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Let F q be a finite field of order q = p m where p is an odd prime. This paper presents the study of self-dual and LCD double circulant codes over a class of finite commutative non-chain rings R q = F q +uF q +u 2 F q +• • •+u q-1 F q where u q = u. Here, the whole contribution is two-folded. Firstly, we enumerate self-dual and LCD double circulant codes of length 2n over R q , where n is an odd integer. Then by considering a dual-preserving Gray map ϕ, we show that Gray images of such codes are asymptotically good. Secondly, we investigate the algebraic structure of 1-generator quasi-cyclic (QC) codes over R q for q = 3. In that context, we present their generator polynomials along with their minimal generating sets and minimum distance bounds. Here, it is proved that ϕ(C) is an sq-QC code of length nq over F q if C is an s-QC code of length n over R q .

Introduction

Self-dual double circulant codes over finite fields have remained worthy of study for more than three decades [START_REF] Ventou | Self-dual double circulant codes[END_REF]. Recently, their enumeration and asymptotic performance over finite fields have been presented in [START_REF] Alahmadi | On self-dual double circulant codes[END_REF]. However, there is a scope to extend this study over finite commutative rings where -1 is a square. Towards this end, the Chinese Remainder Theorem (CRT) approach, which was introduced in [START_REF] Ling | On the algebraic structure of quasi-cyclic codes I: Finite fields[END_REF] for quasi-cyclic codes, can be employed. On the other hand, a special kind of linear code, namely, linear complementary dual (shortly, LCD), was introduced in 1992 [START_REF] Massey | Linear codes with complementary duals[END_REF]. They have defined LCD codes as linear codes having trivial intersections with their dual. These codes play an important role in preventing side-channel attacks (SCA), fault-injection attacks (FIA) in embarked cryptosystems [START_REF] Carlet | Complementary dual codes for counter-measures to side-channel attacks[END_REF], and in multi-secret sharing schemes [START_REF] Prakash | Constacyclic and Linear Complementary Dual codes over Fq + uFq[END_REF]. These codes are worth studying over different alphabets (finite fields and rings) [START_REF] Islam | Cyclic codes over a non-chain ring Re,q and their application to LCD codes[END_REF][START_REF] Islam | Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring[END_REF][START_REF] Li | LCD cyclic codes over finite fields[END_REF][START_REF] Liu | LCD codes over finite chain rings[END_REF]. In the last three years, both self-dual and LCD double circulant codes experienced intense attention over finite commutative rings, like Z p 2 (p is prime) in [START_REF] Huang | Double Circulant Self-Dual and LCD Codes Over Z p 2[END_REF], Z 4 in [START_REF] Shi | Double circulant LCD codes over Z 4[END_REF], and Galois rings in [START_REF] Shi | Double circulant self-dual and LCD codes over Galois ring[END_REF]. In 2020, self-dual and LCD double circulant and double negacirculant codes over the non-chain ring F q + uF q , where u 2 = u are studied in [START_REF] Shi | On self-dual and LCD double circulant and double negacirculant codes over Fq + uFq[END_REF]. The enumeration and performance of such codes have explicitly been presented there.Further, these codes are investigated over another non-chain rings F q + vF q + v 2 F q , v 3 = v in [START_REF] Yao | On self-dual and LCD double circulant codes over a non-chain ring[END_REF] and F q [v]/⟨v 2 -1⟩ in [START_REF] Yadav | Enumeration of LCD and Self-dual Double Circulant Codes Over Fq[v]/⟨v 2 -1⟩[END_REF]. Recently, we [START_REF] Yadav | Self-dual and LCD double circulant and double negacirculant codes over Fq + uFq + vFq[END_REF] investigated self-dual and LCD double circulant and double negacirculant codes over F q +uF q +vF q where u 2 = u, v 2 = v, uv = vu = 0. In continuation, here we consider a class of non-chain rings R q = F q + uF q + u 2 F q + • • • + u q-1 F q , u q = u of size q q , where q = p m and p is an odd prime. The ring R q has a special interest and was explored in several studies [START_REF] Goyal | Duadic codes over the ring Fq[u]/⟨u m -u⟩ and their Gray images[END_REF][START_REF] Goyal | Quadratic residue codes over the ring Fp[u]/⟨u m -u⟩ and their Gray images[END_REF]. This paper enumerates both self-dual and LCD double circulant codes over R q . In addition, using a Gray map ϕ which carries self-dual (resp. LCD) codes over R q to self-dual (resp. LCD) codes over F q , we show that the Gray images of such codes constitute an asymptotically good family of codes.

In the second part of the paper, we investigate 1-generator quasi-cyclic (QC) codes over R q for q = 3. It is well known that quasi-cyclic code is one of the most remarkable and studied generalizations of cyclic codes and hence consists of several record-breaking codes [START_REF] Gulliver | Some best rate 1 p and rate p-1 p systematic quasi-cyclic codes[END_REF][START_REF] Gulliver | Twelve good rate (m-r) pm binary quasi-cyclic codes[END_REF]. By using the Chinese Remainder Theorem (CRT) approach, Ling and Solé investigated the algebraic structure of these codes over finite fields [START_REF] Ling | On the algebraic structure of quasi-cyclic codes I: Finite fields[END_REF], and over chain rings [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF], respectively. Further, when a quasi-cyclic code is generated by a single element as a module over some auxiliary ring, then it is called a 1-generator quasi-cyclic code. Such codes have been studied in several series of papers [START_REF] Cao | 1-generator quasi-cyclic codes over finite chain rings[END_REF][START_REF] Cui | Quaternary 1-generator quasi cyclic codes[END_REF][START_REF] Gao | 1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring Z 4 [u]/⟨u 2 -1⟩[END_REF][START_REF] Ozen | One generator quasi-cyclic codes over F 2 + vF 2[END_REF][START_REF] Seguin | A class of 1-generator quasi-cyclic codes[END_REF][START_REF] Siap | One generator quasi-cyclic codes over F 2 + uF 2[END_REF]. Here, we obtain the algebraic structure of 1-generator quasi-cyclic codes over R 3 by using their generators and minimal spanning sets. In short, three major contributions of the paper are:

1. The paper enumerates both self-dual (Theorem 4) and LCD (Theorem 5) double circulant codes over R q of length 2n where n is an odd integer. 2. It contains asymptotically good families of codes (Theorem 6). 3. It also presents the algebraic structure of 1-generator quasi-cyclic codes of length n over R q for q = 3 (Section 6). Further, it is proved that the Gray image of an s-QC code of length n is an sq-QC code of length nq over F q (Theorem 7).

The presentation of this paper is as follows: Section 2 recalls basic facts and definitions of the ring R q and double circulant codes. Section 3 enumerates double circulant self-dual codes of length 2n. In section 4, we discuss the asymptotic results for the families of LCD and self-dual double circulant codes. Next, section 5 contains numerical examples of double circulant LCD codes over R 3 . Section 6 focuses on 1-generator codes, while section 7 concludes the paper.

Preliminary

Let R q = F q + uF q + u 2 F q + • • • + u q-1 F q , u q = u. Thus, following [START_REF] Goyal | Duadic codes over the ring Fq[u]/⟨u m -u⟩ and their Gray images[END_REF][START_REF] Goyal | Quadratic residue codes over the ring Fp[u]/⟨u m -u⟩ and their Gray images[END_REF], R q is a finite commutative non-chain semi-local ring with unity. Also, the ring R q is isomorphic to the ambient ring F q [u]/⟨u q -u⟩, and every element r ∈ R q has a representation r = a 0 + ua 1 + • • • + a q-1 u q-1 where a i ∈ F q for 0 ≤ i ≤ q -1. Let α be a primitive element of F q and

η 1 = 1 -u q-1 , η 2 = 1 q -1 (u + u 2 + • • • + u q-2 + u q-1 ), η 3 = 1 q -1 (αu + α 2 u 2 + • • • + α q-2 u q-2 + u q-1 ), η 4 = 1 q -1 (α 2 u + (α 2 ) 2 u 2 + • • • + (α 2 ) q-2 u q-2 + u q-1 ), . . . η q = 1 q -1 (α q-2 u + (α q-2 ) 2 u 2 + • • • + (α q-2 ) q-2 u q-2 + u q-1 ).
Then it is checked that η 2 i = η i , η i η j = 0 for i ̸ = j, 1 ≤ i, j ≤ q and q i=1 η i = 1. In other words, {η i : 1 ≤ i ≤ q} is a set of pairwise orthogonal idempotent elements. Therefore, by using the Chinese Remainder Theorem, we have R q ∼ = q i=1 η i F q . Consequently, every element r ∈ R q can be expressed uniquely as r = q i=1 η i r i , where r i ∈ F q for all i. Moreover, r ∈ R q is a unit if and only if r i is a unit in F q for 1 ≤ i ≤ q. Now, we recall that a non-empty subset C of R n q is said to be a linear code of length n over R q if it is an R q -submodule of R n q and elements of C are called codewords. For any two vectors x = (x 1 , x 2 , . . . , x n ), y = (y 1 , y 2 , . . . , y n ), the Euclidean inner product is defined by x • y = n i=1 x i y i . In this way, the Euclidean dual of a linear code C is given by [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF] that a double circulant self-dual code over a commutative ring can only exist if a square root of -1 exists in that ring. The following theorem provides the conditions for the existence of the square root of -1 in the ring R q .

C ⊥ = {x ∈ R n q : x • y = 0, for all y ∈ C}. In addition, C is said to be self-dual if C = C ⊥ , self-orthogonal if C ⊆ C ⊥ and linear complementary dual (shortly, LCD) if C ∩ C ⊥ = {0}. It has been shown in
Theorem 1 In the ring R q with characteristic p, i.e., q = p s for s ≥ 1, a square root of -1 exists if and only if one of the following cases occurs:

1. p = 2, 2. p ≡ 3 (mod 4), and s is even 3. p ≡ 1 (mod 4)

Proof We already have that an square root of -1 exists in F q if and only if any one of the above cases occurs (see [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF]). Therefore, if any one of the above cases occurs then an square root of -1 exists in R q (since F q ⊆ R q ). Conversely, assume that r = q i=1 η i r i , where r i ∈ F q for all i, be an square root of -1 in R q , i.e., r 2 = -1 or equivalently r 2 + 1 = 0. Then

r 2 + 1 = 1 + η 1 r 2 1 + η 2 r 2 2 + • • • + η i r 2 q = η 1 (1 + r 2 1 ) + η 2 (1 + r 2 2 ) + • • • + η q (1 + r 2 q ) = 0
if and only if r 2 i = -1 for all i. That is, an square root of -1 exists in F q . Therefore, q is any one of the form given in above three cases.

⊓ ⊔

For a linear code C of length n over R q , we define

C 1 = {y 1 ∈ F n q | there exists y i (i ̸ = 1) ∈ F n q such that q i=1 y i η i ∈ C}, C 2 = {y 2 ∈ F n q | there exists y i (i ̸ = 2) ∈ F n q such that q i=1 y i η i ∈ C}, . . . C q = {y q ∈ F n q | there exists y i (i ̸ = q) ∈ F n q such that q i=1 y i η i ∈ C}.
Then C i is a linear code of length n over F q for 1 ≤ i ≤ q and C = q i=1 η i C i .

Proposition 1 Let C = q i=1
η i C i be a linear code of length n, where C i is a linear code of length n

over F q for 1 ≤ i ≤ q. Then C ⊥ = q i=1 η i C ⊥ i . Moreover, C is self-dual if and only if C i is self-dual for 1 ≤ i ≤ q.
Proof Same as the proof of [ [START_REF] Islam | A note on skew constacyclic codes over Fq + uFq + vFq[END_REF], Theorem 3.5].

⊓ ⊔

Again, we recall a linear code C is said to be a cyclic code if for any codeword (c 0 , c 1 , . . . , c n-1 ) ∈ C, we have (c n-1 , c 0 , . . . , c n-2 ) ∈ C. In addition, a cyclic code C can be described as an ideal of the ring

R q [x]/⟨x n -1⟩ by the correspondence (c 0 , c 1 , . . . , c n-1 ) ∈ C -→ c 0 + c 1 x + • • • + c n-1 x n-1 ∈ R q [x]/⟨x n -1⟩.
Here, the structural properties of cyclic codes over R q are already available in the literature [START_REF] Goyal | Duadic codes over the ring Fq[u]/⟨u m -u⟩ and their Gray images[END_REF] and we enlist them in the next result.

Theorem 2 Let C = q i=1
η i C i be a linear code of length n over R q . Then C is cyclic if and only if C i is a cyclic code for 1 ≤ i ≤ q. Further, C is principally generated by a polynomial g(x) = η 1 g 1 (x) + η 2 g 2 (x) + • • • + η q g q (x), a factor of x n -1, where g i (x) is the generator of C i for

1 ≤ i ≤ q.
Now, we define a Gray map ϕ : R q -→ F q q by ϕ(r) = (r 1 , r 2 , . . . , r q ) where r = q i=1 η i r i ∈ R q . Then ϕ is an F q -linear bijective map and can be extended to R n q componentwise. The Lee weight of x ∈ R n q is defined as w L (x) = w H (ϕ(x)) and the Lee distance between x, y ∈ R n q is d L (x, y) = d H (ϕ(x), ϕ(y)), where w H , d H are Hamming weight and distance in F nq q , respectively. Therefore, ϕ : R n q -→ F nq q is a distance preserving linear map.

Lemma 1 Let C be a linear code of length n over R q . Then ϕ(

C ⊥ ) = ϕ(C) ⊥ and ϕ(C ∩ C ⊥ ) = ϕ(C) ∩ ϕ(C) ⊥ .
Proof By the definition of Gray map ϕ, it is easily followed.

⊓ ⊔

In the light of Lemma 1, we immediately get the following result.

Theorem 3 Let C be a linear code of length n over R q . Then C is a self-dual (resp. LCD) code if and only if ϕ(C) is a self-dual (resp. LCD) code of length nq over F q . Now, we define the norm function N orm :

F q n → F q by N orm(a) = a q n -1 q-1 , for a ∈ F q n .
It is a multiplicative, surjective function with N orm(0) = 0 and every non-zero element of F q is a norm of exactly q n -1 q-1 elements in F q n (see [START_REF] Lidl | Finite Fields[END_REF]Theorem 2.28]). We will use N orm to find the number of solutions of certain algebraic equations. Recall that a double circulant code is a linear code having a generator matrix of the form

G = (I, A)
where A is a circulant matrix (i.e., the matrix whose rows can be obtained by successive circular shifts of the first row). For a family C ⟨n⟩ of codes over F q with parameters [n, k n , d n ], the rate ρ and relative distance δ are defined as ρ = lim sup n→∞ kn n and δ = lim sup n→∞ dn n . We say that this family of codes is good if ρδ ̸ = 0. Further, we recall the entropy function from [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF] defined as

H q (x) = 0, if x = 0 x log q (q -1) -x log q (x) -(1 -x) log q (1 -x), if 0 < x ≤ 1 -1 q
and we will use it to show that the Gray images of family of self-dual (resp. LCD) double circulant codes over R q are good in subsequent portion.

Enumeration of double circulant codes

Let n be an odd integer and factorization of x n -1 into distinct irreducible factors over R q be given by

x n -1 = a(x -1) s i=2 g i (x) t j=1 h j (x)h * j (x),
where a ∈ R * q (set of units in R q ), g i (x) are self-reciprocal polynomials of even degree 2e i and h * j (x) are reciprocal polynomials of h j (x) with deg(h j (x)) = d j , for 2 ≤ i ≤ s and 1 ≤ j ≤ t. Now, by the Chinese Remainder Theorem, we have

R q [x] ⟨x n -1⟩ ∼ = R q [x] ⟨x -1⟩ ⊕ ⊕ s i=2 R q [x] ⟨g i (x)⟩ ⊕ ⊕ t j=1 R q [x] ⟨h j (x)⟩ ⊕ R q [x] ⟨h * j (x)⟩ ∼ =Rq ⊕ (⊕ s i=2 R q,2ei ) ⊕ ⊕ t j=1 R q,dj ⊕ R q,dj , where R q,r = F q r + uF q r + u 2 F q r + • • • + u q-1 F q r , u q = u for r = 2e i or d j .
From the natural extension of the above decomposition, we have

R q [x] ⟨x n -1⟩ 2 ∼ = R 2 q ⊕ ⊕ s i=2 (R q,2ei ) 2 ⊕ ⊕ t j=1 (R q,dj ) 2 ⊕ (R q,dj ) 2 .
Following this, any linear code C of length 2 over

Rq[x]

⟨x n -1⟩ can be decomposed as

C ∼ = C 1 ⊕ (⊕ s i=2 C i ) ⊕ ⊕ t j=1 (C ′ j ⊕ C ′′ j ) (1) 
where C 1 is a linear code of length 2 over R q , C i is a linear code of length 2 over R q,2ei , for 2 ≤ i ≤ s and C ′ j , C ′′ j are linear codes of length 2 over R q,dj , for 1 ≤ j ≤ t. The following lemma is useful to enumerate self-dual and LCD double circulant codes over R q .

Lemma 2 Let C be a double circulant code of length 2n over R q given in the CRT decomposition [START_REF] Alahmadi | On self-dual double negacirculant codes[END_REF] with

α 1 = (1, c e1 ), α i = (1, c ei ), α ′ j = (1, c ′ dj ), α ′′ j = (1, c ′′ dj ) be generators of the constituent codes C 1 , C i over R q , R q,2ei and C ′ j , C ′′ j over R q,dj , respectively, for 2 ≤ i ≤ s, 1 ≤ j ≤ t. Then (1) C is a self-dual code if and only if 1 + c 2 e1 = 0, 1 + c 1+q e i ei = 0 and 1 + c ′ dj c ′′ dj = 0. (2) C is a Euclidean LCD code if and only if 1+c 2 e1 ∈ R * q , 1+c 1+q e i ei ∈ R * q,2ei and 1+c ′ dj c ′′ dj ∈ R * q,dj .
Proof The proof is similar to [START_REF] Shi | On self-dual and LCD double circulant and double negacirculant codes over Fq + uFq[END_REF]Lemma 3.1]. ⊓ ⊔ Now, by using Lemma 2, we count self-dual and LCD double circulant codes over R q in Theorem 4 and Theorem 5, respectively.

Theorem 4 Let n be an odd integer and the factorisation of x n -1 over R q be

x n -1 = a(x -1) s i=2 g i (x) t j=1 h j (x)h * j (x),
where a ∈ R * q and n = 1

+ s i=2 2e i + 2 t j=1 d j .
Then there are 2 q s (q ei + 1) q t j=1 (q dj -1) q self-dual double circulant codes of length 2n over R q .

Proof To obtain the total number of self-dual double circulant codes, we count the constituent codes. Let

c e1 ∈ R q . Then c e1 = a 1 η 1 + a 2 η 2 + • • • + a q η q for some a i ∈ F q , 1 ≤ i ≤ q. From Lemma 2, for the first constituent code C 1 , we need to find choices for c e1 ∈ R q such that 1 + c 2 e1 = 0. Consider 1 + c 2 e1 = 1 + a 2 1 η 1 + • • • + a 2 q η q = (1 + a 2 1 )η 1 + (1 + a 2 2 )η 2 + • • • + (1 + a 2 q )η q = 0,
if and only if 1 + a 2 i = 0 for 1 ≤ i ≤ q. So there are 2 choices (±ω, where ω 2 = -1 ) for each a i . Therefore, we have 2 q choices for c e1 and hence for C 1 .

For the second constituent code, we have to find choices for c ei ∈ R q,2ei such that 1+c ei c q e i ei = 0 where i is fixed. Let c ei = a 1 η 1 + a 2 η 2 + • • • + a q η q for some a j ∈ F q 2e i , 1 ≤ j ≤ q. Then 1 + c ei c q e i ei = 1 + a q e i +1 1

η 1 + • • • + a q e i +1 q η q = (1 + a q e i +1 1 )η 1 + • • • + (1 + a q e i +1 q
)η q = 0, if and only if a q e i +1 j = -1, i.e., N orm(a j ) = -1 for 1 ≤ j ≤ q. There are q ei + 1 solutions for each N orm(a j ) = -1, 1 ≤ j ≤ q. Thus, there are (q ei + 1) q choices for c ei .

In order to count the dual pairs (w.r.t. Euclidean inner product) of codes for fixed j, we have to find the choices for the pairs {c

′ dj , c dj ′′ } in R q,dj such that 1 + c ′ dj c ′′ dj = 0. Let c ′ dj = a 1 η 1 + a 2 η 2 + • • • + a q η q for some a i ∈ F q d j , 1 ≤ i ≤ q. Then, for c ′′ dj = b 1 η 1 + b 2 η 2 + • • • + b q η q where b i ∈ F q d j , 1 ≤ i ≤ q, we have 1 + c ′ dj c ′′ dj = (1 + a 1 b 1 )η 1 + (1 + a 2 b 2 )η 2 + • • • + (1 + a q b q )η q = 0, if and only if 1 + a i b i = 0, for all 1 ≤ i ≤ q. If a i ∈ F * q d j for 1 ≤ i ≤ q, then we have a unique choice b i = -1
ai , and if a i = 0, then we get 1 = 0, a contradiction. Therefore, a i ∈ F * q d j for each 1 ≤ i ≤ q and corresponding to each a i there is a unique choice for b i . Hence, there are (q dj -1) q choices for the dual pairs. Now, combining all the above cases, we get the desired result.

⊓ ⊔ Theorem 5 We assume the condition of Theorem 4. Then the total number of LCD double circulant codes of length 2n over R q is (q -2) q s i=2 (q 2ei -q ei -1) q t j=1 (q dj + (q dj -1) 2 ) q .

Proof As for the self-dual codes, the total number of LCD double circulant codes can be obtained by counting the constituent codes. For C 1 , we need to find the choices for

c e1 ∈ R q such that 1 + c 2 e1 ∈ R * q . If c e1 ∈ R q , then c e1 = a 1 η 1 + a 2 η 2 + • • • + a q η q for some a i ∈ F q , 1 ≤ i ≤ q. Now, 1 + c 2 e1 = 1 + a 2 1 η 1 + • • • + a 2 q η q = (1 + a 2 1 )η 1 + (1 + a 2 2 )η 2 + • • • + (1 + a 2 q )η q ∈ R * q ,
if and only if 1 + a 2 i ̸ = 0, for all 1 ≤ i ≤ q. That is, there are q -2 choices for each a i (̸ = ±ω, where ω 2 = -1 ). Therefore, we have (q -2) q choices for c e1 .

For a fixed 2 ≤ i ≤ s, to count second constituent codes C i , we need to find choices for

c ei ∈ R q,2ei such that 1 + c 1+q e i ei ∈ R * q,2ei . If c ei ∈ R q,2ei , then c ei = a 1 η 1 + a 2 η 2 + • • • + a q η q , for some a j ∈ F q 2e i , 1 ≤ j ≤ q. Now, 1 + c 1+q e i ei = 1 + a 1+q e i 1 η 1 + • • • + a 1+q e i q η q = (1 + a 1+q e i 1 )η 1 + • • • + (1 + a 1+q e i q )η q ∈ R * q,2ei ,
if and only if 1 + a 1+q e i j ̸ = 0, for all 1 ≤ j ≤ q. That is, there are q 2ei -q ei -1 choices for each a j , as we have q ei + 1 solutions for 1 + a q e i +1 j = 0. Therefore, we have (q 2ei -q ei -1) q choices for c ei . Now, for a fixed 1 ≤ j ≤ t, to count dual pairs {C ′ j , C ′′ j }, we need to find choices for c

′ dj , c ′′ dj ∈ R q,dj such that 1 + c ′ dj c ′′ dj ∈ R * q,dj . If c ′ dj ∈ R q,dj , then c ′ dj = a 1 η 1 + a 2 η 2 + • • • + a q η q , for some a i ∈ F q d j , 1 ≤ i ≤ q. Now, for any c ′′ dj = b 1 η 1 + b 2 η 2 + • • • + b q η q where b i ∈ F q d j , 1 ≤ i ≤ q, we have 1 + c ′ dj c ′′ dj = (1 + a 1 b 1 )η 1 + (1 + a 2 b 2 )η 2 + • • • + (1 + a q b q )η q ∈ R * q,dj
, if and only if 1 + a i b i ̸ = 0, for all 1 ≤ i ≤ q. We have the following possibilities for each a i , 1

≤ i ≤ q -If a i = 0, then 1 + a i b i = 1 ̸ = 0, for each b i ∈ F q d j . Therefore, there are q dj choices for b i . -If a i ∈ F * q d j , then 1 + a i b i ̸ = 0 implies that b i ̸ = -1
ai and we have q dj -1 choices for b i corresponding to the given a i . In this case, there are q dj -1 choices for a i , so we have (q dj -1) 2 choices for the pair {a i , b i } such that 1 + a i b i ̸ = 0.

Combining the above two possibilities, we have (q dj + (q dj -1) 2 ) q choices for the pairs {c ′ dj , c ′′ dj } in R q,dj and hence for {C ′ j , C ′′ j }. Now, from all the above discussion, we obtain the desired result. ⊓ ⊔

Distance bounds

Let n be an odd prime and q be a power of an odd prime such that it is a primitive root (mod n).

Then the factorization of x n -1 into distinct irreducible factors over R q is as follows:

x n -1 = (x -1)(1 + x + • • • + x n-1 ) = (x -1)h(x), (2) 
where h(x) = 1 + x + • • • + x n-1 is an irreducible polynomial over R q . Hence, by the Chinese Remainder Theorem (CRT), we know that

R q [x] ⟨x n -1⟩ ∼ = R q [x] ⟨x -1⟩ ⊕ R q [x] ⟨h(x)⟩ ∼ =Rq ⊕ R ′ , where R ′ = F q n-1 + uF q n-1 + u 2 F q n-1 + • • • + u q-1 F q n-1 , u q = u. We denote R = Rq[x]
⟨h(x)⟩ . Any non-zero codeword of a cyclic code of length n is said to be a constant vector if it is generated by h(x). Now, we provide two lemmas which will be used to prove the main result related to distance bound (Theorem 6).

Lemma 3 For any non-zero vector z = (e, f ) ∈ R 2n q such that e is not a constant vector, there are at most q n(q-1)+1 double circulant codes C a = (1, a) over R q such that z ∈ C a .

Proof Using the CRT decomposition, we can write z = (e 1 , f 1 )⊕(e 2 , f 2 ). Since z ∈ C a , we have f = ea, f 1 = e 1 a 1 and f 2 = e 2 a 2 , where e 1 , f 1 , a 1 ∈ R q and e 2 , f 2 , a 2 ∈ R. Let a 1 = r 1 η 1 +r 2 η 2 +• • •+r q η q and a 2 = s 1 η 1 + s 2 η 2 + • • • + s q η q , for some r i ∈ F q and s i ∈ F q n-1 , 1 ≤ i ≤ q. Firstly, we discuss the choices for a 1 through e 1 .

If

e 1 ∈ R q , then e 1 = b 1 η 1 + b 2 η 2 + • • • + b q η q and f 1 = β 1 η 1 + β 2 η 2 + • • • + β q η q for some β i , b i ∈ F q , 1 ≤ i ≤ q. Now, f 1 = e 1 a 1 implies that β 1 η 1 + β 2 η 2 + • • • + β q η q = r 1 b 1 η 1 + r 2 b 2 η 2 + • • • + r q b q η q .
If b i = 0, then we have q choices for r i , otherwise r i = βi bi , i.e., a unique choice for r i . Therefore, there are at most q choices for each r i and hence at most q q choices for a 1 . Now, we discuss the choices for a 2 through e 2 . The following cases arise:

-If e 2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)) and we get a contradiction to the choice of e.

-If 0 ̸ = e 2 ∈ R q , then e 2 = b 1 η 1 + b 2 η 2 + • • • + b q η q and f 2 = β 1 η 1 + β 2 η 2 + • • • + β q η q for some β i , b i ∈ F q n-1
, 1 ≤ i ≤ q and b i ̸ = 0 for at least one i. Now, f 2 = e 2 a 2 implies that

β 1 η 1 + β 2 η 2 + • • • + β q η q = s 1 b 1 η 1 + s 2 b 2 η 2 + • • • + s q b q η q .
If b i = 0, then we have q n-1 choices for s i , otherwise s i = βi bi , i.e., a unique choice for s i . Also, not all b i are zero. Therefore, we can conclude that there are at most q n-1 choices for each s i and at most q (n-1)(q-1) choices for a 2 .

Combining both the cases (for a 1 and a 2 ), we conclude that there are at most q n(q-1)+1 double circulant codes C a which contains z.

⊓ ⊔ Lemma 4 For any non-zero vector z = (e, f ) ∈ R 2n q such that e is not a constant vector, there are at most 2 q (1 + q n-1

2 ) (q-1) self-dual double circulant codes C a = (1, a) such that z ∈ C a .
Proof Using Theorem 4, we have at most q q choices for the first constituent code C 1 of C a . Now, we discuss the choices for the second constituent code, i.e., choices for a 2 through e 2 . Let

a 2 = s 1 η 1 + s 2 η 2 + • • • + s q η q , for some s i ∈ F q n-1 , 1 ≤ i ≤ q.
-If e 2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)) and we get a contradiction to the choice of e.

-If 0 ̸ = e 2 ∈ R q , then e 2 = b 1 η 1 + b 2 η 2 + • • • + b q η q and f 2 = β 1 η 1 + β 2 η 2 + • • • + β q η q
for some β i , b i ∈ F q n-1 , 1 ≤ i ≤ q and b i ̸ = 0 for at least one i. Now, f 2 = e 2 a 2 implies that

β 1 η 1 + β 2 η 2 + • • • + β q η q = s 1 b 1 η 1 + s 2 b 2 η 2 + • • • + s q b q η q .
If b i = 0, then we have q n-1 choices for s i , otherwise s i = βi bi , i.e., a unique choice for s i . Also, we have 1 + a 2 ā2 = 1 + a 2 a q n-1 2

2

= 0 (since C a is self-dual). This implies that s i s q n-1 2 i = -1, i.e., N orm(s i ) = -1 for 1 ≤ i ≤ q. Therefore, we have at most 1 + q n-1 2 choices for each s i and hence (1 + q n-1

2 ) q-1 choices for each a 2 .

Combining these cases (for a 1 and a 2 ), we conclude that there are at most 2 q (1 + q n-1

2 ) q-1 double circulant codes C a which contains z.

⊓ ⊔

Using the Artin's conjecture [START_REF] Moree | Artin's primitive root conjecture a survey[END_REF] for primitive roots, we have that for a fixed non-square q, there are infinitely many primes n for which x n -1 factors into two irreducible polynomials given in (2) (since q is a primitive root modulo n). Therefore, we get an infinite family of double circulant codes over R and the following result can be derived.

Theorem 6 Let q be a power of an odd prime, and δ > 0 be given. Then there are families of double circulant self-dual (resp. LCD) codes of length 2n over R q , with code rate 1 2 , and with Gray images of relative distance δ as long as H q (δ) < 1 4q (resp. H q (δ) < 1 2q ). Moreover, we conclude that both of these families of codes are good.

Proof Let A n denote the size of the family. Then for large enough n (near infinity), by using Theorem 4 and Theorem 5, A n ≈ 2 q q (n-1)q 2

for self-dual and A n ≈ q nq for LCD double circulant codes. Let B(d n ) be the number of elements in R 2n q whose image under ϕ have Hamming weight less than d n . We assume that the inequality

A n > a n B(d n ), ( 3 
)
where a n = 2 q (1 + q n-1

2 ) (q-1) for self-dual and q n(q-1)+1 , for LCD codes, is satisfied. Therefore, by Lemma 3 and Lemma 4, we conclude that in the family, there exist codes of length 2n over R q whose images under ϕ have Hamming distance ≥ d n . To enforce inequality (3) for large n, we make the following argument. We consider δ as the relative distance of the above family and assume that d n is the largest such that A n > a n B(d n ). Also, we assume that the growth is of the form d n = 2qδn. Then by [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF]Lemma 2.10.3], we get B(d n ) is approximately equal to q 2qnHq(δ) . If H q (δ) = 1 2q for LCD, and = 1 4q for self-dual codes, then

a n B(d n ) ≈q n(q-1)+1 q 2qnHq(δ) = q nq+1 ≈ q nq a n B(d n ) ≈2 q (1 + q n- 1 
2 ) (q-1) q 2qnHq(δ) ≈ 2 q q (n-1)(q-1) 2 q n 2 ≈ 2 q q (n-1)q 2

for LCD and self-dual codes, respectively. From this, we can see that if H q (δ) < 1 2q for LCD, and < 1 4q for self-dual codes, then inequality (3) holds for n large enough. ⊓ ⊔

Examples

In this section, we construct some examples of LCD double circulant codes over R q for q = 3 to validate our results. Let G = (I, A) be the generator matrix of a double circulant code C over R q = F q + uF q + • • • + u q-1 F q , u q = u, where I is the identity matrix of order n and

A = A 1 + uA 2 + • • • + u q-1 A q , for n × n matrices A 1 , A 2 , .
. . , A q over F q . Then the generator matrix of ϕ(C) is of order nq × 2nq whose rows are ϕ(G), ϕ(uG), . . . , ϕ(u q-2 G) and ϕ(u q-1 G), respectively.

In particular for q = 3 here we explicitly discuss its Gray map and generator matrix. In fact, for q = 3 we have

η 1 = 1 -u 2 , η 2 = u 2 +u 2 , η 3 = u 2 -u 2 .
Also, any element of R 3 can be written as

a + bu + cu 2 = aη 1 + (a + b + c)η 2 + (a -b + c)η 3 .
Therefore, the Gray map ϕ : R 3 -→ F 3 3 is defined by ϕ(a

+ bu + cu 2 ) = (a, a + b + c, a -b + c).
Now, let C be a double circulant code over R 3 = F 3 + uF 3 + u 2 F 3 with generator matrix of the form G = (I, A), where I is the identity matrix of order n and A = A 1 + uA 2 + u 2 A 3 , for n × n matrices A 1 , A 2 and A 3 over F 3 . Then the generator matrix of ϕ(C) is given by Ĝ

=   ϕ(G) ϕ(uG) ϕ(u 2 G)   =       I I I A 1 A 1 + A 2 + A 3 A 1 + 2A 2 + A 3 0 I 2I 0 A 1 + A 2 + A 3 2A 1 + A 2 + 2A 3 0 I I 0 A 1 + A 2 + A 3 A 1 + 2A 2 + A 3       3n×6n .
By using this generator matrix and the Magma computation system [START_REF] Bosma | Handbook of Magma Functions[END_REF], we now construct some LCD codes as F 3 -images of double circulant codes of length 2n over R 3 in Table 1. In second to fourth columns we have provided polynomials a i (x), for i = 1, 2, 3, respectively such that the generator polynomial of C over R 3 is (1, a(x)) where a(x) = a 1 (x) + ua 2 (x) + u 2 a 3 (x). Also, these polynomials are given (in Table 1) by their coefficients in decreasing powers of x. For example, 1234 represents the polynomial

x 3 + 2x 2 + 3x + 4. Example 1 Take α = 2, a primitive element of F 5 . Then η 1 = 1 -u 4 , η 2 = u+u 2 +u 3 +u 4 4 , η 3 = αu+α 2 u 2 +α 3 u 3 +u 4 4 , η 4 = α 2 u+u 2 +α 2 u 3 +u 4 4
and η 5 = α 3 u+α 2 u 2 +αu 3 +u 4 4 are pairwise orthogonal idempotent elements of R 5 . Also, an element r = a + bu + cu 2 + du 3 + eu 4 ∈ R 5 can be written as

r = aη 1 +(a+b+c+d+e)η 2 +(a+3b+4c+2d+e)η 3 +(a+4b+c+4d+e)η 4 +(a+2b+4c+3d+e)η 5 .
In that case, the Gray map ϕ : R 5 -→ F 5 5 is defined by ϕ(r) = (a, a + b + c + d + e, a + 3b + 4c + 2d + e, a + 4b + c + 4d + e, a + 2b + 4c + 3d + e). Now, let C = (1, a(x)) be a double circulant code of length 2n over R 5 , where a(x) = a 1 (x) + ua 2 (x) + u 2 a 3 (x) + u 3 a 4 (x) + u 4 a 5 (x). Then, ϕ(C) is a [10n, 5n]-code over F 5 . Moreover, duality is preserved under this map, i.e., the Gray image of self-dual (resp. LCD) code is a self-dual (resp. LCD) code. 

(x) = x 2 + 3x + 3, a 2 (x) = x 2 + x + 2, a 3 (x) = 2x 2 + x + 1, a 4 (x) = x 2 + x + 2
and a 5 (x) = 2x 2 + x + 1, then C is a self-dual code and its Gray image ϕ(C) is also a self-dual code over F 5 with parameters [START_REF] Shi | Double circulant self-dual and LCD codes over Galois ring[END_REF][START_REF] Islam | A note on skew constacyclic codes over Fq + uFq + vFq[END_REF][START_REF] Cao | 1-generator quasi-cyclic codes over finite chain rings[END_REF].

6 1-generator quasi-cyclic (QC) codes

In the present section, we discuss the algebraic structure of 1-generator quasi-cyclic (QC) code over R q for q = 3. It is worth mentioning that 1-generator quasi-cyclic codes for q = 2 are extensively studied in [START_REF] Ozen | One generator quasi-cyclic codes over F 2 + vF 2[END_REF]. They obtained their minimal spanning sets and binary Gray images. The 1-generator QC codes over R q for any q > 3 can be obtained but for the sake of calculation, here we restrict to q = 3. Now, we start our discussion with the definition of QC codes.

Definition 1 Let C be a linear code over R q of length n = sl and σ be the cyclic shift operator on R n q . Then C is said to be a quasi-cyclic (QC) code with index s (or s-QC code), if σ s (C) = C. Evidently, if s = 1, then C is a cyclic code.

Definition 2 A quasi-cyclic (QC) code over R q generated by a single element is called a 1generator quasi-cyclic code.

Note that any two polynomials p(x) and q(x) in R q [x] are said to be relatively prime if there exist two polynomials m 1 (x), m 2 (x) ∈ R q [x] such that p(x)m 1 (x) + q(x)m 2 (x) = 1. Based on this, we provide a result which will be used to study 1-generator quasi-cyclic (QC) codes.

Lemma 5 [START_REF] Ozen | One generator quasi-cyclic codes over F 2 + vF 2[END_REF]Lemma 2.4] Let C = ⟨g(x)⟩ be a cyclic code of length n over R q with generator polynomial g(x). Then C = ⟨g(x)f (x)⟩ for any polynomial f (x) such that f (x) and x n -1 g(x) are relatively prime.

Theorem 7 Let C be an s-QC code of length n = sl over R q . Then ϕ(C) is an sq-QC code of length nq over F q .

Proof Let C be an s-QC code over R q and v = (v 11 , v 12 , . . . , v 1s , v 21 , v 22 , . . . , v 2s , . . . , v l1 , v l2 , . . . , v ls ) ∈ C, where 

v ij = q k=1 η k r (k) ij for 1 ≤ i ≤ l, 1 ≤ j ≤ s. Then σ s (v) ∈ C and ϕ(v) =(r
1s , r

1s , . . . , r (q) 1s , . . . , r

l-11 , r

l-11 , . . . , r (q) l-11 , . . . , r

l-1s , r

l-1s , . . . , r (q) l-1s ) =ϕ(v l1 , v l2 , . . . , v ls , v 11 , v 12 , . . . , v 1s , . . . , v l-11 , v l-12 , . . . , v l-1s ) =ϕσ s (v) ∈ ϕ(C).

Thus, ϕ(C) is an sq-QC code of length nq over F q .

⊓ ⊔

Let C be an s-QC code of length n = sl over R q . Then we can define a one-one correspondence

Γ : R n q → R s q,l by Γ (v 11 , v 12 , . . . , v 1s , v 21 , v 22 , . . . , v 2s , . . . , v l1 , v l2 , . . . , v ls ) = (v 1 (x), v 2 (x), . . . , v s (x)), where v j (x) = l i=1 v ij x i-1 and R q,l = Rq[x]
⟨x l -1⟩ . It can be easily seen that an s-QC code of length n = sl over R q corresponds to an R q,l -submodule of R s q,l . Theorem 8 Let C be a 1-generator s-QC code of length n = sl over R

3 = F 3 + uF 3 + u 2 F 3 , where u 3 = u. If C is generated by G(x) = (G 1 (x), G 2 (x), . . . , G s (x)) where G i (x) ∈ R 3,l = R 3 [x]/ x ℓ -1 , then G i (x) ∈ B i for some cyclic codes B i in R 3,l , 1 ≤ i ≤ s and there exist polynomials f i (x) ∈ R 3 [x], r (j) i (x) ∈ F 3 [x], 1 ≤ i ≤ s, j = 1, 2, 3 such that G i (x) = f i (x)(η 1 r (1) i (x)+ η 2 r (2) i (x) + η 3 r (3) i (x)). Proof Let C be a 1-generator s-QC code of length n = sl over R 3 generated by G(x) = (G 1 (x), G 2 (x), . . . , G s (x)). Then Γ i (C) is a cyclic code where Γ i is the i-th projection defined as Γ i (G 1 (x), G 2 (x), . . . , G s (x)) = G i (x)
. Therefore, using Theorem 2 and Lemma 5 we get that a generator

G i (x) of Γ i (C) is of the form G i (x) = f i (x)(η 1 r (1) i (x) + η 2 r (2) i (x) + η 3 r (3) i (x)) for some polynomials f i (x) ∈ R 3 [x], r (j) i (x) ∈ F 3 [x], 1 ≤ i ≤ s, j = 1, 2, 3. ⊓ ⊔ Note that G i (x) can also be written in the form G i (x) = a i (x)η 1 + b i (x)η 2 + c i (x)η 3 for some polynomials a i (x), b i (x), c i (x) ∈ F 3 [x], 1 ≤ i ≤ s.
The following theorem provides a minimal generating set for a 1-generator s-QC code C over R 3 .

Theorem 9 Let C be a 1-generator s-QC code over R 3 of length n = sl and the generator

G(x) =(a 1 (x)η 1 + b 1 (x)η 2 + c 1 (x)η 3 , . . . , a s (x)η 1 + b s (x)η 2 + c s (x)η 3 )
where

a i (x), b i (x), c i (x) ∈ F 3 [x], for all 1 ≤ i ≤ s. Let g(x) = gcd(a 1 (x)η 1 + b 1 (x)η 2 + c 1 (x)η 3 , . . . , a s (x)η 1 + b s (x)η 2 + c s (x)η 3 , x l -1),
and h(x) be a polynomial such that

g(x)h(x) = x l -1. Then C is free R 3 -submodule with basis B = deg(h)-1 i=0 {x i G(x)} and rank(C) = deg(h(x)). Proof Any codeword c(x) ∈ C is of the form c(x) = f (x)G(x), where f (x) ∈ R 3 [x]. If deg(f (x)) ≤ deg(h(x)) -1, then c(x) = f (x)G(x) ∈ span(B). Otherwise, by division algorithm f (x) = h(x)q 1 (x) + s 1 (x) for some q 1 (x), s 1 (x) ∈ R 3 [x] where deg(s 1 (x)) ≤ deg(h(x)) -1. Then f (x)G(x) =(h(x)q 1 (x) + s 1 (x))G(x)
=q 1 (x)h(x)G(x) + s 1 (x)G(x), where s 1 (x)G(x) ∈ span(B).

Since h(x)(a i (x)η 1 +b i (x)η 2 +c i (x)η 3 ) = 0 for all 1 ≤ i ≤ s, we have q 1 (x)h(x)G(x) = (0, 0, . . . , 0) ∈ span(B). Therefore, B spans C. Now, we show that none of the element of B can be written as the linearly combination of other elements of B. Let α 0 , α 1 , . . . , α t-1 ∈ R 3 where t = deg(h(x)) be such that t-1 j=0 α j x j G(x) = 0, i.e., t-1 j=0 α j x j (a i (x)η 1 + b i (x)η 2 + c i (x)η 3 ) = 0, for all 1 ≤ i ≤ s.

Comparing the constant term on both sides of the above equation, we get α 0 (a i η 1 +b i η 2 +c i η 3 )(0) = 0, where (a i η 1 + b i η 2 + c i η 3 )(0) is invertible (since each of a i (0), b i (0), c i (0) are non-zero). This implies α 0 = 0. Substituting the value of α 0 and comparing the coefficients of x in (4), we get α 1 = 0. Similarly, α j = 0 for all 0 ≤ j ≤ t -1. That is, B is linearly independent and hence none of the element of B belongs to the span of remaining elements of B.

⊓ ⊔

Theorem 10 Let C be a 1-generator s-QC code of length n = sl over R 3 generated by G(x) = (g(x)f 1 (x), g(x)f 2 (x), . . . , g(x)f s (x)) for some divisor g(x) of x l -1 and gcd(f i (x), x l -1 g(x) ) = 1 for each 1 ≤ i ≤ s. Then B ′ = {G(x), xG(x), . . . , x l-t-1 G(x)}, where deg(g(x)) = t is a basis for C and d L (C) s ≥ d L (C ′ ), where C ′ = (g(x)) is a cyclic code of length l over R 3 .

Proof The proof is similar to [START_REF] Ozen | One generator quasi-cyclic codes over F 2 + vF 2[END_REF]Theorem 3.7].

⊓ ⊔ Now, we present an example as suggested by Theorem 10 and obtain a ternary 6-QC code as below.

Example 2 Let l = 10 and g 1 (x) = g 2 (x) = (x + 2)(x 4 + 2x 3 + x 2 + 2x + 1) = x 5 + x 4 + 2x 3 + x 2 + 2x + 2, g 3 (x) = (x + 1)(x 4 + x 3 + x 2 + x + 1) = x 5 + 2x 4 + 2x 3 + 2x 2 + 2x + 1.

Then g 1 (x), g 2 (x), g 3 (x) are factors of x 10 -1 in F 3 [x]. Therefore C ′ = ⟨g(x)⟩ is a cyclic code of length 10 over R 3 = F 3 + uF 3 + u 2 F 3 , where g(x) = 3 i=1 η i g i (x). Hence, C ′ has 9 5 = 59049 codewords and minimum Lee distance 4. Also, by Theorem 10, C is a 2-QC code given by G(x) = ⟨g(x)f 1 (x), g(x)f 2 (x)⟩, where f 1 (x), f 2 (x) satisfying the conditions mentioned in Theorem 10. In this way, C has the parameters [20, 5, ≥ 8] and its ternary image [60, 15, ≥ 8] is a 6-QC code.

Conclusion

The main purpose of the article is to enumerate self-dual and LCD double circulant codes over R q whose Gray images (both self-dual and LCD) are proved to be good enough. In addition, algebraic properties of 1-generator QC codes are obtained. Besides, we have also provided several examples of LCD double circulant codes over R 3 . It is worth mentioning that self-dual double circulant codes do not exist over R 3 due to Theorem 1. Therefore, like Table 1, it would be worthwhile to compute numerical examples of self-dual double circulant codes over R q for the q's meeting the hypotheses of Theorem 1. Further, one can derive similar results for more general ring F q [u]/⟨f (u)⟩ (appeared in [START_REF] Goyal | Duadic negacyclic codes over a finite non-chain ring[END_REF]), where f (u) splits into linear factors over F q .

  sq (ϕ(v)) =(r(1) l1 , r (2) l1 , . . . , r (q) l1 , . . . , r(1)ls , r(2)ls , . . . , r(q) ls , r(1) 11 , r(2) 11 , . . . , r (q) 11 , . . . , r

Table 1 :

 1 LCD codes from Gray images of double circulant codes of length 2n overR 3 If n = 2, take a 1 (x) = 2x, a 2 (x) = x + 2, a 3 (x) = 2x + 3, a 4 (x) = 4xand a 5 (x) = x + 2, then C is a self-dual code and its Gray image ϕ(C) is also a self-dual code over F 5 with parameters [20, 10, 2]. 2. If n = 3, take a 1

	n	a 1 (x)	a 2 (x)	a 3 (x)	ϕ(C) (LCD)
	7	1021112	1101200	21011211	[42, 21, 5] 3
	8	21121012	02120112	12100222	[48, 24, 5] 3
	11	12101202112	12122221212	01222022111	[66, 33, 6] 3
	12	121012221120	202222100221	220222112012	[72, 36, 6] 3
	13	1210122011212	2122221002212	2222221120122	[78, 39, 7] 3
	14	12101220112122	21222210022122	22222211201222	[84, 42, 7] 3
	16	1210222021222022	2212202210201121	2022202221120102	[96, 48, 8] 3
	17 12121222211212220	02122022102021202	20222222211201002	[102, 51, 8] 3
	1.