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Abstract: This paper discusses a model of two interconnected chemostats in series, charac-
terized by biomass mortality. A comparison is established with a single chemostat of the same
total volume in two different cases, that are with or without mortality rate. The outlet substrate
concentration and the biogas flow rate are the main criteria for comparison. According to
conditions depending on the operating parameters and the distribution of the total volume,
our results show which structure, the series of the two chemostats or the single chemostat,
performs better in terms of minimizing the outlet substrate concentration or maximizing the
biogas flow rate, and this with or without account of mortality. Moreover, the differences and
similarities in the results corresponding to the case with mortality and the one without mortality,
are highlighted.
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1. INTRODUCTION

’Process design’ means determining which type of ideal
reactor (e.g. CSTR; continuous stirred-tank reactor, PFR;
plug flow reactor) - or interconnection of reactors - is best
suited for a given ‘task’, the degrees of freedom being
whether or not to multi-feed, the volumes of the tanks,
the different interconnection points, etc... The ‘task’ in
question here is the transformation of some matter - the
‘substrate’ - into a ‘product’ through a bioreaction auto-
catalyzed by a microbial ecosystem, hereafter called the
‘biomass’. This - very general - problem is of a crucial
practical importance when dealing with large industries
where the number of tanks, their volumes, the technology
on which they rely on or the way they are connected to
others directly impact not only the capital but also the
operating costs. Being the first industry in terms of the
volume of matter processed, the study of wastewater treat-
ment plants (WWTP) have attracted a lot of attention
for quite a long time, cf. for instance Scuras et al. (2001).
Because of their interest in producing energy from waste,
the optimal design of anaerobic processes (AD) has also
been extensively studied, cf. Schievano et al. (2014). Such
studies - among many others mainly conducted in the
field of chemical and/or biochemical engineering - have
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in common to consider steady state characteristics of the
bioprocess. Indeed, in these industries it is the rule rather
than the exception to process continuously very large
quantities of matter instead of stocking them, notably
because the matter in question (liquid or solid waste in
the examples here above) are produced continuously: the
price to pay to stock them would be very high. They are
however different in the objectives pursued: it is expected
from a classical WWTP that the output concentration of
pollutant (the output substrate concentration) be minimal
while in the case of the AD, the objective is to maximize
biogas production, the final product of the bioreaction.
And looking at the results of the different available studies,
it appears the best designs are not the same. In other
words, given a bio-transformation process, different objec-
tives may lead to different ‘optimal’ configurations. This
is precisely summarized as a preamble by Gooijer and his
coauthors in their 1996 survey on the design procedures
of bioprocesses in series, citing what Herbert claimed in
1964 at a conference of bioengineering: ‘If one fermenter
gives good results, two fermenters will give better results
and three fermenters better still. This is sometimes true,
but often false.’, cf. de Gooijer et al. (1996). One difficulty
when working with the design of bioprocesses comes from
the fact that the quantities assumed to be known and
the degress of freedom are not the same depending on
the specific problem to be solved. For instance, when
dealing with water treatment, it is the rule rather than the
exception to minimize the total volume of the system given
input-output constraints specified by normative values.



But, if the system considered is already existing, it could
also be interested to find conditions such that the output
pollution concentration be minimized, for instance in play-
ing with operating conditions or with the interconnection
of reactors. In addition, excluding a very few number of
studies (cf. for instance Harmand et al. (2003); Dali-Youcef
(2022) who worked with kinetics defined by qualitative
properties), most available literature solve the problem in
fixing kinetics once and for all, limiting the genericity of
the results. Thus, it is particularly difficult to draw general
conclusions and get a global idea about the advantages and
drawbacks of a given configuration. In the present paper,
we revisit the properties of a specific configuration - the
two tanks in series - from a generic viewpoint. To do so, we
adopt an approach in which we systematically compare the
performances of a single CSTR with those obtained using
two tanks in series in which both r, the fraction of the
total volume used to calculate the volume of each tank
as rV and (1− r)V , respectively, and the input substrate
concentration Sin, are free. It should be noticed that it
is easy to compare both configurations since the CSTR
can be seen as a special case of the two tanks in series
model when r = 0 or r = 1. The paper is organized as
follows: first, we recall the model of the systems. It should
be noticed that we consider here the presence of a mor-
tality term which, as we will see, may play an important
role in the design results. Then, considering the biomass
growth rate follows a ‘Monod-like’ kinetics we establish
the properties of the CSTR and the two tanks in series
configuration for two different objectives pursued that are
the search for the best design when we want to minimize
the output substrate concentration and when we want to
maximize biogas production. The best design is given in
the following two cases; when in all chemostats mortality is
neglected, then when in all chemostats mortality is positive
and identical. Finally, some conclusions are drawn.

2. PRESENTATION OF THE MODEL AND
PRELIMINARIES

We consider two serial interconnected chemostats of total
volume V . The first tank is of volume V1 := rV and the
second tank is of volume V2 := (1− r)V where r ∈ (0, 1).
The substrate and the biomass concentrations in the tank
i are respectively designated Si and xi, i = 1, 2. At the
input, the first tank is fed by the substrate concentration
denoted Sin. The dilution rate of the whole structure
denoted D is defined by D := Q/V where Q designating
the flow rate is constant. The dilution rates of the tanks i
are different and are defined by Di := Q/Vi, i = 1, 2. The
mortality of the biomass is denoted a such that a ≥ 0. The
mathematical model is given by the following equations:

Ṡ1 =
D

r
(Sin − S1)− f(S1)x1

ẋ1 = −D
r
x1 + f(S1)x1 − ax1

Ṡ2 =
D

1− r
(S1 − S2)− f(S2)x2

ẋ2 =
D

1− r
(x1 − x2) + f(S2)x2 − ax2

(1)

Notice that for r = 0 or r = 1, the configuration is
reduced to a single reactor, which corresponds to the single
chemostat model given by the system

Ṡ = D(Sin − S)− f(S)x
ẋ = −Dx+ f(S)x− ax. (2)

For sake of completeness, the complete analysis of systems
(1) and (2) are given in Dali-Youcef et al. (2021). The
considered growth function f is assumed to be of Monod
type i.e. it verifies the following assumption.

Hypothesis 1. The function f belongs to C1(R+,R+) and
satisfies f(0) = 0, f ′(S) > 0 for all S > 0.

As f is increasing, then the break-even concentration is
well defined by λ(D) = f−1(D) for 0 ≤ D < m with m :=
supS>0 f(S), (that may be +∞). System (1) can admits
at most three steady states: the washout steady state
E0 = (Sin, 0, Sin, 0), the steady state E1 = (Sin, 0, S2, x2)
of washout in the first reactor but not in the second one
and the steady state E2 = (S∗1 , x

∗
1, S
∗
2 , x
∗
2) of persistence

of the biomass in both reactors. Expressions of equilibria
E1 and E2 are given in Table 1 where E2 requires the
definition of the function h as

h(S2) = D+(1−r)a
1−r

S∗
1−S2

DSin+raS∗
1

D+ra −S2

, S∗1 = λ
(
D
r + a

)
. (3)

In order to simplify the notations, we posit δ := f(Sin)−a.

Table 1. The steady states of (1) and their
conditions of existence and stability.

E1 = (Sin, 0, S2, x2)
S2 = λ

(
D

1−r
+ a
)

and

x2 = D
D+(1−r)a

(Sin − S2).

E2 = (S∗
1 , x

∗
1, S

∗
2 , x

∗
2)

S∗
1 = λ

(
D
r

+ a
)
,

x∗1 = D
D+ar

(Sin − S∗
1 ),

S∗
2 is the unique solution of equation
h(S2) = f(S2) and

x∗2 = D
D+(1−r)a

(x∗1 + S∗
1 − S∗

2 ).

Existence condition Stability condition

E0 Always exists D > rδ and D > (1 − r)δ
E1 D < (1 − r)δ D > rδ
E2 D < rδ Stable if it exists

Proposition 2. Let a ≥ 0, D ≥ 0 and r ∈ (0, 1) be fixed.
For all Sin > λ(D/r+a), the function Sin 7→ S∗2 (Sin, D, r)
is decreasing.

The proof of Proposition 2 is given in Dali-Youcef et al.
(2020, 2021). This Proposition is illustrated in Figure 1
(a, b) which shows that for r = 0.4 (resp. r = 0.6), from
λ(D/r + a) ≈ 17.22 (resp. λ(D/r + a) ≈ 6.54), increasing
Sin, decreases the output substrate concentration defined
by S∗2 (Sin, D, r). In addition, one remarks that for r = 0.4
and Sin ∈ [6.54, 17.22], increasing Sin has no impact
on the output substrate concentration that is constant
and defined by λ(D/(1 − r) + a). This remains true for
every r ∈ (0, 1/2) and Sin ∈ (λ(D/(1 − r) + a), λ(D/r +
a)). Furthermore, in (a) and (b), and in general for any
r ∈ (0, 1), one remarks that for Sin ∈ [0, λ(D/(1 −
r) + a), increasing Sin, increases the output substrate
concentration which is defined by Sin.

3. OUTPUT SUBSTRATE CONCENTRATION

We consider the map r 7→ Soutr (Sin, D) defined by (4),
which represents the output substrate concentration at
steady state of the serial configuration.
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Substrate

(a) r = 0.4

Sin
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Substrate

Fig. 1. The curve of the output substrate concentration
with respect to Sin, with f(S) = 4S/(5 + S), D = 1
and a = 0.6. In (a): λ(D/(1 − r) + a) ≈ 6.54 and
λ(D/r + a) ≈ 17.22. In (b): λ(D/r + a) ≈ 6.54.

Soutr (Sin, D) =



Sin if D ≥ rδ
and D ≥ (1− r)δ,

λ

(
D

1− r
+ a

)
if D ≥ rδ

and D ≤ (1− r)δ,
S∗2 (Sin, D, r) if D < rδ.

(4)
The following results draw comparisons of Soutr with the
output substrate concentration Sout of the single chemo-
stat at steady state given by

Sout(Sin, D) =

{
Sin if D ≥ δ,
λ(D + a) if D < δ.

(5)

For a fixed r ∈ (0, 1), let the function gr : [0, r(m−a)) 7→ R
be defined by

gr(D) := λ
(
D
r + a

)
+ r(D+ar)

(1−r)(D+a)

(
λ
(
D
r + a

)
− λ(D + a)

)
.

(6)
We introduce the following hypothesis that is satisfied by
any concave growth function (and hence by the Monod
growth function), and also by some non concave functions
such as Hill functions. For more details, see Sections 5 of
Dali-Youcef et al. (2020, 2021).

Hypothesis 3. For any a ≥ 0 and D ∈ [0,m − a), the
function r ∈ (D/(m− a), 1) 7→ gr(D) ∈ R is decreasing.

Let the function D ∈ [0,m−a) 7→ g(D) ∈ R be defined by

g(D) := λ(D + a) +Dλ′(D + a) (7)

whose expression is given in Table 2 for the Monod
function.

Table 2. Analytical expressions obtained for
the Monod function f(S) = mS

K+S .

gr(D)
K(D+ar)((D+a)2−m(D(1+r)+a))

(m−a−D)(mr−ar−D)(D+a)

g(D)
K(m(2D+a)−(D+a)2)

(m−a−D)2

Proposition 4. Assume that Hypothesis 1 and 3 are satis-
fied, and take a ≥ 0,

• If Sin ≤ g(D) then for any r ∈ (0, 1), Soutr (Sin, D) >
Sout(Sin, D).

• If Sin > g(D) then Soutr (Sin, D) < Sout(Sin, D) if
and only if r1(Sin, D) < r < 1 where r1(Sin, D) is
the unique solution of Sin = gr(D).

In addition, Soutr (Sin, D) = Sout(Sin, D) for r = 0, r =
r1(Sin, D) and r = 1.

Proposition 4 ensures that for given input substrate con-
centration Sin and dilution rate D, the serial configu-
ration can be more efficient than a single chemostat in
terms of minimizing the output substrate concentration,
if practitioner can choose arbitrarily the volumes distri-
bution among the two tanks. A proof of this proposition
is available in Dali-Youcef et al. (2020) for a = 0 and in
Dali-Youcef et al. (2021) for any a > 0.

In the Monod case, Sin = gr(D) is a second degree
algebraic equation in r that gives two solutions, one
corresponds to r1(Sin, D) considered in the proposition
and the second one is not considered as it does not belong
to (0, 1). Proposition 4 is illustrated in Figure 2 for f(S) =
4S/(5 + S), a = 0.3 and D = 1. For these parameter
values, one has g(1) ≈ 5.1509. As shown in panel (a)
(resp. panel (b)) of the figure, for Sin = 6.4 > g(1)
(resp. Sin = 18 > g(1)), it exists r = r1(6.4, 1) (resp.
r = r1(18, 1)) solution of 6.4 = gr(1) (resp. 18 = gr(1)),
such that for any r > r1(6.4, 1) (resp. r > r1(18, 1)), the
output substrate concentration of the serial configuration
is smaller than the output substrate concentration of the
single chemostat. In addition, as shown in Figure 2, there
exists a unique value rmin of the parameter r which gives
the smallest output substrate concentration of the series
configuration, defined as

rmin := argmin
0<r<1

S∗2 (Sin, D, r). (8)

According to Proposition 2, notice that for a fixed dilu-
tion rate D, the lowest output substrate concentration
Soutrmin

(Sin, D) = S∗2 (Sin, D, rmin) gets smaller by increas-

ing Sin. This was numerically highlighted in Zambrano
and Carlsson (2014) for Monod and Contois growth func-
tions.

4. BIOGAS FLOW RATE

Recall that the biogas production rate of a single chemo-
stat is proportional to the microbial activity f(S)x and to
its volume V (see Bastin and Dochain (1991); Polihron-
akis et al. (1993)). For the two series interconnected
chemostats, the total biogas flow rates G1 and G2 cor-
responding respectively to the steady states E1 and E2,
are thus given by

G1(Sin, D, r) := V2x2f(S2),
G2(Sin, D, r) := V1x

∗
1f(S∗1 ) + V2x

∗
2f(S∗2 ).

(9)

According to Table 1 and (9), one deduces that for all
rδ ≤ D and D < (1− r)δ, one has

G1(Sin, D, r) := V D(Sin − S2), (10)

and for all D < rδ, one has

G2(Sin, D, r) := V D(Sin − S∗2 ). (11)
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Sout,Sout
r

λ(D + a)

r01− r0 r1 rmin

(a)

r

Sout,Sout
r

λ(D + a)

r0r1 rmin

(b)

Fig. 2. The output substrate concentrations of the serial
configuration in red and the single chemostat in blue
with r0 = D/δ, f(S) = 4S/(5 + S), a = 0.3,
D = 1 and rmin is defined by (8). (a): Sin = 6.4,
r0(6.4, 1) ≈ 0.51, r1(6.4, 1) ≈ 0.75 and rmin ≈ 0.67.
(b): Sin = 18, r0(18, 1) ≈ 0.35, r1(18, 1) ≈ 0.39 and
rmin ≈ 0.86.

The steady-state biogas flow rate of the single chemostat
is defined by

Gchem(Sin, D) :=

{
0 if D ≥ δ,
V D(Sin − λ(D + a)) if D < δ.

(12)
Using (10), (11) and (12), we have the following result:

Proposition 5. Assume that Hypothesis 1 and 3 are satis-
fied. For all 0 ≤ D < δ, r ∈ (0, 1) and a ≥ 0,

• When rδ ≤ D and D < (1 − r)δ, one has
G1(Sin, D, r) < Gchem(Sin, D).

• When D < rδ, if Sin ≤ g(D) then one has
G2(Sin, D, r) < Gchem(Sin, D), and if Sin > g(D)
then one has G2(Sin, D, r) < Gchem(Sin, D) if and
only if r1(Sin, D) < r < 1, where r1(Sin, D) is the
unique solution of Sin = gr(D).

In addition, G1(Sin, D, r) = Gchem(Sin, D) for r = 0, and
G2(Sin, D, r) = Gchem(Sin, D) for r = r1(Sin, D) and
r = 1.

The proof of Proposition 5 is given in Dali-Youcef et al.
(2020) for the case without mortality and in Dali-Youcef
et al. (2021) for the case including mortality.

For a deeper analysis, we fix the input substrate con-
centration Sin and the parameter r, and consider the
maps D 7→ Gchem(Sin, D), D 7→ G1(Sin, D, r) and D 7→
G2(Sin, D, r).

Proposition 6. For all r ∈ (0, 1), a ≥ 0 and 0 ≤ D < δ,
one has
1. When rδ ≤ D and D < (1 − r)δ, G1(Sin, D, r) <
Gchem(Sin, D).
2. When D < rδ, one has G2(Sin, D, r) > Gchem(Sin, D)

if and only if Sin > gr(D) i.e D < Dr(S
in), where Dr(S

in)
is the solution of Sin = gr(D).

D

Biogas

Drrδ (1− r)δ δ

(a) r = 0.3

D

Biogas

Dr rδ(1− r)δ δ

(b) r = 0.75

Fig. 3. The curves of the functions D 7→ G1(Sin, D, r)
(in blue), D 7→ G2(Sin, D, r) (in red) and D 7→
Gchem(Sin, D) (in black), with Dr = Dr(S

in), Sin =
7, f(S) = 4S/(5 + S) and a = 0.

The proof of Proposition 6 is given in Dali-Youcef et al.
(2020, 2021). This proposition is illustrated in Figures 3
and 4 which have been established for fixed Sin and r (i.e.
both volumes of the two reactors are fixed). The difference
between the figures is due to the mortality rate which is
null in Figure 3 and positive in Figure 4. On the one hand,
observe that for any D ∈ (0, δ), the biogas flow rate of the
serial configuration for the steady state E1 with or without
mortality (curves in blue) is always smaller than the biogas
flow rate of the single chemostat (curves in black). That is
the first item of the proposition. On the other hand, notices
that for any D ∈ (0, Dr(S

in)), the biogas flow rate of the
serial configuration for the steady state E2, with or without
mortality (curves in red) is greater than the biogas flow
rate of the single chemostat (curves in black). Therefore,
for any D ∈ (0, Dr(S

in)) the serial configuration is more
efficient than the single chemostat. That is the second item
of the proposition. Notice that for fixed Sin, a and r, the
value D = Dr(S

in) is solution of the equation Sin = gr(D)
where gr is defined by (6). This value exists and is unique
according to the following hypothesis which is satisfied by
any concave growth function such as the Monod function,
but also by the Hill functions. For more details one can
see Sections 5 of Dali-Youcef et al. (2020, 2021).

Hypothesis 7. For any a ≥ 0 and r ∈ (0, 1), the function
D ∈ [0, r(m− a)) 7→ gr(D) ∈ R is increasing.

In addition, one remarks in Figure 3 that the biogas
flow rate of the serial configuration without mortality
never exceed the maximal biogas flow rate of the single
chemostat. This observation is indeed always true and is
given in Proposition 8 below.

For Sin > 0 and a ≥ 0, let Gmax be defined by

Gmax(Sin) := max
D∈(0,δ)

Gchem(Sin, D). (13)
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Dr rδ(1− r)δ δ

G
Gmax

(b) r = 0.75

Fig. 4. The curves of the functions D 7→ G1(Sin, D, r)
(in blue), D 7→ G2(Sin, D, r) (in red), and D 7→
Gchem(Sin, D) (in black), with Gmax = Gmax(Sin)
defined by (13), G = G(r, Sin) defined by (14), Sin =
2, f(S) = 4S/(5 + S) and a = 0.6.

Proposition 8. Let Sin be fixed and a = 0. For any D > 0
and r ∈ (0, 1), one has G1(Sin, D, r) < Gmax(Sin) and
G2(Sin, D, r) < Gmax(Sin).

The proof of Proposition 8 is given in Dali-Youcef et al.
(2020). Thus, for a null mortality rate, when Sin and
r are fixed, if the dilution rate D can be chosen then
there is no interest to consider a series configuration.
Therefore, for optimizing the biogas flow rate production,
the practitioner should consider a single chemostat of
same total volume. However, in Figure 4, one notices that
the maximal biogas flow rate of the series configuration
with mortality, at the positive steady state E2 (that is
maxD≥0G2(Sin, D, r), the maximum of the red curve),
can exceed the maximal biogas flow rate of the single
chemostat (which is Gmax(Sin), the maximum of the
black curve). This phenomenon can happen only when
the mortality rate is non null. Proposition 9 asserts that
without mortality, for a fixed r close enough to 1, the
maximal biogas flow rate of the series configuration with
mortality is certainly higher than the one of the single
chemostat.

For Sin > 0 fixed, we assume that the maximum of the
function D 7→ G2(Sin, D, r) is unique, and we denote by
G(r, Sin) the maximal value of G2(Sin, D, r):

G(r, Sin) = max
D∈[0,rδ]

G2(Sin, D, r). (14)

Note that Gmax(Sin) = G(1, Sin). The following result
ensues from Proposition 8 of Dali-Youcef et al. (2021).

Proposition 9. Assume that f is C2. If a > 0, then there
exists r∗ ∈ (0, 1) such that for any r ∈ (r∗, 1) we have
G(r, Sin) > Gmax(Sin).

Proposition 9 is illustrated with Figure 5, where one ob-
serves that the tangent of G at r = 1 is horizontal i.e

G
′
(1, 2) = 0 and that G

′′
(1, 2) is positive and remains pos-

r

G

G(1, 2)

Fig. 5. The map r 7→ G(r, Sin) with G defined by (14),
f(S) = 4S/(5 + S), a = 0.6 and Sin = 2.

itive in a neighborhood V1 of r = 1. In real ecosystems, a
biomass mortality often occurs, but is sometimes neglected
when it is very small. Indeed, this last result shows that
the occurrence of a biomass mortality, even small, may be
advantageous: considering two interconnected reactors in
series where the volume of the first reactor rV is close to
the total volume V (but not equal to, so that the second
reactor has a small but non null volume (1 − r)V ) gives
the possibility to choosing a dilution rate sufficiently close
or equal to D(r) := argmaxD∈[0,rδ]G2(Sin, D, r), which
optimizes the production of the biogas flow rate and gives
a better and more efficient functioning than a single tank
configuration.

In Figure 6, graphs of the family of functions r 7→
G2(Sin, D, r) for different values of D are plotted in black
(Sin > 0 being fixed). The function r 7→ G(r, Sin)
plotted in Figure 5 is thus the upper envelope of this
family. Two particular curves are added on Figure 6. The
green one corresponds to the value of D that maximizes
the biogaz production for the single chemostat, that is
D which realizes the maximum of the function D 7→
Gchem(Sin, D). The blue one corresponds to the value
of D of the maximizer of (D, r) 7→ G2(Sin, D, r) (which
has been obtained numerically), or equivalently D is the
maximizer of D 7→ G2(Sin, D, r) when r maximizes r 7→
G(r, Sin). One can see that the envelope of this family

r

Biogas

Fig. 6. Curves r 7→ G2(Sin, D, r) for different values of D,
with f(S) = 4S/(5+S), a = 0.6 and Sin = 2. In blue,
the one for D ' 0.213 such that maxr G(r, Sin) =
maxr G2(Sin, D, r). In green, the one for D ' 0.283
such that Gmax(Sin) = Gchem(Sin, D).

of functions is non monotonic and admits a maximum
which is not reached for r = 1 (see the blue curve).
Moreover, all the curves are locally decreasing about r = 1,
excepted the one for D that realizes the maximum of



D 7→ Gchem(Sin, D) (the green one), which is increasing
with an horizontal slope at r = 1. Indeed, all the other
curves reach 0 (wash-out) at smaller values of r and thus
intersect the green one. We propose a heuristic to better
understand this non-intuitive phenomenon. Let us consider
a non-zero but very small volume of the second reactor.
The dilution term Q/V2 is thus large compared to the
mortality term a. Thus, the dynamic equations of the
second reactor are well approximated by those without
mortality term (which is not the case for the first reactor).
Therefore, we find ourselves in a situation virtually close
to the one where the mortality would act only in the first
reactor, which is less penalizing than having a mortality
which applies uniformly on all the total volume of a single
reactor.

5. CONCLUSION

In this paper, we present different results following the
study of a mathematical model of two interconnected
chemostats in series. The particularity of our study is the
consideration or not of mortality. On the one hand, we
show that for fixed input substrate concentration Sin and
dilution rate D, whatever the mortality is; positive or null,
for a volume distribution such that r is greater than the
threshold r1(Sin, D), there exists a series configuration
of two chemostats that gives a smaller output substrate
concentration than a single chemostat. In addition, with
respect to the parameter r, we can even define the best per-
forming series configuration which corresponds to r = rmin
defined by (8). This result was numerically noticed by
Hill and Robinson (1989) who built on the work done
by Grieves et al. (1964) and Bischoff (1966). Indeed, in
the case with null mortality, using a growth function of
type Monod, Hill and Robinson (1989) found that two or
three reactors in series optimally designed (e.g. the first
reactor has the biggest volume), could provide substrate
conversions similar to a PFR. According to the experi-
mental study done by Grieves et al. (1964), where when
using a Monod growth function, it is deduced that a PFR
is always more efficient than a single chemostat, Hill and
Robinson (1989) deduced that under precise conditions,
a configuration of two or three reactors in series more
efficient than a single chemostat can exist. On the other
hand, for a fixed inlet substrate concentration Sin and a
previously defined volume distribution into the two tanks
i.e. r, if the practitioner can choose the dilution rate D
then, for null mortality, we prove that the single chemostat
is always more efficient and allows to have a higher biogas
flow rate than the serial device. Knowing that biogas flow
rate is proportional to the microbial activity and as shown
in Dali-Youcef et al. (2020), the biogas flow rate and the
productivity of the biomass of the two series intercon-
nected chemostats configuration are defined by the same
steady-state equations, then all the results with no mor-
tality, quoted so far, are valid for three performances cri-
teria: output substrate concentration, biogas flow rate and
biomass productivity. Now, in the case where mortality is
positive, this last result is no longer verified and changes
significantly. Indeed, when mortality is positive, for a fixed
Sin and r, if the practitioner can choose the dilution rate
D, then the series configuration becomes the structure
that should be considered. Therefore, for the right chosen

dilution rate D, the series configuration gives a higher
biogas flow rate than the single chemostat. This can only
happen with presence of mortality and is a definitely non
intuitive result. Consequently, considering that mortality
is positive in a biological experiment corresponding to the
hypotheses made in our results, may represent a solution
to improve the outcome of the experiment.
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