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Thermal and energy analysis of DMTA tests

André Chrysochoos and Olivier Arnould

Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France

Quantitative infrared techniques were developed and used to assess small temperature variations of

samples undergoing cyclic loadings during mechanical spectrometry tests. A standard setup of dynamic

mechanical thermal analysis (DMTA) was therefore modified for this purpose. Thermal and mechanical

data were used to quantify the viscous dissipated and the thermoelastic coupling energies that can

be both associated with the hysteretic stress-strain response of polymers. Energy balances were then

performed to quantify the relative importance of dissipative and thermoelastic coupling heat sources. The

consequences of the obtained results on the identification of the material rheological properties within a

linear viscoelastic framework were finally discussed.

Keywords DMTA, viscous dissipation, thermoelastic coupling, energy balance, time-dependent behavior

1 Introduction
DMTA is widely used in standard experimental approaches developed to characterize the linear

viscoelastic behavior of polymers. Samples are subjected to a monochromatic sinusoidal loading

(e.g., in tension-compression) and the stress-strain response is recorded at different environmental

chamber temperature 𝑇0 and loading frequency 𝑓0, to derive the so-called dynamic moduli 𝐸′
and

𝐸′′
. According to the hypotheses of DMTA, the storage modulus 𝐸′

is linked to the stored elastic

energy, finally mechanically recoverable when the specimen is unloaded, while the loss modulus

𝐸′′
is related to the viscous dissipated energy over a loading cycle. In the literature, the viscous

part of the behavior is equally quantified by the loss angle 𝛿 , defined by tan𝛿 = 𝐸′′/𝐸′, which

characterizes the so-called internal friction (Menard 2008; Rittel 2000). The DMTA rheological

equations for the case of strain-controlled tensile loading can be gathered as follows:



Y = Y0 sin𝜔0𝑡,

𝜎 = 𝜎0 sin (𝜔0𝑡 + 𝛿) = 𝐸′ (𝑇0, 𝑓0) Y0 sin𝜔0𝑡 + 𝐸′′ (𝑇0, 𝑓0) Y0 cos𝜔0𝑡,

𝐸′ (𝑇0, 𝑓0) =
𝜎0

Y0
cos (𝛿 (𝑇0, 𝑓0)) ,

𝐸′′ (𝑇0, 𝑓0) =
𝜎0

Y0
sin (𝛿 (𝑇0, 𝑓0)) ,

(1a)

(1b)

(1c)

(1d)

where Y0 stands for the controlled strain amplitude, 𝜎0 (𝑇0, 𝑓0) the resulting stress amplitude and

𝜔0 = 2𝜋 𝑓0 the pulsation.

Eqs. (1a) to (1d) form the theoretical interpretation framework of DMTA. They deserve several

comments:

• The mechanical spectrometry tests assume that to a monochromatic mechanical loading

corresponds a monochromatic response. Naturally, this crucial preliminary assumption

can/should be systematically verified via a frequency spectrum analysis of the loading

signal and of the material response. The two questions that need to be imperatively

answered are: is the testing machine capable of imposing a monochromatic loading? Is the

material response then also monochromatic?

• Moreover, although tests are performed at different temperatures, they are generally

considered isothermal, the sample being assumed to be in thermal equilibrium with the

environmental chamber. However, the cyclic deformation mechanisms of polymers often

lead to temperature variations of the specimen. Material deformation process generates
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indeed heat sources. Dissipative sources induced by irreversible transformations, due at

least to viscosity, must be first mentioned. In addition, it is known that polymer behaviors

are sensitive to temperature variations. This sensitivity results in coupling mechanisms,

highlighting the strong dependence between thermal, mechanical and microstructural

states. One can mention the linear thermal expansion of polymers (Graessley et al. 2001), the

rubber effects (Treloar 2005), or simply the fact that dynamic moduli vary with temperature

(e.g., the temperature 𝑇0 of the DMTA environmental chamber) (Ferry 1980; Menard 2008).

Consequently, are the temperature variations of the sample undergoing DMTA testing

significant or not? If so, a better understanding of the energy balance of the polymer

deformation is then interesting from a rheological standpoint, dissipative mechanisms

being closely associated with evolution laws, while coupling effects are linked to state laws

(Chrysochoos 2012; Halphen et al. 1975).

The first goal of this paper is to present the thermography setup used to assess very small

strain-induced temperature variations occurring during cyclic DMTA tests. As already mentioned,

DMTA performs isothermal analysis even if different testing temperatures are, by construction,

considered in testing campaigns. This isothermal analysis was reconsidered to check whether the

origin of the storage and loss moduli is only due to visco-elastic effects whatever the couple (𝑇0, 𝑓0).
In the following, metrological aspects related to measurements of small temperature variations

were thoroughly presented. Indeed, the first experimental challenge was to measure these

strain-induced temperature variations. Even if these temperature variations remain often much

smaller than a tenth of a degree, they may correspond to heat rates much greater (e.g., dozens of

times) than the deformation energy rate (Boulanger et al. 2004). More precisely, we noticed in

Moreau et al. (2005) that the viscous dissipative effects were energetically negligible compared to

the thermoelastic coupling effects by measuring the small temperature variations (<500mK) of

PMMA and PC specimens, during load-unload tests at low strain rate. It is consequently crucial

not to neglect the smallest temperature variation when establishing an energy balance. It is

therefore important not to neglect them when establishing the energy balance.

2 Experimental setup
The chosen polymers in this study were commercial PS (Polystyrene from Goodfellow) and

commercial PA6.6 (Polyamide 6.6, Technyl®A218 provided by Solvay Engineering Plastics). The

specimens of dimension 85 × 13 × 4mm
3
were machined from thick sheets of 300 × 300mm

2
.

The glass transition temperatures 𝑇𝑔 were measured using modulated reversed calorimetry

in a differential scanning calorimeter (Mettler Toledo DSC-3) at a heating rate of 2K/min up

to 473K. They are reported in Table 1. We chose to define 𝑇𝑔 as the onset temperature at the

inflection point temperature during the DSC measurements. In the case of PA6.6, the sample

water content has a great influence on 𝑇𝑔 value and consequently on the mechanical response

(Benaarbia et al. 2016; Fabre et al. 2018; Launay et al. 2013). In our case the samples were stored

in the air-conditioned room (i.e., regulated in temperature and humidity) of the DMTA. We

measured, by weighing and drying in an oven, a water content of about 1-2%, which agrees with

the measured glass transition temperature of 336K (Batzer et al. 1981; Reimschuessel 1978).

It’s known that the 𝑇𝑔 measured by DMTA could be different than the one measured by DSC

(Achorn et al. 1994; Rieger 2001) and depends at least on the loading frequency. In all our DMTA

measurements, we expected to be always below 𝑇𝑔, as can be seen later on the tan𝛿 curves in

Figures 4 and 5. Thermal expansion coefficient and specific heat values, which were extracted

from the technical literature, are reported in Table 1 too. All these values may vary slightly from

one reference to another, sometimes due to difference in molecular weight.

𝑇𝑔 [K] 𝜌 [kgm
−3
] 𝐶 [J kg

−1
K
−1
] _𝑡ℎ [10

−6
K
−1
]

PS 375 1060 1400 75

PA6.6 336 1140 1800 85

Table 1: Thermophysical parameters of PS and PA6.6

2



A. Chrysochoos et al. Calorimetric analysis of DMTA tests

2.1 Thermal metrology
The experimental setup is shown in Figure 1. Temperature variations were observed using an

infrared focal plane array (IRFPA) camera (CEDIP Titanium series). The environmental chamber

of the DMTA (Bose ELF 3230) was equipped with a home-made door using an infrared Techspec

lens (EDMUND optics) and placed at the center of the door. This infrared lens was made of

anti-reflecting coated silicon to avoid IR reflections and was suitable for the DMTA measurements

in the wavelength range of 3-5 µm (transmission coefficient of IR radiations in this range remains

greater than 93%).

This infrared lens was thus able to capture the temperature variations observed during the

tests by weakly attenuating them. Note that the Narcissus effect has been ruled out by slightly

misaligning the camera from the IR lens axis. Furthermore, two samples were placed inside the

environmental chamber, in the optical field of the IRFPA camera and at the same focal plane, one

sample being subjected to the loading and the other one mechanically free (dummy sample) and

submitted to the thermal regulation of the environmental chamber (Figure 2).

Figure 1: Thermography setup in front of the DMTA

The IRFPA camera was calibrated using a pixel-by-pixel method (Honorat et al. 2005). This

pixel calibration is an effective technique for quantitatively reliable infrared measurements of

temperature fields, particularly when very small temperature variations occur. This type of

calibration allows the user to by-pass the “bad pixel replacement” (BPR) and “non uniformity

correction” (NUC) stages proposed by some camera’s builders. The individual pixel calibration is

done on the entire dynamic range of the sensor and is based on polynomial fitting of the digital

levels 𝑠𝑖 delivered by the 𝑖𝑡ℎ element of the detector matrix when the camera is placed in front of

a black body source at different temperatures 𝑇 ∈ [𝑇1,𝑇2]:

𝑠𝑖 (𝑇 ) =
𝑃∑︁

𝑝=0

𝑎𝑖𝑝𝑇
𝑝
, for 𝑇 ∈ [𝑇1,𝑇2], (2)

where the coefficients noted 𝑎𝑖𝑝 derive from a least squares fitting. Later, the system will consider

pixel 𝑖 as a bad pixel based on the temperature difference between the temperature predicted by

the polynomial fitting and the imposed temperature of the black body source. If this difference

is greater than a predefined threshold of 𝛿𝑇 (e.g., 𝛿𝑇 = 10mK), the pixel is considered as bad

(Honorat et al. 2005).
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Loaded sample Dummy sample
49.5

50

50.5

51

51.5

52

◦
C

Figure 2: Thermal image (in
◦
C) of the two PS samples inside the environmental chamber at 50

◦
C

This calibration procedure was adopted for each testing temperature 𝑇0 used to ensure that

very small strain-induced temperature variations of the sample are measured. Calibrations were

performed before each mechanical test series, using the black body behind the environmental

chamber’s door with the IR lens and using the same geometrical configuration as during the

DMTA test, the surface of the black body being at the same position as the sample surface. The

integration time was varied according to the temperature used during the DMTA tests. To avoid

transient thermal drifts of the camera, these calibrations and measurements were performed

about 4-5 hours after switching on the camera.

A tricky recurrent problem associated with the IR thermal measurements is the emissivity of

the target, here the emissivity of the sample surface. It was verified whether painting the sample

black will affect the emissivity of the sample, as some samples (PS) were transparent to the visible

radiations. Therefore, half of one PS sample was painted black and half of it was left unpainted.

Using the experimental setup shown in Figure 1, thermoelastic responses were analyzed over the

sample gauge part to check if painting the sample black makes a difference in the emissivity (in

the IR wavelengths) of the sample. The thermoelastic field of temperature amplitudes was plotted

over the region of interest including both sides (i.e., painted and unpainted). It was observed that

painting the sample in black induced a more homogeneous thermoelastic signal but did not

significantly affect its mean amplitude over the sample gauge part. We consequently decided to

leave the sample surfaces unpainted.

2.2 Mechanical loadings
Regarding now the loading aspects of the cyclic tests, we limited the mechanical tests to three

decades of loading frequencies for different environmental chamber’s temperatures, all below the

glass transition temperature 𝑇𝑔 to limit the complexity of the behavior to that of glassy polymers.

In this work, a complete calibration of the load cell and of the LVDT displacement sensor

were performed. Moreover, the alignment of the clamps was verified and adjusted to ensure

a pure tensile loading of the sample. For this purpose, we used a PS sample equipped with

four strain gauges, two by side, to verify if the strain is (almost) equal for all the four gauges

for different applied quasistatic load in tension and compression until the maximum load. In

addition, the DMTA electronic acquisition chain influenced the phase shift between the imposed

displacement and the measured force. This phase shift was corrected in the (commercial) software

but, as we used the raw data to fully control the data processing and to synchronize these signals

with the IR camera acquisition, an electronic phase shift correction has been done on the raw

data. This phase shift has been evaluated at all the measured frequencies and at two temperatures

(28
◦
C and 60

◦
C) using a sample of steel (no material viscosity) sheet. This steel sheet was of the
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same length as the polymer samples but with a cross-section area such that it has a stiffness

equivalent to that of PS samples. Finally, regarding the real sample elongation, it was considered

that components of the DMTA machines (especially the load cell) induced a non-negligible

spurious displacement that induced an important bias. Therefore, the machine stiffness was

measured using a very stiff sample. The actual elongation of the sample was then obtained by

correcting the machine displacement from its own deformation. This was checked by measuring

the actual displacement, during cyclic loadings, between two targets on the surface of a polymer

sample by digital image correlation (Wattrisse et al. 2001) using IR thermal images. The polymer

samples complex stiffness was then corrected following the equation (16A) in Olusanya (1996).

The moduli determined on the PS and PA6.6 samples were compared with measurements obtained

on similar samples using other DMTA in three other French laboratories (Yadav 2019).

The raw displacement and load measurements of the DMTA were used to verify the

monochromatic character of the loading and response signals. An example of the Fourier

spectrum of the raw force and displacement signals, recorded on a PS sample at 1 Hz, is shown in

Figure 3.
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Figure 3: Frequency spectrum of the force and displacement signals for PS sample at a loading frequency

of 1Hz and a temperature of 40
◦
C

This type of control was performed on all samples, regardless of the loading frequency 𝑓0 or the

ambient temperature 𝑇0 at which the test was performed. Strain controlled tension-compression

symmetric cyclic measurements were conducted on specimens at several frequencies (e.g., 0.01,

0.1, 1 and 10Hz) and several temperatures. The following sets of 𝑇0 have been particularly

analyzed: (313 K, 348 K, 363 K) for the PS samples and (313 K, 323 K, 333 K) for the PA6.6 samples.

Note that a new sample was used after each frequency sweep, i.e., for each new temperature 𝑇0,

to reduce aging effects or change in water content.

The recordings were made over several tens of cycles to get a stabilized cyclic regime and

ensure a sufficient set of mechanical and thermal data to perform relevant filtering. We used the

same sampling frequency whatever the loading parameters and the polymer tested. This sampling

frequency 𝑓𝑠 was set at 31Hz, as a unique electronic sampler being used to record thermal and

mechanical data synchronously. This sampling frequency is large enough for loading frequencies

below 1Hz. In fact, whatever the loading frequency, the expected periodicity of the signal,
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once the transient period is over, allowed us to analyze the thermal response via synchronous

demodulation techniques. In addition, the sampling frequency of 31Hz was chosen so as not to

be an integer multiple of the high loading frequencies used of 6.3 and 10Hz (under-sampling

technique). The loading parameters used during the different tests are mentioned in Table 2.

Polystyrene Polyamide 6.6

Max. strain 0.1% 0.1%

Strain ratio -1 -1

Freq. range [0.01-10] Hz [0.01-10] Hz

Temp. range [313-363] K [308-333] K

Table 2: Loading parameters of DMTA tests

3 Results and Discussion
The results obtained were processed separately: on the one hand, mechanical data (load,

displacement, time) led us to identify dynamic moduli (see Eqs. (1c) and (1d)) as functions of the

testing temperature 𝑇0 and of the loading frequency 𝑓0; on the other hand, IR data gave us the

temperature variations of the specimen inside the environmental chamber due to the cyclic

loading.

3.1 Estimates of dynamic moduli E’ and E”
Classically, DMTA is used to identify the evolution of dynamic moduli. All devices directly

provide 𝐸′
and 𝐸′′

moduli (or equivalently 𝐸′
and tan𝛿), as they are equipped with a specific

processing data software. In the present case, we decided to process the raw stress and strain data

recorded as a function of time, the dynamic moduli have thus been estimated using a simple

least-squares method of the stress and strain signals.

Series of frequency sweeps gave the evolution of 𝐸′
and 𝐸′′

shown in Figures 4 and 5 and

presented as functions of the loading frequency 𝑓0 and environmental chamber temperature 𝑇0.

These data were extracted from Yadav’s works during his PhD (Yadav 2019).

It was observed that the evolution of 𝐸′
and 𝐸′′

have the same trends for both materials (PS

and PA6.6): for the used frequency range, 𝐸′
is increasing with the increasing frequency whereas

𝐸′′
is decreasing. On the other hand, an increase in the testing temperature will tend to decrease

the storage modulus and increase the loss modulus. Finally, it is worth mentioning the difference

in the order of magnitude between 𝐸′
and 𝐸′′

, loss moduli being, roughly speaking, dozens of

times weaker than storage moduli.

Naturally, this type of result is very common in the literature and widely used in the polymer

material characterization centers to construct master curves associated with the famous, and

sometimes controversial, time-temperature superposition principle (Sokolov et al. 2007). However,

if the mechanical data from DMTA tests are abundant, the associated thermal responses have

not, to our knowledge, been analyzed yet. This is probably not surprising since, as previously

underlined, one of the implicit assumptions of DMTA tests is to consider that the sample is in

thermal equilibrium with the environmental chamber inside which it is cyclically loaded.

3.2 Analysis of temperature variations
To estimate the so-called “temperature variations of the sample” \ (𝑡), we used the infrared

techniques presented in subsection 2.1. These temperature variations were defined by the

difference between the average temperatures estimated over two small areas of 2 × 2mm
2
placed,

one in the center of the sample being deformed and, the other, in the center of the dummy sample

(Figure 2). The purpose of calculating an average temperature over a small area is to reduce high

frequency thermal noise. For the IRFPA camera used in this work, this noise is white Gaussian

noise (Batsale et al. 2013; Chrysochoos et al. 2000). Considering the temperature difference

between the strained sample “𝑇 (𝑡)” and the dummy sample “𝑇0” is intended to mitigate the

effects of low frequency temperature fluctuations in the environmental chamber induced by its

own thermal regulation system.
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Figure 4: Influence of frequency and temperature on dynamic moduli and tan𝛿 of PS, after Yadav (2019);

colors indicate the temperature 𝑇0 in K of the environmental chamber

Figures 6(a) and 6(b) present the temperature \ (𝑡) obtained on PA6.6 samples. To fix the

ideas we have chosen the couples (313 K, 0.1Hz) and (333 K, 10Hz) representing the extreme

conditions of mechanical and thermal loading for the polyamide samples.

The red curve shows the evolution of \ (𝑡) while the blue curve represents the evolution of

the mean temperature per cycle
˜\ (𝑡) defined by:

˜\ (𝑡) = 𝑓0

∫ 𝑡+(2𝑓0 )−1

𝑡−(2𝑓0 )−1
\ (𝜏)d𝜏 . (3)

The difference \ (𝑡) − ˜\ (𝑡) makes it possible to highlight regular and periodic oscillations

whose amplitude has been noted 𝛿\
𝑓0
𝑒 . We finally introduced the temperature difference 𝛿\

𝑓0

𝑑

defined by:

𝛿\
𝑓0

𝑑
= ˜\ (𝑡𝑒𝑛𝑑 ) , (4)

where 𝑡𝑒𝑛𝑑 is the end time of the camera recording. This temperature allowed us to quantify a

potential self-heating of the sample induced by viscous dissipation. However, the value of 𝛿\
𝑓0

𝑑
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Figure 5: Influence of frequency and temperature on dynamic moduli and tan𝛿 of PA6.6, after Yadav

(2019); colors indicate the temperature 𝑇0 in K of the environmental chamber

can be affected by the residual temperature fluctuations of the environmental chamber.

These first thermal data allowed us to point out the two following results:

• First, we observed that the temperature variations during the DMTA test remained very

small (less than a few hundreds of mK). On the one hand, this result is reassuring in that it

is consistent with the assumption of a DMTA test during which the sample is in thermal

equilibrium with the ambient temperature of the environmental chamber. On the other

hand, one could be surprised not to see much more significant dissipation-induced self-

heating. In the case of Figure 6(a), the loading frequency is low (0.1Hz) and no significant

𝛿\
𝑓0

𝑑
is observed. However, in the case of Figure 6(b), PA6.6 sample is cyclically loaded at

10Hz at a temperature of 333K, the temperature increase 𝛿\
𝑓0

𝑑
does not exceed 200mK

during the test duration. In the next subsections we checked whether this observation is

consistent with the temperature variations induced by viscous dissipation predicted by the

rheological Eqs. (1).

• Even if variations of \ (𝑡) are small, regular oscillations can be observed which appears to
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Figure 6: Time courses of \ (𝑡): (a) PA6.6, 𝑇0 = 313 K, 𝑓0 = 0.1Hz; (b) PA6.6, 𝑇0 = 333 K, 𝑓0 = 10Hz

be periodic, and this periodicity is linked to the loading frequency 𝑓0. We noted 𝛿\
𝑓0
𝑒 the

amplitude of these oscillations and we proposed to associate them with thermoelastic

effects. In the next subsection, a thermoelastic rheological equation was introduced to

check this proposal.

3.3 Thermodynamic standpoint and energy balance analysis
To go further, it is necessary to consider the 1D rheological equations associated with the DMTA

tests and try to integrate them in a thermodynamic framework to be able to draw up a complete

energy balance. In this work, the thermodynamics of irreversible processes (TIP) with internal

state variables was used (Chrysochoos 2012; Germain et al. 1983; Halphen et al. 1975). This

formalism assumes that a local equilibrium state exists and that it can be described by a finite

number of state variables. The properties of equilibrium states are described by the state laws

derived from a thermodynamic potential. In mechanics of materials, the volume Helmholtz free

energy𝜓 is often used. The state variables are the temperature 𝑇 , the small strain Y and a given

number of complementary (internal) state variables 𝛼 𝑗 , 𝑗 = 1, 2 . . ., usually introduced to describe

the microstructural state of the material. Evolution or complementary equations must also be

introduced to describe the irreversibility accompanying the deformation process. The latter

must be compatible with the Clausius-Duhem inequality, local writing of the 2
nd

principle of

thermodynamics (Chrysochoos 2012).

Using the rheological Eqs. (1) associated with the DMTA tests, the stress 𝜎 can be rewritten

in the following form, easier to interpret from a thermodynamic standpoint:

𝜎 = 𝐸′(𝑇0, 𝑓0)Y +
𝐸′′(𝑇0, 𝑓0)

2𝜋 𝑓0
¤Y. (5)

The energy denomination of 𝐸′
and 𝐸′′

allows one to split the stress into reversible (energy

storage or conservation) and irreversible (loss of energy) parts so that:


𝜎𝑟 =

𝜕𝜓

𝜕Y
= 𝐸′(𝑇0, 𝑓0)Y,

𝜎𝑖𝑟 = 𝜎 − 𝜎𝑟 =
𝐸′′(𝑇0, 𝑓0)

2𝜋 𝑓0
¤Y.

(6a)

(6b)

The conjugate variable of Y is the so-called reversible stress 𝜎𝑟 . The term 𝜎𝑖𝑟 is the irre-

versible stress and will act as the thermodynamic force associated with the strain rate in the

9
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Clausius-Duhem inequality (see subsection 3.3.2).

The presence, in Eqs. (6a) and (6b), of the thermomechanical loading parameters 𝑇0 or 𝑓0 is a

little bit delicate to integrate in a thermodynamic framework. How can these (external loading)

parameters act as material state variables ?

Regarding𝑇0, it is quite simple, by just replacing the temperature set point of the environmental

chamber by the temperature of the sample 𝑇 .

Regarding 𝑓0, we proposed the following state variable
˜𝑓 , depicting a memory of kinematic

effects cumulated over a time corresponding to a loading duration T0:

˜𝑓 =
1

2𝜋

√︄
⟨¤Y2⟩
⟨Y2⟩ , (7)

with the mean square strain rate over T0 defined by

〈
¤Y2
〉
= 1

T0

∫ 𝑡

𝑡−T0
¤Y2(𝜏)d𝜏 and the mean square

strain

〈
Y2

〉
= 1

T0

∫ 𝑡

𝑡−T0
Y2(𝜏)d𝜏 . Naturally, when T0 corresponds to the cycle period 𝑓 −1

0
, all is done

to get
˜𝑓 = 𝑓0 for a monochromatic loading cycle.

In what follows, we therefore admitted that the free energy𝜓 was a state function of 𝑇 , Y and

of the history variable
˜𝑓 so that𝜓 = 𝜓 (𝑇, Y, ˜𝑓 ).

The form of Eq. (5) suggests a rheological behavior where elastic effects develop in parallel

with viscous effects. Both types of mechanism use the same kinematic variable Y, as does

the Kelvin-Voigt model (Aklonis et al. 1983), with the main difference that here the elasticity

and viscosity parameters depend on 𝑇 and
˜𝑓 . In the literature, more general models, than the

Kelvin-Voigt one, are mentioned, namely the Generalized Maxwell model which allows one to

consider the evolution of 𝐸′
and 𝐸′′

via a multitude of viscoelastic branches placed in parallel

(Aklonis et al. 1983). For each viscoelastic branch, a viscous strain is necessarily introduced as a

state variable. For simplicity in what follows, we have tried to stay as close as possible to the

rheological Eqs. (1) of the DMTA.

3.3.1 Thermoelastic effects
a Modeling aspects

The regular and periodic thermal oscillations experimentally observed, henceforth referred to

as

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

, led us to introduce thermoelastic effects. In this context, we proposed to rewrite

Eq. (6a) in the following form:

𝜎𝑟 = 𝐸′ (𝑇0, 𝑓0) (Y − _𝑡ℎ\ ) , (8)

where _𝑡ℎ is the coefficient of thermal expansion. For a thermoelastic material, this strong

thermomechanical interaction results in the existence of a coupling heat source written as

(Chrysochoos 2012):

𝑤•
𝑡ℎ𝑒

= 𝑇
𝜕2𝜓

𝜕𝑇 𝜕Y
¤Y +𝑇 𝜕2𝜓

𝜕𝑇 𝜕 ˜𝑓

¤̃
𝑓 = 𝑇

𝜕𝜎𝑟

𝜕𝑇
¤Y + 0 = −_𝑡ℎ𝑇𝐸′ ¤Y −𝑇

𝑑𝐸′

𝑑𝑇
(Y − _𝑡ℎ\ ) ¤Y. (9)

The notation (−)• means that the rate of (−) depends on the thermodynamic path followed. In

other words, (−) is not a state function. Note that the term in
¤̃
𝑓 vanishes for any monochromatic

cycle (
˜𝑓 = 𝑓0) so that𝑤•

𝑡ℎ𝑒
finally contains only two terms. The first term is well known. It causes

a material to expand when heated or to cool when stretched. The second term is due to the

variation of 𝐸′
with the temperature. If we admit that the derivative

𝑑𝐸′/𝑑𝑇 remains constant

10
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during a DMTA test, the corresponding source should beat at 2𝑓0, since Y, ¤Y, and, to a good

approximation \ , beat at 𝑓0 (see for instance in Figure 6(a)). Indeed, from an experimental

standpoint, it was not possible, as shown below, to experimentally see any component of the

thermo-signal beating at the frequency 2𝑓0, which should have been the case if the second source

term had a large amplitude. This is the reason why we have considered, in what follows, a

thermoelastic source reduced to the first term with 𝑇 ≈ 𝑇0 as \ ≪ 𝑇0:

𝑤•
𝑡ℎ𝑒

≈ −_𝑡ℎ𝑇0𝐸′ (𝑇0, 𝑓0) ¤Y. (10)

To pass from heat sources to temperature variations, the heat diffusion equation is required.

For simplicity, we have used in the following a differential version of the heat diffusion equation

valid for homogeneous tests when the boundary heat exchange conditions are linear (Fourier

conditions) (Chrysochoos et al. 2000). In such a context, the volume heat losses by conduction

were modeled by a linear term in temperature variation weighted by a time constant of heat

losses 𝜏𝑡ℎ = 𝜌𝐶𝑒𝑙/2ℎ (𝑒 + 𝑙 ), where 𝜌 is the mass density, 𝐶 the specific heat of the material (Table 1),

𝑒 the sample thickness, 𝑙 its width and ℎ the heat exchange coefficient between the sample and

the surroundings. When only the thermoelastic source is considered, this heat equation can be

written as (Boulanger et al. 2004):

d\

d𝑡
+ \

𝜏𝑡ℎ
=
𝑤•
𝑡ℎ𝑒

𝜌𝐶
. (11)

The time constant of thermal return 𝜏𝑡ℎ can be experimentally identified for each material by

measuring the thermal disequilibrium 𝑇 −𝑇0 over time during a given thermal loading 𝑇0(𝑡).
During these thermal loading, it was assumed that no heat source was present in the second

member of Eq. (11). Figure 7 shows an illustration of the quality of the inverse identification

procedure using a numerical integration of Eq. (11) and a least squares minimization. The

identified values were 𝜏𝑡ℎ = 48 s for PS and 𝜏𝑡ℎ = 34 s for PA6.6.
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Figure 7: Measured and adjusted temperature for the estimation of 𝜏𝑡ℎ for PS sample

The integration of Eq. (11) with thermoelastic source defined in Eq. (10), gives, once the

transient terms have vanished:

\𝑡ℎ𝑒 (𝑡) = − 𝜔0𝜏𝑡ℎ√︃
1 + 𝜔2

0
𝜏2
𝑡ℎ︸        ︷︷        ︸

𝜒 (𝜔0 )

_𝑡ℎ𝑇0𝐸
′

𝜌𝐶
Y0 sin (𝜔0𝑡 + 𝜙𝑡ℎ𝑒) , (12)

11
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where tan𝜙𝑡ℎ𝑒 = 1/(𝜔0𝜏𝑡ℎ). The amplitude of thermal oscillations of thermoelastic origin 𝛿\
𝑓0
𝑒

can therefore be related theoretically to the strain amplitude Y0 by the relationship:

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

= 𝜒 (𝜔0)
_𝑡ℎ𝑇0

𝜌𝐶
𝐸′Y0. (13)

As soon as 𝜔0𝜏𝑡ℎ becomes larger than 1 (e.g., high frequency test, high time constant of

heat losses which means that, over one cycle duration, the test can be considered as adiabatic),

𝜒 ≈ 1 and the above expression can be simplified in

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

=
_𝑡ℎ𝑇0
𝜌𝐶

𝐸′Y0. This last expression

is often used in the field of thermal stress analysis (Dulieu-Barton et al. 1998), since 𝐸′Y0 roughly
represents the stress amplitude 𝜎0. Indeed, noting that 𝜎0 is reached when the stress rate cancels,

it can be shown from Eq. (1b) that:

𝜎0 = 𝐸′Y0

√︄
1 +

(
𝐸′′

𝐸′

)
2

=
𝐸′Y0

sin

(
arctan

(
𝐸′
𝐸′′

) ) , (14)

which remains close to 𝐸′Y0 if the ratio 𝐸′′/𝐸′ = tan𝛿 remains very small compared to 1, which has

been the case for the two studied materials (Figures 4 and 5).

b Confrontation of experimental data with predicted ones

Using Eq. (13), an estimate of

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

has been performed for each DMTA test characterized by

a (𝑇0, 𝑓0) couple and compared with the experimental one

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

obtained using a synchronous

demodulation of the signal \ (𝑡).
To check the efficiency of the synchronous demodulation to estimate

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

, we compared

the difference \ (𝑡) − ˜\ (𝑡) with the signal

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

sin (𝜔0𝑡 + 𝜙𝑒), where 𝜙𝑒 is the phase shift of
the temperature signal with the carrier signal. As an example, both signals were partly plotted in

Figure 8 in the case of the test shown in Figure 6(a) from 𝑡 = 85 s to 𝑡 = 110 s.
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40
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𝑒

)
𝑒𝑥𝑝

Time (s)

T
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p
e
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)

Figure 8: Efficiency of the synchronous demodulation to reach

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

(PA6.6, 𝑇0 = 313 K, 𝑓0 = 0.1Hz,

Figure 6(a))

We also performed a synchronous demodulation of the thermo-signal \ (𝑡) at 2𝑓0, to check if

the amplitude

(
𝛿\

2𝑓0
𝑒

)
𝑒𝑥𝑝

of \ (𝑡) induced by the 2
nd

term of the thermoelastic heat source was

significant or not.
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The mechanical and thermal data processing was therefore carried out following tests

performed on the two materials at different ambient temperatures 𝑇0 and different loading

frequencies 𝑓0. The corresponding results were gathered in Table 3 for the PS and Table 4 for the

PA6.6. Note that we limited the frequency range to [0.1, 10]Hz, for which the thermal signal

remains significant.

𝑓0 𝑇0 𝐸′ 𝜒

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

(
𝛿\

2𝑓0
𝑒

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [-] [mK] [mK] [mK]

0.1 313 3490 0.999 51 45 1.1

1 313 3560 1.0 53 48 0.3

10 313 3610 1.0 53 43 2.4

0.1 348 2880 0.999 47 41 0.9

1 348 2980 1.0 48 42 0.6

10 348 3050 1.0 50 40 0.9

0.1 363 2530 0.999 43 42 1.6

1 363 2670 1.0 46 41 0.3

10 363 2830 1.0 48 36 0.2

Table 3: Temperature variations induced by thermoelasticity for PS. Comparison of measured amplitudes

(𝛿\ 𝑓0
𝑒 )𝑒𝑥𝑝 with the predictions of the thermoelastic model (𝛿\ 𝑓0

𝑒 )𝑡ℎ𝑒𝑜 . Estimates for (𝛿\ 2𝑓0𝑒 )𝑒𝑥𝑝 are not

significant.

𝑓0 𝑇0 𝐸′ 𝜒

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

(
𝛿\

𝑓0
𝑒

)
𝑒𝑥𝑝

(
𝛿\

2𝑓0
𝑒

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [-] [mK] [mK] [mK]

0.1 313 3140 0.999 41 30 0.3

1 313 3230 1.0 42 27 0.2

10 313 3290 1.0 43 30 0.1

0.1 323 2650 0.999 35 29 0.5

1 323 2850 1.0 38 27 0,0

10 323 2990 1.0 40 30 0.9

0.1 333 1920 0.999 26 24 0.2

1 333 2210 1.0 30 23 0.0

10 333 2500 1.0 34 26 0.1

Table 4: Temperature variations induced by thermoelasticity for PA6.6. Comparison of measured

amplitudes (𝛿\ 𝑓0
𝑒 )𝑒𝑥𝑝 with the predictions of the thermoelastic model (𝛿\ 𝑓0

𝑒 )𝑡ℎ𝑒𝑜 . Estimates for (𝛿\ 2𝑓0𝑒 )𝑒𝑥𝑝
are not significant.

Tables 3 and 4 show that the observed thermoelastic effects are rather correctly predicted by

Eq. (13). Note that, to compute the predictions of the thermoelastic model, 𝐸′
assessments were

used as well as values of several thermophysical parameters characterizing the material (Table 1).

c Partial concluding comments

The comments that can be drawn from this data analysis are:

• Regarding the thermoelastic couplings induced by the variation of the storage modulus, i.e.,

−𝑇 𝑑𝐸′

𝑑𝑇
(Y − _𝑡ℎ\ ) ¤Y in Eq. (9), they remained undetectable. The values of

(
𝛿\

2𝑓0
𝑒

)
𝑒𝑥𝑝

shown

in Tables 3 and 4 are too low to be significant.

• Thermoelastic effects induced by material expansion occur during a DMTA test and should

probably be considered in the rheological equations. Indeed, it is possible to introduce

thermoelastic contributions 𝐸′
T and 𝐸′′

T to the standard dynamic moduli 𝐸′
M and 𝐸′′

M

13
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considering the coupling effects beating at the loading frequency 𝑓0. Using Eqs. (6b), (8)

and (12), we then get:


𝐸′ = 𝐸′

M + 𝐸′
T = 𝐸′

M +
_2
𝑡ℎ
𝑇0𝐸

′
M

2

𝜌𝐶

𝜔2

0
𝜏2
𝑡ℎ

1 + 𝜔2

0
𝜏2
𝑡ℎ

,

𝐸′′ = 𝐸′′
M + 𝐸′′

T = 𝐸′′
M +

_2
𝑡ℎ
𝑇0𝐸

′
M

2

𝜌𝐶

𝜔0𝜏𝑡ℎ

1 + 𝜔2

0
𝜏2
𝑡ℎ

.

(15a)

(15b)

𝑓0 𝑇0 𝐸′ 𝐸′′ 𝐸′
T 𝐸′′

T
[Hz] [K] [MPa] [MPa] [MPa] [MPa]

0.1 313 3490 67 12.6 0.42

1 313 3564 65 13.1 0.04

10 313 3608 64 13.5 0.00

0.1 348 2882 86 9.5 0.32

1 348 2977 77 10.2 0.03

10 348 3046 73 10.7 0.00

0.1 363 2529 140 7.7 0.25

1 363 2673 86 8.6 0.03

10 363 2826 39 9.6 0.00

Table 5: Thermoelastic contributions 𝐸′
T and 𝐸′′

T to dynamic moduli of PS samples

𝑓0 𝑇0 𝐸′ 𝐸′′ 𝐸′
T 𝐸′′

T
[Hz] [K] [MPa] [MPa] [MPa] [MPa]

0.1 313 3137 85 10.8 0.51

1 313 3228 60 11.5 0.05

10 313 3292 39 11.9 0.01

0.1 323 2653 167 8.0 0.37

1 323 2850 119 9.2 0.04

10 323 2992 76 10.2 0.00

0.1 333 1920 211 4.3 0.20

1 333 2211 195 5.7 0.03

10 333 2497 151 7.3 0.00

Table 6: Thermoelastic contributions 𝐸′
T and 𝐸′′

T to dynamic moduli of PA6.6 samples

Tables 5 and 6 show that the thermoelastic contributions to 𝐸′
and 𝐸′′

remained weak,

particularly at high frequency. Indeed, at high frequency, the heat losses per cycle drastically

decrease and the thermoelastic deformation process becomes adiabatic (no thermal dissipation).

Conversely, at low or even very low frequency, we know that the loss moduli 𝐸′′
tend towards

zero, so we can question the relative importance of thermoelastic effects even if, at very low

frequencies, the deformation process tends towards an isothermal process. From an experimental

standpoint, these low frequencies are beyond the reach of the infrared techniques currently used.

Nevertheless, numerical tests can be performed. We used for example a Zener-type thermoelastic

model to check the possible preponderance of thermoelastic effects. The corresponding results

will be shown in subsection 3.3.5 once the dissipative effects and energy balances have been

introduced and analyzed.

14
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3.3.2 Dissipative effects
a Modeling aspects

The irreversible character of the deformation process is expressed by the Clausius-Duhem

inequality. In the framework of DMTA tests, with the chosen set of state variables, the dissipation

𝑑 can be written as:

𝑑 = 𝜎 ¤Y − 𝜕𝜓

𝜕Y
¤Y − 𝜕𝜓

𝜕 ˜𝑓

¤̃
𝑓︸               ︷︷               ︸

𝑑1=𝑤
•
𝑑

−
−−−→
𝑔𝑟𝑎𝑑𝑇

𝑇
· −→𝑞︸       ︷︷       ︸

𝑑2

≥ 0, (16)

where
−→𝑞 is the heat influx vector. This dissipation is traditionally split in two terms: the intrinsic

dissipation classically denoted by 𝑑1 and the thermal dissipation 𝑑2. In order to homogenize the

notations, the instrinsec dissipation will be denoted by𝑤•
𝑑
from now on. The thermal dissipation

𝑑2 depicts the irreversibility related to the heat diffusion mechanisms. In general, the Fourier law

is used to link the heat influx vector to the temperature field. Fourier’s law is classically written

as:

−→𝑞 = −𝑘 −−−→𝑔𝑟𝑎𝑑𝑇 , (17)

where 𝑘 is the conduction tensor. In the 1D rheological context of DMTA tests, the irreversibility

induced by heat diffusion has been considered via the heat losses term
\/𝜏𝑡ℎ presents in the

simplified heat equation, Eq. (11). Recall that the existence of heat losses (i.e., neither isothermal

nor adiabatic test), in the presence of coupling mechanisms (e.g., thermoelasticity), leads to time

effects that, during a cyclic test, contributes to form a hysteresis loop (Chrysochoos 2012). This

effect was highlighted by Zener in his work (Zener 1938) introducing the famous concept of

thermoelastic internal friction.

The intrinsic dissipation 𝑤•
𝑑
depicts the mechanical and microstructural irreversibility.

Considering Eqs. (6a) and (6b) and the constancy of the variable
˜𝑓 for a monochromatic test,𝑤•

𝑑

can be rewritten in the following compact form:

𝑤•
𝑑
= 𝜎𝑖𝑟 ¤Y =

𝐸′′
M
𝜔0

¤Y2 = 𝐸′′
M𝜔0Y

2

0
cos

2 (𝜔0𝑡) = 𝐸′′
M𝜔0Y

2

0

1 + cos(2𝜔0𝑡)
2

≥ 0. (18)

This term corresponds to the part of the deformation energy rate 𝜎 ¤Y that is attributed to the

loss modulus. The thermodynamic analysis allows one to claim that this mechanical energy rate

is dissipated and must therefore be irreversibly transformed into heat. To check the coherence of

this interpretation from a dissipative standpoint with the experimental results, the following way

has been chosen.

The goal is to pass from dissipation to self-heating temperature. Analogously to Eq. (11), the

heat diffusion equation considering the dissipative source only was rewritten as:

d\

d𝑡
+ \

𝜏𝑡ℎ
=
𝑤•
𝑑

𝜌𝐶
. (19)

Then, using the analytic form of the intrinsic dissipation given in Eq. (18), the heat equation

was integrated over time to give the evolution of the corresponding thermal effects. Let us note

\𝑑 the temperature variation, solution of Eq. (19). Once the transient term vanished, we have got:

\𝑑 (𝑡) =
©«
1

2

+ 1√︃
1 + 4𝜔2

0
𝜏2
𝑡ℎ

sin (2𝜔0𝑡 + 𝜙𝑑 )
ª®®¬
𝐸′′
MY2

0
𝜔0𝜏𝑡ℎ

𝜌𝐶
, (20)
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with tan (𝜙𝑑 ) = 1

2𝜔0𝜏𝑡ℎ
.

Note that, once again, a component of the thermo-signal should beat at 2𝑓0. However, the

weighting term in front of it tends very quickly to zero for 𝑓0 greater than 10
−1

Hz in the present

case, and more generally when 𝑓0 ≫ 1

4𝜋𝜏𝑡ℎ
.

Whatever the frequency 𝑓0, the mean temperature variation \𝑑 stabilizes around the value(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

defined by:

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

=
𝐸′′
MY2

0
𝜔0𝜏𝑡ℎ

2𝜌𝐶
=
𝜋𝐸′′

MY2
0
𝜏𝑡ℎ

𝜌𝐶
𝑓0. (21)

b Confrontation of experimental data with predicted ones

The stabilized temperatures

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

were compared to the corresponding values

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

experimentally observed for each couple (𝑇0, 𝑓0). Results are gathered in Tables 7 and 8 for PS and

PA6.6 samples, respectively.

𝑓0 𝑇0 𝐸”

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [mK] [mK]

0.1 313 67 1 8

1 313 65 6 11

10 313 64 62 21

0.1 348 86 1 24

1 348 72 7 17

10 348 76 74 50

0.1 363 140 1 22

1 363 86 8 37

10 363 39 38 62

Table 7: Comparison of experimental and theoretical dissipation-induced self-heating for PS

𝑓0 𝑇0 𝐸”

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [mK] [mK]

0.1 313 85 <1 -1

1 313 60 3 10

10 313 39 20 85

0.1 323 167 1 -15

1 323 119 6 23

10 323 76 39 143

0.1 333 211 1 -1

1 333 195 10 24

10 333 151 78 190

Table 8: Comparison of experimental and theoretical dissipation-induced self-heating for PA6.6

The confrontation of “theoretical” and “experimental” dissipation-induced self-heating values

may appear more delicate than the one concerning thermoelastic effects. In the previous case, the

synchronous demodulation technique allowed to delete almost totally the low frequency thermal

noise (chamber regulation) and high frequency one (electronic noise, parasitic reflections). The
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temperature increases induced by dissipation seem thus much more scattered.

c Partial concluding comments

But then, what can we learn from the analysis of self-heating?

• The first observation made in Tables 7 and 8 is that the higher the frequency, the greater

the self-heating. This property is true for all “theoretical” results, and nearly all the time

for “experimental” ones (cf. (Eq. (4)). As the loss modulus 𝐸′′
decreases with 𝑓0, it must be

less quickly than 𝑓 −1
0

(see Eq. (21)). Note that the simplest parallel linear viscoelastic model

(i.e., the Kelvin-Voigt model), characterized by a constant viscosity with respect to 𝑓0,

imposes that 𝐸′′
is a linear increasing function of 𝑓0. Its self-heating is then proportional to

𝑓 2
0
(see Appendix A1).

• At 𝑓0 = 0.1Hz, the effects of noise were however visible in that negative values of

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

were experimentally detected, especially in the case of PA6.6 samples.

• The self-heating

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

is measured during a cyclic test of about 3 minutes (starting

from a thermal equilibrium of the sample). The value of

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

corresponds to the

asymptotic mean temperature reached when the average dissipation over a cycle is equal

to the heat losses over this same cycle. This asymptotic temperature is then a maximum

temperature. If

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

≥
(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

, one can always claim that the sample has not yet

reached its maximum self-heating. But the reverse inequality,

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

≤
(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

, is

more problematic and this situation occurs around two out of three times in Tables 7 and 8,

what is upsetting.

• Naturally, this thermal analysis of dissipative effects can be questioned, considering that

the self-heating observed here remained too weak. Using the same loading frequencies, we

could have probably amplified these thermal effects by increasing the strain amplitude Y0
which remained very low (Y0 = 10

−3
). But it seemed important to stay within a deformation

range where the linear viscoelasticity framework seems to be indisputable. We came back

to this important point in the final concluding comments and in the Appendix.

For both materials, the trend is clear: the higher the loading frequency, the more the sample

self-heats, at least at the loading frequencies used. At 𝑓0 = 0.01Hz, the effects of noise were

however visible in that negative values of

(
𝛿\

𝑓0

𝑑

)
𝑒𝑥𝑝

are experimentally detected, especially in the

case of PA6.6 samples. At high frequencies (𝑓0 = 10Hz), the most important self-heating did not

exceed 200 mK. It is worth noting that these thermal effects increase so little from one loading

frequency to another. For example, it can be noticed that at 1 Hz and 10 Hz, the self-heating does

not increase in a ratio of ten, but less, of the order of 2-3 for PS and 6-8 for PA6.6. At these same

loading frequencies, we could have probably amplified these thermal effects by increasing the

strain amplitude Y0 which remains very low (Y0 = 10
−3). But it seemed important to stay within a

deformation range where the linear viscoelasticity framework seems to be indisputable. We came

back to this important point in the final concluding comments.

3.3.3 Energy rate balance

The previous paragraphs have shown that the thermal effects induced by thermoelasticity and

dissipation have comparable ranges, of the order of a hundred mK. It seemed interesting to see

now what the associated heat rates correspond to. For this purpose, energy rate balances are

proposed. We have chosen, this time, to show these balances for PS specimens loaded under

extreme conditions (see Figures 9(a) and 9(b)).

The terms defining the energy balance rate are gathered in Eqs. (22a) to (22d). The deformation

energy rate 𝑤•
𝑑𝑒𝑓

is made of elastic 𝑤•
𝑒 and dissipated 𝑤•

𝑑
energy rates. We also added the

thermoelastic energy rate𝑤•
𝑡ℎ𝑒

, even if it does not appear in the classic DMTA.
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𝑤•
𝑑𝑒𝑓

= 𝜎 ¤Y = 𝑤•
𝑒 +𝑤•

𝑑
,

𝑤•
𝑒 = 𝜎𝑟 ¤Y = 𝐸′

M (Y − _𝑡ℎ\ ) ¤Y ≈
1

2

𝐸′
MY2

0
𝜔0 sin(2𝜔0𝑡),

𝑤•
𝑑
= 𝜎𝑖𝑟 ¤Y = 𝐸′′

MY2
0
𝜔0 cos

2(𝜔0𝑡),
𝑤•
𝑡ℎ𝑒

= −_𝑡ℎ𝑇𝐸′
M ¤Y = −_𝑡ℎ (𝑇0 + \ )𝐸′

MY0𝜔0 cos(𝜔0𝑡) ≈ −_𝑡ℎ𝑇0𝐸′
M ¤Y.

(22a)

(22b)

(22c)

(22d)

The approximation made in Eqs. (22b) and (22d) comes respectively from the fact that

_𝑡ℎ\ ≪ Y and \ ≪ 𝑇0.
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Figure 9: Energy rate balances for PS: (a) 𝑇0 = 313 K, 𝑓0 = 0.1Hz; (b) 𝑇0 = 363 K, 𝑓0 = 10Hz

The first obvious result is that the thermoelastic energy rate involved in the transformation is

undoubtedly the most important term of the balance. In Figure 9, it should be noted that, to make

the comparison of the curves easier, the thermoelastic energy rate has been divided by 25.

The second result, equally obvious, is the extreme lowness of dissipation. The dissipation is

so low that the deformation energy rate is almost identical to that of the elastic one. Nevertheless,

it has been underlined that these small mechanical dissipations (always positive) generated

temperature variations comparable to those induced by (alternating) thermoelastic coupling

sources.

3.3.4 Hysteresis area
The energy preponderance of coupling effects led us to control the influence that their presence

can have on the hysteresis loop area Aℎ . Using Eq. (15b), we get:

Aℎ =

∫ 𝑡+𝑓 −1
0

𝑡

𝜎 (𝜏) ¤Y (𝜏)d𝜏 = 𝜋𝐸′′Y2
0
= A𝑑

ℎ
+ A𝑡ℎ𝑒

ℎ
, (23)

where A𝑑
ℎ
and A𝑡ℎ𝑒

ℎ
stand for the dissipative and the thermoelastic contributions. The viscous

term A𝑑
ℎ
is naturally defined by:

A𝑑
ℎ
=

∫ 𝑡+𝑓 −1
0

𝑡

𝑤•
𝑑
(𝜏)d𝜏 . (24)

The presence of strong thermomechanical coupling mechanisms, in non-adiabatic situation,

leads to time effects that contribute to the creation of a hysteresis loop. In the case of thermoelastic

effects, this contribution A𝑡ℎ𝑒
ℎ

is written as, using Eqs. (10) and (12):
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A𝑡ℎ𝑒
ℎ

=

∫ 𝑡+𝑓 −1
0

𝑡

𝑤•
𝑡ℎ𝑒

d𝜏 =

∫ 𝑡+𝑓 −1
0

𝑡

−𝐸′
M_𝑡ℎ

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

sin(𝜔0𝜏 + 𝜙𝑡ℎ𝑒)︸                            ︷︷                            ︸
\𝑡ℎ𝑒 (𝜏 )

Y0𝜔 cos(𝜔0𝜏)︸          ︷︷          ︸
¤Y (𝜏 )

d𝜏 . (25)

Then, after integration over time, we get:

A𝑡ℎ𝑒
ℎ

=

𝜋𝐸′
MY0_𝑡ℎ

(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜√︃

1 + 𝜔2

0
𝜏2
𝑡ℎ

= 𝜋𝐸′′
TY

2

0
. (26)

In Tables 9 and 10, both types of hysteresis areas have been computed.

𝑓0 𝑇0 𝐸′ 𝐸′′
(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

Aℎ A𝑡ℎ𝑒
ℎ

(Hz) (K) (MPa) (MPa) (mK) (J m
−3
) (J m

−3
)

0.1 313 3490 67 51 210 1.85

1 313 3564 65 53 205 0.19

10 313 3608 64 53 199 0.02

0.1 348 2882 86 47 269 1.40

1 348 2977 77 48 242 0.15

10 348 3046 73 50 229 0.02

0.1 363 2529 140 43 441 1.13

1 363 2673 86 46 269 0.13

10 363 2826 39 48 123 0.01

Table 9: Computations of the hysteresis area Aℎ and A𝑡ℎ𝑒
ℎ

for DMTA tests on PS samples

𝑓0 𝑇0 𝐸′ 𝐸′′
(
𝛿\

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

Aℎ A𝑡ℎ𝑒
ℎ

(Hz) (K) (MPa) (MPa) (mK) (J m
−3
) (J m

−3
)

0.1 313 3137 85 41 267 1.61

1 313 3228 60 42 187 0.17

10 313 3292 39 43 122 0.02

0.1 323 2653 167 35 526 1.16

1 323 2850 119 38 375 0.14

10 323 2992 76 40 238 0.01

0.1 333 1920 211 26 663 0.62

1 333 2211 195 30 614 0.08

10 333 2497 151 34 474 0.01

Table 10: Computations of the hysteresis area Aℎ and A𝑡ℎ𝑒
ℎ

for DMTA tests on PA6.6 samples

The remarkable finding is that, despite the preponderance of thermoelastic effects in the

energy rate balance, the contribution of these coupling effects to the creation of a hysteresis area

remains negligible in the loading conditions considered here, particularly at high frequency. This

is the same type of conclusion obtained when studying the influence of thermoelastic effects

on the definition of dynamic moduli (see Eq. (15b) and Tables 5 and 6). But, as announced in

Subsection 3.3.1, we sought to see if coupling effects still have as little relative importance on

the size of hysteresis loop at very low frequencies. In other words, at very low frequencies, is

irreversibility associated with intrinsic or thermal dissipation, viscosity or material thermo-

dilatability?
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3.3.5 Possible extrapolation to very low frequencies
Since the thermal effects at very low loading frequencies are experimentally unreachable,

numerical simulations were performed using a basic visco-thermo-elastic Zener-type model

(Figure 10, see Moreau et al. (2005)). The parameters used in the simulations are listed in Table 11.

The values of thermal expansion coefficient _𝑡ℎ , of the mass density 𝜌 , of the specific heat𝐶 were

the ones retained for the PS samples (Table 1). The elastic moduli 𝐸1 and 𝐸2 and the viscosity `2
were chosen to get the same hysteresis areas Aℎ and A𝑡ℎ𝑒

ℎ
as those obtained for the PS samples

at 𝑇0 = 363 K, 𝑓0 = 0.1Hz (see bold line in Table 12 compared to Table 9). We also made sure that

the chosen 𝐸1, 𝐸2 and `2 give dynamic moduli that follow as well as possible their experimental

evolutions with 𝑓0 at 𝑇0, at best only, because the euristic Zener model, which has only one

thermoelastic and one viscoelastic branch, remains a rather simple model.

𝐸!

𝐸" 𝜇"

𝜆#$

𝜎 𝜎

𝜀

Figure 10: Basic sketch of the Zener-type rheologi-

cal model

Parameters Values

𝐸1 [MPa] 2500

𝐸1 [MPa] 620

`2 [MPa s] 241

𝜏2 [s] 0.39

_𝑡ℎ [10−6K−1] 75

𝜌 [kgm−3] 1060

𝐶 [J kg−1 K−1] 1400

𝜏𝑡ℎ [s] 40

Y0 [−] 0.01

Table 11: Values of the model parameters used in

the numerical simulations

The energies Aℎ and A𝑡ℎ𝑒
ℎ

were computed for different low frequencies and gathered

in Table 12. As the loading frequency decreases, the contribution of thermoelastic effects to

the hysteresis area R = A𝑡ℎ𝑒
ℎ /Aℎ = 𝐸′′

T/𝐸′′
increases. In Table 12, we see that the ratio R tends

numerically to a limit value when the loading frequency tends to zero. An analytical calculation

of the ratio, associated with the thermoelastic model of Zener-type, gives a limit value equal to:

lim

𝑓0→0

R =
𝐸2
1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝐸2
1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ + 𝜌𝐶`2

= 0.588. (27)

The calculations leading to this result are detailed in Appendix A2.We classically get:

where 𝜏2 =
`2
𝐸2

is the relaxation time of the viscoelastic branch.

𝑓0 A𝑑
ℎ

A𝑡ℎ𝑒
ℎ

R
[Hz] [J m−3] [J m−3] [%]
10

−4
0.47 0.68 58.7

10
−3

4.7 6.3 56.9

10
−2

47.3 9.1 16.2

10−1 441 1.1 0.25
1 669 0.12 0.018

10
1

79.7 0.01 0.016

10
2

8.0 0.001 0.016

Table 12: Relative importance of thermoelastic effects at different loading frequencies, with data for PS at

0.1Hz and 363 K used as reference
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At very low frequencies, for the material characteristics selected here, the preponderance

of the thermoelastic effects is then indisputable. This means that, at these frequencies, the

loss modulus is preferentially induced by thermomechanical coupling effects associated with

heat diffusion rather than viscous effects. One could introduce at this level the concept of

apparent “coupling viscosity” `𝑐 induced by the thermo-dilatability character of the material in a

non-adiabatic, non-isothermal context. At very low frequencies, the thermoelastic effects will

be more important than viscous effects if the “coupling viscosity” is greater than the material

viscosity:

`𝑐 =
𝐸2
1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝜌𝐶
> `2. (28)

The preponderance of thermoelastic effects on dissipation is not an intrinsic characteristic

of the material, but of the material, the geometry of the specimen and the conditions of heat

exchange between the specimen and the environment, see the definition of 𝜏𝑡ℎ above Eq. (11).

This means that the “coupling viscosity” is consequently not a “pure” material characteristic.

Finally, in Table 12, one can notice the non-monotonic evolution of A𝑡ℎ𝑒
ℎ

when the loading

frequency 𝑓0 increases, following a passage from isothermal (i.e., low frequencies) to adiabatic

(i.e., high frequencies) processes.

4 Concluding comments
In this work, we first sought to develop an infrared set-up allowing to reach the very small

temperature variations accompanying the cyclic loading of polymer samples during DMTA tests.

The first important finding, in agreement with the DMTA interpretation framework, is that the

temperature variations of the specimen during the tests remain so small that the assumption of

isothermal testing is well acceptable from a purely thermal standpoint, but not necessarily from

an energy standpoint since, for solid materials (high mass density, high specific heat), a small

thermal effect can reveal important energy mechanisms.

To interpret the thermomechanical results and their energy consequences, we integrated the

rheological equations of the DMTA in the framework of the nonlinear TIP with internal state

variables. The thermodynamic analysis of mechanical and thermal data, obtained during various

loading frequencies and temperatures, led us first to justify the introduction of thermoelastic

effects. As far as thermoelasticity is concerned: (i) its temperature ranges have been of the same

order of magnitude as those induced by viscous effects, (ii) it was very largely preponderant within

the energy rate balance, (iii) but unexpectedly and fortunately its contribution to the mechanical

hysteresis area remained negligible in the loading conditions experimentally considered. However,

at very low frequencies, numerical predictions from a simple Zener-type model showed that,

depending on the material characteristics, the loss modulus might be preferentially attributed to

coupling effects rather than viscous effects.

As for the dissipative effects: (i) they were more difficult to observe because the intensity

of dissipation remained extremely low (more than 100 times lower than the thermoelastic

energy rates), (ii) we could nevertheless highlight that the dissipation increased with the loading

frequency but in a proportion lower than the ratio of the frequencies, (iii) this last result is

certainly to be refined but it agrees with the fact that the area of the mechanical hysteresis loops

decreases with the loading frequency. This result is also compatible with the predictions of the

GeneralizedMaxwell model (Appendix A3), at least if the equivalent viscosity remains a sufficiently

decreasing function of the loading frequency. Indeed, if 𝐸1(𝑇0), . . . , 𝐸𝑖 (𝑇0), . . . 𝐸𝑛−1(𝑇0), 𝐸𝑛 (𝑇0)
denote the elastic moduli and `1(𝑇0), `2(𝑇0), . . . , `𝑖 (𝑇0), . . . `𝑛 (𝑇0), the viscosity coefficients of

these 𝑛 viscoelastic branches placed in parallel (with 𝐸𝑛 (𝑇0) = ∞ and `1(𝑇0) = ∞), it is classically

shown (Ferry 1980) that the equivalent loss modulus 𝐸′′
can be written as:

𝐸′′ =

(
𝑛−1∑︁
𝑖=2

`𝑖 (𝑇0)
1 + 𝜏2

𝑖
𝜔2

0

+ `𝑛 (𝑇0)
)
𝜔0. (29)
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According to Eq. (23), the hysteresis area Aℎ is therefore written:

Aℎ =

(
𝑛−1∑︁
𝑖=2

`𝑖 (𝑇0)
1 + 𝜏2

𝑖
𝜔2

0

+ `𝑛 (𝑇0)
)

︸                         ︷︷                         ︸
`𝑒𝑞 (𝑇0,𝑓0 )

2𝜋2Y2
0
𝑓0, (30)

where 𝜏𝑖 (𝑇0) = `𝑖 (𝑇0 )/𝐸𝑖 (𝑇0 ) is the relaxation time associated with branch #𝑖 . As long as the apparent

viscosity `𝑒𝑞 (𝑇0, 𝑓0) is frequency dependent, a decay of the hysteresis area with the loading

frequency is possible, but once the asymptotic value `𝑒𝑞 (𝑇0, 𝑓0) = `𝑛 (𝑇0) is reached, the hysteresis
loop area must become an increasing linear function of 𝑓0. It seems then difficult to interpret

the near constancy of 𝐸′′
observed on the PS at high frequency or low 𝑇0 (see Figure 4). This

constancy would tend to show that only the viscous (pure) branch is active and its viscosity `𝑛
evolving as 𝑓 −1

0
, which is not consistent with the framework of linear viscoelasticity. This will be

discussed in more detail in a future work, where we will seek to identify from the DMTA results

on PS and PA6.6, a possibly non-linear generalized Maxwell model taking the thermoelasticity

into account.
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Appendix
The purpose of this appendix is to briefly remind some energy properties of the different

viscoelastic models referred to in this work. These models must predict the DMTA rules shown in

Eqs. (1) which claim that: at a constant temperature, a monochromatic loading (e.g., in strain)

generates a (stress) response of the same spectral content. This remarkable property is generally

limited to small strain where the material behavior remains linear and viscoelastic. The phase

shift observed between stress and strain (Eq. (1b)) as well as the introduction of dynamic moduli

(Eqs. (1c) and (1d)) lead us to rewrite the stress-strain relationship under an additive form

(Eq. (5)) where elasticity effects develop in parallel with viscous effects. This parallel character is

fundamental because it strongly structures the rheological models that can be proposed. In

the following we will briefly come back to the 3 models mentioned in this paper as well as the

reasons that led us to mention them.

A1 Kelvin-Voigt Model
This is the simplest viscoelastic parallel model (Figure A1). However, it is well suited to DMTA in

that it introduces only one kinematic state variable: the overall deformation Y. In the field of

linear viscoelasticity, the elasticity modulus 𝐸 and the viscosity ` are constant.

Figure A1: Basic sketch of the Kelvin-Voigt model

The stress can classically be written as 𝜎 = 𝜎𝑟 + 𝜎𝑖𝑟 = 𝐸Y + ` ¤Y. From Eqs. (6a) and (6b), we

get the form of the dynamic moduli:

{
𝐸′ = 𝐸,

𝐸′′ = `𝜔0 = 2𝜋`𝑓0.

(A1a)

(A1b)

The associated intrinsic dissipation reads, in the case of a strain-driven DMTA test (Eq. (1a)):

𝑤•
𝑑
= 𝜎𝑖𝑟 ¤Y = ` ¤Y2 = `𝜔2

0
Y2
0

1 + cos(2𝜔0𝑡)
2

. (A2)

Using Eq. (19), we find from Eq. (A2) that the mean value of the asymptotic self-heating is:

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

=
2𝜋2𝜏𝑡ℎ`Y

2

0

𝜌𝐶
𝑓 2
0
. (A3)

This self-heating is here a function of 𝑓 2
0
, which is not consistent with experimental

observations. This is not surprising since 𝐸′′
is here an increasing function of 𝑓0 whereas 𝐸

′′
was

decreasing in the experimental conditions retained (see Figs. 4 and 5).

In section 3.3 to keep this parallel structure, with one kinematic state variable, we were led to

admit that 𝐸 and ` vary with the loading frequency, thus leaving the classical framework of linear

viscoelasticity. In other words, we considered that 𝐸 became 𝐸′(𝑇0, 𝑓0) and `, 𝐸′′(𝑇0, 𝑓0)/2𝜋 𝑓0
(Eq. (5)).
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A2 Zener-type model
Another way to describe a viscoelasticity evolving with the loading frequency, while keeping

rheological parameters constant, is to increase the number of rheological elements. Thus, in

section 3.3.5, we used the Zener-type model for which the elastic branch becomes thermoelastic

and the other branch, viscoelastic, introduces a viscous strain Y𝑣 as a new state variable. Although

still rudimentary, this model allowed us to analyze the relative importance of thermoelastic

coupling and dissipative effects for very low loading frequencies, where calorific effects remain

currently unreachable. Before analyzing the energy properties of this model, it should be

noticed that, in Figure A2, the thermoelasticity only concerns the elastic branch. We could have

considered both springs as thermoelastic. This is what we formally have done in Eq. (5) by

attaching the thermo-dilatation to the conservation modulus only. Having only one thermoelastic

component naturally simplifies the model. It also allows to find a thermoelastic temperature

range independent of the frequency, as soon as the cycle can be considered as adiabatic, which

we would not have had with a viscous-thermo-elastic branch, the viscous strain depending on the

loading frequency.

Figure A2: Basic sketch of the Zener-type model

In this model, two heat sources coexist, the thermoelastic source 𝑤•
𝑡ℎ𝑒

and the intrinsec

dissipation𝑤•
𝑑
.

• Noting 𝜓 (𝑇, Y, Y𝑣) the volume free energy, the thermoelastic source can be written as

(Eq. (9)):

𝑤•
𝑡ℎ𝑒

= 𝑇
𝜕2𝜓

𝜕𝑇 𝜕Y
¤Y = −𝐸1_𝑡ℎ𝑇 ¤Y = −𝐸1_𝑡ℎ𝑇0 ¤Y − 𝐸1_𝑡ℎ\ ¤Y. (A4)

Given the low ratio |\ | /𝑇0 (less than 10
−3
), the thermoelastic temperature variations can

be calculated with a good precision from the simplified source term −𝐸1_𝑡ℎ𝑇0 ¤Y. Attention,
this does not mean that the energy rate 𝐸1_𝑡ℎ\ ¤Y should be neglected in the energy balance

over a loading cycle (cf. Table 12 and Eq. (25)), particularly at low loading frequency.

• The intrinsic dissipation𝑤•
𝑑
is only associated with the dashpot in this new rheological

assembly. So, it reads:

𝑤•
𝑑
= `2 ¤Y2𝑣 . (A5)

Starting from the rheological equations characterizing the components, the periodic part of

the viscous strain verifies:

Y𝑣 =
Y − 𝜏2 ¤Y
1 + 𝜔2

0
𝜏2
2

, (A6)

where 𝜏2 = `2/𝐸2 is the relaxation time of the viscoelastic branch, Y being defined by Eq. (1a). We

finally get:

𝑤•
𝑑
= `2

Y2
0
𝜔2

0(
1 + 𝜔2

0
𝜏2
2

)
2

[
cos

2 (𝜔0𝑡) + 𝜔0𝜏2 sin(2𝜔0𝑡) + 𝜔2

0
𝜏2
2
sin

2(𝜔0𝑡)
]
. (A7)
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At high frequencies, the mean dissipation per cycle saturates, becoming independent of the

loading frequency, while at low frequencies, the dissipation can be approximated by a 𝑓0 squared

law:


lim

𝜔0→∞
𝑤•
𝑑
≈

`2Y
2

0

𝜏2
2

sin
2 (𝜔0𝑡) =

`2

𝜏2
2

Y2,

lim

𝜔0→0

𝑤•
𝑑
≈ `2Y

2

0
𝜔2

0
cos

2 (𝜔0𝑡) = `2 ¤Y2.

(A8a)

(A8b)

At high frequency, the asymptotic self-heating becomes independent of 𝑓0 and reaches the

asymptotic value:

(
𝛿\

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

=
𝜏𝑡ℎ`2Y

2

0

2𝜏2
2
𝜌𝐶

. (A9)

At low frequencies, it is interesting to compare the size of the hysteresis loops generated

by the thermoelastic effects and to compare them to those of the dissipative effects. Since the

thermoelastic hysteresis area is temperature dependent (Eq. (25)), this latter should be computed

during a cyclic test. As usual, we do not consider the transient solution. The temperature is the

solution of the following heat equation:

¤\ + \

𝜏𝑡ℎ
=
𝑤•
𝑑

𝜌𝐶
+
𝑤•
𝑡ℎ𝑒

𝜌𝐶
=
`2 ¤Y2
𝜌𝐶

+ 𝐸1_𝑡ℎ𝑇0 ¤Y
𝜌𝐶

=
`2𝜔

2

0
Y2
0

𝜌𝐶

1 + cos(2𝜔0𝑡)
2

+ 𝐸1_𝑡ℎ𝑇0Y0𝜔0

𝜌𝐶
cos(𝜔0𝑡)

(A10)

This ODE being linear, we can look for a particular solution for each of the two terms of the

right hand member. After all calculations, we find \ = \𝑑 + \𝑡ℎ𝑒 where:



\𝑑 =
`2𝜏𝑡ℎ𝜔

2

0
Y2
0

2𝜌𝐶

(
1 + 4𝜔2

0
𝜏2
𝑡ℎ

)
︸                ︷︷                ︸

#1

+
`2𝜏𝑡ℎ𝜔

2

0
Y2
0

2𝜌𝐶

(
1 + 4𝜔2

0
𝜏2
𝑡ℎ

) cos (2𝜔0𝑡)︸                               ︷︷                               ︸
#2

+
`2𝜏

2

𝑡ℎ
𝜔3

0
Y2
0

2𝜌𝐶

(
1 + 4𝜔2

0
𝜏2
𝑡ℎ

) sin (2𝜔0𝑡)︸                               ︷︷                               ︸
#3

,

\𝑡ℎ𝑒 =
𝐸1_𝑡ℎ𝑇0Y0𝜔0𝜏𝑡ℎ

𝜌𝐶 (1 + 𝜔2

0
𝜏2
𝑡ℎ
)
cos (𝜔0𝑡)︸                          ︷︷                          ︸

#4

+
𝐸1_𝑡ℎ𝑇0Y0𝜔

2

0
𝜏2
𝑡ℎ

𝜌𝐶 (1 + 𝜔2

0
𝜏2
𝑡ℎ
)
sin (𝜔0𝑡)︸                          ︷︷                          ︸

#5

.

(A11a)

(A11b)

The thermoelastic hysteresis area is defined by:

A𝑡ℎ𝑒
ℎ

=

∫ 𝑡+𝑓 −1
0

𝑡

𝑤•
𝑡ℎ𝑒

(𝑢)𝑑𝑢 =

∫ 𝑡+𝑓 −1
0

𝑡

−𝐸1_𝑡ℎ𝑇 ¤Y𝑑𝑢 =

∫ 𝑡+𝑓 −1
0

𝑡

−𝐸1_𝑡ℎ\ ¤Y𝑑𝑢, (A12)

with ¤Y = Y0𝜔0 cos(𝜔0𝑡). Consequently, except term #4, all other terms vanish during the

integration over a loading cycle. We then get:

A𝑡ℎ𝑒
ℎ

=
𝐸2
1
_2
𝑡ℎ
𝑇0𝜔

2

0
Y2
0
𝜏𝑡ℎ

𝜌𝐶 (1 + 𝜔2

0
𝜏2
𝑡ℎ
)
𝜋

𝜔0

=
𝜋𝐸2

1
_2
𝑡ℎ
𝑇0𝜔0Y

2

0
𝜏𝑡ℎ

𝜌𝐶 (1 + 𝜔2

0
𝜏2
𝑡ℎ
)
. (A13)
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On the other hand, the hysteresis associated with dissipation becomes, with Eq. (A7):

A𝑑
ℎ
=

∫ 𝑡+𝑓 −1
0

𝑡

𝑤•
𝑑
(𝑢)𝑑𝑢 =

`2Y
2

0
𝜔2

0(
1 + 𝜔2

0
𝜏2
2

)
2

𝜋

𝜔0

+
`2Y

2

0
𝜔4

0
𝜏2
2(

1 + 𝜔2

0
𝜏2
2

)
2

𝜋

𝜔0

=
𝜋`2Y

2

0
𝜔0(

1 + 𝜔2

0
𝜏2
2

) . (A14)

Considering low frequencies, both types of areas reaches a limit:


lim

𝜔0→0

A𝑡ℎ𝑒
ℎ

≈
𝜋𝐸2

1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝜌𝐶
Y2
0
𝜔0,

lim

𝜔0→0

A𝑑
ℎ
≈ 𝜋`2Y

2

0
𝜔0.

(A15a)

(A15b)

We then find the ratio R representing the relative importance of thermoelasticity at low

frequency announced in Eq. (27), namely:

R =
𝐸2
1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝐸2
1
_2
𝑡ℎ
𝑇0𝜏𝑡ℎ + 𝜌𝐶`2

. (A16)

As already mentioned, the Zener model shows only one relaxation time, which rarely allows

to correctly describe the moduli evolution with frequency. To improve the performances of the

modelling, it is usual to increase the number of viscoelastic branches, always placed in parallel, to

get a Generalized Maxwell-type model associated with a discrete relaxation time spectrum.

A3 Generalized Maxwell-type model
This type of model is naturally richer as the number 𝑛 of branches increases. To each viscoelastic

branch 𝑖 we associate a relaxation time 𝜏𝑖 = `𝑖/𝐸𝑖 . It is then usual to define for each model of this

type a discrete distribution of relaxation times associated with 𝐸𝑖 modules. In Figure A3, the

branch #1 is a pure thermoelastic branch (`1 = +∞) and the branch #𝑛 is a pure viscous branch

(𝐸𝑛 = +∞).

Figure A3: Basic sketch of the Generalized Maxwell-type model

Noting𝜓 (𝑇, Y, Y𝑣𝑖), 𝑖 = 1, ..., 𝑛, the volume free energy, the thermoelastic source keeps the

same form as in Eq. (A4), namely:

𝑤•
𝑡ℎ𝑒

= 𝑇
𝜕2𝜓

𝜕𝑇 𝜕Y
¤Y = −𝐸1_𝑡ℎ𝑇 ¤Y. (A17)
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As before, the thermoelasticity is localised in a single branch and not distributed over the 𝑛

branches of the model.

The intrinsic dissipation𝑤•
𝑑
must now consider the contribution of all dashpots:

𝑤•
𝑑
=

𝑛−1∑︁
𝑖=2

`𝑖 ¤Y2𝑣𝑖 + `𝑛 ¤Y2. (A18)

For each viscoelastic branch, the periodic part of the viscous strain Y𝑣𝑖 verifies:

Y𝑣𝑖 =
Y − 𝜏𝑖 ¤Y
1 + 𝜔2

0
𝜏2
𝑖

. (A19)

Following the same approach as in Eq. (A7),𝑤•
𝑑
is written as:

𝑤•
𝑑
=

𝑛−1∑︁
𝑖=2

`𝑖Y
2

0
𝜔2

0(
1 + 𝜔2

0
𝜏2
𝑖

)
2

[
cos

2 (𝜔0𝑡) + 𝜔0𝜏𝑖 sin (2𝜔0𝑡) + 𝜔2

0
𝜏2𝑖 sin

2 (𝜔0𝑡)
]
+ `𝑛Y

2

0
𝜔2

0
cos

2(𝜔0𝑡).

(A20)

As with the Zener-type model, we can calculate the limits of the dissipation at high and low

frequencies:


lim

𝜔0→∞
𝑤•
𝑑
≈

𝑖=𝑛−1∑︁
𝑖=2

`𝑖

𝜏2
𝑖

Y2 + `𝑛 ¤Y2,

lim

𝜔0→0

𝑤•
𝑑
≈

𝑖=𝑛∑︁
𝑖=2

`𝑖 ¤Y2.

(A21a)

(A21b)

At high frequencies, the dissipation is composed of two terms. The first, as in the Zener-type

model, becomes independent of frequency, and the second, as in the Kelvin-Voigt model, sees the

dissipation grow in 𝑓0 squared because of the 𝑛𝑡ℎ branch. One could of course not consider this

purely viscous branch in the model, but then this would lead to a decrease towards zero of the

loss moduli 𝐸′′
, which is not observed (e.g. Figure 4). Indeed, it is classical to check that the

dynamic moduli can be written as follows (Aklonis et al. 1983):


𝐸′ = 𝐸1 +

𝑖=𝑛−1∑︁
𝑖=2

𝐸𝑖
𝜔2

0
𝜏2𝑖

1 + 𝜔2

0
𝜏2
𝑖

,

𝐸′′ =
𝑛−1∑︁
𝑖=2

𝐸𝑖
𝜔0𝜏𝑖

1 + 𝜔2

0
𝜏2
𝑖

+ 𝜔0`𝑛,

(A22a)

(A22b)

where 0 ≤ 𝜏𝑖 =
`𝑖
𝐸𝑖

≤ +∞, 𝑖 = 1, ..., 𝑛, are the relaxation times.

A4 Some concluding words on the transition from 1D to 3D
viscothermoelastic models

From a modeling standpoint, the transition to a 3D thermoelasticity does not involve any new

concept for isotropic materials and 3D linear thermoelastic models have been proposed for a long

time (Germain 1973). Regarding now the viscosity, it is a different matter when it comes to

defining and identifying the tensors characterizing the viscous properties. Naturally, 3D linear

models could fit easily into the thermodynamic framework. The reader interested in this domain

is referred to the famous Sidoroff’s website [http://sitasido.ec-lyon.fr/mainToC.php]. However,

it must be clear that once defined, the viscous behavior will need a large amount of specific

experimental data to be identified. In any case, we have pointed out that these linear models in

their 1D version were not completely satisfactory from an energy standpoint.
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