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ABSOLUTELY SUMMING CARLESON EMBEDDINGS ON BERGMAN SPACES

BO HE JOELLE JREIS PASCAL LEFÈVRE∗ ZENGJIAN LOU

ABSTRACT. In this paper, we focus on Carleson embeddings from Bergman spaces Ap into
Lp(µ), where µ is a positive measure on the unit disk. We describe when this injection is
r-summing on Ap. We complete the full characterization of such operators when p > 1,
and r ≥ 1. As an immediate application, we get the characterization of absolutely summing
weighted composition operators on Bergman spaces. In passing we also prove a new con-
nection between the boundedness of the Berezin transform and the Carleson embedding on
Bergman spaces.

Keywords: r-summing operators; Bergman spaces; Carleson embeddings; Berezin transform;
Composition operators.

1. INTRODUCTION

In this paper, we investigate particular properties of Carleson embeddings on the classical
Bergman spaces Ap when p > 1. In the following, the unit disk of the complex plane is
denoted D =

{
z ∈ C

∣∣∣ |z| < 1
}
. We denote by H (D) the class of holomorphic functions on the

unit disk, and we recall that Bergman spaces are defined by

Ap =

{
f ∈H (D)

∣∣∣ ∫
D

∣∣∣ f (z)∣∣∣p dA < ∞
}

with

‖ f ‖Ap =
( ∫
D

∣∣∣ f (z)∣∣∣p dA
)1/p

,

where A stands for the normalized area measure on D. When there is no ambiguity, we write
simply ‖ · ‖p instead of ‖ · ‖Ap . This definition makes sense for every p > 0. See for instance
[8] and [10] to know more on Bergman spaces.

Now, let us turn to our main subject. Given a positive Borel measure µ on the open unit
disk D, we consider the formal identity Jµ from the Bergman space Ap into Lp(D, µ) (we
keep the notation Jµ instead of Jp,µ in the sequel for sake of lightness):

Jµ: Ap −→ Lp(D, µ)
f 7−→ f
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A famous result of Carleson (see [3]), introduced and characterized measures such that the
corresponding embedding on Hardy spaces are defined and bounded. On Bergman spaces,
the boundedness of Jµ was characterized by Hastings [9]:

Jµ is well defined and bounded if and only if µ is a 2-Carleson measure, i.e.

sup
ξ∈T

µ
(
W(ξ, h)

)
= O(h2), when h→ 0,

whereW(ξ, h) is the Carleson window

W(ξ, h) = {z ∈ D | 1 − h ≤ |z| and | arg(zξ̄)| ≤ h}.

Once we know that Jµ is bounded, it is natural to wonder which specific operator properties
are satisfied. The most natural is probably compactness and Jµ is compact if and only if µ is
a vanishing Carleson measure:

sup
ξ∈T

µ
(
W(ξ, h)

)
= o(h2), when h→ 0.

Actually, our approach in this paper involves hyperbolic disks rather than Carleson win-
dows (see (2.1) and Section 2 for definitions and the corresponding results about boundedness
and compactness).

One standard application of Carleson embeddings is that it allows to recover some operator
properties of weighted composition operators on Ap. Let us recall that, given a symbol, i.e.
an analytic function ϕ : D→ D, the composition operator Cϕ : Ap → Ap is well defined and
automatically bounded (see the monographs [4] or [22] for example). When we are given a
weight u, i.e. an analytic function u on D, then the weighted composition operator is (now
formally) defined by uCϕ( f )(z) = u(z) · f

(
ϕ(z)

)
. Many operator properties of Cϕ (and of

u · Cϕ), can be expressed in terms of Carleson measures thanks to the transfer formula. We
explain here how, for composition operators, the pullback measure of A associated to ϕ plays
a crucial role:

Aϕ(E) = A
(
ϕ−1(E)

)
= A

({
z ∈ D| ϕ(z) ∈ E

})
for every Borel subsets E of D.

The transfer formula gives

‖ f ◦ ϕ‖Ap = ‖ f ‖Lp(D,Aϕ) for every f ∈ Ap .

Hence many properties of the operator Cϕ are shared with the ones of the operator JAϕ , in
particular compactness, r-summingness.

The case of weighted composition operators can also be treated in the same manner.

The purpose of this paper is the characterization of (finite positive) measures µ on D such
that Jµ is r-summing for some r ≥ 1, and as a natural immediate application, we characterize
r-absolutely summing weighted composition operators on Bergman spaces.

Let us recall that (1-)absolutely summing operators are the operators T : X → Y which do
take unconditionally summable sequences {xn} in X to absolutely summable sequences {T xn}

in Y . More generally, let us recall
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Definition 1.1. Let r ≥ 1 and T : X → Y be a linear operator between Banach spaces.
We say that T is r-summing if there is a constant C ≥ 0 such that regardless of the natural
number n and regardless of the choice of x1, x2, . . . , xn in X, we have( n∑

k=1

‖T xk‖
r
Y

)1/r

≤ C sup
x∗∈BX∗

( n∑
k=1

|x∗(xk)|r
)1/r

= C sup
a∈Blr′

∥∥∥∥ n∑
k=1

akxk

∥∥∥∥
X

where X∗ denotes the dual space of X, and BX∗ denotes the unit ball of the Banach space X∗.
The best constant C for which the inequality always holds is denoted by πr(T ).

The most natural example is the operator f ∈ C(K) 7−→ f ∈ Lr(K, ν) where ν is a finite
positive measure on the compact K. Pietsch’s theorem expresses that it is the generic example
of r-summing operators.

We shall write Πr(X,Y) for the set of all r-summing operators from X into Y . If r = 1,
we say that Π1(X,Y) is the class of absolutely summing operators. The r-summing norm of
T , denoted by πr(T ), is the least suitable constant C ≥ 0. The class of r-summing operators
forms an operator ideal (for instance see [5] for more details).

This notion was studied for the first time by Grothendieck in the 50’s. One of his famous
result around this topic is that every continuous linear operator from `1 to `2 is absolutely
summing. However, it was only in late 60’s that this property received a new attention with
many fruitful applications in functional analysis (operator theory and geometry of Banach
spaces): for instance, Pietsch established the basic properties of this class of operators (in
particular the famous factorization theorem which plays a key role in this paper) and studied
these operators on Lebesgue type spaces, whereas Lindenstrauss and Pełczyński [15] en-
lighted how these properties are helpful in Banach space geometry. There are many other
deep works in the 70’s and after (see the monographs [5], [14] or [25] for some aspects). The
monograph [21] enlights more particularly this topic on Banach spaces of analytic functions.
Let us mention that some other ideals of operators have close connections with absolutely
summing operators such as order bounded operators, r-integral operators, r-nuclear opera-
tors (see [5] or [25] for examples).

Recently, in [13], Lefèvre and Rodrı́guez-Piazza gave a complete characterization of r-
summing Carleson embeddings on the Hardy spaces Hp when p > 1 (for every r ≥ 1). We
consider here the absolutely summing Carleson embedding viewed on Bergman spaces. In
other words, we aim to characterize the measures µ such that the natural embedding map Jµ
from the Bergman spacesAp to Lp(µ) is r-summing:

Problem (P): let p > 1, r ≥ 1 and µ be a positive finite measure on D. Which condition on
µ ensures that Jµ is an r-summing operator?

We solve this problem for every p > 1 and every r ≥ 1.
Let us mention that Domenig [6] (see too his PhD thesis [7]) characterized r-summing

composition operators. Our approach is different from his point of view, which seems to
rely rather strongly on the fact that he works with a pullback measure and the underlying
analytic properties of the symbol. Nevertheless, a common feature of the two methods is that
(in some cases only in our paper) a link is build with some specific diagonal operators on
sequence spaces `p. This idea is not surprising, having in mind that the Bergman spaceAp is
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isomorphic to `p, but we do not use explicitly this isomorphism. Still, our approach is highly
inspired by [13], though some specific difficulties appear, so the proofs require also some
novelties. For instance, in passing, we prove a new connection between the boundedness of
the Berezin transform viewed from Lp(D, A) to Lq(D, µ), and the boundedness of the Carleson
embedding from Ap to Lq(D, µ). This result is an ingredient required for the success of our
approach. Strangely we did not find this result in the literature. On the other hand, we make
a heavy use of hyperbolic disks and tools whereas they do not appear in [13].

Concretely, let us describe the organization of the paper. The first section is an introduction
to the framework of this paper. In the second section, we give basic properties of r-summing
operators and remind some facts on hyperbolic geometry. We state the main results of the
paper in the third section and give some direct applications to weighted composition opera-
tors. In the fourth section, we get some preliminary general results, mainly constructing some
links between the Carleson embedding and some multipliers on classical sequence spaces. In
Section 5, we focus on the Berezin transform and show a new link with the Carleson embed-
ding. The case 1 < p ≤ 2 is solved in Section 6. In Sections 7, 8 and 9, we solve the case
p ≥ 2: actually we split this case into three cases r ≤ p′, p′ ≤ r ≤ p and r ≥ p, where as
usual, p′ is the conjugate exponent of p: 1/p + 1/p′ = 1. In Section 10, we state the cor-
responding results in the more general framework of weighted Bergman spaces Ap

α. In the
last section, we give several applications, in particular an application to some composition
operators between weak (resp. strong) vector valued Bergman spaces.

2. DEFINITIONS, NOTATIONS AND REMINDERS.

2.1. Absolutely summing operators. We already gave the definition of absolutely summing
operators in Definition 1.1. It is simple to check that Πr(X,Y) is included in B(X,Y), the space
of all continuous linear operators from X into Y, and that πr defines a norm on Πr(X,Y) with

‖u‖ ≤ πr(u) for all u ∈ Πr(X,Y).

It is well known that Πr(X,Y) is a Banach space under the norm πr .

The following results are well known properties about r-summing operators and will be
used in this paper, see for example [5]. We give them here for sake of completeness

1) For any Banach spaces X and Y, T : X → Y is r-summing (r ≥ 1) if and only if there is
a constant C > 0 such that for any measurable space (Ω,Σ, ν) and any continuous function
F : Ω→ X, we have ( ∫

Ω

‖T ◦ F‖rdν
)1/r

≤ C sup
s∈BX∗

( ∫
Ω

|s(F)|rdν
)1/r

.

Moreover, the best C is πr(T ) .

2) Πr(X,Y) is an operator ideal between Banach spaces: for any T ∈ Πr(X,Y), and for
any two Banach spaces X0, Y0 such that S ∈ B(X0, X) and U ∈ B(Y,Y0), we have UTS ∈
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Πr(X0,Y0) with
πr(UTS ) ≤ ‖U‖ πr(T ) ‖S ‖.

3) The class of spaces Πr(X,Y) where r ≥ 1 is monotone. That is, for any 1 ≤ r ≤ s < ∞, we
have Πr(X,Y) ⊂ Πs(X,Y) and the relationship πs(T ) ≤ πr(T ), for any T ∈ Πr(X,Y).

4) Cotype property: we say that a Banach space X has cotype q ≥ 2, if there is a constant
C ≥ 0 such that no matter how we select finitely many vectors x1, x2, . . . , xn from X, we have( n∑

k=1

‖xk‖
q
)1/q

≤ C
( ∫ 1

0

∥∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥∥2

dt
)1/2

,

where (rk) is a Rademacher sequence.

For any measure space (Ω,Σ, µ), the Lebesgue type space Lq(Ω, µ) has cotype max{q, 2}.
Then for any Banach spaces X and Y , we have the following properties:

1) If X has cotype 2, then Π2(X,Y) = Π1(X,Y).
2) If X has cotype 2 < q < ∞, then Π1(X,Y) = Πr(X,Y) for all 1 < r < q′.
3) If X and Y both have cotype 2, then Πr(X,Y) = Π1(X,Y) for every 1 < r < ∞ .

The following lemmas about absolutely summing operators are reformulation or direct
consequences of Propositions 5.5 and 5.18, and Theorem 2.21 in [5] respectively.

Lemma 2.1. Let X be a Banach space and µ be any Borel measure on D.
Let T : X → Lp(µ) , 1 ≤ p < ∞, be an order bounded operator. Then T is p-summing with

πp(T ) ≤
∥∥∥ sup

f∈BX

|T ( f )|
∥∥∥ .

Lemma 2.2. Let X be a Banach space and H be a Hilbert space. We assume that the operator
T : X → H is such that its adjoint T ∗ : H → X∗ is r-summing for some r ≥ 1. Then T is
1-summing with

π1(T ) . πr(T ∗).

2.2. Carleson embedding, Bergman metric and Luecking rectangles.

Definition 2.3. Suppose that µ is a finite positive Borel measure on the unit disk D. Jµ is the
identity operator fromAp into Lp(µ)

Jµ :Ap −→ Lp(µ)
f 7−→ f

which is formally defined until now, but we recall below that it is defined precisely when µ is
a 2-Carleson measure.

For simplicity, we shall use the terminology Carleson measure instead of “2-Carleson” or
“Ap-Carleson” measure. It may happen that we consider Jµ acting from Ap1 to Lp2(µ) with
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p1, p2 different from p, but keeping the same notation Jµ for simplicity. Nevertheless, we
shall be careful to avoid ambiguity.

It is well known that (cf. [26], Theorem 7.4), Jµ is bounded if and only if

sup
{
µ(D(a, r))
(1 − |a|2)2 : a ∈ D

}
< +∞ , (2.1)

where D(a, r) (r > 0) denotes the Bergman disk defined by

D(a, r) = {z ∈ D : β(z, a) < r}.

Let us recall that the hyperbolic metric (Bergman metric) on the unit disk D is defined by

β(z,w) =
1
2

log
1 + ρ(z,w)
1 − ρ(z,w)

and ρ(z,w) denotes the pseudo-hyperbolic, defined by

ρ(z,w) =
|z − w|
|1 − zw|

·

Recall that Jµ is compact if and only if µ is a vanishing Carleson measure (in the hyperbolic
sense), that is,

lim
|a|→1−

µ(D(a, r))
(1 − |a|2)2 = 0 .

In view of these results on Carleson embeddings, it is clear that the hyperbolic disks play
a crucial role in this framework. Let us go further in this direction.

Definition 2.4. A sequence {ak} in D is called a t-lattice (t > 0) in the Bergman metric if the
following conditions are satisfied:

1) The unit disk is covered by the Bergman metric disks D(ak, t).
2) β(ai, a j) ≥ t/2 for all i and j with i , j .

There exists a positive constant N with the following property: If 0 < t < 1 and {ak} is a
t-lattice in the Bergman metric, then every point z ∈ D belongs to at most N disks D(ak, t) .

The existence of t-lattices in the Bergman metric is ensured by Lemma 4.8 in [26] :

Lemma 2.5. For any t > 0 there exists a t-lattice {ak} in the Bergman metric.

Given a t-lattice, the sequence Dk given by the following Lemma 2.6 plays a crucial role
in the sequel.

Lemma 2.6. [26, Lemma 4.10] Suppose 0 < t < 1 and {ak} is a t-lattice in the Bergman
metric. For each k, there exists a measurable setDk with the following properties:

1) D(ak, t/4) ⊂ Dk ⊂ D(ak, t) for all k ≥ 1 .
2)D j

⋂
Di = ∅ for i , j .

3)D1
⋃
D2

⋃
· · · = D .



7

Observe that, for any z ∈ Dk there are several equivalence relations:

|1 − z̄ak| ≈ 1 − |z|2 ≈ 1 − |ak|
2

and
|Dk| ≈ (1 − |ak|

2)2

where the underlying constants depend only on t (see consequences of Proposition 4.5 in
[26]).
These observations will be used repeatedly throughout this paper .

We also recall the definition of Luecking rectangles: let

Γn =
{
z ∈ D | 1 −

1
2n ≤ |z| < 1 −

1
2n+1

}
,

where n = 0, 1, 2, · · · . Then each Γn is divided into 2n similar pieces Rn, j, 0 ≤ j < 2n, that we
call Luecking rectangles (or sometimes in the literature Luecking windows):

Rn, j =
{
z ∈ D | 1 −

1
2n ≤ |z| < 1 −

1
2n+1 ,

2π j
2n < arg(z) ≤

2π( j + 1)
2n

}
.

So clearly the family of the Rn, j with n ≥ 0 and 0 ≤ j < 2n, forms a disjoint partition of D.

We shall use the following notations:
• Dz instead of D(z, r0) for some fixed 0 < r0 < 1 and Lp instead of Lp(A).
• BX denotes the unit ball of a Banach space X and B+

X the positive element in the unit
ball of X, when X is a Banach lattice.
• Cp will denote a positive constant depending only on the parameter p, but it may

change along the paper.
• The notation A . B (and A & B) for non negative quantities A and B means that there

is a constant C such that A ≤ CB (and A ≥ CB, respectively). Finally, A ≈ B means
that both A . B and B . A hold.
• We are going to often use |E| to denote the area of any measurable set E in D with

respect to the normalized area measure on D.
• We denote the cardinal of finite E by #(E).

3. THE MAIN RESULTS

In this section, we state our main results, first of all the characterization of absolutely
summing Carleson embeddings on classical Bergman spaces.

Main Theorem:
Let 0 < t < 1/4 and µ be a Carleson measure on D. For any t-lattice {ak} and the relevant

setsDk as defined in Lemma 2.6, we have the following statements:

(1) Let 1 < p ≤ 2 and r ≥ 1. Then Jµ : Ap → Lp(µ) is r-summing if and only if∫
D

(
µ(Dz)

) 2
p

(1 − |z|2)
4
p +2

dA(z) < ∞ .
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Moreover, we have

π2(Jµ) ≈
( ∞∑

k=1

(
µ(Dk)
|Dk|

)2/p)1/2

≈

(∑
n, j

(
4nµ(Rn, j)

)2/p
)1/2

≈

( ∫
D

(
µ(Dz)

) 2
p

(1 − |z|2)
4
p +2

dA(z)
) 1

2

≈

( ∫
D

( ∫
D

1
|1 − w̄z|p+2 dµ(w)

) 2
p

dA(z)
) 1

2

.

(3.1)

(2) Let p ≥ 2 and 1 ≤ r ≤ p′. Then Jµ : Ap → Lp(µ) is r-summing if and only if∫
D

(
µ(Dz)

) p′
p

(1 − |z|2)2p′ dA(z) < ∞.

Moreover, we have

π1(Jµ) ≈ πr(Jµ) ≈
( ∞∑

k=1

(
µ(Dk)
|Dk|

)p′/p)1/p′

≈

(∑
n, j

(
4nµ(Rn, j)

)p′/p
)1/p′

≈

( ∫
D

(
µ(Dz)

) p′
p

(1 − |z|2)2p′ dA(z)
)1/p′

≈

( ∫
D

( ∫
D

1
|1 − w̄z|2p dµ(w)

) p′
p

dA(z)
) 1

p′

.

(3.2)
(3) Let p ≥ 2 and p′ ≤ r ≤ p. Then Jµ : Ap → Lp(µ) is r-summing if and only if∫

D

(
µ(Dz)

) r
p

(1 − |z|2)
2r
p +2

dA(z) < ∞.

Moreover, we have

πr(Jµ) ≈
( ∞∑

k=1

(
µ(Dk)
|Dk|

)r/p)1/r

≈

(∑
n, j

(
4nµ(Rn, j)

)r/p
)1/r

≈

( ∫
D

(
µ(Dz)

) r
p

(1 − |z|2)
2r
p +2

dA(z)
)1/r

≈

( ∫
D

( ∫
D

1

|1 − w̄z|2+
2p
r

dµ(w)
) r

p

dA(z)
) 1

r

.

(3.3)

(4) Let p ≥ 2 and r ≥ p. Then Jµ : Ap → Lp(µ) is r-summing if and only if∫
D

1
(1 − |z|2)2 dµ(z) < ∞ .

Moreover, we have

πr(Jµ) ≈ πp(Jµ) ≈
( ∞∑

k=1

µ(Dk)
|Dk|

)1/p

≈

(∑
n

4nµ(Γn)
)1/p

≈

( ∫
D

1
(1 − |z|2)2 dµ(z)

)1/p (3.4)

Let us mention several remarks.
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(R1) We shall prove below (see Prop.4.1) that, for any α > 0,
∞∑

k=1

(
µ(Dk)
|Dk|

)α
≈

∑
n≥0

∑
0≤ j<2n

(µ(Rn, j)
|Rn, j|

)α
and in Prop.4.2 the equivalence of the estimates with integrals, explaining why we
obtain equivalent estimates of the πr-norm in the preceding theorem.

(R2) The case p = 2 reduces to the characterization of Hilbert-Schmidt operator which is
easy. More precisely, Jµ is r-summing on the Hilbert space A2 for some r ≥ 1 if
and only if Jµ is a Hilbert-Schmidt operator. Indeed, let {en = (

√
n + 1)zn, n ∈ N} an

orthonormal basis ofA2, then we have

‖Jµ‖HS =

(∑
n≥1

‖Jµ(en)‖2L2(µ)

)1/2

=

(∑
n≥1

∫
D

(n + 1)|z|2ndµ(z)
)1/2

=

( ∫
D

dµ(z)
(1 − |z|2)2

)1/2

.

(R3) The characterizations in the main theorem actually do not depend on the choice of t and
r0 (as soon as 0 < t < 1/4 and 0 < r0 < 1).

Characterization of absolutely summing weighted composition operators:
As an application of our main results, we can characterize r-summing weighted compo-

sition operators for any r ≥ 1 and p > 1. Let uCϕ be the weighted composition operator
(formally) defined by

(uCϕ)( f ) = u · ( f ◦ ϕ),
where u : D→ C is an analytic function and ϕ : D→ D is an analytic map. When u = 1, we
simply write Cϕ, which is the composition operator with symbol ϕ.

We consider the measure dµ = (|u|pdA)ϕ and we have:∥∥∥(uCϕ) f
∥∥∥
Ap =

( ∫
D

| f ◦ ϕ|p|u|p dA
)1/p

= ‖ f ‖Lp(µ) .

Therefore, uCϕ is r-summing if and only if Jµ is r-summing, hence it suffices to apply the
main theorem to the measure µ.

Theorem 3.1. Let ϕ : D → D be an analytic map and u : D → C be an analytic function.
Let uCϕ be the weighted composition operator viewed from Ap to Ap and dµ = (|u|pdA)ϕ,
then uCϕ is r-summing if and only if the corresponding πr(uCϕ) norm is finite, where

(1) When 1 < p ≤ 2 , for any r ≥ 1,

πr(uCϕ) ≈ π2(uCϕ) ≈
(∑

n, j

(
4nµ(Rn, j)

)2/p
)1/2

≈

( ∫
D

( ∫
D

|u(w)|p

|1 − z̄ϕ(w)|p+2 dA(w)
) 2

p

dA(z)
) 1

2

.
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(2) When p ≥ 2 , for 1 ≤ r ≤ p′,

πr(uCϕ) ≈ π1(uCϕ) ≈
(∑

n, j

(
4nµ(Rn, j)

)p′/p
)1/p′

≈

( ∫
D

( ∫
D

|u(w)|p

|1 − z̄ϕ(w)|2p dA(w)
) p′

p

dA(z)
) 1

p′

.

(3) When p ≥ 2 , for p′ ≤ r ≤ p,

πr(uCϕ) ≈
(∑

n, j

(
4nµ(Rn, j)

)r/p
)1/r

≈

( ∫
D

( ∫
D

|u(w)|p

|1 − z̄ϕ(w)|2+
2p
r

dA(w)
) r

p

dA(z)
) 1

r

.

(4) When p ≥ 2 , for p ≤ r,

πr(uCϕ) ≈
(∑

n, j

4nµ(Rn, j)
)1/p

≈

( ∫
D

|u|p

(1 − |ϕ|2)2 dA
)1/p

.

As an immediate corollary we get a characterization for composition operators, recovering
the results of Domenig (which were expressed in terms of Luecking windows in [6],[7]).

Corollary 3.2. Let ϕ : D→ D be an analytic map. OnAp, the composition operator Cϕ with
symbol ϕ is r-summing if and only if the corresponding πr(Cϕ) norm is finite, where

(1) When 1 < p ≤ 2 , for any r ≥ 1,

πr(Cϕ) ≈ π2(Cϕ) ≈
(∑

n, j

(
4nAϕ(Rn, j)

)2/p
)1/2

≈

( ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z)
) 1

2

.

(2) When p ≥ 2 , for 1 ≤ r ≤ p′,

πr(Cϕ) ≈ π1(Cϕ) ≈
(∑

n, j

(
4nAϕ(Rn, j)

)p′/p
)1/p′

≈

( ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z)
) 1

2

(3) When p ≥ 2 , for p′ ≤ r ≤ p,

πr(Cϕ) ≈
(∑

n, j

(
4nAϕ(Rn, j)

)r/p
)1/r( ∫

D

( ∫
D

1

|1 − z̄ϕ(w)|2+
2p
r

dA(w)
) r

p

dA(z)
) 1

r

.

(4) When p ≥ 2 , for p ≤ r,

πr(Cϕ) ≈
( ∫
D

dA
(1 − |ϕ|2)2

)1/p

.

Another consequence of the main theorem is the following corollary:

Corollary 3.3. Let p > 1, for any two Carleson measures µ and ν, if µ(Rn, j) ≈ ν(Rn, j) for all
(n, j) , then we have πr(Jµ) ≈ πr(Jν).

Of course, there is a similar statement in terms of the family (Dk).
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4. TOOLS AND PRELIMINARY RESULTS

In this section, we present several ingredients employed in the solution of problem (P).
We begin with some estimates useful to prove the equivalence of the different viewpoints

(hyperbolic disks, Luecking windows, or integrals) in our characterizations in the main theo-
rem.

First of all we prove the following proposition proving the equivalent formulation either
with help of Luecking rectangles or the family (Dk)k.

Proposition 4.1. Let a, α > 0. Then, we have
∞∑

k=1

(
µ(Dk)

)α
|Dk|

a ≈
∑
n≥0

∑
0≤ j<2n

(
µ(Rn, j)

)α
|Rn, j|

a .

Proof. Let us mention that Rn, j can be covered by a uniform finite number of Dk (actually,
this is stated without proof in pages 339 and 344 in [18] and we shall give here an explanation
but we postpone it until the end of our proof): there exists N > 0 (not depending on n and j)
such that

Rn, j ⊂
⋃

k∈Jn, j

Dk (4.1)

where Jn, j = {k ≥ 1; Dk ∩ Rn, j , ∅} and #(Jn, j) ≤ N.
In the same way, Dk can be covered by a (uniform) finite number of Rn, j : there exists

N′ > 0 (not depending on k) such that

Dk ⊂
⋃

(n, j)∈Ek

Rn, j (4.2)

where Ek = {(n, j) ; Dk ∩ Rn, j , ∅} and #(Ek) ≤ N′.
We claim that when k ∈ Jn, j, we have |Rn, j| ≈ |Dk|. Indeed, by definition, for any k ∈ Jn, j,

there exists some z ∈ Rn, j∩Dk , ∅. But since z ∈ Rn, j, we have 1− |z| ≈ 2−n. Therefore, since
z ∈ Dk as well, we obtain that 2−n ≈ 1 − |z| ≈ 1 − |ak| . It is well known that |Dk| ≈ (1 − |ak|)2,
hence we get that

|Rn, j| ≈ 4−n ≈ |Dk| . (4.3)
Since #(Jn, j) ≤ N for any n ≥ 0 and for any j ∈ {0, 1, ..., 2n − 1}, we have from (4.1) the
following estimate:(

µ(Rn, j)
)α

=

( ∑
k∈Jn, j

µ(Dk ∩ Rn, j)
)α
≤

( ∑
k∈Jn, j

µ(Dk)
)α
.

∑
k∈Jn, j

(
µ(Dk)

)α
.

We get, using also (4.3) and (4.2),∑
n≥0

∑
0≤ j<2n

(
µ(Rn, j)

)α
|Rn, j|

a .
∑
n≥0

∑
0≤ j<2n

∑
k∈Jn, j

(
µ(Dk)

)α
|Dk|

a

=

∞∑
k=1

∑
(n, j)∈Ek

(
µ(Dk)

)α
|Dk|

a =

∞∑
k=1

#(Ek)
(
µ(Dk)

)α
|Dk|

a

.
∞∑

k=1

(
µ(Dk)

)α
|Dk|

a ·
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By symmetry of the properties if the two families of sets (the Rn, j’s and the Dk’s), the
reverse inequality is proved in the same way.

Now let us justify (4.2) and (4.1). Of course, the relation Rn, j ⊂
⋃

k∈Jn, j

Dk is obvious and the

real interesting fact is that Jn, j is uniformly finite. Let us fix an integer (n, j) with 0 ≤ j < 2n

and k ∈ Jn, j. there exists w ∈ Dk ∩ Rn, j , ∅, so

1 −
∣∣∣ak

∣∣∣ ≈ 1 −
∣∣∣w∣∣∣ ≈ 2−n .

On the other hand, since theDk’s are disjoint, we have
∑
k∈Jn, j

∣∣∣Dk

∣∣∣ =
∣∣∣∣ ⋃

k∈Jn, j

Dk

∣∣∣∣.
But

⋃
k∈Jn, j

Dk ⊂ D
(
zn, j, λ2−n) where zn, j is the “center” of Rn, j and λ > 0 does not depend on

n. Indeed every z belonging to someDl with l ∈ Jn, j satisfies

d
(
zn, j, z

)
≤ d

(
zn, j,w

)
+ d

(
w, z

)
. 2−n + 1 −

∣∣∣al

∣∣∣ . 2−n

where w ∈ Dl ∩ Rn, j.
We obtain ∑

k∈Jn, j

4−n ≈
∑
k∈Jn, j

∣∣∣Dk

∣∣∣ =
∣∣∣∣ ⋃

k∈Jn, j

Dk

∣∣∣∣ . ∣∣∣∣D(
zn, j, λ2−n)∣∣∣∣ ≈ 4−n .

Therefore Jn, j is finite and there exists N (not depending on (n, j)) such that

4−n #
(
Jn, j

)
≤ N4−n

which proves (4.1).
Clearly (4.2) can be proved in the same way. �

We continue with some estimates comparing integrals.

Proposition 4.2. Let 0 < t < 1/4, and the set {D j} as defined in Lemma 2.6. Let µ be a
positive finite measure on the unit disk D, η, γ > 0. Then we have

∫
D

( ∫
D(z,2t)

1
(1 − |w|2)η/γ

dµ(w)
)γ

dA(z) ≈
∫
D

µ(D(z, 2t))γ

(1 − |z|2)η
dA(z) ≈

∞∑
j=1

µ(D j)γ

|D j|
η/2−1 (4.4)

Moreover when η > max(γ, 2) then we have∫
D

( ∫
D(z,2t)

1
(1 − |w|2)η/γ

dµ(w)
)γ

dA(z) ≈
∫
D

( ∫
D

1
|1 − w̄z|η/γ

dµ(w)
)γ

dA(z) (4.5)

with constants depending only on t, η and γ.

In particular, when γ = 1 and η = 4 we have:∫
D

1
(1 − |z|2)2 dµ(z) ≈

∞∑
j=1

µ(D j)
|D j|

·
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Proof. Let us begin with the particular case. Since the family (D j) j≥1 forms a partition of D
and (1 − |z|2)2 ≈ |D j| whenever z ∈ D j, we get∫

D

1
(1 − |z|2)2 dµ(z) =

∑
j≥1

∫
D j

dµ(z)
(1 − |z|2)2 ≈

∑
j≥1

µ(D j)
|D j|

.

Obviously the first quantity is equivalent to the second one because

1 − |z|2 ≈ 1 − |w|2, for w ∈ D(z, 2t) .

Now, again since (D j) j≥1 forms a partition of D, D j ⊂ D(z, 2t) and (1 − |z|2)2 ≈ |D j|

whenever z ∈ D j, we get∫
D

µ(D(z, 2t))γ

(1 − |z|2)η
dA(z) =

∑
j≥1

∫
D j

µ(D(z, 2t))γ

(1 − |z|2)η
dA(z)

&
∑
j≥1

∫
D j

µ(D j)γ

|D j|
η/2 dA(z)

=
∑
j≥1

µ(D j)γ

|D j|
η/2 |D j|

=

∞∑
j=1

µ(D j)γ

|D j|
η/2−1 ·

Hence, it remains to prove the reverse inequality: for every z ∈ D, we consider the set
Iz =

{
j; D(z, 2t) ∩D j , ∅

}
. We claim that the cardinal

|Iz| ≤ C , (4.6)

where the constant C depends only on t. Indeed, let j1, ..., jn distincts such that D(z, 2t)∩D ji ,
∅. Then there exists wi ∈ D(z, 2t) such that wi ∈ D ji ⊂ D(a ji , t), with 1 ≤ i ≤ n. Take
w ∈

⋃
1≤i≤n D(a ji , t/4), then w belongs to at least one D(a ji , t/4); and we have

β(w, z) ≤ β(w, a ji) + β(a ji ,wi) + β(wi, z) < t/4 + t + 2t < 4t.

Hence, w ∈ D(z, 4t) and we get
n⋃

i=1

D(a ji , t/4) ⊂ D(z, 4t) . Therefore, since the disks are

disjoint, we have
n∑

i=1

|D(a ji , t/4)| ≤ |D(z, 4t)| .

In other words, we have
n∑

i=1

(1 − |a ji |
2)2 ≤ (1 − |z|2)2 and since 1 − |a ji |

2 ≈ 1 − |z|2 when z ∈ D

satisfies D(z, 2t) ∩ D ji , ∅, we obtain that n ≤ C, where the constant C depends only on t,
which is our claim (4.6).

Since the family (D j) j≥1 forms a partition of D, we have

µ(D(z, 2t)) =
∑
j∈Iz

µ(D j ∩ D(z, 2t)). (4.7)
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Hence, from (4.6) and (4.7), we get

µ(D(z, 2t))γ .
∑
j∈Iz

µ(D j)γ,

where the underlying constant depends only on t and γ. For every z ∈ D such that j ∈ Iz, we
have (1 − |z|2) ≈ (1 − |a j|

2) ≈ |D j|
1/2. We obtain∫

D

µ(D(z, 2t))γ

(1 − |z|2)η
dA(z) .

∑
j

∫
D

µ(D j)γ

(1 − |z|2)η
1{ j∈Iz} dA(z)

.
∑

j

µ(D j)γ

|D j|
η/2 |

{
z ∈ D; D(z, 2t) ∩D j , ∅

}
|

where 1{ j∈Iz} = 1 when j ∈ Iz and 0 else.
Observe that

|
{
z ∈ D; D(z, 2t) ∩D j , ∅

}
| ≤ |D(a j, 3t)| ≈ (1 − |a j|

2)2 ≈ |D j| .

Finally, ∫
D

µ(D(z, 2t))γ

(1 − |z|2)η
dA(z) .

∞∑
j=1

µ(D j)γ

|D j|
η/2−1 ·

This ends the proof of (4.4).
Now let us focus on (4.5).
First assume that γ > 1. If µ is the Dirac at point 0 then it is easily checked, so that we

may assume that µ({0}) = 0. The argument follows almost directly from a result stated in
[19, Th.3(iii)] (see especially (c),(d),(e); see [20, Th.2] too): for any ν positive measure on
D, with ν({0}) = 0, and q > p > 1, we have for λ > 1 (we must mention that actually the
hypothesis in [19] is “for λ large enough” but following carefully the proof, it appears that
λ > 1 is sufficient when we restrict to the case q > p > 1, and not every q > p > 0).

‖Ψ‖Lp/(p−q) ≈ ‖Φ‖Lp/(p−q) ≈ ‖Υ‖Lp/(p−q) . (4.8)

where

Ψ(z) :=
∫
D

(1 − |w|)λ−2

|1 − w̄z|λ
dν(w) Φ(z) :=

ν(Dz)
(1 − |z|2)2 and Υ(z) :=

∫
Σz

dν(w)
(1 − |w|2)2 .

and Σz =
{
ξ ∈ D| arg(z) − arg(ξ)| < 1

2 (1 − |ξ|
|z| )

}
is the non-tangential approach region.

In other words, we have∫
D

(∫
D

(1 − |w|)λ−2

|1 − w̄z|λ
dν(w)

)p/(p−q)

dA(z) ≈
∫
D

(∫
Dz

1
(1 − |w|)2 dν(w)

)p/(p−q)

dA(z)

≈

∫
D

(∫
Σz

1
(1 − |w|)2 dν(w)

)p/(p−q)

dA(z)
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Now we apply this with the measure dν = (1 − |w|2)2− ηγ dµ, q = 2 and p =
2γ
γ − 1

> 2. We

also choose λ =
η

γ
> 1 and we get the conclusion once we point out again that 1− |w| ≈ 1− |z|

when w ∈ Dz.

Finally we assume that γ ≤ 1 and that
∑
(n, j)

2(η−2)n(µ(Rn, j)
)γ is finite. With the preceding

proposition and the first part of our proof, it is equivalent to∫
D

( ∫
D(z,2t)

1
(1 − |w|2)η/γ

dµ(w)
)γ

dA(z) < +∞

Of course there an obvious inequality since |1 − w̄z| . 1 − |z| ≈ 1 − |w|2 when w ∈ D(z, 2t).
On the other hand, we have∫

D

( ∫
D

1
|1 − w̄z|η/γ

dµ(w)
)γ

dA(z) =
∑
(m,k)

∫
Rm,k

(∑
(n, j)

∫
Rn, j

1
|1 − w̄z|η/γ

dµ(w)
)γ

dA(z)

which is lower than∑
(m,k)

∑
(n, j)

4−m(
µ(Rn, j)

)γ sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
. (4.9)

since ‖ · ‖`1 ≤ ‖ · ‖`γ (recall that γ ≤ 1). On the other hand, we observe that, for w , z,
1

|1 − w̄z|
≤

1
|w − z|

hence when there is no contact between Rm,k and Rn, j, then z ∈ Rm,k and w ∈ Rn, j are different

and
1

|1 − w̄z|
≤ d(Rm,k,Rn, j)−1.

This explains why we are going to split our argument into several cases. More precisely,
we consider the set V(n, j) of indexes (m, k) such that Rm,k ∩ Rn, j , ∅. It is a (uniformly) finite
set (cardinality less than 9). Moreover (n, j) belongs to V(m,k) if and only if (m, k) belongs to
V(n, j). We get an upper estimate for these terms:∑

(n, j)

∑
(m,k)∈V(n, j)

4−m(
µ(Rn, j)

)γ2nη .
∑
(n, j)

4−n(µ(Rn, j)
)γ2nη < ∞ (4.10)

using the fact that m ≈ n when (m, k) ∈ V(n, j) and that #V(n, j) . 1.
When (n, j) does not belong to V(m,k) then d(Rm,k,Rn, j) can be under estimated by 2−n when

m > n (looking the radius), but also by |k2−m−( j+1)2−n| or |(k+1)2−m− j2−n| (up to a constant)
according on which side the rectangles are from each other, when we focus on the argument.
Indeed, we have 2 sin(θ/2) ≈ θ, moreover the radius 1−2−max(n,m) may be considered as close
to 1 since we focus on what happens near the boundary.

Now, we focus on an upper estimate for the quantity∑
(m,k)

∑
(n, j)<V(m,k)

n≥m

4−m(
µ(Rn, j)

)γ sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
.

∑
(n, j)

∑
l≥1
n≥m

4−m(
µ(Rn, j)

)γ( l
2m

)−η
.
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Indeed d(Rm,k,Rn, j) is larger (up to a constant) than the difference of angles between the
borders of the corresponding Luecking rectangles and by symmetry, the value of these dif-
ferences runs over {2π(d 2−m − 2−n) | 2 ≤ d ≤ 2m−1, n ≥ m} (the values are taken at most two
times by symmetry)). We get∑

(m,k)

∑
(n, j)<V(m,k)

n≥m

4−m(
µ(Rn, j)

)γ sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
≤

∑
(n, j)

4−n(µ(Rn, j)
)γ2nη (4.11)

since the series
∑
l≥2

1
lη

converges and
∑
m≤n

4−m2mη . 4−n2nη (keep in mind η > 2).

Finally we focus on∑
(m,k)

∑
(n, j)<V(m,k)

n<m

4−m(
µ(Rn, j)

)γ sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
which is the same than

∑
(n, j)

(
µ(Rn, j)

)γ ∑
(m,k)<V(n, j)

m>n

4−m sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
.

We split the set of the values of “k” such that (m, k) < V(n, j) into two subsets according that
Rm,k touches the sector {z ∈ D| arg(z) ∈ [2π j2−n, 2π( j + 1)2−n]} or not. We denote S m,n, j the
set of values of k such that Rm,k touches this sector: it has a cardinality 2m−n + 2 so, taking
into account the radius, the sum

4−m
∑

k∈S m,n, j

sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
is lower (up to a constant) than

4−m
∑

k∈S m,n, j

( 1
2−n − 2−m

)−η
. 4−m2nη2m−n .

Summing over m > n, we get∑
m>n

k∈S m,n, j

4−m sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
. 4−n2nη .

Taking into account the argument (like in (4.11)) and the symmetry if the situation, the
sum

4−m
∑

k<S m,n, j

sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
is lower (up to a constant) than

4−m
∑

d≥2m−n

( 1
d2−m

)η
. 4−m 2mη

2(m−n)(η−1) = 2−m2n(η−1).
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Summing over m > n, we get∑
m>n

k<S m,n, j

4−m sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
. 4−n2nη .

Gathering the previous estimates, we obtain∑
(m,k)

∑
(n, j)<V(m,k)

n<m

4−m(
µ(Rn, j)

)γ sup
{

1
|1 − w̄z|η

∣∣∣ z ∈ Rm,k,w ∈ Rn, j

}
.

∑
(n, j)

(
µ(Rn, j)

)γ4−n2nη (4.12)

which is the expected result in this case.
The inequalities (4.10), (4.11) and (4.12) together gives the final conclusion. �

Now, we focus on preliminary results about the membership of various ideals of operators.
The following proposition belongs to the folklore. We give a proof for sake of complete-

ness.

Proposition 4.3. Let µ be a Carleson measure on D and p ≥ 1. Then Jµ : Ap → Lp(µ) is
order bounded if and only if ∫

D

1
(1 − |z|2)2 dµ(z) < ∞ .

Proof. Jµ is order bounded if and only if there exists some h ∈ Lp(µ) such that for every
f ∈ BAp , we have | f | ≤ h a.e on D. SinceAp is separable, it follows that Jµ is order bounded
if and only if ∫

D

sup
f∈Ap

‖ f ‖≤1

| f (z)|p dµ(z) < ∞ ,

which is equivalent to ∫
D

‖δz‖
p dµ(z) < ∞ ,

where δz is the point evaluation at z ∈ D, viewed as a functional onAp. It is well known that
‖δz‖ = 1/(1 − |z|2)2/p and this completes the proof. �

For p ≥ 1, the multiplier operator Mβ on `p is defined by

Mβ(en) = βnen , n = 1, 2, · · · , (4.13)

where {en}n≥1 denotes the canonical basis of `p and β = (β1, β2, . . .) is a sequence of complex
numbers.

Lemma 4.4. [13, Proposition 4.1] Define Mβ as in (4.13). Then with constants depending
only on p and r, we have:

1) For 1 ≤ p ≤ 2 and every r ≥ 1,

πr(Mβ) ≈ ‖β‖`2 (4.14)

2) For p ≥ 2 and r ≤ p′,
πr(Mβ) ≈ ‖β‖`p′ (4.15)
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3) For p ≥ 2 and p′ ≤ r ≤ p,
πr(Mβ) = ‖β‖`r (4.16)

4) For p ≥ 2 and r ≥ p,
πr(Mβ) ≈ ‖β‖`p . (4.17)

The following result is usually referred to as the atomic decomposition for Bergman spaces,
and a proof can be found in [26].

Lemma 4.5. [26, Theorem 4.33] Suppose p > 0 and

b > max
{

1,
1
p

}
+

1
p
· (4.18)

Then there exists a constant δ > 0 such that for any t-lattice {ak} in the Bergman metric,
where 0 < t < δ, the spaceAp consists exactly of functions of the form

f (z) =

∞∑
k=1

ck fk(z) , (4.19)

where

fk(z) =
(1 − |ak|

2)(pb−2)/p

(1 − ākz)b

and {ck} ∈ `
p. The series in (4.19) converges inAp-norm and there exist constants C1 and C2

(depending only on p and δ) such that

C1‖ f ‖p ≤ inf
{ ∞∑

k=1

|ck|
p : {ck} satisfies (4.19)

}
≤ C2‖ f ‖p .

We can see from this lemma that for any z ∈ Dk ,

| fk(z)|p =
(1 − |ak|

2)pb−2

|1 − ākz|pb ≈
1

(1 − |ak|
2)2 ≈ |Dk|

−1.

We will need the following important lemma.

Lemma 4.6. [26, Proposition 4.13 ] Suppose p > 0 and t > 0. Then there exists a positive
constant C such that

| f (z)|p ≤
C

(1 − |z|2)2

∫
D(z,t)
| f (w)|pdA(w)

for all f ∈ H(D) and every z ∈ D.

We can get the following proposition, where the { fk} are defined as in Lemma 4.5 :

Proposition 4.7. Let p ≥ 1 and µ be a Carleson measure onAp. We fix a t-lattice {ak}.
Define the operator ∆ from `p to Lp(µ) by

∆ : c = {ck} ∈ `
p 7−→ f =

∞∑
k=1

ck fk1Dk ∈ Lp(µ), (4.20)
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and let β be the sequence defined by:

β =

((
µ(D1)
|D1|

)1/p

,
(
µ(D2)
|D2|

)1/p

, . . . ,
(
µ(Dk)
|Dk|

)1/p

, . . .

)
.

Then ∆ is an r-summing operator if and only if Mβ is r-summing on `p.
Moreover,

πr(∆) ≈ πr(Mβ). (4.21)

Proof. Without loss of generality, we may (and do) assume that µ(Dk) , 0 for every k.
First, we consider the following composition:

`p Mβ

−→ `p Ψ
−→ Lp(µ) ,

where Ψ is defined by: for any c = {ck} ∈ `
p

Ψ(c)(z) =

∞∑
k=1

ck

(
|Dk|

µ(Dk)

)1/p

fk(z)1Dk(z) .

Now we prove that Ψ is bounded from `p to Lp(µ):

‖Ψ(c)‖Lp(µ) =

( ∫
D

∣∣∣∣∣ ∞∑
k=1

ck

(
|Dk|

µ(Dk)

)1/p

fk(z)1Dk(z)
∣∣∣∣∣p dµ(z)

)1/p

=

( ∞∑
k=1

∫
Dk

|ck|
p |Dk|

µ(Dk)
| fk(z)|p dµ(z)

)1/p

≈

( ∞∑
k=1

|ck|
p

)1/p

= ‖c‖`p ,

(4.22)

where we used in (4.22) the fact that | fk(z)|p ≈ |Dk|
−1 onDk . This implies that Ψ is a bounded

operator with norm ≈ 1. It turns out that,

∆ = Ψ ◦Mβ .

Furthermore, we have
πr(∆) . ‖Ψ‖ πr(Mβ) ≈ πr(Mβ) . (4.23)

Now, let Z = span{ fk1Dk}
Lp(µ)

which is a closed subspace of Lp(µ). Let us consider :

Ψ̃ : `p −→ Z

c 7−→
∞∑

k=1

ck

(
|Dk|

µ(Dk)

)1/p

fk1Dk .

Then Ψ̃ satisfies ‖Ψ̃(c)‖Z ≈ ‖c‖`p . Hence the range of Ψ̃ is closed, and contains the Ψ̃(ek)’s, a
fortiori the vector space spanned by the fk1Dk . We obtain that Im Ψ̃ is closed and contains
Z, therefore Ψ̃ is onto. It follows that Ψ̃ is an isomorphism.
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When f =
∑∞

k=1 ck fk1Dk , then

Ψ̃−1( f ) =
(
ck βk

)
k≥1

Hence,
Mβ = Ψ̃−1 ◦ ∆̃ ,

where ∆̃ is the map ∆ with range Z. It turns out that

πr(Mβ) . πr(∆̃) = πr(∆). (4.24)

With (4.23) and (4.24), we get the conclusion. �

Proposition 4.8. Let p ≥ 1 and µ be a Carleson measure on Ap. If Jµ : Ap → Lp(µ) is an
r-summing operator for some r ≥ 1, then Mβ is an r-summing operator on `p.

Proof. We assume that Jµ is an r-summing operator for some r ≥ 1. Let δ = (δ1, δ2, . . . , δk, . . .)
be a sequence of Rademacher variables on a probability measurable space (Ω,Σ,P) taking
their values in {±1}.

We define an operator Φω as follows: for every ω ∈ Ω,

Φω : `p −→ Ap

c 7−→
∑

k

ckδk(ω) fk,

where { fk} are defined as in Lemma 4.5. Using Lemma 4.5 again, Φω is bounded from `p to
Ap with norm less than 1.

Define for every ω ∈ Ω

Mω : f ∈ Lp(µ) 7−→
∞∑

k=1

δk(ω)1Dk f ∈ Lp(µ).

Then it is easy to check thatMω is an isometry, since it is actually a multiplier by the function
Mω where Mω(z) = δk(ω) when z ∈ Dk. We clearly have |Mω| = 1 everywhere since the
family (Dk)k forms a partition.

Now we can take the expectation E with respect to the measure P which satisfies E(δ jδk) =

δ jk , with δ jk is the Kronecker symbol. Then for each k, we have

E
(
Mω ◦ Jµ ◦ Φω

)
ek =

∫
Ω

(∑
j

δ j(ω)1D j

)
fk δk(ω) dP = 1Dk fk = ∆ek,

where ∆ is defined as in Proposition 4.7. It follows that

∆ = E
(
Mω ◦ Jµ ◦ Φω

)
.

Then the convexity and the properties of ideal norm imply that

πr(Mβ) ≈ πr(∆) ≤ πr(Jµ).

This proves the proposition. �
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5. BEREZIN TRANSFORM

The purpose of this section is to study the boundedness of the Berezin transform viewed
from Lp to Lq(µ) for p, q > 0 and µ a positive Borel measure. Let us start with the definition
of Berezin transform which is defined on D by

B f (z) =

∫
D

(1 − |z|2)2 f (w)
|1 − wz|4

dA(w), for z ∈ D,

where f ∈ L1. We refer the reader to [26] for more details about the Berezin transform prop-
erties.

In order to prove the main result in this section, we need various tools. We know that B f
is not subharmonic (in general) but the following proposition provides us with a very useful
estimate for our purpose.

Proposition 5.1. Let 0 < q < ∞ and r > 0. Then we have(
B f

)q(z) .
1

|D(z, r)|

∫
D(z,r)

(
B f

)q(w) dA(w)

for every measurable f ≥ 0 and z ∈ D, where the underlying constant depends only on r.

Proof. We begin with the case q = 1. Using Fubini’s theorem and the fact that

|D(z, r)| ≈ (1 − |z|2)2 ≈ (1 − |w|2)2,

whenever w ∈ D(z, r), we get:

1
|D(z, r)|

∫
D(z,r)

∫
D

(1 − |w|2)2

|1 − ūw|4
f (u) dA(u) dA(w) ≈

∫
D

f (u)
1

(1 − |z|2)2

∫
D(z,r)

(1 − |w|2)2

|1 − ūw|4
dA(w) dA(u) .

We can see from Lemma 4.30 in [26] that |1 − ūz| ≈ |1 − ūw| for every z, w, u in D with
β(z,w) < r, hence

1
|D(z, r)|

∫
D(z,r)

(
B f

)
(w) dA(w) ≈

∫
D

f (u)
1

(1 − |z|2)2

∫
D(z,r)

(1 − |z|2)2

|1 − ūz|4
dA(w) dA(u)

≈

∫
D

f (u)
(1 − |z|2)2

|1 − ūz|4
dA(u)

= B( f )(z).

This special case together with Jensen’s inequality (point out that dA/|D(z, r)| is a probability
measure on D(z, r)) implies that the desired inequality holds for every q ≥ 1:(

B f
)q(z) ≈

( ∫
D(z,r)

B f (w)
dA(w)
|D(z, r)|

)q

.

∫
D(z,r)

(
B f

)q(w)
dA(w)
|D(z, r)|

=
1

|D(z, r)|

∫
D(z,r)

(
B f

)q(w) dA(w).
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To deal with the case q ∈ (0, 1): we fix z0 ∈ D, then we have

Pw(u) =
1 − |w|2

|1 − ūw|2
≈

1 − |z|2

|1 − ūz|2
= Pz(u),

for w, z ∈ D(z0, r) and u ∈ D, where the constants depend only on r. Indeed, from Lemma
4.30 in [26], we have |1 − ūz| ≈ |1 − ūz0| for every z, z0, u in D with β(z, z0) < r and
|1 − ūw| ≈ |1 − ūz0| for every z0, w, u in D with β(w, z0) < r where the constants depend
only on r. Moreover, it is well known that 1 − |w|2 ≈ 1 − |z0|

2 whenever β(z0,w) < r and
1 − |z|2 ≈ 1 − |z0|

2 whenever β(z0, z) < r (cf. [26, p.69)].
Hence, we can see that there exist positive constants C1, C2 which depend only on r such that

C1Pz(u) ≤ Pz0(u) ≤ C2Pz(u)

and
C1Pw(u) ≤ Pz0(u) ≤ C2Pw(u)

for all u ∈ D and w, z ∈ D(z0, r). Therefore, there exist C and C′ which depend only on r such
that

CPz(u) ≤ Pw(u) ≤ C′Pz(u)
for all u ∈ D and w, z ∈ D(z0, r).

Now we can focus on our estimate.
Since |D(z0, r)| ≈ (1 − |z0|)2, we get for every z ∈ D(z0, r):

1
|D(z0, r)|

∫
D(z0,r)

∫
D

(1 − |w|2)2

|1 − ūw|4
f (u) dA(u) dA(w)

≈
1

(1 − |z0|)2

∫
D

f (u)
∫

D(z0,r)

(1 − |w|2)2

|1 − ūw|4
dA(w) dA(u)

≈
1

(1 − |z0|)2

∫
D

f (u)
∫

D(z0,r)

(1 − |z|2)2

|1 − ūz|4
dA(w) dA(u)

≈
|D(z0, r)|

(1 − |z0|
2)2

∫
D

f (u)
(1 − |z|2)2

|1 − ūz|4
dA(u)

≈ B( f )(z) .

It follows that

sup
z∈D(z0,r)

B f (z) .
1

(1 − |z0|
2)2

∫
D(z0,r)

B f (w) dA(w)

.
1

(1 − |z0|
2)2

( ∫
D(z0,r)

(B f )q(w) dA(w)
)

sup
w∈D(z0,r)

B( f )1−q(w) .

Hence,

B( f )q(z0) ≤ sup
z∈D(z0,r)

(B f )q(z) .
1

(1 − |z0|
2)2

∫
D(z0,r)

(B f )q(w) dA(w) .

The proposition is proved for any q > 0. �
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We state as a lemma the following result on Bergman Carleson embeddings:

Lemma 5.2. [17, Theorem 1] Let 0 < q < p < ∞, µ be a positive measure on D and
K(z) = µ(Dz)/|Dz|, z ∈ D. Then(∫

D

| f (z)|q dµ(z)
)1/q

.

(∫
D

| f (z)|p dA(z)
)1/p

for every f ∈ Ap if and only if K ∈ Lp/(p−q). Note that this condition is independent of the
choice of r0 (cf. Lemma 2 in [17]).

Moreover,

‖Jµ‖Ap→Lq(µ) ≈

(∫
D

( ∫
Dz

1
(1 − |w|2)2 dµ(w)

)p/(p−q)

dA(z)
)(p−q)/pq

.

The following crucial lemma is certainly well known from the specialists .

Lemma 5.3. Let 0 < p ≤ q < ∞ and 0 < r < 1. Let µ be a positive Borel measure on D.
Then the following assertions are equivalent :

1) The Bergman spaceAp is boundedly contained in Lq(µ).
2) µ(D(z, r))/|D(z, r)|q/p is bounded on D.
3) µ(D(ak, r))/|D(ak, r)|q/p is bounded on D for the sequence r-lattice {ak} as described in

Section 2.

Proof. The equivalence of (1) and (2) is proved in [16]. (2) implies (3) is obvious. For the
proof of (3) implies (1) see Theorem 3.1 in [24]. �

Now we can state the main result of this section.

Theorem 5.4. Let p > 1 and q > 0. Let µ be a positive Borel measure on D. Then the
following assertions are equivalent:

1) The Berezin transform B viewed from Lp to Lq(µ) is bounded;
2) The embedding Jµ : Ap → Lq(µ) is bounded.
Moreover,

‖B‖ ≈ ‖Jµ‖

Proof. For the proof we need to split cases:
(a) The case 0 < q < p < ∞:

First, we assume that B is bounded from Lp to Lq(µ). Let us consider this composition

Ap ip
−→ Lp B

−→ Lq(µ)

where ip is the natural embedding map. From the fact that (cf. [26, Proposition 6.13])

Bg = g for every g ∈ Ap ,

it follows that Jµ = B ◦ ip . Since ip is a contraction, we get

‖Jµ‖ ≤ ‖B‖ .
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Now assume that Jµ is bounded from Ap to Lq(µ). From now on, we may assume that
f ≥ 0 since |B f | ≤ B(| f |), and

∣∣∣∣∣∣ f ∣∣∣∣∣∣
Lp =

∣∣∣∣∣∣| f |∣∣∣∣∣∣
Lp . Using Theorem 5.1 with r > 0 , we have(

B f
)q(w) .

1
(1 − |w|2)2

∫
D(w,r)

(
B f

)q(z) dA(z) .

The sufficiency will be clarified by the following computation:∫
D

(
B f (w)

)q
dµ(w) .

∫
D

1
(1 − |w|2)2

∫
D(w,r)

(
B f (z)

)q
dA(z) dµ(w)

=

∫
D

1
(1 − |w|2)2

∫
D

1D(w,r)(z)
(
B f (z)

)q
dA(z) dµ(w)

=

∫
D

(
B f (z)

)q
∫
D

1D(w,r)(z)
(1 − |w|2)2 dµ(w) dA(z),

thanks to Fubini’s theorem. We get,∫
D

(
B f (w)

)q
dµ(w) .

∫
D

(
B f (z)

)q
∫
D

1D(z,r)(w)
(1 − |z|2)2 dµ(w) dA(z),

since 1D(w,r)(z) = 1D(z,r)(w) and 1 − |z|2 ≈ 1 − |w|2 whenever β(z,w) < r . We obtain,∫
D

(
B f (w)

)q
dµ(w) .

∫
D

(
B f (z)

)q µ(D(z, r))
(1 − |z|2)2 dA(z)

≈

∫
D

(
B f (z)

)q
K(z) dA(z),

where

K(z) =
µ(D(z, r))
(1 − |z|2)2

is introduced in Lemma 5.2. Since Jµ is bounded fromAp to Lp(µ), Lemma 5.2 implies that
K ∈ Lp/p−q and is a multiplier from Lp to Lq, hence∫

D

(
B f (w)

)q
dµ(w) .

( ∫
D

(
B f (z)

)p
dA(z)

)q/p

‖K‖Lp/(p−q) .

Finally, we conclude that ∫
D

(
B f (w)

)q
dµ(w) . ‖ f ‖qLp . ‖K‖Lp/(p−q)

≈ ‖ f ‖qLp . ‖Jµ‖
q
Ap→Lq(µ),

since ‖K‖Lp/(p−q) ≈ ‖Jµ‖
q
Ap→Lq(µ) (recall Lemma 5.2) and B is bounded from Lp to Lp.

We get,
‖B‖ . ‖Jµ‖ .

(b) The case 1 < p ≤ q < ∞ :
Once again, we only need to prove that (2) implies (1). Using Theorem 5.1 with r > 0, the
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fact that D(w, r) ⊂ D(ak, 2r) and |D(w, r)| ≈ |D(ak, r)| whenever w ∈ D(ak, r), we have∫
D

(
B f (w)

)q
dµ(w) .

∑
k≥1

∫
D(ak ,r)

(
1

|D(w, r)|

∫
D(w,r)

(
B f (z)

)q
dA(z)

)
dµ(w)

.
∑
k≥1

∫
D(ak ,r)

(
1

|D(ak, r)|

∫
D(ak ,2r)

(
B f (z)

)q
dA(z)

)
dµ(w)

=
∑
k≥1

µ(D(ak, r))
|D(ak, r)|

( ∫
D(ak ,2r)

(
B f (z)

)q
dA(z)

)
.

We claim that

B f (z) .
‖ f ‖Ap

(1 − |z|2)2/p .

Indeed, it is clear for p = 1. When p > 1, using Hölder’s inequality and Lemma 3.10 in [26],
we have

B f (z) =

∫
D

(1 − |z|2)2

|1 − zw|4
f (w) dA(w)

≤ ‖ f ‖Ap

( ∫
D

( (1 − |z|2)2

|1 − zw|4

)p′

dA(w)
)1/p′

. ‖ f ‖Ap
1

(1 − |z|2)2/p ·

Now, since (b) is satisfied, it follows from Lemma 5.3 and the fact that (1−|z|2)2 ≈ |D(ak, r)|
whenever z ∈ D(ak, r), that∫

D

(
B f (w)

)q
dµ(w) .

∑
k≥1

∫
D(ak ,2r)

|D(ak, r)|(q−p)/p
(
B f (z)

)q−p(
B f (z)

)p
dA(z)

. ‖ f ‖q−p
Ap

∑
k≥1

∫
D(ak ,2r)

(
B f (z)

)p
dA(z)

. ‖ f ‖q−p
Ap ‖B f ‖p

Lp

. ‖ f ‖q
Ap ,

where we used the fact that B is bounded from Lp to Lp. �

6. THE CASE 1 < p ≤ 2

Let us recall that, since 1 < p ≤ 2, Ap and Lp(µ) have both cotype 2, we know that
πr(Jµ) ≈ π2(Jµ) for any r ≥ 1. Therefore, in this section we focus on 2-summing operators.

Theorem 6.1. Let 1 < p ≤ 2 and µ be a positive measure on D. The following assertions are
equivalent:

1) Jµ : Ap → L2(µ) is 2-summing.
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2)
∫
D

( ∫
D

dµ(z)
|1 − zw|4

)p′/2

dA(w) < ∞ .

3) The Bergman projection viewed from Lp to L2(µ)

T : f ∈ Lp 7−→ T f ∈ L2(µ) with T ( f )(z) =

∫
D

f (w)
(1 − zw)2 dA(w)

is 1-summing.
Moreover, we have

π2
(
Jµ : Ap → L2(µ)

)
≈

(∫
D

( ∫
D

dµ(z)
|1 − zw|4

)p′/2

dA(w)
)1/p′

. (6.1)

Proof. We assume that p < 2 since the case p = 2 is clear (cf. Remarks in Section 3).
1)⇒2). For r ∈ (0, 1) and for any w ∈ D, we consider the function

kw(z) =
1

(1 − rzw)2
, z ∈ D,

then kw ∈ A
p for every w ∈ D .

For any ξ in the unit ball of the dual ofAp, there exists a function g1 in the unit ball of Lp′ ,
such that

ξ(kw) =

∫
D

kw(z)g1(z)dA(z) = g(rw) ,

where Pg1 = g and P is the Bergman projection from Lp′ ontoAp′ which is bounded. Then∫
D

|ξ(kw)|p
′

dA(w) =

∫
D

|g(rw)|p
′

dA(w)

≤ ‖g‖p′

Ap′

≤ ‖P‖p′‖g1‖
p′

Lp′ .

So
sup

ξ∈B(Ap)∗

∫
D

|ξ(kw)|p
′

dA(w) ≤ ‖P‖p′ .

Then, since p′ ≥ 2, thanks to Fubini’s Theorem and the definition of p′-summing, we have

π2(Jµ) ≥ πp′(Jµ)

≥
1
‖P‖

(∫
D

‖kw‖
p′

L2(µ)dA(w)
)1/p′

=
1
‖P‖

(∫
D

( ∫
D

dµ(z)
|1 − rzw|4

)p′/2

dA(w)
)1/p′

.

Let r → 1− and thanks to the Fatou’s Lemma, we obtain(∫
D

( ∫
D

dµ(z)
|1 − zw|4

)p′/2

dA(w)
)1/p′

≤ ‖P‖ π2(Jµ) .
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2)⇒3). Consider,
R : f ∈ L2(µ) 7−→ R( f ) ∈ Lp′

formally defined by

R( f )(z) =

∫
D

f (w)
(1 − zw)2 dµ(w),

which is an analytic function on D.
We are going to justify that R actually defines an order bounded operator. Indeed, for every

z ∈ D, we have

sup
‖ f ‖L2(µ)≤1

∣∣∣∣∣ ∫
D

f (w)
(1 − zw)2 dµ(w)

∣∣∣∣∣ =

(∫
D

dµ(w)
|1 − zw|4

)1/2

.

Under the hypothesis conditions, we have∫
D

sup
f∈BL2(µ)

|R f |p
′

dA(z) =

∫
D

( ∫
D

dµ(w)
|1 − zw|4

)p′/2

dA(z) < ∞.

This shows that R is order bounded. From Lemma 2.1, we get that R is p′-summing.
Actually its adjoint operator R∗ : Lp → L2(µ) is the operator T :

Lp −→ L2(µ)

f 7−→ T f with T f (z) =

∫
D

f (w)
(1 − zw)2 dA(w).

Hence, R∗ is the Bergman projection acting from Lp to L2(µ). Moreover, we have T ∗ = R∗∗ =

R. Therefore, T = R∗ is 1-summing by Lemma 2.2 and we have

π1(T ) . πp′(T ∗) .
( ∫
D

( ∫
D

dµ(w)
|1 − zw|4

)p′/2

dA(z)
)1/p′

.

3)⇒1). For any f ∈ Ap, we have T f = f . Considering the maps

Ap ip
−→ Lp T

−→ L2(µ),

where ip : Ap → Lp is the natural embedding with a norm equal to 1. Then

Jµ = T ◦ ip .

Jµ is a 2-summing operator since it is 1-summing with norm

π2(Jµ) ≤ π1(Jµ) ≤ π1(T ) ‖ip‖ ≤ π1(T ) .

�

Proposition 6.2. Let 1 < p ≤ 2, 1 ≤ q ≤ 2 and assume that

Jµ : f ∈ Ap 7→ f ∈ Lq(µ)

is an r-summing operator for some r ≥ 1, then∫
D

1
(1 − |z|2)q dµ(z) < ∞ .
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In other words, dν = dµ/(1 − |z|2)q is a finite positive measure on D.

Proof. SinceAp and Lq(µ) have both cotype 2 when 1 ≤ p, q ≤ 2, then

Π1
(
Ap, Lq(µ)

)
= Πr

(
Ap, Lq(µ)

)
for any r ≥ 1. In particular, Jµ is a q-summing operator. We shall work with a probability
space (Ω,Σ,P). We consider a (finite) sequence of independent Bernoulli variables (rn)0≤n≤N

on this space taking values in {±1} (i.e. a Rademacher sequence), and the function Fω defined
by:

Fω(z) =

N∑
n=0

rn(ω)(n + 1)1/2zn , where ω ∈ Ω.

Applying property 1 (cf. Section 2) to theAp-valued random variable ω ∈ Ω 7→ Fω, we get∫
Ω

‖Jµ ◦ Fω‖
q
Lq(µ) dP(ω) ≤ πq(Jµ)q sup

α∈B(Ap)∗

∫
Ω

|α ◦ Fω|
q dP(ω). (6.2)

On one hand, using Fubini’s theorem and Khinchin’s inequality, we have∫
Ω

∫
D

∣∣∣∣∣ N∑
n=0

rn(ω)(n + 1)1/2zn
∣∣∣∣∣qdµ(z) dP(ω) =

∫
D

∫
Ω

∣∣∣∣∣ N∑
n=0

rn(ω)(n + 1)1/2zn
∣∣∣∣∣qdP(ω) dµ(z)

≈

∫
D

( N∑
n=0

(n + 1)|z|2n
)q/2

dµ(z) .

(6.3)

On the other hand, for every α in B(Ap)∗ , we can write

α(Fω) = 〈g, Fω〉 =

∫
D

g(z̄)Fω(z) dA(z) ,

where g ∈ Ap′ with a norm bounded by some cp (depending only on p). Then, by Khinchin’s
inequality ∫

Ω

∣∣∣α(Fω)
∣∣∣q dP(ω) =

∫
Ω

∣∣∣∣∣ N∑
k=0

ĝ(k)rk(ω)
(k + 1)1/2

∣∣∣∣∣qdP(ω)

≈

( N∑
k=0

|ĝ(k)|2

k + 1

)q/2

≤ ‖g‖q
A2 ≤ ‖g‖

q
Ap′

≤ cp . 1 .

(6.4)

Combining (6.3) with (6.4) and the definition of q-summing operator, we get for arbitrary
large N ∫

D

( N∑
k=0

(k + 1)|z|2k
)q/2

dµ(z) . πq(Jµ)q .
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Note that

lim
N→∞

( N∑
k=0

(k + 1)|z|2k
)q/2

=
1

(1 − |z|2)q ·

Finally, we obtain: ∫
D

1
(1 − |z|2)q dµ(z) < ∞ , for every z ∈ D.

�

We shall need the following tools for the proof of our main theorem in this section.

Lemma 6.3. [13, Lemma 7.5] Let δ > 0, (Ω,Σ, µ) be a measure space and h : Ω → [0,+∞)
be a measurable function. Then

inf
{∫

Ω

h
F

dµ : F ∈ Lδ(µ), F ≥ 0,
∫

Ω

Fδdµ ≤ 1
}

=

( ∫
Ω

hδ/(δ+1)dµ
)(δ+1)/δ

. (6.5)

Lemma 6.4. [13, Lemma 7.6] Let 1 ≤ q < 2, X be a Banach space and T : X → Lq(µ)
be a continuous linear operator. Then T is a 2-summing operator if and only if there exists
F ∈ L2q/(2−q)(µ) with F ≥ 0 (µ-a.e.), such that

T : X → L2(µ/F2)

is well defined and 2-summing operator.
Moreover

π2
(
T : X → Lq(µ)

)
≈ inf

{
π2

(
T : X → L2(µ/F2)

)
: F ≥ 0, ‖F‖L2q/(2−q)(µ) ≤ 1

}
. (6.6)

Lemma 6.5. (Ky Fan′s Lemma) (See [5], page 190)
Let E be a Hausdorff topological vector space, and F be a compact convex subset of E. Let
M be a set of functions on F with values in (−∞,+∞] having the following properties:

1) Each f ∈ M is convex and lower semi-continuous.
2) If g ∈ conv(M), the convex closure of M, there is a f ∈ M with g(x) ≤ f (x), for all

x ∈ F.
3) There is an r ∈ R such that for each f ∈ M has a value less and equal to r.

Then, there exists at least one x0 ∈ F, such that f (x0) ≤ r for all f ∈ M.

The following lemma is a variant of the claim in the proof of Theorem 7.3 in [13].

Lemma 6.6. Let 1 < p, q < 2, set t = q/(2 − q), k = p/(2 − p). Define

I1 = inf
f∈B+

Lt (µ)

sup
g∈B+

Lk

∫
D

∫
D

g(w)
|1 − wz|4 f (z)

dµ(z) dA(w) ,

I2 = sup
g∈B+

Lk

inf
f∈B+

Lt (µ)

∫
D

∫
D

g(w)
|1 − wz|4 f (z)

dµ(z) dA(w) .

Then I1 = I2 .
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Proof. The proof is nothing but a copy and paste of the one in [13] up to a small change of
the kernel, but we include it for sake of completeness.
The fact that I1 ≥ I2 is obvious by the definitions of I1 and I2. In the sequel, we assume that
I2 is finite else there is nothing to do and the inequality is trivial.

Let

Φg( f ) =

∫
D

∫
D

g(w)
|1 − wz|4 f (z)

dµ(z) dA(w) , for f ∈ B+
Lt(µ)

and

M =
{
Φg| g ∈ B+

Lk

}
.

We point out that B+
Lt(µ) is a compact set under its weak topology by the Alaoglu’s theorem

once t > 1. Then M appears as a set of functions on B+
Lt(µ) and since the maps g 7→ Φg are

linear and B+
Lt(µ) is convex, M is also a convex set. We have:

(a) For any Φg ∈ M, Φg is convex (thanks to the convexity of 1/x) and lower semi-
continuous. Indeed, fix δ > 0 , g > 0 and take

Kg = { f ∈ B+
Lt(µ)|Φg( f ) ≤ δ} .

Let { fn} in Kg, converging to some f ∈ Lt(µ). Or, we can assume that it is a pointwise
convergence a.e up to an extraction, then by Fatou’s lemma, we have

Φg( f ) ≤ lim inf
n→∞

Φg( fn) ≤ δ .

It implies that Kg is a closed set of Lt(µ) and so Φg is lower semi-continuous on B+
Lt(µ).

(b) For fixed ε > 0, by the definition of I2, for any g ∈ B+

Lk

inf
f∈B+

Lt (dµ)

Φg( f ) < I2 + ε = r ,

so, there is a f0 ∈ B+
Lt(µ) such that

Φg( f0) ≤ r .

Now, Ky Fan’s theorem shows that there exists at least one f1 ∈ B+
Lt(µ) such that

Φg( f1) ≤ r = I2 + ε ,

for any g ∈ B+

Lk . Note that the second condition in Ky Fan’s theorem is obvious since M is
convex. This implies that I1 ≤ I2 + ε .

�

Now we can state and prove the main theorem of this section. Point out that the measure
ν in the following statement is finite as soon as Jµ is r-summing for some r ≥ 1, thanks to
Proposition 6.2. On the other hand, as soon as Jν is bounded, it is clear that ν is a finite
measure (just testing the constant function 1).
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Theorem 6.7. Let 1 < p < 2, 1 ≤ q ≤ 2 . Let µ be a positive Borel measure and
dν = dµ/(1 − |z|2)q.
Then the following statements are equivalent:

1) Jµ : Ap −→ Lq(µ) is 2-summing.

2) Jµ : Ap −→ Lq(µ) is r-summing for some r ≥ 1.

3) Jν : A
p

2−p −→ L
q
2
(
ν
)

is bounded.

4) κ(z) =
µ(Dz)

|Dz|(1 − |z|2)q ∈ Ls, where s = 2p/(2p − 2q + pq).

Moreover, we have

π2(Jµ) ≈
( ∫
D

|κ(z)|s dA(z)
)1/sq

.

Therefore (3.1) follows from the following immediate corollary.

Corollary 6.8. Let r ≥ 1, 1 < p ≤ 2 and µ be a Carleson measure onAp. Then
Jµ : Ap → Lp(µ) is an r-summing operator if and only if∫

D

(
µ(Dz)

(1 − |z|2)p+2

)2/p

dA(z) < ∞ .

Moreover

πr(Jµ) ≈ π2(Jµ) ≈
( ∫
D

(
µ(Dz)

(1 − |z|2)p+2

)2/p

dA(z)
)1/2

.

Proof of Theorem 6.7. Since Ap and Lq(µ) have both cotype 2 when 1 ≤ p, q ≤ 2, then
Jµ : Ap −→ Lq(µ) is r-summing for some r ≥ 1 if and only if Jµ is 2-summing.
Since p/(2 − p) > 1 ≥ q/2 > 0 then Lemma 5.2 shows that κ ∈ Ls if and only if

Jν : Ap/(2−p) −→ Lq/2(ν)
is bounded. So we only need to prove that 1) is equivalent to 3).

We already mentioned before the statement of the theorem why we know that ν is a finite
positive Borel measure.

Set k = p/(2 − p) and t = q/(2 − q). From Lemma 6.4 and Theorem 6.1, we know that:(
π2

(
Jµ : Ap → Lq(µ)

))2

≈ inf
F∈B+

L2t (µ)

{(
π2

(
Jµ : Ap → L2(µ/F2)

))2
}

≈ inf
f∈B+

Lt (µ)

(∫
D

( ∫
D

1
|1 − wz|4 f (z)

dµ(z)
)p′/2

dA(w)
)2/p′

.

(6.7)
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Hence, by duality between Lk and Lp′/2, we get(
π2

(
Jµ : Ap → Lq(µ)

))2

≈ inf
f∈B+

Lt (µ)

sup
g∈B+

Lk

∫
D

∫
D

g(w)
|1 − wz|4 f (z)

dµ(z) dA(w) .

Using Lemma 6.6, Lemma 6.3 and then Lemma 5.4, it follows(
π2

(
Jµ : Ap → Lq(µ)

))2

≈ sup
g∈B+

Lk

inf
f∈B+

Lt (µ)

∫
D

Bg(z)
(1 − |z|2)2 f (z)

dµ(z)

= sup
g∈B+

Lk

∣∣∣∣∣∣∣∣∣∣ Bg
(1 − |z|2)2

∣∣∣∣∣∣∣∣∣∣
Lq/2(µ)

= sup
g∈B+

Lk

∣∣∣∣∣∣Bg
∣∣∣∣∣∣

Lq/2(ν)

≈ sup
g∈BLk

‖Bg‖Lq/2(ν)

≈ ‖Jν‖Ak↪→Lq/2
(
ν
)

(6.8)

where the (positive) operator B is the Berezin transformation viewed from Lk = Lk(A) to
Lq/2(ν). In other words, we obtain that (1) is equivalent to (3). �

7. THE CASE 2 ≤ p ≤ r

In this section, we focus on the case 2 ≤ p ≤ r. Actually, we shall also obtain some results
useful to treat the other cases. In particular, some general necessary conditions are obtained
below.

Let us begin with the simple case r = p.

Proposition 7.1. Let p ≥ 2 and µ be a Carleson measure. Then Jµ : Ap → Lp(µ) is p-
summing if and only if dµ(z)/(1 − |z|2)2 is a finite (positive) measure, that is∫

D

1
(1 − |z|2)2 dµ(z) < ∞ . (7.1)

Moreover

πp(Jµ) ≈
( ∫
D

1
(1 − |z|2)2 dµ(z)

)1/p

.

This result is the counterpart in the Bergman space Ap of the corresponding result in [23]
which characterizes p-summing composition operators on Hp (their proof extends obviously
to general Carleson measures on Hp).

Proof. First we assume that the measure dµ(z)/(1 − |z|2)2 is finite, then by Proposition 4.3,
this is equivalent to the fact that Jµ is an order bounded operator, therefore Jµ is p-summing
as well. Hence,

πp(Jµ) .
( ∫
D

dµ(z)
(1 − |z|2)2

)1/p

.
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Now we define the following (normalized) sequence inAp.

en(z) =
( pn + 2

2

)1/p
zn, n ≥ 0.

Let g ∈ Ap′ with a Taylor expansion g(z) =
∑∞

k=0 ĝ(k)zk. It is well known (cf. [11, Corollary
8.2.10]) that, since p ≥ 2, ( ∞∑

k=0

|ĝ(k)|p

(k + 1)p−1

)1/p

. ‖g‖Ap′ .

Then, we have for every g in the unit ball ofAp′:
∞∑

n=0

|〈en, g〉|p .
∞∑

n=0

|ĝ(n)|p

(n + 1)p−1 . 1 .

The definition of the p-summing operator yields
∞∑

n=0

‖en‖
p
Lp(µ) ≤ πp(Jµ)p sup

g∈B
Ap′

∞∑
n=0

|〈en, g〉|p

. πp(Jµ)p .

But

∞∑
n=0

‖en‖
p
Lp(µ) =

∫
D

∞∑
n=0

( pn
2

+ 1
)
|z|pn dµ(z)

≥

∫
D

∞∑
n=0

(n + 1)|z|pn dµ(z)

=

∫
D

1
(1 − |z|p)2 dµ(z) .

We obtain ( ∫
D

dµ(z)
(1 − |z|2)2

)1/p

. πp
(
Jµ

)
.

�

We recall that the multiplier operator Mβ on `p is defined by Mβ(en) = βnen , where {en}

denotes the canonical basis of `p and β = (β1, β2, · · · ) is a sequence.

Proposition 7.2. Let p ≥ 2 and µ be a Carleson measure on Ap. Assume that Jµ is r-
summing. Then

1) For 1 ≤ r ≤ p′, ( ∞∑
k=1

(
µ(Dk)
|Dk|

)p′/p)1/p′

. πr(Jµ) . (7.2)

2) For p′ ≤ r ≤ p , ( ∞∑
k=1

(
µ(Dk)
|Dk|

)r/p)1/r

. πr(Jµ) . (7.3)
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3) For p ≤ r , ( ∫
D

1
(1 − |z|2)2 dµ(z)

)1/p

≈

( ∞∑
k=1

µ(Dk)
|Dk|

)1/p

. πr(Jµ) . (7.4)

Proof. Assume that Jµ is r-summing. From Proposition 4.8 , we get that Mβ is r-summing
as well, where

β =

((µ(Dk)
|Dk|

)1/p
)

k≥1

.

Now the comparison (1); (2) and (3) of πr(Jµ) with the norm of β follows directly from
Lemma 4.4 : more precisely , (1) follows from (4.15); (2) follows from (4.16) and (3) follows
from (4.17). �

Now we can prove the main result for 2 ≤ p ≤ r.

Theorem 7.3. Let 2 ≤ p ≤ r and µ be a Carleson measure onAp. Then Jµ : Ap → Lp(µ) is
an r-summing operator if and only if∫

D

1
(1 − |z|2)2 dµ(z) < ∞ . (7.5)

Furthermore

πr(Jµ) ≈
( ∫
D

1
(1 − |z|2)2 dµ(z)

)1/p

≈

(∑
k≥1

µ(Dk)
|Dk|

)1/p

. (7.6)

Proof. Let us assume that (7.5) is satisfied. By Proposition 7.1, Jµ is a p-summing operator,
hence it is r-summing since p ≤ r and we get

πr(Jµ) . πp(Jµ) .
( ∫
D

1
(1 − |z|2)2 dµ(z)

)1/p

.

The reverse inequality follows immediately from Proposition 7.2 . �

8. THE CASE p′ ≤ r ≤ p

In this section, we focus on the case p′ ≤ r ≤ p with p ≥ 2.
We shall denoteAp(Dk, A) = H(D)

⋂
Lp(Dk, A), with

‖ f ‖p
A(Dk ,A) =

( ∫
Dk

| f |pdA
) 1

p

.

Given a sequence {Xk} of Banach spaces, the space
⊕

`p Xk is equipped by the norm∥∥∥{xk}
∥∥∥⊕

`p Xk
=

(∑
k≥1

‖xk‖
p
Xk

) 1
p

,

where xk ∈ Xk for every k ≥ 1.
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For any f ∈ Lp(µ), since the family (Dk)k≥1 forms a partition of D,∫
D

| f |pdµ =

∞∑
k=1

∫
Dk

| f |pdµ

=

∞∑
k=1

‖ f ‖p
Lp(Dk , µ) .

In other words,
f ∈ Lp(µ) 7−→

(
f|Dk

)
k ∈ ⊕`p Lp(Dk, µ) , (8.1)

is an isomorphic isometry. This can be rewritten as

Lp(µ) = ⊕`p Lp(Dk, µ) .

Point out that D =
⋃

k

D(ak, 4t) , with 0 < t < 1/4, and recall that there exists a positive

integer N such that each point of D belongs to at most N of the sets D(ak, 4t) (cf. Section 2).
For p ≥ 1, the following map is continous:

f ∈ Ap 7−→
(
f|D(ak ,4t)

)
k ∈ ⊕`pAp(D(ak, 4t), A) . (8.2)

Indeed, for any f ∈ Ap we have∥∥∥( f|D(ak ,4t)

)
k

∥∥∥⊕
`p Ap(D(ak ,4t), A)

=

(∑
k≥1

∫
D(ak ,4t)

| f (z)|pdA(z)
)1/p

≤ N1/p
( ∫
D

| f (z)|pdA(z)
)1/p

= N1/p‖ f ‖Ap .

For any t-lattice {ak} (0 < t < 1/2), we shall use the notation D′k instead of D(ak, 2t).

Lemma 8.1. Let 1 ≤ r ≤ p < ∞, 0 < t < 1/2, {ak} be a t-lattice onD and {Dk} be the relevant
subsets of D defined in Lemma 2.6. Then for a positive Borel measure µ onDk (k = 1, 2, . . .),
the natural embedding map

Tr,p : Ar(D′k, A) ↪→ Lp(Dk, µ)

is bounded if and only if
µ(Dk)1/p

|Dk|
1/r < ∞ .

Furthermore,

‖Tr,p‖ ≈
µ(Dk)1/p

|Dk|
1/r ·

Proof. Using Lemma 4.6, the fact that (1 − |z|2)2 ≈ (1 − |ak|
2)2 ≈ |Dk| whenever z ∈ Dk

(cf. Section 2), and the fact that D(z, t) ⊂ D(ak, 2t) = D′k for every z ∈ Dk, we get, for any
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f ∈ Ar(D′k, A),∫
Dk

| f (z)|pdµ(z) ≤ sup
z∈Dk

| f (z)|pµ(Dk)

. sup
z∈Dk

1
(1 − |z|2)2p/r

( ∫
D(z,t)
| f (w)|rdA(w)

)p/r

µ(Dk)

.
1

(1 − |ak|
2)2p/r

( ∫
D′k

| f (w)|rdA(w)
)p/r

µ(Dk)

. ‖ f ‖p
r
µ(Dk)
|Dk|

p/r ·

(8.3)

This gives that

‖Tr,p‖ .
µ(Dk)1/p

|Dk|
1/r ·

Now take

f (z) =

( (1 − |ak|
2)2

(1 − ākz)4

)1/r

, for z ∈ D .

Since (1 − |ak|
2)2 ≈ |1 − ākz|2 ≈ |D′k| ≈ |Dk| whenever z ∈ Dk (so z ∈ D′k) with constants

independent of k, we get
‖ f ‖Ar(D′k , A) ≈ 1 ,

and ∫
Dk

| f (z)|p dµ(z) ≈
µ(Dk)
|Dk|

p/r ·

Therefore

‖Tr,p‖ &
µ(Dk)1/p

|Dk|
1/r ·

�

As an immediate corollary, we have by renormalization:

Corollary 8.2. Let 1 ≤ r ≤ p < ∞, 0 < t < 1/2 , {ak} be a t-lattice on D and {Dk} be the
relevant subsets of D defined in Lemma 2.6. Then the operator T (k)

r,p defined by

T (k)
r,p : f ∈ Ar

(
D′k,

A
|Dk|

)
7−→

1
|Dk|

1/p f|Dk
∈ Lp(Dk, µ)

is bounded if and only if
µ(Dk)
|Dk|

< ∞ .

Moreover its norm is ∥∥∥T (k)
r,p

∥∥∥ ≈ (
µ(Dk)
|Dk|

)1/p

.
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Theorem 8.3. Let p ≥ 1, 0 < t < 1/4, a t-lattice {ak} and {Dk} is defined as in Lemma 2.6.
For any k, assume that

µ(Dk)
|Dk|

< ∞ .

Then,
S k : f ∈ Ap(D(ak, 4t), A

)
7−→ f|Dk

∈ Lp(Dk, µ)

is 1-summing with

π1(S k) .
(
µ(Dk)
|Dk|

)1/p

.

Proof. Let H∞(D′k) be the class of the bounded analytic functions on D′k with the natural
supremum norm. We consider the commutative diagram

Ap(D(ak, 4t), A
) S k //

P1

��

Lp(Dk, µ)

H∞(D′k) j1
// A1

(
D′k, νk

)P2

OO

where νk is the normalized area measure onDk: 1
|Dk |

dA, and P2 := T (k)
1,p and with

P1 f (z) = |Dk|
1/p f (z),

for f ∈ Ap(D(ak, 4t), A
)
,we know from Lemma 8.2 that P2 is bounded with norm

(
µ(Dk)/|Dk|

)1/p
.

The operator j1 is obviously bounded and ‖ j1‖ ≈ 1.
Using Lemma 4.6 and the fact that D(z, 2t) ⊂ D(ak, 4t) for every z ∈ D′k, we get for any

f ∈ Ap(D(ak, 4t), A
)
sup
z∈D′k

| f (z)| ≤ sup
z∈D′k

1
(1 − |z|2)2/p

(∫
D(z,2t)

| f (w)|p dA(w)
)1/p

. sup
z∈D(ak ,4t)

1
(1 − |z|2)2/p

∥∥∥ f
∥∥∥
Ap(D(ak ,4t), A)

.
1

(1 − |ak|
2)2/p

∥∥∥ f
∥∥∥
Ap(D(ak ,4t), A)

≈
1

|Dk|
1/p

∥∥∥ f
∥∥∥
Ap(D(ak ,4t), A)

.

So P1 is bounded with norm . 1. Obviously, S k = T (k)
1,p ◦ j1 ◦ P1.

Now let us observe that j1 is 1-summing: indeed, it suffices to see that the restriction to
H∞(D′k) of the map id : L∞(D′k)→ L1(D′k, νk) is absolutely summing. Thus,

π1( j1) ≤
|D′k|
|Dk|

≈ 1 .
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Therefore, the ideal property for 1-summing operators leads to

π1(S k) . ‖P1‖ π1( j1) ‖T (k)
1,p‖ .

(
µ(Dk)
|Dk|

)1/p

.

�

We shall need the following lemma.

Lemma 8.4. [13, Corollary 4.8] Let p ≥ 2, p′ ≤ r ≤ p. Assume that for every integer
n ≥ 1, we have bounded operators Tn : Xn → Yn for Banach spaces Xn and Yn. Consider the
operator

T :⊕`p Xn −→ ⊕`p Yn

(xn)n 7−→
(
Tn(xn)

)
n≥1.

Then T is r-summing if and only if each Tn is r-summing and∑
n≥1

πr(Tn)r < +∞.

Moreover, we have

πr(T ) ≈
(∑

n≥1

πr(Tn)r
)1/r

.

Now we can get easily the main theorem of this section .

Theorem 8.5. Let p ≥ 2, p′ ≤ r ≤ p and 0 < t < 1/4. Let µ be a Carleson measure on
Ap. For any t-lattice {ak} and relevant set {Dk} as defined in Lemma 2.6, Jµ : Ap → Lp(µ) is
r-summing if and only if ∑

k

(
µ(Dk)
|Dk|

)r/p

< ∞ .

Moreover

πr(Jµ) ≈
( ∞∑

k=1

(
µ(Dk)
|Dk|

)r/p)1/r

. (8.4)

Proof. We consider the commutative diagram:

Ap Jµ //

M
��

Lp(µ)

⊕`pAp(D(ak, 4t), A)
S

// ⊕`p Lp(Dk, µ)

M′

OO

where M is the map defined as in (8.2), which is continuous, and M′ is bounded since the
map as defined in (8.1) is an isomorphic isometry. Finally, S in the natural block diagonal
map whose entries are the operator S k. Theorem 8.3 implies that

S k : f ∈ Ap(D(ak, 4t), A
)
7−→ f ∈ Lp(Dk, µ)
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is 1-summing with

π1(S k) .
(
µ(Dk)
|Dk|

)1/p

.

It is obvious that Jµ = M′ ◦ S ◦ M and it follows from Lemma 8.4 that

πr(Jµ) . πr(S ) ≈
(∑

k≥1

πr(S k)r
)1/r

≤

(∑
k≥1

π1(S k)r
)1/r

.
( ∞∑

k=1

(
µ(Dk)
|Dk|

)r/p)1/r

.

We get the reverse inequality from Proposition 7.2 :( ∞∑
k=1

(
µ(Dk)
|Dk|

)r/p)1/r

. πr(Jµ).

�

9. THE CASE 1 ≤ r ≤ p′

We focus now on the last remaining case 1 ≤ r ≤ p′.

Proposition 9.1. Let Xn and Yn be two Banach spaces. Let Tn : Xn → Yn be a 1-summing
operator with π1(Tn) . 1. Then the operator

T : x = (xn)n ∈ ⊕`1 Xn 7−→
(
Tn(xn)

)
n≥1
∈ ⊕`2 Yn

is 1-summing and π1(T ) . 1.

We are indebted to L. Rodrı́guez-Piazza for the following argument which seems to us
clearer than an alternative previous one.

Proof. Let n ≥ 1. Since Tn is 1-summing with π1(Tn) . 1, by the Pietsch Theorem (see
for instance [5], page 44), there exist a constant C > 0 depending only on n and a proba-
bility measure µn on the unit ball Kn of X∗n (Kn is a compact set endowed with the weak-star
topology) such that

∀u ∈ Xn , ‖Tn(u)‖ ≤ C
∫

Kn

| χ(u)| dµn( χ) (9.1)

for each n.
Let (Ω,P) be a probability space and (rn)n be a Rademacher sequence (i.e. a sequence of

independent random equidistributed variables taking their values in {±1}; i.e. random choice
of signs). Actually we can assume that Ω is a compact set (take {±1}N, the Cantor group and
rn is the nth coordinate map). Then, writing K =

∏
n Kn, we define K̂ = Ω × K which is a

compact set and the measure ν = P ⊗ µ is a probability measure on K̂, where µ = ⊗n µn.
Let x∗n(ξn) = ξn(xn) where ξ = (ξn) ∈ K. The map:

E : x = (xn)n ∈ ⊕`1 Xn 7−→
∑

n

rn ⊗ x∗n ∈ C(K̂)

is an isometry. Indeed,

‖E(x)‖ = sup
t∈Ω
ξn∈Kn

∣∣∣∑
n

rn(t)x∗n(ξn)
∣∣∣ = sup

ξn∈Kn

∑
n

|ξn(xn)| =
∑

n

‖xn‖ .
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On the other hand, let Z1 be the closure in L1(K̂, ν) of the vector space V1 spanned by
{rn ⊗ x∗n; xn ∈ Xn}. The formal identity i from C(K̂) to Z1 ⊂ L1(K̂, ν) is 1-summing with
π1(i) = ν(K̂) = 1 (ν is a probability measure).

Finally the map
F : f =

∑
nrn ⊗ x∗n ∈ V1 7−→

(
Tn(xn)

)
n ∈ ⊕`2 Yn

is well defined, bounded and extends to a bounded operator on Z1. Indeed, since (9.1) holds
then (∑

n

‖Tn(xn)‖2
)1/2

≤ C
(∑

n

‖x∗n‖
2
L1(K)

)1/2

which is nothing but ∥∥∥∥∥∥(
∫

K
|x∗n|dµ

)
n

∥∥∥∥∥∥
`2

and is then lower than ∫
K

(∑
n

|x∗n|
2
)1/2

dµ.

Then the Khinchin’s inequality implies that(∑
n

‖Tn(xn)‖2
)1/2

.

∫
K

∫
Ω

∣∣∣∣∑
n

rn(t)x∗n
∣∣∣∣ d P dµ =

∣∣∣∣∣∣∣∣∑
n

rn ⊗ x∗n
∣∣∣∣∣∣∣∣ .

Hence,
π1(T ) ≤ ‖F‖ π1(i) ‖E‖ . 1.

The conclusion follows. �

Corollary 9.2. Let Xn and Yn be Banach spaces. Let Tn : Xn −→ Yn be a 1-summing operator.
We assume that ∑

n≥1

π1(Tn)p′ < ∞.

Then the operator

T : x = (xn)n ∈ ⊕`p Xn 7−→
(
Tn(xn)

)
n≥1
∈ ⊕`p Yn

is 1-summing with
π1(T ) . ‖π1(Tn)‖`p′ .

Proof. Write λn = π1(Tn). We have (λn)n ∈ `
p′ by hypothesis. The operator S n = λ−1

n Tn

satisfies π1(S n) = 1 by definition. From the previous proposition, we know that the operator

S : x = (xn)n ∈ ⊕`1 Xn 7−→ (S n(xn))n ∈ ⊕`2 Yn

is 1-summing with π1(S ) . 1 .
On the other hand, we have the factorization: T = J ◦ S ◦ D where

D : x = (xn)n ∈ ⊕`p Xn 7−→ (λnxn)n ∈ ⊕`1 Xn
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is bounded since (λn)n ∈ `
p′ with ‖D‖ . ‖λn‖`p′ , and

J : y = (yn)n ∈ ⊕`2 Yn 7−→ (yn)n ∈ ⊕`p Yn

is bounded since p ≥ 2 with norm ‖J‖ . 1 . Therefore,

π1(T ) ≤ ‖J‖ π1(S ) ‖D‖ . ‖λn‖`p′ = ‖π1(Tn)‖`p′ .

�

Now we can state the main theorem of this section.

Theorem 9.3. Let p ≥ 2 and 1 ≤ r ≤ p′. Let µ be a Carleson measure onAp, a t-lattice {ak}

and {Dk} as defined as in Lemma 2.6. Then the following statements are equivalent:

1) Jµ : Ap → Lp(µ) is 1-summing.

2) Jµ : Ap → Lp(µ) is r-summing.

3)
∑
k≥1

(
µ(Dk)
|Dk|

)p′/p

< ∞.

Moreover,

π1(Jµ) ≈ πr(Jµ) ≈
(∑

k≥1

(µ(Dk)
|Dk|

)p′/p
)1/p′

≈

( ∫
D

( ∫
Dz

1
(1 − |w|2)2(1+p/p′) dµ(w)

)p′/p

dA(z)
)1/p′

.

Proof. 1)⇒ 2). The proof is obvious.
2)⇒ 3). It follows from Theorem 8.5 and the fact that r ≤ p′,(∑

k≥1

(µ(Dk)
|Dk|

)p′/p
)1/p′

. πp′(Jµ) ≤ πr(Jµ).

3)⇒ 1). By hypothesis, we have in particular:

sup
k

µ(Dk)
|Dk|

< ∞ .

Theorem 8.3 implies that

S k : f ∈ Ap(D(ak, 4t), A
)
7−→ f ∈ Lp(Dk, µ)

is 1-summing with

π1(S k) .
(
µ(Dk)
|Dk|

)1/p

.

Following the same proof of Theorem 8.5 and using Corollary 9.2, we get Jµ is 1-summing
with

π1(Jµ) .
(∑

k≥1

(
µ(Dk)
|Dk|

)p′/p)1/p′

.

This completes the proof. �
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10. THE RESULTS ON WEIGHTED BERGMAN SPACES

In this section, we give similar characterizations on weighted Bergman spacesAp
α. For any

α > −1, let dAα = (α + 1)(1 − |z|2)αdA(z) and

Ap
α = H(D)

⋂
Lp(D, Aα).

The following theorem extends the main theorem to the framework of weighted Bergman
spaces. We can prove it in a similar way, and so we omit the details here.

Theorem 10.1. Let 0 < t < 1/4 and α > −1. Let µ be a Carleson measure onAp
α.

Then

(1) Let 1 < p ≤ 2 and r ≥ 1 . Then Jµ : Ap
α → Lp(µ) is r-summing if and only if∫

D

(
µ(Dz)

) 2
p

(1 − |z|2)(α+2)( 2
p +1)

dAα(z) < ∞ .

Moreover, we have

π2(Jµ) ≈
( ∞∑

n, j

(
4n(1+α/2)µ(Rn, j)

)2/p)1/2

≈

( ∫
D

(
µ(Dz)

) 2
p

(1 − |z|2)(α+2)( 2
p +1)

dAα(z)
)1/2

. (10.1)

(2) Let p ≥ 2 and 1 ≤ r ≤ p′. Then Jµ : Ap
α → Lp(µ) is r-summing if and only if

∞∑
n, j

(
4n(1+α/2)µ(Rn, j)

)p′/p

< ∞.

Moreover, we have

π1(Jµ) ≈ πr(Jµ) ≈
( ∞∑

n, j

(
4n(1+α/2)µ(Rn, j)

)p′/p)1/p′

≈

( ∫
D

(
µ(Dz)

) p′
p

(1 − |z|2)(α+2)( p′
p +1)

dAα(z)
)1/p′

.

(10.2)

(3) Let p ≥ 2 and p′ ≤ r ≤ p . Then Jµ : Ap
α → Lp(µ) is r-summing if and only if

∞∑
n, j

(
4n(1+α/2)µ(Rn, j)

)r/p

< ∞ .

Moreover, we have

πr(Jµ) ≈
( ∞∑

n, j

(
4n(1+α/2)µ(Rn, j)

)r/p)1/r

≈

( ∫
D

(
µ(Dz)

) r
p

(1 − |z|2)(α+2)( r
p +1)

dAα(z)
)1/r

. (10.3)
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(4) Let p ≥ 2 and r ≥ p . Then Jµ : Ap
α → Lp(µ) is r-summing if and only if∫

D

1
(1 − |z|2)2+α

dµ(z) < ∞ .

Moreover, we have

πr(Jµ) ≈
( ∞∑

n, j

(
4n(1+α/2)µ(Rn, j)

))1/p

≈

( ∫
D

1
(1 − |z|2)2+α

dµ(z)
)1/p

. (10.4)

In the same way, we get for free the characterizations for weighted composition operators.

Theorem 10.2. Let ϕ : D → D be an analytic map and u : D → C be an analytic function.
Let uCϕ be the composition operator viewed from Ap

α to Ap
α′ where α, α′ > −1, and dµ =

(|u|pdAα′)ϕ. The operator uCϕ is r-summing if and only if the following πr norm is finite.

(1) When 1 < p ≤ 2 , for any r ≥ 1 ,

πr(uCϕ) ≈ π2(uCϕ) ≈
( ∫
D

( ∫
ϕ−1(Dz)

|u|p

(1 − |ϕ|2)(2+α)(1+p/2) dAα′(w)
)2/p

dAα(z)
)1/2

.

(2) When p ≥ 2 , for 1 ≤ r ≤ p′ ,

πr(uCϕ) ≈ π1(uCϕ) ≈
( ∫
D

( ∫
ϕ−1(Dz)

|u|p

(1 − |ϕ|2)(2+α)(1+p/p′) dAα′(w)
)p′/p

dAα(z)
)1/p′

.

(3) When p ≥ 2 , for p′ ≤ r ≤ p ,

πr(uCϕ) ≈
( ∫
D

( ∫
ϕ−1(Dz)

|u|p

(1 − |ϕ|2)(2+α)(1+p/r) dAα′(w)
)r/p

dAα(z)
)1/r

.

(4) When p ≥ 2 , for p ≤ r ,

πr(uCϕ) ≈
( ∫
D

|u|p

(1 − |ϕ|2)2+α
dAα′

)1/p

.

Remark: Of course, we could add some estimates involving the family (Dk)k or the Luecking
rectangles, using the fact that, for every s > 0,

∞∑
k=1

(
µ(Dk)/|Dk|

1+α/2)s

≈
∑
n≥0

∑
0≤ j<2n

(
µ(Rn, j)/|Rn, j|

1+α/2)s
.

11. SOME OTHER APPLICATIONS

We mention in this section some direct applications of our results.
The first one concerns a monotony property relatively to the index of the Bergman space.

Proposition 11.1. Let µ be a positive measure on D and 1 < p2 < p1.
If Jµ is r-summing onAp1 , then Jµ is r-summing onAp2 .
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Proof. Fix r ≥ 1, p1 > p2 > 1 and let ξ :=
(
µ(Dk)
|Dk|

)
k≥1

.

We have to separate the cases since our characterizations depend on the values of (p1, p2, r).
• If 1 < p2 < p1 ≤ 2.

Assume that Jµ : Ap1 → Lp1(µ) is absolutely summing, then we have ξ ∈ `2/p1 by
our characterization in Section 3. It follows that ξ ∈ `2/p2 , hence Jµ : Ap2 → Lp2(µ)
is absolutely summing thanks to our characterization (3.1).

• If 2 ≤ p2 < p1. Let r ≥ 1. we split this case in sub-cases:
- If 1 ≤ r ≤ p′1, we have that ξ ∈ `p′1/p1 . This implies that ξ ∈ `p′2/p2 since

p′1/p1 < p′2/p2. Then, again from our main theorem in Section 3, it follows that
Jµ is r-summing onAp2 thanks to (3.2).

- If p′1 ≤ r ≤ p′2, we get that ξ ∈ `p′2/p2 , since ξ ∈ `r/p1 and r/p1 < p′2/p2, hence Jµ
is r-summing onAp2 thanks to (3.2).

- If p′2 ≤ r ≤ p2, we get that ξ ∈ `r/p2 , since ξ ∈ `r/p1 and r/p1 < r/p2, hence Jµ is
r-summing onAp2 thanks to (3.3).

- If p2 ≤ r ≤ p1, we get that ξ ∈ `1, since ξ ∈ `r/p1 and r < p1, hence Jµ is
r-summing onAp2 thanks to (3.4).

- If p1 ≤ r, then we have that ξ ∈ `1. It turns out that Jµ is r-summing on Ap2

thanks to (3.4).
• The case p2 ≤ 2 < p1 follows immediately from the previous cases: if Jµ is r-

summing on Ap1 then it is r-summing on A2 by the previous case, hence it is r-
summing onAp2 by the first case.

�

We give another direct application of our main theorem: we have a sufficient condition to
ensure that Jµ is absolutely summing in terms of Carleson’s condition.

Proposition 11.2. Let µ be a positive measure on D. Let γ > 5/2.
Assume that µ is a positive measure on D which is γ-Carleson: µ(Dz) = O

(
(1− |z|)γ

)
, when

|z| → 1−, equivalently:

sup
ξ∈T

µ
(
W(ξ, h)

)
= O

(
hγ

)
, when h→ 0.

Then

• Let p ∈ (1, 2). If γ >
p
2

+ 2, then Jµ is absolutely summing onAp.
• Let p ≥ 2.

(i) If γ > 3, then Jµ is p-summing onAp.
(ii) If γ >

p
r

+ 2 (for some r ∈ [p′, p]), then Jµ is r-summing onAp.
(iii) If γ > p + 1, then Jµ is absolutely summing onAp.

Recall that the boundedness of Jµ onAp is ensured exactly as soon as µ is 2-Carleson.
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We can read the previous result in another way. Assume that µ is γ-Carleson. If γ ∈ (5/2, 3]
then Jµ is absolutely summing onAp for any p ∈ (1, 2(γ − 2)) ⊂ (1, 2).

If γ > 3, then Jµ is r-summing on Ap for some suitable (r, p) with p > 2. In particular, it
is absolutely summing onAp for any p ∈ (1, γ − 1).

Proof. It suffices to check (easily) that the conditions in the main theorem ar satisfied.
For instance, for p ∈ (1, 2), since(

µ(Dz)
) 2

p

(1 − |z|2)
4
p +2
. (1 − |z|2)

2(γ−2)
p −2

a sufficient condition to ensure the convergence of the integral is

2(γ − 2)
p

− 2 > −1 .

The other cases are treated in the same way. �

Another application concerns composition operators on vector valued (weak and strong)
Bergman spaces. A partial result is given by Laitila-Tylli-Wang in [12]. They also treat
partially the case of vector valued Hardy spaces and the result is completed in [1] by Blasco
for Lq valued functions. We give below the corresponding result for Bergman spaces.

Before stating precisely the results, let us recall the framework. For any Banach space X,
we use `p

weak(X) to show the weak p-summable sequence (xn) in X. It is equipped with the
norm defined by

‖(xn)‖`p
weak(X) := sup

x∗∈BX∗

∑
k

|〈x∗, xk〉|
p


1
p

where (xn) ∈ `p
weak(X).

For any Banach space X, let p ≥ 1, the norm on Ap(D, X) (resp. Ap
weak(D, X)) is defined

by

‖ f ‖Ap(D,X) :=
(∫
D

‖ f (z)‖p
XdA(z)

) 1
p

and

‖ f ‖Ap
weak(D,X) := sup

x∗∈BX∗

(∫
D

|〈x∗, f (z)〉|pdA(z)
) 1

p

respectively.
For any symbol ϕ : D → D (analytic), the composition operator Cϕ is well defined (and

bounded) from Ap into Ap. For any Banach space X, we are interested in the operator CX
ϕ

(until now formally) defined by

CX
ϕ : f ∈ Ap

weak(D, X)→ f ◦ ϕ ∈ Ap(D, X).
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That is, to any f (z) =
∑∞

n=0 xnzn ∈ A
p
weak(D, X) where xn ∈ X for n ≥ 0, we associate the

X-valued analytic function

CX
ϕ ( f )(z) =

∞∑
n=0

xn
(
ϕ(z)

)n
.

In [12, Th 3.2], the authors prove the following theorem:

Theorem A. Let 2 ≤ p < ∞, ϕ be a symbol and X be any complex infinite-dimensional
Banach space. Then

‖Cϕ‖Ap
weak(D,X)→Ap(D,X) ≈

(∫
D

1
(1 − |ϕ(z)|2)2 dA(z)

)1/p

. (11.1)

They also prove a Hardy space version of the previous theorem, which is completed for
other values of p and when X = Lq(µ) by Blasco in [1, Th 1.1]:

Theorem B. Let ϕ be a symbol and 1 < p ≤ 2. Let X = Lq(µ) for 1 ≤ q ≤ p and infinite
dimensional. Then

‖CX
ϕ ‖Hp

weak(D,X)→Hp(D,X) ≈

∫ 2π

0

(∫ 2π

0

1
|1 − e−isϕ(eit)|1+p/2

dt
2π

)2/p
ds
2π

1/2

. (11.2)

The following result is the analogue of Theorem B for vector valued Bergman spaces, and
completes Theorem A in this framework.

Theorem 11.3. Let ϕ : D → D be an analytic function, 1 < p ≤ 2 and 1 ≤ q ≤ p. Let
(Σ,Ω, µ) be a probability space and X := Lq(µ). Then

CX
ϕ : Ap

weak(D, L
q(µ))→ Ap(D, Lq(µ))

is bounded if and only if ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z) < ∞, (11.3)

and moreover

‖CX
ϕ ‖Ap

weak→A
p ≈

( ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z)
) 1

2

.

Proof. Suppose (11.3) is true. Then by Corollary 3.2, we get Cϕ ∈ Πq(Ap,Ap).
Let F(z) =

∑∞
n=0 fnzn ∈ A

p
weak(D, L

q(µ)), where fn ∈ Lq(µ) for every n ≥ 0. Hence, for each
h ∈

(
Lq(µ)

)∗, we have that

z ∈ D 7−→ 〈h, F(z)〉 =

∞∑
n=0

(∫
Ω

h(ω) fn(ω)dµ(ω)
)

zn.

belongs toAp.
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So we have

‖F‖Ap
weak(D,Lq(µ)) = sup

h∈B
Lq′ (µ)

(∫
D

|〈h, F(z)〉|pdA(z)
)1/p

= sup
h∈B

Lq′ (µ)

sup

∣∣∣ ∞∑
n=0

∫
Ω

h(ω) fn(ω)dµ(ω)ān

∣∣∣ ; g ∈ BAp′ with g =

∞∑
n=0

anzn


= sup

g∈B
Ap′

(∫
Ω

|〈G(ω), g(.)〉|qdµ(ω)
)1/q

,

where G(ω) =
∑∞

n=0 fn(ω)zn ∈ Ap.
The fact that Cϕ ∈ Πq(Ap,Ap) shows that(∫

Ω

∥∥∥Cϕ(G)
∥∥∥q

Apdµ(ω)
)1/q

≤ πq(Cϕ) sup
g∈B

Ap′

(∫
Ω

|〈G(ω), g(.)〉|qdµ(ω)
)1/q

.

So the Minkowski’s inequality gives that(∫
D

∣∣∣∣∣∫
Ω

|Cϕ(F)|qdµ(ω)
∣∣∣∣∣p/q dA(z)

)1/p

≤

(∫
Ω

∣∣∣∣∣∫
D

|Cϕ(F)|pdA(z)
∣∣∣∣∣q/p

dµ(ω)
)1/q

≤ πq(Cϕ)‖F‖
A

p
weak

(
D,Lq(µ)

),
and moreover

‖CX
ϕ ‖Ap

weak→A
p .

( ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z)
) 1

2

.

For the converse, assume that CX
ϕ is bounded and we are going to show that

π2(Cϕ) ≤
∥∥∥CX

ϕ

∥∥∥
A

p
weak→A

p .

Let ( fk) ∈ `w
2 (Ap) with

sup
g∈B

Ap′

∑
k

|〈g, fk〉|
2

1/2

≤ 1.

The proof will be finished as soon as we will have proved that∑
k

‖Cϕ( fk)‖2Ap

1/2

≤ ‖CX
ϕ ‖Ap

weak→A
p .

For that, we make use of the Dvoretzky theorem (see [5, p.397]): for every ε > 0, and
n ∈ N, there exists a linear map Tn : `n

2 → Lq(µ) such that for every (a j) ∈ `n
2

(1 + ε)−1

 n∑
j=1

|a j|
2


1/2

≤
∥∥∥ n∑

j=1

a jTn(e j)
∥∥∥

Lq(µ)
≤

 n∑
j=1

|a j|
2


1/2

.

Now define Fn(z) =
∑n

k=1 fk(z)Tn(ek).
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For each x∗ ∈ Lq′(µ)

〈x∗, Fn(z)〉 =

n∑
k=1

〈x∗,Tn(ek)〉 fk(z)

=

 n∑
k=1

〈T ∗n(x∗), ek〉 fk

 (z).

Therefore, for every x∗ in the unit ball of Lq′(µ), we have

‖〈x∗, Fn〉‖Ap =
∥∥∥ n∑

k=1

〈T ∗n(x∗), ek〉 fk

∥∥∥
Ap

= sup
g∈B

Ap′

∣∣∣∣∣∣∣∑k

〈T ∗n(x∗), ek〉.〈 fk, g〉

∣∣∣∣∣∣∣
≤

∑
k

|〈T ∗n(x∗), ek〉|
2

1/2

. sup
g∈B

Ap′

∑
k

|〈 fk, g〉|2
1/2

≤ ‖T ∗n‖.‖x
∗‖ ≤ 1

since ‖Tn‖ = ‖x∗‖ = 1. This implies that

‖Fn‖Ap
weak(D,Lq(µ)) ≤ 1.

Since CX
ϕ is bounded from Ap

weak(D, L
q(µ)) into Ap(D, Lq(µ)), using Dvoretzky theorem, we

have ∥∥∥CX
ϕ

∥∥∥p

A
p
weak→A

p ≥
∥∥∥CX

ϕ (Fn)
∥∥∥p

Ap

=

∫
D

∥∥∥∥∥∥∥
n∑

k=1

Tn(ek) fk(ϕ(z))

∥∥∥∥∥∥∥
p

Lq(µ)

dA(z)

≥ (1 + ε)−p
∫
D

 n∑
k=1

| fk(ϕ(z))|2
p/2

dA(z)

≥ (1 + ε)−p

 n∑
k=1

(∫
D

| fk(ϕ(z))|pdA(z)
)2/pp/2

,

where the last inequality holds since 2/p ≥ 1 and using the Minkowski’s inequality.
Since ε is arbitrary, we get n∑

k=1

‖Cϕ( fk)‖2p

1/2

≤
∥∥∥CX

ϕ

∥∥∥p

A
p
weak→A

p .

By the definition of 2-summing, we have

π2(Cϕ) ≤ ‖CX
ϕ ‖Ap

weak→A
p .
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At last, by Corollary 3.2, we have

( ∫
D

( ∫
D

1
|1 − z̄ϕ(w)|p+2 dA(w)

) 2
p

dA(z)
) 1

2

.
∥∥∥CX

ϕ

∥∥∥
A

p
weak→A

p .

�
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