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Simultaneous control of 2DOF upper-limb
prosthesis with body compensations-based

control: a multiple cases study
Mathilde Legrand, Charlotte Marchand, Florian Richer, Amélie Touillet, Noël Martinet, Jean Paysant,

Guillaume Morel, and Nathanaël Jarrassé

Abstract— Controlling several joints simultaneously is a
common feature of natural arm movements. Robotic pros-
theses shall offer this possibility to their wearer. Yet, exist-
ing approaches to control a robotic upper-limb prosthesis
from myoelectric interfaces do not satisfactorily respond
to this need: standard methods provide sequential joint-
by-joint motion control only; advanced pattern recognition-
based approaches allow the control of a limited subset of
synchronized multi-joint movements and remain complex
to set up. In this paper, we exploit a control method of
an upper-limb prosthesis based on body motion measure-
ment called Compensations Cancellation Control (CCC). It
offers a straightforward simultaneous control of the inter-
mediate joints, namely the wrist and the elbow. Four tran-
shumeral amputated participants performed the Refined
Rolyan Clothespin Test with an experimental prosthesis
alternatively running CCC and conventional joint-by-joint
myoelectric control. Task performance, joint motions, body
compensations and cognitive load were assessed. This
experiment shows that CCC restores simultaneity between
prosthetic joints while maintaining the level of performance
of conventional myoelectric control (used on a daily basis
by three participants), without increasing compensatory
motions nor cognitive load.

Index Terms— prosthesis control, body compensations,
physical human-robot interface.

I. INTRODUCTION

S IMULTANEITY between joint motions is a natural feature
of arm movements. Reproducing this ability with an

upper-arm robotic prosthesis is far from being straightforward.
Although mechatronic features of current prosthetic devices are
available to offer such a possibility, their controller is not yet
appropriate.
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The main control approach, conventional myoelectric con-
trol, only allows sequential movements [1]–[3]. The mo-
tions of each joint (e.g., hand closing/opening, wrist prona-
tion/supination or elbow flexion/extension) are governed by the
activity of two antagonist muscles of the stump. To manage
multiple degrees of freedom (DOF), a finite state machine is
implemented; each DOF corresponds to a different state. To
switch from one DOF to the other, the prosthesis user has to
co-contract both muscles, or in some cases, to modulate the
contraction level. This scheme is the most widespread one,
due to its robustness and simplicity of implementation, but the
slowness and the sequential nature of the performed motions
give rises to recurring complaints from prosthesis users [4],
[5].
To remove the need for co-contraction switching and extend
control possibilities, pattern recognition-based methods have
been proposed: classification or regression algorithms are
trained to identify intended motions from muscular activa-
tion patterns of amputees’ remaining muscles [6]–[8]. These
algorithms can be trained to allow simultaneous motions
[9]–[11]. Yet, the total number of motions is limited: an
increasing number leads to a less effective and less robust
control algorithm (see [12] for instance) and requires more
muscular activity information and thus more recording sites
(i.e. more electrodes) [3]. Simultaneous prosthetic motions
with pattern recognition-based control have thus been mainly
implemented for two DOF (hand opening/closing and wrist
pronosupination) and for transradial prosthesis, even if some
works with a third DOF (wrist flexion or different grasping
types) can also be found [12]–[14]. To increase the number
of accessible recording sites, targeted muscle reinnervation,
which proposes to transfer residual nerves from the amputated
limb to new muscle targets that have lost their function [15],
[16], can be considered, but with the downside of a complex
surgery and extended rehabilitation.
Moreover, myoelectric control is hardly scalable, in the sense
that controlling more active prosthetic DOF requires additional
efforts and attention from the user. When acting with their
natural upper-limbs, human subjects generally use all the limb
joints in coordination to perform the task, the wrist being used
to shape and orient the hand whereas proximal DOF, such
as the shoulder and elbow, are used to transport the hand
to the target location [17]. With current myoelectric control
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approaches, be it conventional or based on pattern recognition,
the prosthesis user has to learn specific control instructions
to actuate each joints independently. The more the active
prosthetic DOFs, the more complex the control sequence.
To remove the need for voluntary control instructions, we have
proposed in [18] and [19] to control upper-limb prostheses by
cancelling the body compensations of the user. This approach
relies on natural behaviours of prosthesis users, i.e. the body
compensations, and avoids dealing with the known signal
processing issues of electromyograms. Previously validated for
the control of single DOF prostheses, we here generalize this
method to control several intermediate joints of a transhumeral
prosthesis (wrist pronosupination and elbow flexion/extension).
We expect that it will allow simultaneous motions of the pros-
thetic joints in a continuous and unconstrained way, close to
the natural human movements, without increasing the control
complexity and thus associated cognitive load.

II. COMPENSATIONS CANCELLATION CONTROL

As presented in [18] and [19], Compensations Cancellation
Control (CCC) aims at cancelling the compensations exhibited
by the user with prosthesis motions, through a kinematic
coupling created between the human and the prosthetic device
(see Figure 1). It operates in three steps: (i) analysis of

zw
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(a) The prosthesis user
wants to pick the
clothespin, which

requires simultaneous
wrist pronation

(around zw) and elbow
extension. (around ze).

(b) With an initially
still prosthesis, the

user starts mobilizing
task-oriented upper

arm and torso
compensations

(in red).

(c) Compensations are
detected and used to

generate adequate
prosthesis motions (in
green), which naturally

leads the user to
cancel compensatory

motions.

Fig. 1: Illustration of Compensations Cancellation Control
functioning.

the body posture to evaluate whether the user is currently
compensating for an inadequate prosthesis configuration;
(ii) when a body compensation is detected, computation of
a new desired position of the prosthesis that cancels the
compensation; (iii) servoing the prosthesis joint positions to
this desired value with a secondary loop. The prosthesis user
merely has to focus on the end-effector task, while the device
is in charge of his/her posture. The general control law is:

q̇p,c = λλλZq0 (ϵϵϵp) (1)

with q̇p,c the vector of prosthetic joint velocity commands,
ϵϵϵp the prosthesis angular position errors obtained from the

user’s body compensations, Zq0 a deadzone function and λλλ
a gain that tunes the rate of correction. Instead of looking for
an exhaustive measure of body compensations to compute ϵϵϵp,
we propose to gather body motions in one metric: the stump
position and orientation. Assuming that the hand is correctly
placed by the user (through body compensations) and that
the role of the prosthesis is to move the stump back to a
reference (non-compensatory) posture, we consider the device
backwards, with the hand as the base body and the stump as
the end-effector (see Figure 2). In that case, we can write

q̇p = J(qp)
+ṡ (2)

with J(qp) the natural jacobian matrix of the prosthetic arm
and s the stump position and orientation vector. Within the
framework of small displacements, we have

ϵϵϵp = J(qp)
+ϵϵϵs (3)

z0

y0
x0

s: stump 
position/

ze

zw

Fig. 2: Prosthesis model used to obtain the prosthesis position
error from the stump orientation.

This general formulation can be used whatever the number
of prosthetic DOF. In the particular case of this study, pros-
thetic joints (wrist and elbow) are revolute; we decided to work
with orientation only, since it allows to work in a 2D space.
We thus have J(qp) =

(
zw ze

)
∈ R3×2, with zw and ze the

axes of rotation of the prosthetic wrist and elbow respectively.
ϵϵϵs was chosen to be the rotation of the hip-acromion vector and
was projected in the 2D-base (zw; ze). In that frame, J(qp)
becomes the identity matrix and the mapping is merely:

ϵϵϵp =

(
θzw
θze

)
(4)

with θzw and θze the rotation of the hip-acromion vector
around zw, the wrist pronosupination axis, and ze, the elbow
flexion/extension axis, respectively (see Figure 1(a)).
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III. MATERIALS AND METHODS

To evaluate CCC ability to offer an intuitive control of
a 2-DOF prosthesis (wrist pronosupination and elbow flex-
ion/extension), four transhumeral amputees participated to the
experiment, performed in accordance with the recommenda-
tions of Université Paris Descartes ethic committee CERES,
which approved the protocol (NIRB: 20163000001072). The
participants gave their informed consent, in accordance with
the Declaration of Helsinki.

Task
Participants were asked to perform the Refined Rolyan

Clothespin test [20], [21]: three clothespins are moved from a
horizontal rod onto a vertical rod (and vice versa), changing the
orientation in the process. The protocol was slightly modified
to adjust to the restrained reachable space of transhumeral
amputated people: instead of moving three clothespins, the
participants were asked to move only two of them (see Figure
3). The task was completed six times for each prosthesis
control mode (12 trials in total, see also Prosthesis control
paragraph).

Horizontal
clothespin
positions

Push 
buttons for 

hand control

Vertical
clothespin
positions

(a) Adapted Refined Rolyan
Clothespin test, with remote hand

control

OptiTrack 
clusters 

required for 
the control 

law

OptiTrack clusters 
and IMU for post-

experiment analysis

(b) Sensors for control and
post-experiment analysis

Fig. 3: Experimental set-up of the Refined Rolyan Clothespin
test adapted to transhumeral amputated people.

Prosthesis prototypes
The first participant was our pilot for the Cybathlon 2020

Global Edition, who wore a prosthesis prototype especially
developed for him and this competition. The three other partici-
pants were patients from the Institut Régional de Réhabilitation
- UGECAM Nord-Est in Nancy. They wore a prototype
designed in the lab for validation experiments which could
be easily mounted on their socket connector in replacement of
their own prosthesis. These two prototypes have a polydigital
hand (Quantum from Touch Bionics / Ossür©), an Ottobock©

motorized wrist (for pronosupination) and a motorized elbow
(for flexion/extension). They are controlled by a Raspberry
Pi3©, through a DC motor driver. The Cybathlon prototype
elbow joint velocity can go up to 120 deg.s−1, while the

other one is limited to 60 deg.s−1, but this difference had no
influence for the present experiment.

Prosthesis control
The prosthetic intermediate joints (wrist and elbow) were

successively controlled by a conventional on/off myoelectric
control, using the contraction of the biceps and triceps as
inputs (MYO), and by CCC. MYO was implemented with a
trapezoidal velocity profile for each joint; co-contraction was
required to switch from the wrist control to the elbow one and
vice-versa. CCC law was the one described in Equations 1 to
4. Hand orientation, hip and acromion positions, required in
the control law, were measured with a motion capture system
OptiTrack© (NaturalPoint, Inc.), and sent in real time to the
prosthesis. Following the tuning performed in [19], λ was
taken as 2s−1 for the elbow, and to homogenize wrist and
elbow velocity during the task, λ was taken as 4s−1 for the

wrist. The deadzone threshold vector q0 was
(
5
5

)
deg.

The control of the prosthetic hand was chosen to be the same
for the two control modes. Like most of upper-limb prostheses
functional assessments, the Refined Rolyan Clothespin test
involves hand grasping. Yet, as the evaluation of the control
of this function is out of purpose here, it was decided to
set it apart, with a simplified control: the fingers of the
polydigital hand were preliminarily positioned in a pinch
posture and the closing/opening of the hand was controlled
with two push-buttons held in the contralateral hand of the
participants. Functional assessment thus focused on wrist and
elbow mobility only and was not biased by the difficulty of
myoelectric grasping.
The Refined Rolyan Clothespin test was performed six times
with both modes; MYO and CCC were alternated to avoid any
effect of task learning with one of the two modes.

Participants’ experience in prosthesis control
Our Cybathlon pilot was used to conventional myoelectric

control but without co-contraction; he had thus to adapt
to the co-contraction switching implemented for the present
experiment. He had also tested CCC for one DOF and
knew the general principle of the concept. The three other
participants were used to conventional myoelectric control
with co-contraction switching (daily-basis use) and did not
know anything about CCC. It has yet to be noticed that the
second and fourth participants do not use an active prosthetic
elbow in everyday life: the myoelectric control they are used
to was transferred from hand-and-wrist control to wrist-and-
elbow. Usual myoelectric control of one of the participants
(P4) had also to be adapted for the experiment: one of the
activation threshold was increased because of unintentional
biceps contraction when the shoulder was mobilised. Wrist
pronation and elbow flexion were thus a bit more difficult to
perform than usual.
Participants thus represent a variety of cases: P1 would reflect
the case study of an expert user with the two control methods;
P4 would reflect the case of someone still learning to use
both control modes - since his myoelectric control has been
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Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 After

Main Task (Rolyan) CCC x x x x x x
MYO x x x x x x

Double task Serial 3 subtraction x x x x
Serial 7 subtraction x x

Raw-TLX x

TABLE I: Summary of the experimental set-up

substantially changed -; P2 and P3 would reflect users expert
with MYO but new to CCC.
Participants were given few minutes to test the elbow-wrist
myoelectric control before starting the experiment (with no
specific task to perform). The participants who did not have
any previous experience with CCC (P2, P3 and P4) did not
have any familiarization with this control method; they were
just explained the main working principle.

Cognitive load assessment
CCC takes as input the body compensations of the prosthesis

user, which are natural behaviours [22]–[24], and discharges
the user from managing voluntarily the multiple prosthetic
joints. We thus found worthwhile to compare the cognitive
workload required to control multiple DOF prosthesis with
CCC and with conventional myoelectric control, which asks
for muscle contractions and with which the prosthesis user
has to manage independently the multiple joints. The cognitive
load was evaluated with both objective and subjective methods.
The objective measure was a double task, performed in parallel
to the Rolyan test: participants were asked to perform serial
3 or 7 subtraction [25]. The serial 3 (resp. 7) subtraction
consists in subtracting from a random number by 3 (resp.
7); the outcome is the number of errors produced and the
number of subtractions performed. Serial 3 subtraction was
performed in parallel of the Rolyan during the fourth and fifth
trials of each control mode; serial 7 subtraction during the last
trial. Subjective measure was the Raw-TLX score [26], [27], in
which the participants rate six categories (mental, physical and
temporal demands, frustration, effort and performance) after
completing the task; the final score is the sum of the six sub-
ratings. Each control mode is given a score and the smaller the
score, the less demanding the control mode. Table I provides
an overview of the entire set-up.

IV. RESULTS

We chose to base the assessment of the control strategies
on three complementary aspects:

• task performance, measured here by the time of the task,
which is a classic metric to evaluate the Refined Rolyan
Clothespin test;

• joint motions, evaluated through joint trajectories and
simultaneous activation timing;

• body compensations, evaluated through the time average
of the absolute value of trunk angles. Since compensatory
motions are used as input of the controller, it is crucial to
check that they are not exaggerated by the user to activate
the device.

In the Refined Rolyan Clothespin test, subjects first move the
pins from the horizontal to the vertical rod (upwards motion),
then from the vertical to the horizontal rod (downwards
motion). As upwards and downwards motions could call for
different motion strategies and thus different performance, they
are disassociated for the aforementioned metrics. In addition to
the three aspects listed above, and as described in the previous
Section, the cognitive load was also assessed, through a double
task and a Raw TLX questionnaire. Due to the small number of
participants, no statistical analysis was conducted. The results
are presented for each participant individually, since the inter-
subject variability is high.

Example trial
Figure 4 shows one example of upwards motion from P1

and one from P4 (expert and beginner resp.), which allows to
visualize the first main points of our analysis.
For P1, we see that the time of the task is similar when the
prosthesis is controlled by MYO or by CCC (around 19s).
Then, we can observe the absence of elbow motion with MYO
(Figure 4(a)): P1 avoided co-contractions and focused on the
most useful joint, the wrist rotation. There is also a clear sepa-
ration between hand and wrist activation, despite the possibility
to move both at the same time, offered by the push buttons-
based hand control. With CCC (Figure 4(b)), the hand opening
to release the clothespin is performed while the wrist is still
moving. Wrist and elbow motions are also simultaneous (black
areas labeled ”s.a.”), during clothespin transport. Finally, trunk
motions show a common pattern between both control modes,
which confirms that the input of CCC is a natural behaviour,
already exhibited with MYO. However, in this example, trunk
motions have a higher amplitude with CCC: lateral bending
goes up to 20 deg instead of 10 deg with MYO and rotation
is between -20 and +20 deg while it is between -10 and +10
deg with MYO. The coupling created by CCC between trunk
lateral bending and wrist pronosupination is also visible.
For P4 (see Figures 4(c) and 4(d)), the time of the task is
much longer than the time of P1 (≈ +60s with MYO and
≈ +40s with CCC); it is also longer with MYO than with
CCC (+18s). Contrary to P1, P4 moves a bit the elbow with
MYO, which could explain the longer time (need for co-
contraction switching). Hand and wrist activation are also well
separated with MYO but also with CCC, which tends to show
that a simultaneous hand-wrist activation is not immediately
mastered by a beginner with CCC. However, we do observe
simultaneous activations of the wrist and the elbow joints.
Finally, there is no clear common pattern of trunk motions
with MYO and with CCC. Trunk motions with MYO are quite
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Fig. 4: Example of joint trajectories and hand activation from one upwards motion of P1 (a and b) and one upwards motion
of P4 (c and d).

small: P4 favoured the use of MYO rather than a fast task
performed with body compensations.
These examples highlight the sequential character of prosthesis
motions with MYO and, in contrast, the simultaneity allowed
by CCC, between wrist and elbow but also between wrist and
hand (for the most advanced user). To strengthen this first

insight, results from all trials of the four participants are now
analysed.

Task performance

Figure 5 shows the time of the task, averaged over trials,
for each participant. A great variability can be noticed between
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Fig. 5: Time of the task (mean over trials and standard
deviation) for each participant. U: upwards; D: downwards
motions.

participants (from 22s to 85s with MYO for instance), surely
due to the difference in their individual learning stage. For a
same individual, there is no clear difference between MYO and
CCC (overlapping of standard deviations); both control modes
allow completing the task with similar performance.

Prosthetic joints

In this experiment, both prosthetic wrist and elbow were
active. Many points can be raised on the strategy developed by
the participants with CCC and MYO, be it for individual joint
motions or for simultaneous prosthetic joints or prosthetic-and-
human joints activation.
Wrist and elbow angular trajectories are shown in Figure 6.
Focusing first on pronosupination (Figure 6(a)), we can notice
that there is a common CCC trajectory pattern (two successive
bell-shapes, reflecting wrist motions for the two clothespins)
for every participants, even if the range of motion can differ.
For upwards motions, this pattern is similar to the one with
MYO for the first three participants (P1, P2 and P3). As
for Participant 4 (P4), the wide range of motion with MYO
is due to the implemented myoelectric control, which made
pronation difficult and led P4 to preferentially use supination,
sometimes up to 300 deg. For downwards motions, CCC and
MYO trajectories have similarities for P1. For P2 and P3, MYO
trajectories seem less smooth and repeatable than CCC.
Considering elbow angular trajectories (Figure 6(b)), we can
see that P1, P2 and P4 barely used their elbow joint with MYO:
P1 used it only once (light green), P2 did not used it at all and
P4 moved it of few degrees only. On the contrary, the elbow
joint was activated during every trials, in a repeatable way,
with CCC. P3 adopted a different strategy, both with MYO and
CCC. With MYO, P3 easily mastered myoelectric switching
and thus activated the prosthetic elbow in a useful way, during
each trial. When using CCC, P3 extended the elbow once at
the beginning of the task, and then kept it still to focus on the
wrist rotation. P3 stayed focus on individual prosthetic joints
even with CCC.

Besides angular trajectories, we analysed whether wrist
and elbow were activated together with CCC during the task
completion. Figure 7(a) shows the time of simultaneous wrist-
and-elbow activation, expressed as a percentage of the total
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Fig. 6: Prosthetic joint angular trajectories, normalized in time
and averaged over trials.(a) Wrist pronosupination. (b) Elbow
flexion/extension. For P1, the first trial is set apart (light green),
since it was the only one for which the elbow was activated.

task time (joints were considered as active when their angular
velocity was higher than 3 deg.s−1). There is no result for
MYO, since this feature is not achievable. Natural data are
obtained from one participant (P1) performing the Rolyan
Clothespin Test with his sound arm (the result is the average
over the three trials he performed). It can be observed that
natural wrist and elbow joints are moved simultaneously during
≈ 70% of the task. With CCC, wrist and elbow prosthetic
joints were moved simultaneously for P1, P2 and P4, during
around one quarter of the task. Concerning P3, there is nearly
no simultaneity between wrist and elbow motions, since, as
observed before, this participant used CCC like MYO and
decomposed arm motions into individual joint motions.
It is also of interest to look at a similar simultaneity index
for prosthetic hand and wrist motions. CCC does not directly
allow for hand grasping motions, since the latter cannot be
compensated by any other joints, but it discharges myoelectric
control which can then be fully dedicated to the control of the
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Fig. 7: Simultaneous activation of prosthetic and prosthetic-
and-human joints: (a) wrist and elbow, (b) wrist and hand, (c)
shoulder and elbow. For P1, the first trial is set apart (light
green), since it was the only one for which the elbow was
activated. U: upwards; D: downwards motions.

hand. For the experiment considered here, we recall that a pair
of push-buttons supplanted myoelectric control of the hand, to
avoid being particularly biased by the control of the grasping
in the task assessment. The prosthetic hand is thus considered
as activated when one of the push-button is pressed. For natural
data, the hand activation was defined when thumb and index
fingers moved towards and away each other. We can see on
Figure 7(b) that, even if simultaneous hand-wrist activation
was possible with both MYO and CCC due to remote hand
control with push-buttons, the participants only made use of
it with CCC. With the latter, hand and wrist were moved
simultaneously during 5 to 20% of the total time, which gets

closer to the 27.5% of the natural task. Myoelectric control
actually requires the user to focus on the individual joint s/he
is moving, whereas CCC is built to allow prosthesis user to
focus on the end-effector, which eases coordinated hand-and-
wrist motions.
Finally, simultaneity is not only important between prosthetic
joints but also between prosthetic and human joints. Indeed,
transhumeral myoelectric users often struggle to move their
prosthetic arm in coordination with their residual limb, which
leads to a global motion in two steps: (i) prosthesis motion
followed by (ii) human motion [22], which is inefficient.
The natural coordination between joints is missing. The same
simultaneity metric as for prosthetic joints is thus considered,
but between the prosthetic elbow and the human shoulder (see
Figure 7(c)). When the task is performed with the sound limb,
the shoulder-elbow simultaneity is around 60% of the total task
time. With the prosthesis, we can again observe a difference
between P1, P2, P4 and P3. For P1, P2 and P4, CCC allows
some recovery of shoulder-elbow coordination; with MYO, as
there were few elbow motions, the shoulder-elbow simultaneity
is nearly absent. For the MYO trial of P1 using the elbow
joint, we see that the time of simultaneous activation between
human shoulder and prosthetic elbow is much smaller than
the mean over trials with CCC (1.7% vs 14.6% for upwards
motions and 8.1% vs 20.9% for downwards motions). As for
P3, the prosthesis-user simultaneity with CCC is very low (less
than 8%), since this participant extended the elbow once at
the beginning of the task, in a totally asynchronous way. With
MYO, the shoulder-elbow simultaneity is noticeable for this
participant (around 12%) but still remains lower than the one
with CCC for the other participants.

Body compensations

U D

Flexion

18

M
ea

n 
(d

eg
)

0

16

14

12

10

8

6

4

2

Subject 1 Subject 2 Subject 3 Subject 4 Subject 1 Subject 2 Subject 3 Subject 4

U

Bending
U D U D U D U D D U D U D

Myoelectric
CCC
Natural max.

Fig. 8: Time average of trunk compensatory motions (flexion
and lateral bending). U: upwards motions; D: downwards
motions.

Due to the use of body compensatory motions as controller
input, the assessment of the performance allowed by CCC re-
quires to analyse the amplitude of the compensations exhibited
by the participants. CCC upper body motions are compared to
the one exhibited with MYO, and to the maximum of body
motions when P1 performed the task with his non-amputated
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limb.
Since shoulder motions and trunk rotation are functional joints
for the Refined Rolyan Clothespin test, compensatory motions
are analysed through trunk flexion and lateral bending. The
time average of the absolute value of these motions for
upwards and downwards motions are shown Figure 8. Three
main points can be raised:

• there is no clear difference between compensations ex-
hibited with MYO and those exhibited with CCC. Those
tend to be higher than natural trunk motions;

• there is a high inter-subjects variability: no common
compensation patterns stands out between participants;

• there is also a high intra-subject variability (for P2, P3
and P4 particularly): the standard deviation is more than
2 deg and can go up to 6 deg when the highest mean
value is 13 deg.
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Fig. 9: Cognitive load assessment. (a) Double task: partici-
pants were asked to perform serial subtractions in parallel to
the Rolyan Clothespin Test. Participant 3 did not perform the
serial 7 subtraction trial. (b) Raw TLX questionnaire.

As stated above, the cognitive load required by CCC and
the one required by MYO were measured with a double
task of serial subtractions and a Raw-TLX questionnaire
(see Figure 9). Figure 9(a) shows the results of the double
task: the number of operations performed during a complete
updwards-downwards cycle, and the number of errors (if any).
If the prosthesis control scheme requires the participant to be
focused on the control, s/he will be less able to perform the

double task. Thus, the lower the number of operations and
the higher the number of errors, the higher the cognitive load.
It can be observed that there is no clear difference between
MYO and CCC with this metric, for every participants.
With the Raw TLX questionnaire, filled at the end of the
experiment, the participants gave a score for each control
mode. The higher the score, the higher the perceived cognitive
load. We can see on Figure 9(b) that MYO was given a
lower score than CCC by P1 (-7%), P2 (-9%) and P3 (-
21%) while P4 gave a much higher score to this mode (+40%).

V. DISCUSSION

The complementary metrics presented above show that the
proposed control scheme allows to perform a complex task,
the Refined Rolyan Clothespin test. With CCC, the task per-
formance (measured by the time) is similar to the one obtained
with the myoelectric control, while requiring no training. After
six trials only, CCC was mastered by all four participants.
Yet, even if the task performance of both control modes are
comparable, the deployed motion strategies differ. The results
of P1, P2, P4 on one side, and those of P3 on the other side,
will be analysed distinctly, since P3’s behaviour shows some
particularities.

Joint motions
Results of P1, P2 and P4 show that these participants

neglected prosthetic elbow motions with MYO: they tended
to avoid co-contractions whenever possible to minimize the
global effort, and focus on the most helpful joint, the wrist.
With CCC, the activation of the prosthetic elbow requires
no additional effort from the user: the absence of voluntary
switching allows a simple use of multiple prosthetic joints.
Moreover, albeit the percentage is not yet as high as during
natural task performance, CCC restores simultaneous and syn-
chronous joint motions (as shown in Figure 7): wrist and elbow
are moved together during ≈ 25% of the task; hand is opened
while wrist is still moving; human shoulder and prosthetic
elbow retrieve coordination. It could yet seem curious that the
simultaneous joint motions do not reduce the time of the task
with CCC. This is due to the wrist velocity which is smaller
with CCC than with MYO. It could be speed up by increasing
the gain λ in the control law but with possible stability issue
for the human-robot system. Regarding body compensations,
one can wonder why the increased use of the elbow joint with
CCC does not decrease the amount of compensatory motions.
A more detailed analysis of kinematic metrics characterizing
the different motion strategies should thus be conducted to
better understand this result.
Contrary to most of transhumeral amputated subjects, P3 used
a lot the elbow joint with MYO, despite the co-contraction
switching. He had also an important shoulder mobility de-
spite the constraints applied by its strapped socket, which
made his compensatory motions different from the three other
participants and from most of transhumeral amputees. The
definition of compensations used in CCC implementation was
not fully adapted for him. After one trial, he thus chose to
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control prosthetic joints individually with CCC, mimicking
the strategy used with MYO. When moving the prosthesis
with CCC, P3 decomposed the arm motion and considered the
joints one-by-one, instead of focusing on the end-effector only,
as we had expected. This led to sequential elbow and wrist
motions, with the elbow extended once at the beginning of the
task. This way of using CCC is not optimal since the upper
body motions exhibited to move the prosthesis are not natural
task-based compensations, and the benefit of simultaneity is
removed. Through this participant’s results, it is thus shown
that, as expected, body compensations vary between prosthesis
users according to the residual mobility of the subject, and that
the choice of the compensations used in CCC implementation
is crucial to provide an efficient and beneficial control scheme.
An important limitation of the current implementation of CCC
is thus the generic and constant definition of compensatory
motions. To overcome this issue, we recently proposed to
update in real time the reference (non-compensatory) posture
[28], through an optimisation process on a human model. Body
compensations would be then defined as deviation from a
regularly updated reference. In [28], a preliminary validation
of this proposition has been presented: the optimised posture
is obtained with inverse kinematics methods, with some im-
posed constraints on joint motions. We proposed a null-space
optimisation approach with a RULA inspired score [29], an
approach then validated with able-bodied participants. Next
steps are planned to apply this optimisation method to compute
individual body compensations for CCC.

Cognitive load

According to the double task assessment, CCC and MYO
are as demanding for this experiment. This is a significant
result since CCC required no specific learning nor extended
training, contrary to MYO. Participants managed to control
their prosthesis with CCC in few minutes, without being
more focused than with their usual myoelectric control scheme
(which often require an extended training of several weeks
or months). For P1, P2 and P4, the similar cognitive load is
even more valuable since simultaneous motions of prosthetic
joints were achieved (including the elbow), while only the
wrist was activated with MYO. Multi-joint motions with CCC
thus does not require more mental charge than one joint
motion with MYO, which is acknowledged not to be highly
demanding when the user is well trained [1]–[3]. The Raw
TLX questionnaire brings additional information. P1 and P2
gave close score to CCC and MYO, confirming the results of
the double task. P3 scored more CCC than MYO, which could
be explained by the unexpected way he used CCC compared
to his advanced expertise in myoelectric control. Finally, P4
gave a much higher score to MYO than to CCC. This tends
to confirm that MYO is perceived as very demanding when
the subject is not well trained, while CCC is easy to handle
from the first uses. The assessment of cognitive load of this
experiment gave a first insight but could be supplemented
by more quantitative measures relying, for example, on the
recording of electroencephalograms [30], [31].

Perspectives

This experiment validates the benefit that CCC could bring
for upper-limb prosthesis control but a long term study would
be necessary to strengthen this hypothesis. We have indeed
only observed the discovery phase, except for P1 who had
previous experience with CCC. While it is interesting to study
the easiness of discovery, a next step would now be to study
long term use, together with the influence of additional training
for CCC. It could also allow us to analyse CCC performance
with other tasks. More participants could be included in the
experimental campaign, to strengthen the results presented in
this paper. Another point of interest is the tuning of CCC.
CCC parameters (λ and q0) were here kept identical for all
participants, to show the generalization of the control method.
Yet, it would be valuable to analyze the influence of a fine and
personalized tuning of CCC on the performance.
In this work, CCC has been compared to conventional myo-
electric control but not to a pattern recognition-based approach.
The later has been mostly studied for hand and wrist control,
more than for wrist and elbow. Yet, a CCC vs pattern recog-
nition comparison could genuinely complement our study.
Another enhancement for future works is the switching from
motion capture system to embedded sensors for compensations
measurements. Motion capture was chosen because of the easy
body reconstruction and the precise measure of motions it
provides. This allows to focus on the preliminary validation
of the CCC concept without addressing at the same time the
particular issue of body motions measurement in ecological sit-
uations. However, a motion capture system such as OptiTrack
is completely unsuitable to daily life environments. There is
an imperious need to replace it with a wearable alternative. A
widespread option is to use IMU, which are low cost, small
and lightweight. Many works indeed explore the feasibility
to track human motions with IMU [32], [33]. In upper-limb
prosthetics, these sensors can even be integrated into the socket
or the prosthesis.

VI. CONCLUSION

Existing control schemes for upper-limb prosthesis do not
provide efficient control for multiple degrees of freedom
simultaneously, in any situation. The suggestion of this paper
is to extend Compensations Cancellation Control, previously
validated on single prosthetic DOF [18], [19], to transhumeral
amputees controlling simultaneously two joints, the wrist
pronosupination and the elbow flexion/extension. This concept
lets the user focus on the end-effector task, while prosthe-
sis motions aim at correcting human posture and cancelling
body compensations. Tested on the Refined Rolyan Clothespin
test, with four transhumeral amputated participants, CCC was
quickly mastered by all participants. Compared to conventional
myoelectric control, it allows to correctly perform the task,
with a simultaneous activation of wrist and elbow when nec-
essary, while not affecting negatively the overall cognitive load
nor enhancing compensatory strategies. Nevertheless, to ensure
optimal performance, the definition of compensatory motions
in CCC implementation should be not generic nor constant, to
suit each individual. This aspect is the principal next work to
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address to enhance the possibilities of CCC. Besides easiness
of use and multi-joint motions, a major strength of CCC is
its scalability: the addition of active prosthetic DOF does not
increase the control difficulty and does not require any major
change in the control algorithm. The mapping between body
compensations and prosthesis motions is readily adaptable
for more than two degrees of freedom, which opens wide
perspectives for advanced prosthesis control. The simplicity of
implementation, with no algorithm training or user learning,
is also a great benefit which supports further works on CCC.
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