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Abstract Let Fq be a finite field of order q = pm where p is an odd prime. This paper presents
the study of self-dual and LCD double circulant codes over a class of finite commutative non-chain
rings Rq = Fq+uFq+u2Fq+ · · ·+uq−1Fq where u

q = u. Here, the whole contribution is two-folded.
Firstly, we enumerate self-dual and LCD double circulant codes of length 2n over Rq, where n is
an odd integer. Then by considering a dual-preserving Gray map ϕ, we show that Gray images of
such codes are asymptotically good. Secondly, we investigate the algebraic structure of 1-generator
quasi-cyclic (QC) codes over Rq for q = 3. In that context, we present their generator polynomials
along with their minimal generating sets and minimum distance bounds. Here, it is proved that
ϕ(C) is an sq-QC code of length nq over Fq if C is an s-QC code of length n over Rq.
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1 Introduction

Self-dual double circulant codes over finite fields have remained worthy of study for more than
three decades [34]. Recently, their enumeration and asymptotic performance over finite fields have
been presented in [2]. However, there is a scope to extend this study over finite commutative rings
where −1 is a square. Towards this end, the Chinese Remainder Theorem (CRT) approach, which
was introduced in [18] for quasi-cyclic codes, can be employed.
On the other hand, a special kind of linear code, namely, linear complementary dual (shortly,
LCD), was introduced in 1992 [23]. They have defined LCD codes as linear codes having trivial
intersections with their dual. These codes play an important role in preventing side-channel attacks
(SCA), fault-injection attacks (FIA) in embarked cryptosystems [5], and in multi-secret sharing
schemes [26]. These codes are worth studying over different alphabets (finite fields and rings) [16,
17,20,21]. In the last three years, both self-dual and LCD double circulant codes experienced
intense attention over finite commutative rings, like Zp2 (p is prime) in [13], Z4 in [29], and Galois
rings in [30]. In 2020, self-dual and LCD double circulant and double negacirculant codes over the
non-chain ring Fq + uFq, where u2 = u are studied in [28]. The enumeration and performance of
such codes have explicitly been presented there.Further, these codes are investigated over another
non-chain rings Fq + vFq + v2Fq, v

3 = v in [37] and Fq[v]/⟨v2 − 1⟩ in [36]. Recently, we [35]
investigated self-dual and LCD double circulant and double negacirculant codes over Fq+uFq+vFq

where u2 = u, v2 = v, uv = vu = 0. In continuation, here we consider a class of non-chain rings
Rq = Fq + uFq + u2Fq + · · · + uq−1Fq, u

q = u of size qq, where q = pm and p is an odd prime.
The ring Rq has a special interest and was explored in several studies [8,9]. This paper enumerates
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both self-dual and LCD double circulant codes over Rq. In addition, using a Gray map ϕ which
carries self-dual (resp. LCD) codes over Rq to self-dual (resp. LCD) codes over Fq, we show that
the Gray images of such codes constitute an asymptotically good family of codes.

In the second part of the paper, we investigate 1-generator quasi-cyclic (QC) codes over Rq

for q = 3. It is well known that quasi-cyclic code is one of the most remarkable and studied
generalizations of cyclic codes and hence consists of several record-breaking codes [11,12]. By
using the Chinese Remainder Theorem (CRT) approach, Ling and Solé investigated the algebraic
structure of these codes over finite fields [18], and over chain rings [19], respectively. Further, when
a quasi-cyclic code is generated by a single element as a module over some auxiliary ring, then it
is called a 1-generator quasi-cyclic code. Such codes have been studied in several series of papers
[4,6,7,25,27,33]. Here, we obtain the algebraic structure of 1-generator quasi-cyclic codes over R3

by using their generators and minimal spanning sets. In short, three major contributions of the
paper are:

1. The paper enumerates both self-dual (Theorem 4) and LCD (Theorem 5) double circulant codes
over Rq of length 2n where n is an odd integer.

2. It contains asymptotically good families of codes (Theorem 6).
3. It also presents the algebraic structure of 1-generator quasi-cyclic codes of length n over Rq for

q = 3 (Section 6). Further, it is proved that the Gray image of an s-QC code of length n is an
sq-QC code of length nq over Fq (Theorem 7).

The presentation of this paper is as follows: Section 2 recalls basic facts and definitions of the
ring Rq and double circulant codes. Section 3 enumerates double circulant self-dual codes of length
2n. In section 4, we discuss the asymptotic results for the families of LCD and self-dual double
circulant codes. Next, section 5 contains numerical examples of double circulant LCD codes over
R3. Section 6 focuses on 1-generator codes, while section 7 concludes the paper.

2 Preliminary

Let Rq = Fq +uFq +u2Fq + · · ·+uq−1Fq, u
q = u. Thus, following [8,9], Rq is a finite commutative

non-chain semi-local ring with unity. Also, the ring Rq is isomorphic to the ambient ring Fq[u]/⟨uq−
u⟩, and every element r ∈ Rq has a representation r = a0 + ua1 + · · · + aq−1u

q−1 where ai ∈ Fq

for 0 ≤ i ≤ q − 1. Let α be a primitive element of Fq and

η1 = 1− uq−1,

η2 =
1

q − 1
(u+ u2 + · · ·+ uq−2 + uq−1),

η3 =
1

q − 1
(αu+ α2u2 + · · ·+ αq−2uq−2 + uq−1),

η4 =
1

q − 1
(α2u+ (α2)2u2 + · · ·+ (α2)q−2uq−2 + uq−1),

...

ηq =
1

q − 1
(αq−2u+ (αq−2)2u2 + · · ·+ (αq−2)q−2uq−2 + uq−1).

Then it is checked that η2i = ηi, ηiηj = 0 for i ̸= j, 1 ≤ i, j ≤ q and
q∑

i=1

ηi = 1. In other words,

{ηi : 1 ≤ i ≤ q} is a set of pairwise orthogonal idempotent elements. Therefore, by using the
Chinese Remainder Theorem, we have Rq

∼=
⊕q

i=1 ηiFq. Consequently, every element r ∈ Rq can

be expressed uniquely as r =
q∑

i=1

ηiri, where ri ∈ Fq for all i. Moreover, r ∈ Rq is a unit if and

only if ri is a unit in Fq for 1 ≤ i ≤ q.
Now, we recall that a non-empty subset C of Rn

q is said to be a linear code of length n over Rq

if it is an Rq-submodule of Rn
q and elements of C are called codewords. For any two vectors x =

(x1, x2, . . . , xn), y = (y1, y2, . . . , yn), the Euclidean inner product is defined by x · y =
∑n

i=1 xiyi.
In this way, the Euclidean dual of a linear code C is given by C⊥ = {x ∈ Rn

q : x · y = 0, for all

y ∈ C}. In addition, C is said to be self-dual if C = C⊥, self-orthogonal if C ⊆ C⊥ and linear
complementary dual (shortly, LCD) if C ∩ C⊥ = {0}. It has been shown in [19] that a double
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circulant self-dual code over a commutative ring can only exist if a square root of −1 exists in that
ring. The following theorem provides the conditions for the existence of the square root of −1 in
the ring Rq.

Theorem 1 In the ring Rq with characteristic p, i.e., q = ps for s ≥ 1, a square root of −1 exists
if and only if one of the following cases occurs:

1. p = 2,
2. p ≡ 3 (mod 4), and s is even
3. p ≡ 1 (mod 4)

Proof We already have that an square root of −1 exists in Fq if and only if any one of the above
cases occurs (see [19]). Therefore, if any one of the above cases occurs then an square root of −1
exists in Rq (since Fq ⊆ Rq). Conversely, assume that r =

∑q
i=1 ηiri, where ri ∈ Fq for all i, be an

square root of −1 in Rq, i.e., r
2 = −1 or equivalently r2 + 1 = 0. Then

r2 + 1 = 1 + η1r
2
1 + η2r

2
2 + · · ·+ ηir

2
q = η1(1 + r21) + η2(1 + r22) + · · ·+ ηq(1 + r2q) = 0

if and only if r2i = −1 for all i. That is, an square root of −1 exists in Fq. Therefore, q is any one
of the form given in above three cases. ⊓⊔

For a linear code C of length n over Rq, we define

C1 = {y1 ∈ Fn
q | there exists yi(i ̸= 1) ∈ Fn

q such that

q∑
i=1

yiηi ∈ C},

C2 = {y2 ∈ Fn
q | there exists yi(i ̸= 2) ∈ Fn

q such that

q∑
i=1

yiηi ∈ C},

...

Cq = {yq ∈ Fn
q | there exists yi(i ̸= q) ∈ Fn

q such that

q∑
i=1

yiηi ∈ C}.

Then Ci is a linear code of length n over Fq for 1 ≤ i ≤ q and C =
q⊕

i=1

ηiCi.

Proposition 1 Let C =
q⊕

i=1

ηiCi be a linear code of length n, where Ci is a linear code of length n

over Fq for 1 ≤ i ≤ q. Then C⊥ =
q⊕

i=1

ηiC
⊥
i . Moreover, C is self-dual if and only if Ci is self-dual

for 1 ≤ i ≤ q.

Proof Same as the proof of [[15], Theorem 3.5]. ⊓⊔

Again, we recall a linear code C is said to be a cyclic code if for any codeword (c0, c1, . . . , cn−1) ∈ C,
we have (cn−1, c0, . . . , cn−2) ∈ C. In addition, a cyclic code C can be described as an ideal of the
ring Rq[x]/⟨xn − 1⟩ by the correspondence (c0, c1, . . . , cn−1) ∈ C 7−→ c0 + c1x+ · · ·+ cn−1x

n−1 ∈
Rq[x]/⟨xn − 1⟩. Here, the structural properties of cyclic codes over Rq are already available in the
literature [8] and we enlist them in the next result.

Theorem 2 Let C =
q⊕

i=1

ηiCi be a linear code of length n over Rq. Then C is cyclic if and

only if Ci is a cyclic code for 1 ≤ i ≤ q. Further, C is principally generated by a polynomial
g(x) = η1g1(x) + η2g2(x) + · · ·+ ηqgq(x), a factor of xn − 1, where gi(x) is the generator of Ci for
1 ≤ i ≤ q.

Now, we define a Gray map ϕ : Rq −→ Fq
q by ϕ(r) = (r1, r2, . . . , rq) where r =

∑q
i=1 ηiri ∈ Rq.

Then ϕ is an Fq-linear bijective map and can be extended to Rn
q componentwise. The Lee weight

of x ∈ Rn
q is defined as wL(x) = wH(ϕ(x)) and the Lee distance between x, y ∈ Rn

q is dL(x, y) =
dH(ϕ(x), ϕ(y)), where wH , dH are Hamming weight and distance in Fnq

q , respectively. Therefore,
ϕ : Rn

q −→ Fnq
q is a distance preserving linear map.
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Lemma 1 Let C be a linear code of length n over Rq. Then ϕ(C⊥) = ϕ(C)⊥ and ϕ(C ∩ C⊥) =
ϕ(C) ∩ ϕ(C)⊥.

Proof By the definition of Gray map ϕ, it is easily followed. ⊓⊔

In the light of Lemma 1, we immediately get the following result.

Theorem 3 Let C be a linear code of length n over Rq. Then C is a self-dual (resp. LCD) code
if and only if ϕ(C) is a self-dual (resp. LCD) code of length nq over Fq.

Now, we define the norm function Norm : Fqn → Fq by

Norm(a) = a
qn−1
q−1 , for a ∈ Fqn .

It is a multiplicative, surjective function with Norm(0) = 0 and every non-zero element of Fq is

a norm of exactly qn−1
q−1 elements in Fqn (see [24, Theorem 2.28]). We will use Norm to find the

number of solutions of certain algebraic equations. Recall that a double circulant code is a linear
code having a generator matrix of the form

G = (I, A)

where A is a circulant matrix (i.e., the matrix whose rows can be obtained by successive circular
shifts of the first row). For a family C⟨n⟩ of codes over Fq with parameters [n, kn, dn], the rate ρ

and relative distance δ are defined as ρ = lim sup
n→∞

kn

n and δ = lim sup
n→∞

dn

n . We say that this family

of codes is good if ρδ ̸= 0. Further, we recall the entropy function from [14] defined as

Hq(x) =

{
0, if x = 0

x logq(q − 1)− x logq(x)− (1− x) logq(1− x), if 0 < x ≤ 1− 1
q

and we will use it to show that the Gray images of family of self-dual (resp. LCD) double circulant
codes over Rq are good in subsequent portion.

3 Enumeration of double circulant codes

Let n be an odd integer and factorization of xn − 1 into distinct irreducible factors over Rq be
given by

xn − 1 = a(x− 1)

s∏
i=2

gi(x)

t∏
j=1

hj(x)h
∗
j (x),

where a ∈ R∗
q (set of units in Rq), gi(x) are self-reciprocal polynomials of even degree 2ei and

h∗
j (x) are reciprocal polynomials of hj(x) with deg(hj(x)) = dj , for 2 ≤ i ≤ s and 1 ≤ j ≤ t. Now,

by the Chinese Remainder Theorem, we have

Rq[x]

⟨xn − 1⟩
∼=

Rq[x]

⟨x− 1⟩
⊕
(
⊕s

i=2

Rq[x]

⟨gi(x)⟩

)
⊕

(
⊕t

j=1

(
Rq[x]

⟨hj(x)⟩

)
⊕

(
Rq[x]

⟨h∗
j (x)⟩

))
∼=Rq ⊕ (⊕s

i=2Rq,2ei)⊕
(
⊕t

j=1Rq,dj
⊕Rq,dj

)
,

where Rq,r = Fqr + uFqr + u2Fqr + · · · + uq−1Fqr , u
q = u for r = 2ei or dj . From the natural

extension of the above decomposition, we have(
Rq[x]

⟨xn − 1⟩

)2

∼= R2
q ⊕

(
⊕s

i=2(Rq,2ei)
2
)
⊕
(
⊕t

j=1(Rq,dj )
2 ⊕ (Rq,dj )

2
)
.

Following this, any linear code C of length 2 over
Rq [x]

⟨xn−1⟩ can be decomposed as

C ∼= C1 ⊕ (⊕s
i=2Ci)⊕

(
⊕t

j=1(C
′

j ⊕ C
′′

j )
)

(1)

where C1 is a linear code of length 2 over Rq, Ci is a linear code of length 2 over Rq,2ei , for 2 ≤ i ≤ s

and C
′

j , C
′′

j are linear codes of length 2 over Rq,dj , for 1 ≤ j ≤ t. The following lemma is useful to
enumerate self-dual and LCD double circulant codes over Rq.



Self-dual and LCD double circulant codes over a class of rings Rq 5

Lemma 2 Let C be a double circulant code of length 2n over Rq given in the CRT decomposition

(1) with α1 = (1, ce1), αi = (1, cei), α
′

j = (1, c
′

dj
), α

′′

j = (1, c
′′

dj
) be generators of the constituent

codes C1, Ci over Rq, Rq,2ei and C
′

j , C
′′

j over Rq,dj
, respectively, for 2 ≤ i ≤ s, 1 ≤ j ≤ t. Then

(1) C is a self-dual code if and only if 1 + c2e1 = 0, 1 + c1+qei
ei = 0 and 1 + c

′

dj
c
′′

dj
= 0.

(2) C is a Euclidean LCD code if and only if 1+c2e1 ∈ R∗
q , 1+c1+qei

ei ∈ R∗
q,2ei and 1+c

′

dj
c
′′

dj
∈ R∗

q,dj
.

Proof The proof is similar to [28, Lemma 3.1]. ⊓⊔

Now, by using Lemma 2, we count self-dual and LCD double circulant codes over Rq in Theorem
4 and Theorem 5, respectively.

Theorem 4 Let n be an odd integer and the factorisation of xn − 1 over Rq be

xn − 1 = a(x− 1)

s∏
i=2

gi(x)

t∏
j=1

hj(x)h
∗
j (x),

where a ∈ R∗
q and n = 1 +

∑s
i=2 2ei + 2

∑t
j=1 dj. Then there are

2q
s∏

i=2

(qei + 1)q
t∏

j=1

(qdj − 1)q

self-dual double circulant codes of length 2n over Rq.

Proof To obtain the total number of self-dual double circulant codes, we count the constituent
codes. Let ce1 ∈ Rq. Then ce1 = a1η1+a2η2+ · · ·+aqηq for some ai ∈ Fq, 1 ≤ i ≤ q. From Lemma
2, for the first constituent code C1, we need to find choices for ce1 ∈ Rq such that 1 + c2e1 = 0.
Consider

1 + c2e1 = 1 + a21η1 + · · ·+ a2qηq = (1 + a21)η1 + (1 + a22)η2 + · · ·+ (1 + a2q)ηq = 0,

if and only if 1 + a2i = 0 for 1 ≤ i ≤ q. So there are 2 choices (±ω, where ω2 = −1 ) for each ai.
Therefore, we have 2q choices for ce1 and hence for C1.

For the second constituent code, we have to find choices for cei ∈ Rq,2ei such that 1+ceic
qei
ei = 0

where i is fixed. Let cei = a1η1 + a2η2 + · · ·+ aqηq for some aj ∈ Fq2ei , 1 ≤ j ≤ q. Then

1 + ceic
qei
ei = 1 + aq

ei+1
1 η1 + · · ·+ aq

ei+1
q ηq = (1 + aq

ei+1
1 )η1 + · · ·+ (1 + aq

ei+1
q )ηq = 0,

if and only if aq
ei+1

j = −1, i.e., Norm(aj) = −1 for 1 ≤ j ≤ q. There are qei + 1 solutions for each
Norm(aj) = −1, 1 ≤ j ≤ q. Thus, there are (qei + 1)q choices for cei .

In order to count the dual pairs (w.r.t. Euclidean inner product) of codes for fixed j, we
have to find the choices for the pairs {c′dj

, cdj
′′} in Rq,dj

such that 1 + c
′

dj
c
′′

dj
= 0. Let c

′

dj
=

a1η1 + a2η2 + · · · + aqηq for some ai ∈ Fqdj , 1 ≤ i ≤ q. Then, for c
′′

dj
= b1η1 + b2η2 + · · · + bqηq

where bi ∈ Fqdj , 1 ≤ i ≤ q, we have

1 + c
′

dj
c
′′

dj
= (1 + a1b1)η1 + (1 + a2b2)η2 + · · ·+ (1 + aqbq)ηq = 0,

if and only if 1 + aibi = 0, for all 1 ≤ i ≤ q. If ai ∈ F∗
qdj

for 1 ≤ i ≤ q, then we have a unique

choice bi = − 1
ai
, and if ai = 0, then we get 1 = 0, a contradiction. Therefore, ai ∈ F∗

qdj
for each

1 ≤ i ≤ q and corresponding to each ai there is a unique choice for bi. Hence, there are (qdj − 1)q

choices for the dual pairs. Now, combining all the above cases, we get the desired result. ⊓⊔

Theorem 5 We assume the condition of Theorem 4. Then the total number of LCD double cir-
culant codes of length 2n over Rq is

(q − 2)q
s∏

i=2

(q2ei − qei − 1)q
t∏

j=1

(qdj + (qdj − 1)2)q.
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Proof As for the self-dual codes, the total number of LCD double circulant codes can be obtained
by counting the constituent codes. For C1, we need to find the choices for ce1 ∈ Rq such that
1 + c2e1 ∈ R∗

q . If ce1 ∈ Rq, then ce1 = a1η1 + a2η2 + · · ·+ aqηq for some ai ∈ Fq, 1 ≤ i ≤ q. Now,

1 + c2e1 = 1 + a21η1 + · · ·+ a2qηq = (1 + a21)η1 + (1 + a22)η2 + · · ·+ (1 + a2q)ηq ∈ R∗
q ,

if and only if 1+a2i ̸= 0, for all 1 ≤ i ≤ q. That is, there are q− 2 choices for each ai (̸= ±ω, where
ω2 = −1 ). Therefore, we have (q − 2)q choices for ce1 .

For a fixed 2 ≤ i ≤ s, to count second constituent codes Ci, we need to find choices for
cei ∈ Rq,2ei such that 1 + c1+qei

ei ∈ R∗
q,2ei . If cei ∈ Rq,2ei , then cei = a1η1 + a2η2 + · · · + aqηq, for

some aj ∈ Fq2ei , 1 ≤ j ≤ q. Now,

1 + c1+qei
ei = 1 + a1+qei

1 η1 + · · ·+ a1+qei
q ηq = (1 + a1+qei

1 )η1 + · · ·+ (1 + a1+qei
q )ηq ∈ R∗

q,2ei ,

if and only if 1 + a1+qei

j ̸= 0, for all 1 ≤ j ≤ q. That is, there are q2ei − qei − 1 choices for each aj ,

as we have qei +1 solutions for 1 + aq
ei+1

j = 0. Therefore, we have (q2ei − qei − 1)q choices for cei .

Now, for a fixed 1 ≤ j ≤ t, to count dual pairs {C ′

j , C
′′

j }, we need to find choices for c
′

dj
, c

′′

dj
∈

Rq,dj
such that 1 + c

′

dj
c
′′

dj
∈ R∗

q,dj
. If c

′

dj
∈ Rq,dj

, then c
′

dj
= a1η1 + a2η2 + · · · + aqηq, for some

ai ∈ Fqdj , 1 ≤ i ≤ q. Now, for any c
′′

dj
= b1η1 + b2η2 + · · · + bqηq where bi ∈ Fqdj , 1 ≤ i ≤ q, we

have

1 + c
′

dj
c
′′

dj
= (1 + a1b1)η1 + (1 + a2b2)η2 + · · ·+ (1 + aqbq)ηq ∈ R∗

q,dj
,

if and only if 1+aibi ̸= 0, for all 1 ≤ i ≤ q. We have the following possibilities for each ai, 1 ≤ i ≤ q

– If ai = 0, then 1 + aibi = 1 ̸= 0, for each bi ∈ Fqdj . Therefore, there are qdj choices for bi.

– If ai ∈ F∗
qdj

, then 1 + aibi ̸= 0 implies that bi ̸= − 1
ai

and we have qdj − 1 choices for bi

corresponding to the given ai. In this case, there are qdj −1 choices for ai, so we have (qdj −1)2

choices for the pair {ai, bi} such that 1 + aibi ̸= 0.

Combining the above two possibilities, we have (qdj +(qdj −1)2)q choices for the pairs {c′dj
, c

′′

dj
} in

Rq,dj
and hence for {C ′

j , C
′′

j }. Now, from all the above discussion, we obtain the desired result. ⊓⊔

4 Distance bounds

Let n be an odd prime and q be a power of an odd prime such that it is a primitive root (mod n).
Then the factorization of xn − 1 into distinct irreducible factors over Rq is as follows:

xn − 1 = (x− 1)(1 + x+ · · ·+ xn−1) = (x− 1)h(x), (2)

where h(x) = 1 + x + · · · + xn−1 is an irreducible polynomial over Rq. Hence, by the Chinese
Remainder Theorem (CRT), we know that

Rq[x]

⟨xn − 1⟩
∼=

Rq[x]

⟨x− 1⟩
⊕ Rq[x]

⟨h(x)⟩
∼=Rq ⊕R

′
,

where R
′
= Fqn−1 + uFqn−1 + u2Fqn−1 + · · · + uq−1Fqn−1 , uq = u. We denote R =

Rq [x]
⟨h(x)⟩ . Any

non-zero codeword of a cyclic code of length n is said to be a constant vector if it is generated by
h(x). Now, we provide two lemmas which will be used to prove the main result related to distance
bound (Theorem 6).

Lemma 3 For any non-zero vector z = (e, f) ∈ R2n
q such that e is not a constant vector, there

are at most qn(q−1)+1 double circulant codes Ca = (1, a) over Rq such that z ∈ Ca.

Proof Using the CRT decomposition, we can write z = (e1, f1)⊕(e2, f2). Since z ∈ Ca, we have f =
ea, f1 = e1a1 and f2 = e2a2, where e1, f1, a1 ∈ Rq and e2, f2, a2 ∈ R. Let a1 = r1η1+r2η2+· · ·+rqηq
and a2 = s1η1 + s2η2 + · · ·+ sqηq, for some ri ∈ Fq and si ∈ Fqn−1 , 1 ≤ i ≤ q. Firstly, we discuss
the choices for a1 through e1.
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If e1 ∈ Rq, then e1 = b1η1+ b2η2+ · · ·+ bqηq and f1 = β1η1+β2η2+ · · ·+βqηq for some βi, bi ∈ Fq,
1 ≤ i ≤ q. Now, f1 = e1a1 implies that

β1η1 + β2η2 + · · ·+ βqηq = r1b1η1 + r2b2η2 + · · ·+ rqbqηq.

If bi = 0, then we have q choices for ri, otherwise ri =
βi

bi
, i.e., a unique choice for ri. Therefore,

there are at most q choices for each ri and hence at most qq choices for a1.
Now, we discuss the choices for a2 through e2. The following cases arise:

– If e2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)) and we get a contradiction to the
choice of e.

– If 0 ̸= e2 ∈ Rq, then e2 = b1η1 + b2η2 + · · ·+ bqηq and f2 = β1η1 + β2η2 + · · ·+ βqηq for some
βi, bi ∈ Fqn−1 , 1 ≤ i ≤ q and bi ̸= 0 for at least one i. Now, f2 = e2a2 implies that

β1η1 + β2η2 + · · ·+ βqηq = s1b1η1 + s2b2η2 + · · ·+ sqbqηq.

If bi = 0, then we have qn−1 choices for si, otherwise si =
βi

bi
, i.e., a unique choice for si. Also,

not all bi are zero. Therefore, we can conclude that there are at most qn−1 choices for each si
and at most q(n−1)(q−1) choices for a2.

Combining both the cases (for a1 and a2), we conclude that there are at most qn(q−1)+1 double
circulant codes Ca which contains z. ⊓⊔

Lemma 4 For any non-zero vector z = (e, f) ∈ R2n
q such that e is not a constant vector, there

are at most 2q(1 + q
n−1
2 )(q−1) self-dual double circulant codes Ca = (1, a) such that z ∈ Ca.

Proof Using Theorem 4, we have at most qq choices for the first constituent code C1 of Ca.
Now, we discuss the choices for the second constituent code, i.e., choices for a2 through e2. Let

a2 = s1η1 + s2η2 + · · ·+ sqηq, for some si ∈ Fqn−1 , 1 ≤ i ≤ q.

– If e2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)) and we get a contradiction to the
choice of e.

– If 0 ̸= e2 ∈ Rq, then e2 = b1η1 + b2η2 + · · ·+ bqηq and f2 = β1η1 + β2η2 + · · ·+ βqηq for some
βi, bi ∈ Fqn−1 , 1 ≤ i ≤ q and bi ̸= 0 for at least one i. Now, f2 = e2a2 implies that

β1η1 + β2η2 + · · ·+ βqηq = s1b1η1 + s2b2η2 + · · ·+ sqbqηq.

If bi = 0, then we have qn−1 choices for si, otherwise si =
βi

bi
, i.e., a unique choice for si. Also,

we have 1 + a2ā2 = 1 + a2a
q

n−1
2

2 = 0 (since Ca is self-dual). This implies that sis
q

n−1
2

i = −1,

i.e., Norm(si) = −1 for 1 ≤ i ≤ q. Therefore, we have at most 1+ q
n−1
2 choices for each si and

hence (1 + q
n−1
2 )q−1 choices for each a2.

Combining these cases (for a1 and a2), we conclude that there are at most 2q(1+ q
n−1
2 )q−1 double

circulant codes Ca which contains z. ⊓⊔

Using the Artin’s conjecture [22] for primitive roots, we have that for a fixed non-square q, there
are infinitely many primes n for which xn − 1 factors into two irreducible polynomials given in
(2) (since q is a primitive root modulo n). Therefore, we get an infinite family of double circulant
codes over R and the following result can be derived.

Theorem 6 Let q be a power of an odd prime, and δ > 0 be given. Then there are families of
double circulant self-dual (resp. LCD) codes of length 2n over Rq, with code rate 1

2 , and with Gray
images of relative distance δ as long as Hq(δ) < 1

4q (resp. Hq(δ) < 1
2q ). Moreover, we conclude

that both of these families of codes are good.

Proof Let An denote the size of the family. Then for large enough n (near infinity), by using

Theorem 4 and Theorem 5, An ≈ 2qq
(n−1)q

2 for self-dual and An ≈ qnq for LCD double circulant
codes. Let B(dn) be the number of elements in R2n

q whose image under ϕ have Hamming weight
less than dn. We assume that the inequality

An > anB(dn), (3)
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where an = 2q(1 + q
n−1
2 )(q−1) for self-dual and qn(q−1)+1, for LCD codes, is satisfied. Therefore,

by Lemma 3 and Lemma 4, we conclude that in the family, there exist codes of length 2n over Rq

whose images under ϕ have Hamming distance ≥ dn.
To enforce inequality (3) for large n, we make the following argument. We consider δ as the relative
distance of the above family and assume that dn is the largest such that An > anB(dn). Also, we
assume that the growth is of the form dn = 2qδn. Then by [14, Lemma 2.10.3], we get B(dn) is
approximately equal to q2qnHq(δ). If Hq(δ) =

1
2q for LCD, and = 1

4q for self-dual codes, then

anB(dn) ≈qn(q−1)+1q2qnHq(δ) = qnq+1 ≈ qnq

anB(dn) ≈2q(1 + q
n−1
2 )(q−1)q2qnHq(δ) ≈ 2qq

(n−1)(q−1)
2 q

n
2 ≈ 2qq

(n−1)q
2

for LCD and self-dual codes, respectively. From this, we can see that if Hq(δ) <
1
2q for LCD, and

< 1
4q for self-dual codes, then inequality (3) holds for n large enough. ⊓⊔

5 Examples

In this section, we construct some examples of LCD double circulant codes over Rq for q = 3 to
validate our results.
Let G = (I, A) be the generator matrix of a double circulant code C over Rq = Fq + uFq + · · · +
uq−1Fq, u

q = u, where I is the identity matrix of order n and A = A1 + uA2 + · · · + uq−1Aq, for
n × n matrices A1, A2, . . . , Aq over Fq. Then the generator matrix of ϕ(C) is of order nq × 2nq
whose rows are ϕ(G), ϕ(uG), . . . , ϕ(uq−2G) and ϕ(uq−1G), respectively.

In particular for q = 3 here we explicitly discuss its Gray map and generator matrix. In fact,

for q = 3 we have η1 = 1− u2, η2 = u2+u
2 , η3 = u2−u

2 . Also, any element of R3 can be written as

a+ bu+ cu2 = aη1 + (a+ b+ c)η2 + (a− b+ c)η3.

Therefore, the Gray map ϕ : R3 −→ F3
3 is defined by

ϕ(a+ bu+ cu2) = (a, a+ b+ c, a− b+ c).

Now, let C be a double circulant code over R3 = F3 + uF3 + u2F3 with generator matrix of the
form G = (I, A), where I is the identity matrix of order n and A = A1 + uA2 + u2A3, for n × n
matrices A1, A2 and A3 over F3. Then the generator matrix of ϕ(C) is given by

Ĝ =

 ϕ(G)
ϕ(uG)
ϕ(u2G)

 =


I I I A1 A1 +A2 +A3 A1 + 2A2 +A3

0 I 2I 0 A1 +A2 +A3 2A1 +A2 + 2A3

0 I I 0 A1 +A2 +A3 A1 + 2A2 +A3


3n×6n

.

By using this generator matrix and the Magma computation system [3], we now construct some
LCD codes as F3-images of double circulant codes of length 2n over R3 in Table 1. In second
to fourth columns we have provided polynomials ai(x), for i = 1, 2, 3, respectively such that the
generator polynomial of C over R3 is (1, a(x)) where a(x) = a1(x) + ua2(x) + u2a3(x). Also, these
polynomials are given (in Table 1) by their coefficients in decreasing powers of x. For example,
1234 represents the polynomial x3 + 2x2 + 3x+ 4.

Example 1 Take α = 2, a primitive element of F5. Then η1 = 1 − u4, η2 = u+u2+u3+u4

4 , η3 =
αu+α2u2+α3u3+u4

4 , η4 = α2u+u2+α2u3+u4

4 and η5 = α3u+α2u2+αu3+u4

4 are pairwise orthogonal idem-
potent elements of R5. Also, an element r = a + bu + cu2 + du3 + eu4 ∈ R5 can be written
as

r = aη1+(a+b+c+d+e)η2+(a+3b+4c+2d+e)η3+(a+4b+c+4d+e)η4+(a+2b+4c+3d+e)η5.

In that case, the Gray map ϕ : R5 −→ F5
5 is defined by

ϕ(r) = (a, a+ b+ c+ d+ e, a+ 3b+ 4c+ 2d+ e, a+ 4b+ c+ 4d+ e, a+ 2b+ 4c+ 3d+ e).

Now, let C = (1, a(x)) be a double circulant code of length 2n over R5, where a(x) = a1(x) +
ua2(x) + u2a3(x) + u3a4(x) + u4a5(x). Then, ϕ(C) is a [10n, 5n]- code over F5. Moreover, duality
is preserved under this map, i.e., the Gray image of self-dual (resp. LCD) code is a self-dual (resp.
LCD) code.
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Table 1: LCD codes from Gray images of double circulant codes of length 2n over R3

n a1(x) a2(x) a3(x) ϕ(C) (LCD)

7 1021112 1101200 21011211 [42, 21, 5]3

8 21121012 02120112 12100222 [48, 24, 5]3

11 12101202112 12122221212 01222022111 [66, 33, 6]3

12 121012221120 202222100221 220222112012 [72, 36, 6]3

13 1210122011212 2122221002212 2222221120122 [78, 39, 7]3

14 12101220112122 21222210022122 22222211201222 [84, 42, 7]3

16 1210222021222022 2212202210201121 2022202221120102 [96, 48, 8]3

17 12121222211212220 02122022102021202 20222222211201002 [102, 51, 8]3

1. If n = 2, take a1(x) = 2x, a2(x) = x + 2, a3(x) = 2x + 3, a4(x) = 4x and a5(x) = x + 2, then
C is a self-dual code and its Gray image ϕ(C) is also a self-dual code over F5 with parameters
[20, 10, 2].

2. If n = 3, take a1(x) = x2 + 3x+ 3, a2(x) = x2 + x+ 2, a3(x) = 2x2 + x+ 1, a4(x) = x2 + x+ 2
and a5(x) = 2x2 + x+ 1, then C is a self-dual code and its Gray image ϕ(C) is also a self-dual
code over F5 with parameters [30, 15, 4].

6 1-generator quasi-cyclic (QC) codes

In the present section, we discuss the algebraic structure of 1-generator quasi-cyclic (QC) code over
Rq for q = 3. It is worth mentioning that 1-generator quasi-cyclic codes for q = 2 are extensively
studied in [25]. They obtained their minimal spanning sets and binary Gray images. The 1-generator
QC codes over Rq for any q > 3 can be obtained but for the sake of calculation, here we restrict
to q = 3. Now, we start our discussion with the definition of QC codes.

Definition 1 Let C be a linear code over Rq of length n = sl and σ be the cyclic shift operator
on Rn

q . Then C is said to be a quasi-cyclic (QC) code with index s (or s-QC code), if σs(C) = C.
Evidently, if s = 1, then C is a cyclic code.

Definition 2 A quasi-cyclic (QC) code over Rq generated by a single element is called a 1-
generator quasi-cyclic code.

Note that any two polynomials p(x) and q(x) in Rq[x] are said to be relatively prime if there
exist two polynomials m1(x),m2(x) ∈ Rq[x] such that p(x)m1(x) + q(x)m2(x) = 1. Based on this,
we provide a result which will be used to study 1-generator quasi-cyclic (QC) codes.

Lemma 5 [25, Lemma 2.4] Let C = ⟨g(x)⟩ be a cyclic code of length n over Rq with generator
polynomial g(x). Then C = ⟨g(x)f(x)⟩ for any polynomial f(x) such that f(x) and xn−1

g(x) are

relatively prime.

Theorem 7 Let C be an s-QC code of length n = sl over Rq. Then ϕ(C) is an sq-QC code of
length nq over Fq.

Proof Let C be an s-QC code overRq and v = (v11, v12, . . . , v1s, v21, v22, . . . , v2s, . . . , vl1, vl2, . . . , vls) ∈
C, where vij =

∑q
k=1 ηkr

(k)
ij for 1 ≤ i ≤ l, 1 ≤ j ≤ s. Then σs(v) ∈ C and

ϕ(v) =(r
(1)
11 , r

(2)
11 , . . . , r

(q)
11 , . . . , r

(1)
1s , r

(2)
1s , . . . , r

(q)
1s , r

(1)
21 , r

(2)
21 , . . . , r

(q)
21 , . . . ,

r
(1)
2s , r

(2)
2s , . . . , r

(q)
2s , . . . , r

(1)
l1 , r

(2)
l1 , . . . , r

(q)
l1 , . . . , r

(1)
ls , r

(2)
ls , . . . , r

(q)
ls ).

Therefore,

σsq(ϕ(v)) =(r
(1)
l1 , r

(2)
l1 , . . . , r

(q)
l1 , . . . , r

(1)
ls , r

(2)
ls , . . . , r

(q)
ls , r

(1)
11 , r

(2)
11 , . . . , r

(q)
11 , . . . , r

(1)
1s ,

r
(2)
1s , . . . , r

(q)
1s , . . . , r

(1)
l−11, r

(2)
l−11, . . . , r

(q)
l−11, . . . , r

(1)
l−1s, r

(2)
l−1s, . . . , r

(q)
l−1s)

=ϕ(vl1, vl2, . . . , vls, v11, v12, . . . , v1s, . . . , vl−11, vl−12, . . . , vl−1s)

=ϕσs(v) ∈ ϕ(C).
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Thus, ϕ(C) is an sq-QC code of length nq over Fq. ⊓⊔

Let C be an s-QC code of length n = sl over Rq. Then we can define a one-one correspondence

Γ : Rn
q → Rs

q,l

by
Γ (v11, v12, . . . , v1s, v21, v22, . . . , v2s, . . . , vl1, vl2, . . . , vls) = (v1(x), v2(x), . . . , vs(x)),

where vj(x) =
∑l

i=1 vijx
i−1 and Rq,l =

Rq [x]
⟨xl−1⟩ . It can be easily seen that an s-QC code of length

n = sl over Rq corresponds to an Rq,l-submodule of Rs
q,l.

Theorem 8 Let C be a 1-generator s-QC code of length n = sl over R3 = F3 + uF3 + u2F3,
where u3 = u. If C is generated by G(x) = (G1(x), G2(x), . . . , Gs(x)) where Gi(x) ∈ R3,l =
R3[x]/

〈
xℓ − 1

〉
, then Gi(x) ∈ Bi for some cyclic codes Bi in R3,l, 1 ≤ i ≤ s and there exist

polynomials fi(x) ∈ R3[x], r
(j)
i (x) ∈ F3[x], 1 ≤ i ≤ s, j = 1, 2, 3 such that Gi(x) = fi(x)(η1r

(1)
i (x)+

η2r
(2)
i (x) + η3r

(3)
i (x)).

Proof Let C be a 1-generator s-QC code of length n = sl overR3 generated byG(x) = (G1(x), G2(x),
. . . , Gs(x)). Then Γi(C) is a cyclic code where Γi is the i-th projection defined as Γi(G1(x), G2(x),
. . . , Gs(x)) = Gi(x). Therefore, using Theorem 2 and Lemma 5 we get that a generator Gi(x)

of Γi(C) is of the form Gi(x) = fi(x)(η1r
(1)
i (x) + η2r

(2)
i (x) + η3r

(3)
i (x)) for some polynomials

fi(x) ∈ R3[x], r
(j)
i (x) ∈ F3[x], 1 ≤ i ≤ s, j = 1, 2, 3. ⊓⊔

Note that Gi(x) can also be written in the form Gi(x) = ai(x)η1 + bi(x)η2 + ci(x)η3 for some
polynomials ai(x), bi(x), ci(x) ∈ F3[x], 1 ≤ i ≤ s. The following theorem provides a minimal
generating set for a 1-generator s-QC code C over R3.

Theorem 9 Let C be a 1-generator s-QC code over R3 of length n = sl and the generator

G(x) =(a1(x)η1 + b1(x)η2 + c1(x)η3, . . . , as(x)η1 + bs(x)η2 + cs(x)η3)

where ai(x), bi(x), ci(x) ∈ F3[x], for all 1 ≤ i ≤ s. Let

g(x) = gcd(a1(x)η1 + b1(x)η2 + c1(x)η3, . . . , as(x)η1 + bs(x)η2 + cs(x)η3, x
l − 1),

and h(x) be a polynomial such that

g(x)h(x) = xl − 1.

Then C is free R3-submodule with basis B =
deg(h)−1⋃

i=0

{xiG(x)} and rank(C) = deg(h(x)).

Proof Any codeword c(x) ∈ C is of the form c(x) = f(x)G(x), where f(x) ∈ R3[x]. If deg(f(x)) ≤
deg(h(x)) − 1, then c(x) = f(x)G(x) ∈ span(B). Otherwise, by division algorithm f(x) =
h(x)q1(x) + s1(x) for some q1(x), s1(x) ∈ R3[x] where deg(s1(x)) ≤ deg(h(x))− 1. Then

f(x)G(x) =(h(x)q1(x) + s1(x))G(x)

=q1(x)h(x)G(x) + s1(x)G(x), where s1(x)G(x) ∈ span(B).

Since h(x)(ai(x)η1+bi(x)η2+ci(x)η3) = 0 for all 1 ≤ i ≤ s, we have q1(x)h(x)G(x) = (0, 0, . . . , 0) ∈
span(B). Therefore, B spans C. Now, we show that none of the element of B can be written as
the linearly combination of other elements of B. Let α0, α1, . . . , αt−1 ∈ R3 where t = deg(h(x)) be
such that

t−1∑
j=0

αjx
jG(x) = 0,

i.e.,

t−1∑
j=0

αjx
j(ai(x)η1 + bi(x)η2 + ci(x)η3) = 0, for all 1 ≤ i ≤ s. (4)

Comparing the constant term on both sides of the above equation, we get α0(aiη1+biη2+ciη3)(0) =
0, where (aiη1 + biη2 + ciη3)(0) is invertible (since each of ai(0), bi(0), ci(0) are non-zero). This
implies α0 = 0. Substituting the value of α0 and comparing the coefficients of x in (4), we get
α1 = 0. Similarly, αj = 0 for all 0 ≤ j ≤ t− 1. That is, B is linearly independent and hence none
of the element of B belongs to the span of remaining elements of B. ⊓⊔
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Theorem 10 Let C be a 1-generator s-QC code of length n = sl over R3 generated by G(x) =

(g(x)f1(x), g(x)f2(x), . . . , g(x)fs(x)) for some divisor g(x) of xl − 1 and gcd(fi(x),
xl−1
g(x) ) = 1 for

each 1 ≤ i ≤ s. Then B′ = {G(x), xG(x), . . . , xl−t−1G(x)}, where deg(g(x)) = t is a basis for C

and dL(C)
s ≥ dL(C

′), where C ′ = (g(x)) is a cyclic code of length l over R3.

Proof The proof is similar to [25, Theorem 3.7]. ⊓⊔

Now, we present an example as suggested by Theorem 10 and obtain a ternary 6-QC code as below.

Example 2 Let l = 10 and

g1(x) = g2(x) = (x+ 2)(x4 + 2x3 + x2 + 2x+ 1) = x5 + x4 + 2x3 + x2 + 2x+ 2,

g3(x) = (x+ 1)(x4 + x3 + x2 + x+ 1) = x5 + 2x4 + 2x3 + 2x2 + 2x+ 1.

Then g1(x), g2(x), g3(x) are factors of x10 − 1 in F3[x]. Therefore C ′ = ⟨g(x)⟩ is a cyclic code of

length 10 over R3 = F3 + uF3 + u2F3, where g(x) =
∑3

i=1 ηigi(x). Hence, C ′ has 95 = 59049
codewords and minimum Lee distance 4. Also, by Theorem 10, C is a 2-QC code given by G(x) =
⟨g(x)f1(x), g(x)f2(x)⟩, where f1(x), f2(x) satisfying the conditions mentioned in Theorem 10. In
this way, C has the parameters [20, 5,≥ 8] and its ternary image [60, 15,≥ 8] is a 6-QC code.

7 Conclusion

The main purpose of the article is to enumerate self-dual and LCD double circulant codes over Rq

whose Gray images (both self-dual and LCD) are proved to be good enough. In addition, algebraic
properties of 1-generator QC codes are obtained. Besides, we have also provided several examples
of LCD double circulant codes over R3. It is worth mentioning that self-dual double circulant codes
do not exist over R3 due to Theorem 1. Therefore, like Table 1, it would be worthwhile to compute
numerical examples of self-dual double circulant codes over Rq for the q’s meeting the hypotheses
of Theorem 1. Further, one can derive similar results for more general ring Fq[u]/⟨f(u)⟩ (appeared
in [10]), where f(u) splits into linear factors over Fq.
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