, the girl’s car can be the car owned/driven/dreamt about/designed. . . by the girl. This
great diversity of meanings has led some authors like [10] to the view that any relation was
indeed possible.

A more nuanced view emerges from more recent works, especially that of Partee and
Borshev (henceforth, P&B, e.g., [11, 12]) and Jensen and Vikner (henceforth, J&V, e.g., [8]).
These authors show in particular that the semantic properties of the head noun both play a
decisive role in constraining the different available interpretations; they also try to to model
how pragmatic information gets into the picture. That the (syntactico-)semantic properties of
the head are driving the interpretation is obvious with deverbals (e.g. gift, destruction) and
relational nouns in general (e.g., mother, edge, captain). Thus, example (9a) seems to license
a single interpretation (i.e., mother o f (x, bill)), one where the relation is indeed intrinsic to
the head noun.

These authors actually argue that this claim extends to many other, monadic nominals:
these are coerced into relational denotations. For instance, nouns denoting body parts like
ear give rise in (9b) to a strongly preferred interpretation, in which the denotation of the
head noun is interpreted as a part of the denotation of the genitive NP. Things are a little less
clear with nominals like car, but there is still a clear sense that, out of explicit contexts, some
relations (like owned or driven) are more preferred than others (say, dreamt about); that is,
one would probably want to infer the former relations as defaults.

[8] are probably the most explicit in terms of how lexical semantics of the head noun is
exploited during the interpretation of the genitive. Assuming Pustejovsky’s GL as their back-
ground, they argue that the default relations found in the genitive constructions are provided
by the different qualia roles associated with the head noun. More precisely, the idea is that
the genitive NP, acting as the functor, is able to type-coerce the (monadic) denotation of head
noun into a relation: crucially, this relation corresponds to one of qualia roles in the lexical
entry of the noun. This approach has prima facie some empirical appeal, for one can indeed
find examples corresponding to most of the qualia roles:

(10) a. : The car’s design

b. : Mary’s book (i.e., the book read by Mary)

c. : Bill’s cake (i.e., the cake cooked by Bill)

However, this approach has a number of problems. The main one is that the qualia are sim-
ply not a reliable guide for inferring the genitive relation. For one thing, we can’t find any
plausible example of a true  relation between a head and the genitive NP; there
are lots of genitives that involve material constitution—e.g., the car’s metal, the sail’s fabric,
the computer’s motherboard, but in these examples the quale constitution is introduced by
the genitive NP not the head. Trying to deal with this problem in the framework of GL has de
facto an undesirable consequence, since it supposes either a relaxation of the Head Principle
or an ad hoc redefinition of the  role; J&V opt for that latter alternative proposing that
the  quale be interpreted as the part-whole relation.

This brings us to another point, namely that J&V are often led to adopt an extremely
liberal view of the qualia. For instance, they assume that the same qualia role (namely, the
 role) is responsible for explaning both the interpretation of genitive like The girl’s nose
(clearly a case of part-whole relation) and that of The girl’s team (clearly, a set-membership).
This makes the  role very unclear. For one thing, there is first a directionality problem:
the part-whole relation is between the head N and the genitive NP, while the set-membership
relation goes the other around (in potential violation of the head principle). There is a more
crucial problem: these two relations part-whole and set-membership are rather different in

formal terms (e.g., the former is clearly transitive, while the latter is not). Under our analysis,
nouns like nose and team having different intrinsic types (a body-part and a group, respec-
tively) and therefore dependent types; and so, they will naturally give rise to different types
of relations.

Another argument against qualia comes from morphologically rich languages that have
grammaticalized certain genitive relations. Crucially, none of these languages have grammat-
icalized qualia roles therein. In Basque for instance, there are two genetive postpositions,
namely an unmmarked -(a)ren suffix and a marked -ko suffix that specifically encodes (spa-
tial) localization and which thus requires that the type of the object denoted by the nominal
in this genitive case be a location (see [13]). Below is a minimal pair from Basque that gives
an illustration of the two genitives:

(11) a. liburuko
book-ko

argazkia
photo-def

‘the photo from/in the book’

b. liburuaren
book-aren

argazkia
photo-def

‘the photo of the book’

Crucially, the relation of localization is not part of the qualia.
Another illustration of the problem of using qualia is that, as it stands, the qualia fail

to provide the relation own (i.e., material possession) that one finds (preferred) with most
physical objects (e.g., John’s car) in many different languages. To avoid this problem, J&V
have to resort to a multi-purpose (and therefore rather vague) relation, namely , which
encompasses the  role but also the relation of ownership, and basically everything that is
not provided by the qualia. This again weakens their position. Even worse is the fact that the
authors later on appeal to the  role to account for the modification case with favorite.

These different points seem to make it clear that the qualia roles are in a way arbitrary;
they don’t seem to have any privileged epistemic status. We suggest that we dispense with
the qualia altogether, replacing it with a more dynamic notion of typing.

Before turning to that, a number of points about the genitive constructions are still in
order. First, contra previous accounts, it seems that constraints on the interpretation of the
genitives not only come from the head:

(12) a. The rapist’s victims

b. The designer’s car

c. The composer’s concerto

d. A mother’s boy

These data suggest that both the type of the complement/modifier can help determine the
genitive relation.

Another way we will move away from previous accounts is in assuming that the relation
intrisically provided by relational nouns can also, under certain circumstances, be overridden:

(13) [Context: Picasso and Raphael both painted a mother with a child.]
Picasso’s mother is bright and splashy —a typical cubist rendition. It makes Raphael’s
mother look so somber.

(14) Brancusi’s kiss has recently been bought by the Philadelphia Museum of Art.

These data in conjunction with a static view of complex types like that enshrined in the
notion of qualia lead us to conclude that genitive NPs always act as modifiers; they are never
arguments of the head noun (see also discussion in [12]). However, we reject a static view
of complex types. As we’ll see below, the Head Principle and the view that genitive NPs are
arguments is compatible with a more flexible system of types.

4 Our account of the genitive construction

4.1 Basic story

The previous section led us to conlude that qualia were not a reliable guide for inferring the
genitive relation. In our account, qualia will be replaced by ⊗-types of the form (σ ⊗R1,...Rn

(τ1 · · · τn)). As noted, these types are asymmetric: they have the intrinsic type σ associated
with the variable on the left and a set of dependent types τ1 · · · τn are located on the right.
The idea is that these dependent types are exploited when the functor type-clashes with the
intrinsic type. Each of the dependent type τi is associated with a relation Ri, that will in turn
serve as our genetive relation.

The basic ⊗-Exploitation rules are given in (15) and (??). These rules will have to be
defeasible (this is noted with the prefix “/” on the conclusion), this corresponds to the fact
that contextual factors can always override lexical inference (see section 4.4). A key feature
of the ⊗-exploitation rules for our concern is that they introduce material that changes the
arity of some predicate variable—replacing a property expression with a relational one at
logical form. [3] argue that the relation links a variable with the complex type together with
one of the dependent types that serves as an argument for a predicate. Crucially, however,
they claim that the head type does not change, in keeping with the Head Typing Principle.
This means that these type shifts are very local.

(15) ⊗-Exploitation:

{λPφ(P(x)), c(P : α ⊗Ri (. . . βi . . .) −−◦ γ)}[ψ, c′(ψ : δ −−◦ γ)], δ u α = ⊥, δ u βi , ⊥

/{λPφ[(Ri(y,x)∧P(y))
P(x)], c ∗ y : βi u δ}[ψ, c′]

(16) ⊗-ExploitationTS

{λPφc(P : (δ −−◦ γ) −−◦ δ)}[λPψ(P(x)), c′(P : [α ⊗Ri β] −−◦ γ)], δ u α = ⊥, δ u β , ⊥

/{λPφ[λPψ∃y(Ri(y,x)∧P(y))
P(x) , c ∗ (x : (α ⊗Ri β), y : (β u δ))]}

Sometimes, however, changing the types in this way interacts with the compositional se-
mantics derived from the syntax/semantics interface, which may force the existential closure
of some of the λ-abstracted variables in the new relational expression. This occurs in exam-
ples of logical metonymy where ⊗-Exploitation should convert the complement of enjoy from
a simple DP like the book into something like reading the book. The syntactic structure for
such a complement of enjoy is some projection of I as argued for in [14] –which on a com-
positional semantics for nominals like that in [14] must existentially bind the event variable
introduced by the ⊗-Exploitation rule and the gerund reading. In any case we can expect that
in many of the qualia motivating constructions there will be existential closure of variables
introduced by ⊗-Exploitations within some complete functional complex, typically DP or IP,
but also partial closure of other maximal projections like NP as in a quick cigarette, where
an ⊗-Exploitation would transform λx(cigarette(x)). But it appears that in the genitive, the
closure principle is optional; in fact the empty head determiner will not only serve to bind

an extra variable as we would expect in X’ theory, but also introduce a relation abstract. The
reason for this is simple: genitive constructions, like noun-noun compounds and bridging de-
scriptions require a relation to be determined between the variable introduced by the DP in
genitive case and the variable that is introduced by the whole DP.

Consequently, we need a quite particular version of ⊗-Exploitation that takes care of the
clash between a monadic property term and a construction that requires a relation term:

(17) ⊗-ExploitationR:

{λPφ, c(P : (δ −−◦ (ε −−◦ γ)))}[λvψ(v), c′(v : α ⊗ β)], α u δ , ⊥, γ u δ′ , ⊥,Rβ(u, v) → u : α ⊗ β ∧ v : γ

{λPφ, c}[λwλv[ψ(v) ∧ Rβ(v,w)]], c ∗ w : α u δ, v : γ u δ′

We will also need an ⊗-Introduction rule to handle certain interpretations of the genitive
construction. It was a contention in [3] that such a rule was needed; here we provide empirical
evidence for it. We will depart from Asher and Pustejovsky’s format for •-introduction rules,
and simply write a rule for revising type contexts. Thus, this rule isn’t ampliative at all and
does not affect the logical form of a construction, making it quite simple to state.

(18) ⊗-Introduction:

(λPφ, c(P : ((δ ⊗ β) −−◦ (ε −−◦ γ)))) [λvψ(v)], c′(v : α), α u δ , ⊥
(λPφ, c)[λvψ(v)], c ∗ (v : α ⊗ γ), provided Rβ(x, y)→ Rγ(y, x)

4.2 A little syntax

As mentionned, the syntax we will assume for the genitive construction follows a DP analysis
(cf. [15]; see also [14]) in which the construction is headed by an empty functional D head,
which assigns (genitive) case to the Spec, DP. This is shown below for the girl’s teacher:

(19) DP

DP

D′

D

the

NP

girl

Poss

′s

D′

D

∅

NP

teacher

Previous accounts like J&V and P&B and use a much simpler syntax, but one which fails to
predict quantificational facts.

4.3 Interpreting the genitive

Our basic case involves a deverbal, relational noun in head position; e.g. as in the girl’s
teacher. This is the simplest case, since the relation is intrinsic to the head N (i.e., teach).
Below are the bits of denotation and the compositional derivation –types are left out for now:

(20) a. [[∅]] = λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x))))

b. [[teacher]] = λyλx(teach(x, y))

c. [[∅]]([[teacher]]) = λΦλS (Φ(λy∃!x(teach(x, y) ∧ S (x)))) (Application and β-reductions)

d. [[′s]] = λX.X

e. [[the girl]] = [[the girl′ s]] = λP(∃!z(girl(z) ∧ P(z))) (Application and β-reduction)

f. [[the girl′ s teacher]] = λS (∃!z(girl(z) ∧ ∃!x(teach(x, z) ∧ S (z)))) (Application and
β-reductions)

We now move to a case involving a monadic nominal like nose in head position, as in:

(21) Every girl’s nose had been pierced.

This type of cases will be be handled using our ⊗-ExploitationR rule. This rule in effect
formally models the meaning shift from a property to a relation which is directly dependent
on the complex type of individual denoted by the property: in the case of nose (as for other
body parts), the type we exploit is - ⊗ -:

(22) a. [[∅]] = λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x)))), 〈x : e, y : e〉

b. [[nose]] = λz(nose(z)), 〈z : - ⊗ -〉

c. [[∅]]([[nose]]) = λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x)))[λz(nose(z))]〈x : e, y : e, z : - ⊗
-〉 (Application and Merge)

d. λRλΦλS (Φ(λy∃!x(R(y)(x)∧S (x)))[λvλy(nose(y)∧body− part(y, v))]〈x : e, y : -⊗
-, v : 〉 (⊗-ExploitationR)

e. λΦλS (Φ(λy∃!x(nose(x) ∧ part − o f (x, y)) ∧ S (x)))〈y : - ⊗ -, x : 〉
(β-reductions)

f. [[every girl′ s]] = λP(∀z(girl(z) → P(z)))〈z : 〉

g. [[every girl′ s nose]] = λΦλS (Φ(λy∃!x(nose(x)∧ part−o f (x, y))∧S (x)))[λP(∀z(girl(z) →
P(z)))]〈x : - ⊗ -, y : , z : 〉 (Application and Merge)

h. [[every girl′ s nose]] = λS (∀z(girl(z) → ∃!x(nose(x)∧part−o f (x, z))∧S (x)))〈x : -⊗
-, z : 〉 (β-reductions and Accomodation)

We now tackle a case where the nominal head has a simple type as in:

(23) The girl’s rock

This is an example where we have to use a ⊗-Introduction. But what introduces a complex
⊗-type in this genitive construction? We hypothesize that it is the empty determiner itself.
But in contradistinction to the Head Typing Principle, this type can be overridden either by a
complex type either in the NP or in the DP in SPEC position. The empty determiner posits a
default according to which the first argument of the relation abstract is of the type e ⊗ 
where  stands for the relation of possession (i.e., ownership). Let’s consider the derivation
here. We’ll only put in the one, complex default type for one variable in the determiner, and
we’ll assume POSS’ to be the converse of POSS; i.e., POS S (x, y) → POS S ′(y, x) and that
POS S ′(x, y)→ (y : e ⊗  ∧ x : e).

(24) a. [[the girl]] = λP(∃!z(girl(z) ∧ P(z))), 〈z : 〉

b. [[∅]] = λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x)))), 〈/y : e ⊗ 〉

c. [[rock]] = λvrock(v), 〈v : -〉

d. [[∅]]([[rock]]) = λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x))))[λvrock(v)], 〈/y : e ⊗ , z : 〉
(Application and Merge)

e. λRλΦλS (Φ(λy∃!x(R(y)(x) ∧ S (x))))[λvrock(v)], 〈/y : e ⊗ , v : - ⊗ 〉
(⊗-Introduction)

f. λRλΦλS (Φ(λy∃!x(R(y)(x)∧S (x))))[λvλurock(v)∧owns(v, y)], 〈/y : e⊗, v : -⊗
, u : e〉 (⊗-ExploitationR)

The rest of the derivation proceeds as before except that the default type for y is overridden by
the hard information that our type introduction rule now gives us. And then when we apply
the determiner more specific type information will affect the second argument of POSS’. The
final result we get is:

(25) λS (∃!z(girl(z)∧∃!x(rock(x)∧owned−by(x, z)∧S (x)))), x : -⊗, x : .

The question is how do we get more specific interpretations for the relational abstract
R when those are given by the DP in SPEC position. It should be noted that some of these
are uninterpretable—for instance, the child’s woman, except as cases of possession, even
though child is relational and arguably woman is not. Other putative examples, however, are
the artist’s object, which we think can mean the object created by the artist. Object is not
plausibly relational; when it occurs in the genitive construction with another noun that intro-
duces a λ-bound variable of simple type, then the only relation that seems to hold between
the two variables is POSS. But in this case, we get a different interpretation. How is this
possible? What needs to happen, we think, is that somehow the typing information from the
DP in SPEC has to affect the interpretation of R in the possessive determiner; and the only
way we can do this in our framework is to relax the order in which functional applications
are made, as argued for in [14]. At this point our type logic becomes polymorphic. We don’t
go into details but essentially this means that we can ”freeze” the application of the deter-
miner meaning to the head NP and go ahead and combine the meaning of the DP in SPEC
with that result. This would give us the more specific typing information from the DP onto
the relational abstract. And this in turn will allow us to construct a more specific ⊗-type via
⊗-Introduction for the λ-bound variable in the NP. And then we can proceed as above to get
a relational meaning for the NP via ⊗-ExploitationR. Our final logical form for (26) is (26’):

(26) The artist’s object

(26’) λS (∃!x(artist(x) ∧ ∃!y(ob ject(y) ∧ created − by(y, x) ∧ S (y)))

4.4 Contextually Sensitive Typing

The examples we’ve looked at so far all use complex typing information that we think is
plausible to suppose in the lexicon, though it goes far beyond the sort of information stored
in the qualia of classic GL. However, it is well-known that discourse can affect typing and
that these types can propagate through the discourse. Here’s a typical example:

(27) a. All the children were drawing fish.

b. Suzie’s salmon was blue.

Here we need to draw on a theory of discourse structure like SDRT, which would posit that
(27a) and (27b) stand in an Elaboration relation, or even Instance ([14]). But this will be so,
only if Suzie’s salmon is interpreted in a very particular way; namely, the salmon is the fish
that Suzie is drawing. Without this link, we cannot make any clear discourse link between
the two sentences, threatening the discourse’s coherence. So how does this work? salmon
introduces a variable whose subtype is that of the variable introduced fish—i.e.,  v
. But fish has had it’s type changed in the context because it is an argument of draw. draw
coerces fish into a complex type, one where we have ⊗-. The discourse context
dictates that salmon inherits this complex type, this inheritance being crucial to computing
the discourse relation of Instance. This complex type now helps specify the relation between
Suzie and her salmon, but by itself it doesn’t suffice, because Suzie is not the picture of the
salmon. But Suzie is an agent and agents, among other things, by default make things. That is,
the variable introduced by Suzie is also an ⊗-type: a ⊗ - type. The discourse
context also facilitates the selection of this particular activity associated with agents, since
Instance requires that Suzie be one of the children, all of whom are making pictures. The
clash between the intrinsic type of the variable associated with Suzie and the typing on the

variable associated with the picture induces another ⊗-Exploitation, this time linking Suzie
as a maker of the picture of the fish. By performing ⊗-Explotation twice, we get that there is a
picture of a fish, which Suzie is making, therefore avoiding type clashes incoherent discourse.

This example shows several things. First, a simple, static typing system like the qualia
in classic GL cannot possibly do justice to the phenomena. Second, lexical semantics has to
be integrated with a discourse semantics in order to account for the incredible complexity
and context sensitivity of predication. We hope that our system of flexible typing will make
inroads on these thorny issues.

References

[1] W. V. O. Quine. Word and Object.  Press, 1960.

[2] Jerry Fodor and Ernest Lepore. The emptiness of the lexicon, critical reflections on J. Pustejovsky’s The
Generative Lexicon. Linguistic Inquiry, 29(2):269–288, 1998.

[3] N. Asher and J. Pustejovsky. The metaphysics of words in context. University of Texas at Austin and
Brandeis University, available from nasher@bertie.la.utexas.edu, 2001.

[4] J. Pustejovsky. The Generative Lexicon.  Press, 1995.

[5] N. Asher and A. Lascarides. The semantics and pragmatics of metaphor. In P. Bouillon and F. Busa,
editors, The Language of Word Meaning, pages 262–289. Cambridge University Press, 2001.

[6] A. Copestake and E. J. Briscoe. Semi-productive polysemy and sense extension. Journal of Semantics,
12(1):15–67, 1995.

[7] D. Godard and J. Jayez. Towards a proper treatment of coercion phenomena. In Proceedings of the 31st
Annual Meeting of the Association for Computational Linguistics (ACL 1993), pages 168–177, 1993.

[8] Carl Vikner and Per Anker Jensen. A semantic analysis of the english genitive. interaction of lexical and
formal semantics. Studia Linguistica, 56:191–226, 2002.

[9] Chris Barker. Possessive Descriptions. CSLI, Stanford, CA, 1995.

[10] Edwin Williams. The NP-cycle. Linguistic Inquiry, 13(277295), 1982.

[11] Vladimir Borschev and Barbara H. Partee. Genitive modifiers, sorts, and metonymy. Nordic Journal of
Linguistics, 24(2):140–160, 2001.

[12] Barbara Partee and Vladimir Borshev. Genitives, relational nouns, and argument-modifier ambiguity. In
C. Fabricius-Hansen E. Lang C. Maienborn, editor, Modifying Adjuncts, Interface Explorations. Mouton
de Gruyter, 2003.

[13] Michel Aurnague. Basque genitives and part-whole relations : typical configurations and dependences.
Technical report, Université Toulouse-Le Mirail, 1998. 50p.

[14] N. Asher. Reference to Abstract Objects in Discourse. Kluwer Academic Publishers, 1993.

[15] Steven Abney. The English Noun Phrase in Its Sentential Aspect. PhD thesis, MIT, 1987.

