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Thermal and energy analysis of mechanical
spectrometry tests

André Chrysochoos and Olivier Arnould

Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France

Quantitative infrared techniques were developed and used to assess small temperature variations of

samples undergoing cyclic loadings during mechanical spectrometry tests. A standard setup of dynamic

mechanical thermal analysis (DMTA) was therefore modified for this purpose. Thermal and mechanical

data were used to quantify the viscous dissipated and the thermoelastic coupling energies that can

be both associated with the hysteretic stress-strain response of polymers. Energy balances were then

performed to quantify the relative importance of dissipative and thermoelastic coupling heat sources. The

consequences of the obtained results on the identification of the material rheological properties within a

linear viscoelastic framework were finally discussed.

Keywords DMTA, viscous dissipation, thermoelastic coupling, energy balance, time-dependent behavior

1 Introduction
DMTA is widely used in standard experimental approaches developed to characterize the linear

viscoelastic behavior of polymers. Samples are subjected to a monochromatic sinusoidal loading

(e.g., in tension-compression) and the stress-strain response is recorded at different environmental

chamber temperature 𝑇0 and loading frequency 𝑓0, to derive the so-called dynamic moduli 𝐸′
and

𝐸′′
. According to the hypotheses of DMTA, the storage modulus 𝐸′

is linked to the stored elastic

energy, finally mechanically recoverable when the specimen is unloaded, while the loss modulus

𝐸′′
is related to the viscous dissipated energy over a loading cycle. In the literature, the viscous

part of the behavior is equally quantified by the loss angle 𝛿 , defined by tan𝛿 = 𝐸′′

𝐸′ , which

characterizes the so-called internal friction (Menard 2008). The DMTA rheological equations for

strain-controlled tensile loading can be gathered as follows:



𝜀 = 𝜀0 sin𝜔0𝑡,

𝜎 = 𝜎0 sin (𝜔0𝑡 + 𝛿) = 𝐸′ (𝑇0, 𝑓0) 𝜀0 sin𝜔0𝑡 + 𝐸′′ (𝑇0, 𝑓0) 𝜀0 cos𝜔0𝑡,

𝐸′ (𝑇0, 𝑓0) =
𝜎0

𝜀0
cos (𝛿 (𝑇0, 𝑓0)) ,

𝐸′′ (𝑇0, 𝑓0) =
𝜎0

𝜀0
sin (𝛿 (𝑇0, 𝑓0)) ,

(1a)

(1b)

(1c)

(1d)

where, 𝜀0 stands for the controlled strain amplitude, 𝜎0 (𝑇0, 𝑓0) the resulting stress amplitude and

𝜔0 = 2𝜋 𝑓0 the pulsation.

Eqs. (1a) to (1d) form the theoretical interpretation framework of DMTA. They deserve several

comments:

• The mechanical spectrometry tests assume that to a monochromatic mechanical loading

corresponds a monochromatic response. Naturally, this crucial preliminary assumption

can/should be systematically verified via a frequency spectrum analysis of the loading

signal and of the material response. The two questions that need to be imperatively

answered are: is the testing machine capable of imposing a monochromatic loading? Is the

material response then also monochromatic?

• Moreover, although tests are performed at different temperatures, they are generally

considered isothermal, the sample being assumed to be in thermal equilibrium with the
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environmental chamber. However, the cyclic deformation mechanisms of polymers often

lead to temperature variations of the specimen. Material deformation process generates

indeed heat sources. Dissipative sources induced by irreversible transformations, due at

least to viscosity, must be first mentioned. In addition, it is known that polymer behaviors

are sensitive to temperature variations. This sensitivity results in coupling mechanisms,

highlighting the strong dependence between thermal, mechanical, and microstructural

states. One can mention the linear thermal expansion of polymers (Graessley et al. 2001), the

rubber effects (Treloar 2005), or simply the fact that elastic moduli vary with temperature

(e.g., the temperature 𝑇0 of the DMTA environmental chamber) (Menard 2008; Ferry 1980).

Consequently, are the temperature variations of the sample undergoing DMTA testing

significant or not? If so, a better understanding of the energy balance of the polymer

deformation is then interesting from a rheological standpoint, dissipative mechanisms

being closely associated with evolution laws, while coupling effects are linked to state laws

(Halphen et al. 1975; Chrysochoos 2012).

The first goal of this paper is to present the thermography setup used to assess very small

strain-induced temperature variations occurring during cyclic DMTA tests. As already mentioned,

DMTA performs isothermal analysis even if different testing temperatures are, by construction,

considered in testing campaigns. This isothermal analysis was reconsidered to check whether the

origin of the storage and loss moduli is only due to visco-elastic effects whatever the couple

(𝑇0, 𝑓0). In the following, metrological aspects related to measurements of small temperature

variations were thoroughly presented. Indeed, the first experimental challenge was to measure

these strain-induced temperature variations. Even if these temperature variations remain often

much smaller than a tenth of a degree, they may correspond to heat rates much greater (e.g.,

dozens of times) than the deformation energy rate (Boulanger et al. 2004). It is therefore important

not to neglect them when establishing the energy balance.

2 Experimental setup

The chosen polymers in this study were commercial PS (Polystyrene from Goodfellow) and

commercial PA6.6 (Polyamide 6.6). PA6.6 samples were provided by Solvay Engineering Plastics,

for which the authors are gratefully acknowledged. The specimens of dimension 85 × 13 × 4mm
3

were machined from thick sheets of 300 × 300mm
2
. Note that the glass transition temperature

(𝑇𝑔) is around 375 K for PS and 336 K for PA6.6.

2.1 Thermal metrology

Temperature variations were observed using an infrared focal plane array (IRFPA) camera (CEDIP

Titanium series). The environmental chamber of the DMTA (Bose ELF 3230) was equipped with a

home-made door using an infrared Techspec lens, from EDMUND optics, and placed at the center

of the door. This infrared lens was made of anti-reflecting coated silicon to avoid IR reflections

and was suitable for the DMTA measurements in the wavelength range of 3-5 µm (transmission

coefficient of IR radiations in this range remains greater than 93%).

This infrared lens was thus able to capture the temperature variations observed during the

tests by weakly attenuating them. The experimental setup is shown in Figure 1. Furthermore, two

samples were placed inside the environmental chamber, in the optical field of IRFPA camera and

at the same focal plane, one sample being subjected to the loading and the other one mechanically

free (dummy sample) and submitted to the thermal regulation of the environmental chamber

(Figure 2).
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Figure 1: Thermography setup in front of the DMTA (BOSE ELF 3230)

Loaded sample Dummy sample
49.5

50

50.5

51

51.5

52

◦
C

Figure 2: Thermal image (in
◦
C) of the two PS samples inside the environmental chamber at 50

◦
C

The IRFPA camera was calibrated using a pixel-by-pixel method Honorat et al. (2005). This

pixel calibration is an effective technique for quantitatively reliable infrared measurements of

temperature fields, particularly when very small temperature variations occur. This type of

calibration allows the user to by-pass the “bad pixel replacement” (BPR) and “non uniformity

correction” (NUC) stages proposed by some camera’s builders. The individual pixel calibration is

done on the entire dynamic range of the sensor and is based on polynomial fitting of the digital

levels 𝑠𝑖 delivered by the 𝑖𝑡ℎ element of the detector matrix when the camera is placed in front of

a black body source at different temperatures 𝑇 ∈ [𝑇1,𝑇2]:

𝑠𝑖 (𝑇 ) =
𝑃∑︁

𝑝=0

𝑎𝑖𝑝𝑇
𝑝
, for 𝑇 ∈ [𝑇1,𝑇2] . (2)

The coefficients noted 𝑎𝑖𝑝 in Eq. (2), derive from a least squares fitting. Later, the system will

consider pixel 𝑖 as a bad pixel based on the temperature difference between the temperature

predicted by the polynomial fitting and the imposed temperature of the black body source. If
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this difference is greater than a predefined threshold of 𝛿𝑇 (e.g., 𝛿𝑇 = 10mK), then the pixel is

considered as bad (Honorat et al. 2005).

This calibration procedure was adopted for each testing temperature 𝑇0 used to ensure that

very small strain-induced temperature variations of the sample are measured. Calibrations were

performed before each mechanical test series, using the black body behind the environmental

chamber’s door with the IR lens and using the same geometrical configuration as during the

DMTA test, the surface of the black body being at the same position as the sample surface. The

integration time was varied according to the temperature used during the DMTA tests. To avoid

transient thermal drifts of the camera, these calibrations and measurements were performed

about 4-5 hours after switching on the camera.

A tricky recurrent problem associated with the IR thermal measurements is the emissivity of

the target, here the emissivity of the sample surface. It was verified whether painting the sample

black, will affect the emissivity of the sample, as some samples (PS) were transparent to the visible

radiations. Therefore, half of one PS sample was painted black and half of it was left unpainted.

Using the experimental setup shown in Figure 1, thermoelastic responses were analyzed over the

sample gauge part to check if painting the sample black makes a difference in the emissivity (in

the IR wavelengths) of the sample. The thermoelastic field of temperature amplitudes was plotted

over the region of interest including both sides (i.e., painted and unpainted). It was observed that

painting the sample in black induced a more homogeneous thermoelastic signal but did not

significantly affect its mean amplitude 𝛿𝜃
𝑓0
𝑒 over the sample gauge part (see its definition in

subsection 3.2). We consequently decided to leave the sample surfaces unpainted.

2.2 Mechanical loadings

Regarding now the loading aspects of the cyclic tests, we limited the mechanical tests to three

decades of loading frequencies for different environmental chamber’s temperatures, all below the

glass transition temperature 𝑇𝑔 to limit the complexity of the behavior to that of glassy polymers.

In this work, a complete calibration of the load cell and of the LVDT displacement sensor

were performed. Moreover, the alignment of the clamps was verified and adjusted to ensure

a pure tensile loading of the sample. For this purpose, we used a PS sample equipped with

four strain gauges, two by side, to verify if the strain is (almost) equal for all the four gauges

for different applied quasistatic load in tension and compression until the maximum load. In

addition, the DMTA electronic acquisition chain influenced the phase shift between the imposed

displacement and the measured force. This phase shift was corrected in the (commercial) software

but, as we used the raw data to fully control the data processing and to synchronize these signals

with the IR camera acquisition, an electronic phase shift correction has been done on the raw

data. This phase shift has been evaluated at all the measured frequencies and at two temperatures

(28
◦
C and 60

◦
C using a sample of steel (no material viscosity) sheet. This steel sheet was of the

same length as the polymer samples but with a cross-section area such that it has a stiffness

equivalent to that of PS samples. Finally, regarding the real sample elongation, it was considered

that components of the DMTA machines (especially the load cell) induced a non-negligible

spurious displacement that induced an important bias. Therefore, the machine stiffness was

measured using a very stiff sample. The actual elongation of the sample was then obtained by

correcting the machine displacement from its own deformation. This was checked by measuring

the actual displacement, during cyclic loadings, between two targets on the surface of a polymer

sample by digital image correlation (Wattrisse et al. 2001) using IR thermal images. The polymer

samples complex stiffness was then corrected following the equation (16A) in Olusanya (1996).

The moduli determined on the PS and PA6.6 samples were compared with measurements obtained

on similar samples using other DMTA in three other French laboratories (Yadav 2019).

The raw displacement and load measurements of the DMTA were used to verify the

monochromatic character of the loading and response signals. An example of the Fourier

spectrum of the raw force and displacement signals, recorded on a PS sample at 1 Hz, is shown in

Figure 3.
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Figure 3: Frequency spectrum of the force and displacement signals for PS sample at a loading frequency

of 1Hz and a temperature of 40
◦
C

This type of control was performed on all samples, regardless of the loading frequency 𝑓0 or the

ambient temperature 𝑇0 at which the test was performed. Strain controlled tension-compression

symmetric cyclic measurements were conducted on specimens at several frequencies (e.g., 0.01,

0.1, 1 and 10Hz) and several temperatures. The following sets of 𝑇0 have been particularly

analyzed: (313 K, 348 K, 363 K) for the PS samples and (313 K, 323 K, 333 K) for the PA6.6 samples.

The recordings were made over several tens of cycles to get a stabilized cyclic regime and

ensure a sufficient set of mechanical and thermal data to perform relevant filtering. We used

the same sampling frequency whatever the loading parameters and the polymer tested. This

mechanical sampling frequency 𝑓𝑠 was set at 31Hz, as a unique electronic sampler being used to

record thermal and mechanical data synchronously. This frequency is large enough for loading

frequencies below 1Hz. In fact, whatever the frequency, the expected periodicity of the signal,

once the transient period is over, allowed us to analyze the thermal response via synchronous

demodulation techniques. In addition, the sampling frequency of 31Hz was chosen so as not to

be an integer multiple of the high loading frequencies used of 6.3 and 10Hz (under-sampling

technique).

The loading parameters used during the different tests are mentioned in Table 1.

Polystyrene Polyamide 6.6

Max. strain 0.1% 0.1%

Strain ratio -1 -1

Freq. range [0.01-10] Hz [0.01-10] Hz

Temp. range [313-363] K [308-333] K

Table 1: Loading parameters of DMTA tests
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3 Results and Discussion
The results obtained were processed separately: on the one hand, mechanical data (load,

displacement, time) led us to identify dynamic moduli (see Eqs. (1c) and (1d)) as functions of the

testing temperature 𝑇0 and of the loading frequency 𝑓0; on the other hand, IR data gave us the

temperature variations of the specimen inside the environmental chamber due to the cyclic

loading.

3.1 Estimates of dynamic moduli E’ and E”
Classically, DMTA is used to identify the evolution of dynamic moduli. All devices directly

provide 𝐸′
and 𝐸′′

moduli (or equivalently 𝐸′
and tan𝛿), as they are equipped with a specific

processing data software. In the present case, we decided to process the raw stress and strain data

recorded as a function of time, the dynamic moduli have thus been estimated using a simple

least-squares method of the stress and strain signals.

Series of frequency sweeps gave the evolution of 𝐸′
and 𝐸′′

shown in Figures 4 and 5 and

presented as functions of the loading frequency 𝑓0 and environmental chamber temperature 𝑇0.

These data were extracted from Yadav’s works during his PhD (Yadav 2019).

It was observed that the evolution of 𝐸′
and 𝐸′′

have the same trends for both materials (PS

and PA6.6): for the used frequency range, 𝐸′
is increasing with the increasing frequency whereas

𝐸′′
is decreasing. On the other hand, an increase in the testing temperature will tend to decrease

the storage modulus and increase the loss modulus. Finally, it is worth mentioning the difference

in order of magnitude between 𝐸′
and 𝐸′′

, loss moduli being, roughly speaking, dozens of times

weaker than storage moduli.
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Figure 4: Influence of frequency and temperature on dynamic moduli of PS, after Yadav (2019); colors

indicate the temperature 𝑇0 in K of the environmental chamber

Naturally, this type of result is very common in the literature and widely used in the polymer

material characterization centers to construct master curves associated with the famous, and

sometimes controversial, time-temperature superposition principle (Sokolov et al. 2007). However,

if the mechanical data from DMTA tests are abundant, the associated thermal responses have

not, to our knowledge, been analyzed yet. This is probably not surprising since, as previously

underlined, one of the implicit assumptions of DMTA tests is to consider that the sample is in

thermal equilibrium with the environmental chamber inside which it is cyclically loaded.

3.2 Analysis of temperature variations
To estimate the so-called "temperature variations of the sample” 𝜃 (𝑡), we used the infrared

techniques presented in subsection 2.1. These temperature variations were defined by the

6



A. Chrysochoos et al. Calorimetric analysis of DMTA tests

10
−2

10
−1

10
0

10
1

2,000

2,500

3,000

Frequency (Hz)

E
’
(
M
P
a
)

308 313 318 323 328 333

10
−2

10
−1

10
0

10
1

0

50

100

150

200

250

Frequency (Hz)

E
”
(
M
P
a
)

Figure 5: Influence of frequency and temperature on dynamic moduli of PA6.6, after Yadav (2019); colors

indicate the temperature 𝑇0 in K of the environmental chamber

difference between the average temperatures estimated over two small areas of 2 × 2𝑚𝑚2
placed,

one in the center of the sample being deformed and, the other, in the center of the dummy

sample. The purpose of calculating an average temperature over a small area is to reduce high

frequency thermal noise. For the IRFPA camera used in this work, this noise is white Gaussian

noise (Chrysochoos et al. 2000; Batsale et al. 2013). Considering the temperature difference

between the strained sample and the dummy sample is intended to mitigate the effects of low

frequency temperature fluctuations in the environmental chamber induced by its own thermal

regulation system.
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Figure 6: Time courses of 𝜃 (𝑡): (a) PA6.6, 𝑇0 = 313 K, 𝑓0 = 0.1Hz; (b) PA6.6, 𝑇0 = 333 K, 𝑓0 = 10Hz

Figures 6(a) and 6(b) present the temperature 𝜃 (𝑡) obtained on PA6.6 samples. To fix the

ideas we have chosen the couples (313 K, 0.1Hz) and (333 K, 10Hz) representing the extreme

conditions of mechanical and thermal loading for the polyamide samples.

The red curve shows the evolution of 𝜃 (𝑡) while the blue curve represents the evolution of

the mean temperature per cycle
˜𝜃 (𝑡) defined by:
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˜𝜃 (𝑡) = 𝑓0

∫ 𝑡+(2𝑓0 )−1

𝑡−(2𝑓0 )−1
𝜃 (𝜏)d𝜏 . (3)

The difference 𝜃 (𝑡) − ˜𝜃 (𝑡) makes it possible to highlight regular and periodic oscillations

whose amplitude has been noted 𝛿𝜃
𝑓0
𝑒 . We finally introduced the temperature difference 𝛿𝜃

𝑓0

𝑑

defined by:

𝛿𝜃
𝑓0

𝑑
= ˜𝜃 (𝑡𝑒𝑛𝑑 ) , (4)

where 𝑡𝑒𝑛𝑑 is the end time of the camera recording. This temperature allowed us to quantify a

potential self-heating of the sample induced by viscous dissipation. However, the value of 𝛿𝜃𝑑
can be affected by the residual temperature fluctuations of the environmental chamber.

These first thermal data allowed us to point out the two following results:

• First, we observed that the temperature variations during the DMTA test remained very

small (less than a few hundreds of mK). On the one hand, this result is reassuring in that it

is consistent with the assumption of a DMTA test during which the sample is in thermal

equilibrium with the ambient temperature of the environmental chamber. On the other

hand, one could be surprised not to see much more significant dissipation-induced self-

heating. In the case of Figure 6(a), the loading frequency is low (0.1Hz) and no significant

𝛿𝜃𝑑 is observed. However, in the case of Figure 6(b), PA6.6 sample is cyclically loaded at

10Hz at a temperature of 333 K, the temperature increase 𝛿𝜃𝑑 does not exceed 200mK

during the test duration. In the next subsections we checked whether this observation is

consistent with the temperature variations induced by viscous dissipation predicted by the

rheological equations Eqs. (1).

• Even if variations of 𝜃 (𝑡) are small, regular oscillations can be observed which appears to

be periodic, and this periodicity is linked to the loading frequency 𝑓0. We noted 𝛿𝜃
𝑓0
𝑒 the

amplitude of these oscillations and we proposed to associate them with thermoelastic

effects. In the next subsection, a thermoelastic rheological equation was introduced to

check this proposal.

3.3 Thermodynamic standpoint and energy balance analysis
To go further, it is necessary to consider the 1D rheological equations associated with the DMTA

tests and try to integrate them in a thermodynamic framework to be able to draw up a complete

energy balance. In this work, the thermodynamics of irreversible processes (TIP) with internal

state variables was used (Halphen et al. 1975; Germain et al. 1983; Chrysochoos 2012). This

formalism assumes that a local equilibrium state exists and that it can be described by a finite

number of state variables. The properties of equilibrium states are described by the state laws

derived from a thermodynamic potential. In mechanics of materials, the volume Helmholtz free

energy𝜓 is often used. The state variables are the temperature 𝑇 , the small strain 𝜀 and a given

number of complementary (internal) state variables 𝛼 𝑗 , 𝑗 = 1, 2 . . ., usually introduced to describe

the microstructural state of the material. Evolution or complementary equations must also be

introduced to describe the irreversibility accompanying the deformation process. The latter

must be compatible with the Clausius-Duhem inequality, local writing of the 2
nd

principle of

thermodynamics (Chrysochoos 2012).

Using the rheological Eqs. (1) associated with the DMTA tests, the stress 𝜎 can be rewritten

in the following form, easier to interpret from a thermodynamic standpoint:

𝜎 = 𝐸′(𝑇0, 𝑓0)𝜀 +
𝐸′′(𝑇0, 𝑓0)

2𝜋 𝑓0
¤𝜀. (5)
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The energy denomination of 𝐸′
and 𝐸′′

allows one to split the stress into reversible (energy

storage or conservation) and irreversible (loss of energy) parts so that:


𝜎𝑟 =

𝜕𝜓

𝜕𝜀
= 𝐸′(𝑇0, 𝑓0)𝜀,

𝜎𝑖𝑟 = 𝜎 − 𝜎𝑟 =
𝐸′′(𝑇0, 𝑓0)

2𝜋 𝑓0
¤𝜀.

(6a)

(6b)

The conjugate variable of 𝜀 is the so-called reversible stress 𝜎𝑟 . The term 𝜎𝑖𝑟 is the irre-

versible stress and will act as the thermodynamic force associated with the strain rate in the

Clausius-Duhem inequality (see subsection 3.3.2).

The presence in Eqs. (6a) and (6b) of the thermomechanical loading parameters 𝑇0 or 𝑓0 is a

little bit delicate to integrate in a thermodynamic framework. How can these (external loading)

parameters act as material state variables ?

Regarding 𝑇0, it is quite simple, just replace the temperature set point of the environmental

chamber by the temperature of the sample 𝑇 .

Regarding 𝑓0, we proposed the following state variable
˜𝑓 , depicting a memory of kinematic

effects cumulated over a time corresponding to a loading duration T0:

˜𝑓 =
1

2𝜋

√︄
⟨¤𝜀2⟩
⟨𝜀2⟩ , (7)

with the mean square strain rate over T0 defined by

〈
¤𝜀2
〉
= 1

T0

∫ 𝑡

𝑡−T0
¤𝜀2(𝜏)d𝜏 and the mean square

strain

〈
𝜀2

〉
= 1

T0

∫ 𝑡

𝑡−T0
𝜀2(𝜏)d𝜏 . Naturally, when T0 corresponds to the cycle period 𝑓 −1

0
, all is done

to get
˜𝑓 = 𝑓0 for a monochromatic loading cycle.

In what follows, we therefore admitted that the free energy𝜓 was a state function of 𝑇 , 𝜀 and

of the history variable
˜𝑓 so that𝜓 = 𝜓 (𝑇, 𝜀, ˜𝑓 ).

The form of Eq. (5) suggests a rheological behavior where elastic effects develop in parallel

with viscous effects. Both types of mechanism use the same kinematic variable 𝜀, as does

the Kelvin-Voigt model (Aklonis et al. 1983), with the main difference that here the elasticity

and viscosity parameters depend on 𝑇 and
˜𝑓 . In the literature, more general models, than the

Kelvin-Voigt one, are mentioned, namely the Generalized Maxwell model which allows one to

consider the evolution of 𝐸′
and 𝐸′′

via a multitude of viscoelastic branches placed in parallel

(Aklonis et al. 1983). For each viscoelastic branch, a viscous strain is necessarily introduced as a

state variable. For simplicity in what follows, we have tried to stay as close as possible to the

rheological Eqs. (1) of the DMTA.

3.3.1 Thermoelastic effects
a Modeling aspects

The regular and periodic thermal oscillations, henceforth referred to as

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

(i.e., experimen-

tally observed), led us to introduce thermoelastic effects. In this context, we proposed to rewrite

Eq. (6a) in the following form:

𝜎𝑟 = 𝐸′ (𝑇, 𝑓0) (𝜀 − 𝜆𝑡ℎ𝜃 ) , (8)

where 𝜆𝑡ℎ is the coefficient of thermal expansion. For a thermoelastic material, this strong

thermomechanical interaction results in the existence of a coupling heat source written as

(Chrysochoos 2012):

9
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𝑤•
𝑡ℎ𝑒

= 𝑇
𝜕2𝜓

𝜕𝑇 𝜕𝜀
¤𝜀 +𝑇 𝜕2𝜓

𝜕𝑇 𝜕 ˜𝑓

¤̃
𝑓 = 𝑇

𝜕𝜎𝑟

𝜕𝑇
¤𝜀 = −𝜆𝑡ℎ𝑇𝐸′ ¤𝜀 − 𝑑𝐸′

𝑑𝑇
(𝜀 − 𝜆𝑡ℎ𝜃 ) ¤𝜀. (9)

The notation (−)• means that the rate of (−) depends on the thermodynamic path followed. In

other words, (−) is not a state function. Note that the term in
¤̃
𝑓 vanishes for any monochromatic

cycle (
˜𝑓 = 𝑓0) so that𝑤

•
𝑡ℎ𝑒

decomposes into two. The first term is well known. It causes a material

to expand when heated or to cool when stretched. The second term is due to the variation of 𝐸′

with the temperature. If we admit that the derivative
𝑑𝐸′

𝑑𝑇
remains constant during a DMTA test,

the corresponding source should beat at 2𝑓0, since 𝜀 , ¤𝜀 , and, to a good approximation 𝜃 , beat at 𝑓0
(see above for instance in Figure 6(a)). Indeed, from an experimental standpoint, it was not

possible, as shown below, to experimentally see any component of the thermo-signal beating

at the frequency 2𝑓0, which should have been the case if the second source term had a large

amplitude. This is the reason why we have considered, in what follows, a thermoelastic source

reduced to the first term:

𝑤•
𝑡ℎ𝑒

≈ −𝜆𝑡ℎ𝑇0𝐸′ (𝑇0, 𝑓0) ¤𝜀. (10)

To pass from heat sources to temperature variations, the heat diffusion equation is required.

For simplicity, we have used in the following a differential version of the heat diffusion equation

valid for homogeneous tests when the boundary heat exchange conditions are linear (Fourier

conditions) (Chrysochoos et al. 2000). In such a context, the volume heat losses by conduction

were modeled by a linear term in temperature variation weighted by a time constant of heat

losses 𝜏𝑡ℎ . When only the thermoelastic source is considered, this heat equation can be written as

(Boulanger et al. 2004):

d𝜃

d𝑡
+ 𝜃

𝜏𝑡ℎ
=
𝑤•
𝑡ℎ𝑒

𝜌𝐶
, (11)

where 𝜌 is the mass density and 𝐶 the specific heat of the material. The time constant 𝜏𝑡ℎ can be

experimentally identified for each material measuring the thermal disequilibrium 𝑇 −𝑇0 over

time during a given thermal loading 𝑇0(𝑡). During these thermal loading, it was assumed that no

heat source was present in the second member of Eq. (11). Figure 7 shows an illustration of the

quality of the inverse identification procedure. The identified values were 𝜏𝑡ℎ = 48 s for PS and

𝜏𝑡ℎ = 34 s for PA6.6.

0 500 1,000 1,500 2,000 2,500
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50
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Time (s)
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e
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)

Figure 7: Measured and adjusted temperature for the estimation of 𝜏𝑡ℎ for PS sample
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The integration of Eq. (11) with thermoelastic source defined in Eq. (10), gives, once the

transient terms have vanished:

𝜃𝑡ℎ𝑒 (𝑡) = − 𝜔0𝜏𝑡ℎ√︃
1 + 𝜔2

0
𝜏2
𝑡ℎ︸        ︷︷        ︸

𝜒 (𝜔0 )

𝜆𝑡ℎ𝑇0𝐸
′

𝜌𝐶
𝜀0 sin (𝜔0𝑡 + 𝜙𝑡ℎ𝑒) , (12)

where tan𝜙𝑡ℎ𝑒 = 1/(𝜔0𝜏𝑡ℎ). The amplitude of thermal oscillations of thermoelastic origin 𝛿𝜃
𝑓0
𝑒

can therefore be related to the strain amplitude 𝜀0 by the relationship:

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

= 𝜒 (𝜔0)
𝜆𝑡ℎ𝑇0

𝜌𝐶
𝐸′𝜀0. (13)

As soon as 𝜔0𝜏𝑡ℎ becomes larger than 1 (e.g., high frequency test, high time constant of

heat losses which means that over one cycle duration, the test can be considered as adiabatic),

𝜒 ≈ 1 and the above expression can be simplified in

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

=
𝜆𝑡ℎ𝑇0
𝜌𝐶

𝐸′𝜀0. This last expression

is often used in the field of thermal stress analysis (Dulieu-Barton et al. 1998), since 𝐸′𝜀0 roughly
represents the stress amplitude 𝜎0. Indeed, noting that 𝜎0 is reached when the stress rate cancels,

it can be shown from Eq. (1b) that:

𝜎0 = 𝐸′𝜀0

√︄
1 +

(
𝐸′′

𝐸′

)
2

=
𝐸′𝜀0

sin

(
arctan

(
𝐸′
𝐸′′

) ) , (14)

which remains close to 𝐸′𝜀0 if the ratio
𝐸′′

𝐸′ remains very small compared to 1, which has been the

case for the two studied materials.

b Confrontation of experimental data with predicted ones

Using Eq. (13), a mechanical estimate of

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

has been performed for each DMTA test

characterized by a (𝑇0, 𝑓0) couple and compared with the experimental one

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

obtained by

using a synchronous demodulation of the signal 𝜃 (𝑡).
To check the efficiency of the synchronous demodulation to estimate

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

, we compared

the difference 𝜃 (𝑡) − ˜𝜃 (𝑡) with the signal

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

sin (𝜔0𝑡 + 𝜙𝑒), where 𝜙𝑒 is the phase shift of
the temperature signal with the carrier signal. As an example, both signals were partly plotted in

Figure 8 in the case the test shown in Figure 6(a) from 𝑡 = 85 s to 𝑡 = 110 s.

We also performed a synchronous demodulation of the thermo-signal 𝜃 (𝑡) at 2𝑓0, to check if

the amplitude

(
𝛿𝜃

2𝑓0
𝑒

)
𝑒𝑥𝑝

of 𝜃 (𝑡) induced by the 2
nd

term of the thermoelastic heat source was

significant or not.

The mechanical and thermal data processing was therefore carried out following tests

performed on the two materials at different ambient temperatures 𝑇0 and different loading

frequencies 𝑓0. The corresponding results were gathered in Table 2 for the PS and Table 3 for the

PA6.6.

Tables 2 and 3 show that the observed thermoelastic effects are rather correctly predicted by

Eq. (13). Note that, to compute the predictions of the thermoelastic model, 𝐸′
assessments were

used as well as values of several thermophysical parameters characterizing the material. These

values are gathered in Table 4. Thermal expansion coefficient and specific heat values were

extracted from the technical literature. These values may vary slightly from one reference to

another, sometimes due to difference in molecular weight.

11
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Figure 8: Efficiency of the synchronous demodulation to reach

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

(PA6.6, 𝑇0 = 313 K, 𝑓0 = 0.1Hz,

Figure 6(a)

𝑓0 𝑇0 𝐸′ 𝜒

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

(
𝛿𝜃

2𝑓0
𝑒

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [-] [mK] [mK] [mK]

0.1 313 3490 0.999 51.5 45.3 1.1

1 313 3560 1.0 52.6 48,0 0.3

10 313 3610 1.0 53.3 42.8 2.4

0.1 348 2880 0.999 47.3 41.4 0.9

1 348 2980 1.0 48.9 42,0 0.6

10 348 3050 1.0 50.0 40.5 0.9

0.1 363 2530 0.999 43.3 41.8 1.6

1 363 2670 1.0 45.8 41.5 0.3

Table 2: Temperature variations induced by thermoelasticity for PS. Comparison of measured amplitudes

(𝛿𝜃 𝑓0
𝑒 )𝑒𝑥𝑝 with the predictions of the thermoelastic model (𝛿𝜃 𝑓0

𝑒 )𝑡ℎ𝑒𝑜 . Estimates for (𝛿𝜃 2𝑓0𝑒 )𝑒𝑥𝑝 are not

significant

𝑓0 𝑇0 𝐸′ 𝜒

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

(
𝛿𝜃

2𝑓0
𝑒

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [-] [mK] [mK] [mK]

0.1 313 3140 0.999 40.6 30.2 0.3

1 313 3230 1.0 41.9 27.0 0.2

10 313 3290 1.0 42.7 30.0 0.1

0.1 323 2650 0.999 35.5 28.7 0.5

1 323 2850 1.0 38.1 26.6 0,0

10 323 2990 1.0 40.0 30.4 0.9

0.1 333 1920 0.999 26.4 24.4 0.2

1 333 2210 1.0 30.5 23.2 0.0

Table 3: Temperature variations induced by thermoelasticity for PA6.6. Comparison of measured

amplitudes (𝛿𝜃 𝑓0
𝑒 )𝑒𝑥𝑝 with the predictions of the thermoelastic model (𝛿𝜃 𝑓0

𝑒 )𝑡ℎ𝑒𝑜 . Estimates for (𝛿𝜃 2𝑓0𝑒 )𝑒𝑥𝑝
are not significant
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𝜌 [kgm
−3
] 𝐶 [J kg

−1
K
−1
] 𝜆𝑡ℎ [10

5
K
−1
]

PS 1060 1400 7.0

PA6.6 1140 1800 8.5

Table 4: Thermophysical parameters of PS and PA6.6

c Partial concluding comments

The comments that can be drawn from this data analysis are:

• Regarding the thermoelastic couplings induced by the variation of the storage modulus, i.e.,

−𝑑𝐸′

𝑑𝑇
(𝜀 − 𝜆𝑡ℎ𝜃 ) ¤𝜀 in Eq. (9), they remained undetectable. The values of

(
𝛿𝜃

2𝑓0
𝑒

)
𝑒𝑥𝑝

shown

in Tables 2 and 3 are too low to be significant.

• Thermoelastic effects induced by material expansion occur during a DMTA test and should

probably be considered in the rheological equations. Indeed, it is possible to introduce

thermoelastic contributions 𝐸′
𝑇
and 𝐸′′

𝑇
to dynamic moduli considering the coupling effects

beating at the loading frequency 𝑓0. Using Eqs. (6b), (8) and (12), we then get:


𝐸′ = 𝐸′

M + 𝐸′
T = 𝐸′

M +
𝜆2
𝑡ℎ
𝑇0𝐸

′
M

2

𝜌𝐶

𝜔2

0
𝜏2
𝑡ℎ

1 + 𝜔2

0
𝜏2
𝑡ℎ

,

𝐸′′ = 𝐸′′
M + 𝐸′′

T = 𝐸′′
M +

𝜆2
𝑡ℎ
𝑇0𝐸

′
M

2

𝜌𝐶

𝜔0𝜏𝑡ℎ

1 + 𝜔2

0
𝜏2
𝑡ℎ

.

(15a)

(15b)

𝑓0 𝑇0 𝐸′ 𝐸′′ 𝐸′
T 𝐸′′

T
[Hz] [K] [MPa] [MPa] [MPa] [MPa]

0.1 313 3490 67 12.6 0.42

1 313 3564 65 13.1 0.04

10 313 3608 64 13.5 0.00

0.1 348 2882 86 9.5 0.32

1 348 2977 77 10.2 0.03

10 348 3046 73 10.7 0.00

0.1 363 2529 140 7.7 0.25

1 363 2673 86 8.6 0.03

10 363 2826 39 9.6 0.00

Table 5: Thermoelastic contributions 𝐸′
T and 𝐸′′

T to dynamic moduli of PS samples

Tables 5 and 6 show that the thermoelastic contributions to 𝐸′
and 𝐸′′

remained weak,

particularly at high frequency. Indeed, at high frequency, the heat losses per cycle drastically

decrease and the thermoelastic deformation process becomes adiabatic (no thermal dissipation).

Conversely, at low or even very low frequency, we know that the loss moduli 𝐸′′
tend towards

zero, so we can question the relative importance of thermoelastic effects even if, at very low

frequencies, the deformation process tends towards an isothermal process. From an experimental

standpoint, these low frequencies are beyond the reach of the infrared techniques currently used.

Nevertheless, numerical tests can be performed. We used for example a Zener-type thermoelastic

model to check the possible preponderance of thermoelastic effects at low frequencies. The

corresponding results will be shown in subsection 3.3.5 once the dissipative effects and energy

balances have been introduced and analyzed.

3.3.2 Dissipative effects
a Modeling aspects
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𝑓0 𝑇0 𝐸′ 𝐸′′ 𝐸′
T 𝐸′′

T
[Hz] [K] [MPa] [MPa] [MPa] [MPa]

0.1 313 3137 85 10.8 0.51

1 313 3228 60 11.5 0.05

10 313 3292 39 11.9 0.01

0.1 323 2653 167 8.0 0.37

1 323 2850 119 9.2 0.04

10 323 2992 76 10.2 0.00

0.1 333 1920 211 4.3 0.20

1 333 2211 195 5.7 0.03

10 333 2497 151 7.3 0.00

Table 6: Thermoelastic contributions 𝐸′
T and 𝐸′′

T to dynamic moduli of PA6.6 samples

The irreversible character of the deformation process is expressed by the Clausius-Duhem

inequality. In the framework of DMTA tests, with the chosen set of state variables, the dissipation

𝑑 can be written as:

𝑑 = 𝜎 ¤𝜀 − 𝜕𝜓

𝜕𝜀
¤𝜀 − 𝜕𝜓

𝜕 ˜𝑓

¤̃
𝑓︸               ︷︷               ︸

𝑑1

−
−−−→
𝑔𝑟𝑎𝑑𝑇

𝑇
· −→𝑞︸       ︷︷       ︸

𝑑2

≥ 0. (16)

This dissipation is traditionally split in two terms: the intrinsic dissipation denoted by 𝑑1 and

the thermal dissipation 𝑑2. In Eq. (16),
−→𝑞 is the heat influx vector. The thermal dissipation 𝑑2

depicts the irreversibility related to the heat diffusion mechanisms. In general, the Fourier law is

used to link the heat influx vector to the temperature field. Fourier’s law is classically written as:

−→𝑞 = −𝑘 −−−→𝑔𝑟𝑎𝑑𝑇 , (17)

where 𝑘 is the conduction tensor. In the 1D rheological context of DMTA tests, the irreversibility

induced by heat diffusion has been considered via the heat losses term
𝜃/𝜏𝑡ℎ present in the

simplified heat equation, Eq. (11). Recall that the existence of heat losses (i.e., neither isothermal

nor adiabatic test) in the presence of coupling mechanisms (e.g., thermoelasticity), leads to time

effects that, during a cyclic test, contributes to form a hysteresis loop (Chrysochoos 2012). This

effect was highlighted by Zener in his work (Zener 1938) introducing the famous concept of

thermoelastic internal friction.

The intrinsic dissipation 𝑑1 depicts the mechanical and microstructural irreversibility.

Considering Eqs. (6a) and (6b) the constancy of the variable
˜𝑓 for a monochromatic test, 𝑑1 can be

rewritten in the following compact form:

𝑑1 = 𝜎𝑖𝑟 ¤𝜀 =
𝐸′′
M
𝜔0

¤𝜀2 = 𝐸′′
M𝜔0𝜀

2

0
cos

2 (𝜔0𝑡) = 𝐸′′
M𝜔0𝜀

2

0

1 + cos(2𝜔0𝑡)
2

≥ 0. (18)

This term corresponds to the part of the deformation energy rate 𝜎 ¤𝜀 that is attributed to the

loss modulus. The thermodynamic analysis allows one to claim that this mechanical energy rate

is dissipated and must therefore be irreversibly transformed into heat. To check the coherence of

this interpretation from a dissipative standpoint with the experimental results, the following way

has been chosen.

The goal is to pass from dissipation to self-heating temperature. Analogously to Eq. (11), the

heat diffusion equation considering the dissipative source only was rewritten as:

14



A. Chrysochoos et al. Calorimetric analysis of DMTA tests

d𝜃

d𝑡
+ 𝜃

𝜏𝑡ℎ
=

𝑑1

𝜌𝐶
. (19)

Then, using the analytic form of the intrinsic dissipation given in Eq. (18), the heat equation

was integrated over time to give the evolution of the corresponding thermal effects. Let us note

𝜃𝑑 the temperature variation, solution of Eq. (19). Once the transient term vanished, we have got:

𝜃𝑑 (𝑡) =
©­­«
1

2

+ 1√︃
1 + 4𝜔2

0
𝜏2
𝑡ℎ

sin (2𝜔0𝑡 + 𝜙𝑑 )
ª®®¬
𝐸′′
M𝜀2

0
𝜔0𝜏𝑡ℎ

𝜌𝐶
, (20)

with tan (𝜙𝑑 ) = 1

2𝜔0𝜏𝑡ℎ
.

The non-inclusion of the transient term in Eq. (20) does not pose any problem, for the

confrontation between theoretical predictions and experimental results, because the experimental

estimate of the temperature variations is made comparing the temperature of the strained sample

with a non-loaded one. Note that, once again, a component of the thermo-signal should beat at

2𝑓0. However, the weighting term in front of it tends very quickly to zero for 𝑓0 greater than

10
−1

Hz in the present case, and more generally when 𝑓0 ≫ 1

2𝜋𝜏𝑡ℎ
.

Whatever the frequency 𝑓0, the mean temperature variation 𝜃𝑑 stabilizes around the value(
𝛿𝜃

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

defined by:

(
𝛿𝜃

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

=
𝐸′′
M𝜀2

0
𝜔0𝜏𝑡ℎ

2𝜌𝐶
=
𝜋𝐸′′

M𝜀2
0
𝜏𝑡ℎ

𝜌𝐶
𝑓0. (21)

b Confrontation of experimental data with predicted ones

The stabilized temperatures

(
𝛿𝜃

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

were compared to the corresponding values

(
𝛿𝜃

𝑓0

𝑑

)
𝑒𝑥𝑝

experimentally observed for each couple (𝑇0, 𝑓0). Results are gathered in Tables 7 and 8 for PS and

PA6.6 samples, respectively.

𝑓0 𝑇0 𝐸”

(
𝛿𝜃

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

(
𝛿𝜃

𝑓0

𝑑

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [mK] [mK]

0.1 313 67 0.7 8.0

1 313 65 6.4 11.1

10 313 64 62.4 21.2

0.1 348 86 0.8 23.7

1 348 72 7.0 16.8

10 348 76 74.3 50.3

0.1 363 140 1.4 21.9

1 363 86 8.4 37

10 363 39 38.3 61.9

Table 7: Comparison of experimental and theoretical dissipation-induced self-heating for PS

The confrontation of ”theoretical” and ”experimental” dissipation-induced self-heating values

may appear more delicate than the one concerning thermoelastic effects. In the previous case, the

synchronous demodulation technique allowed to delete almost totally the low frequency thermal

noise (chamber regulation) and high frequency one (electronic noise, parasitic reflections). On the

other hand, the temperature increases induced by dissipation seem much more scattered.
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𝑓0 𝑇0 𝐸”

(
𝛿𝜃

𝑓0

𝑑

)
𝑡ℎ𝑒𝑜

(
𝛿𝜃

𝑓0

𝑑

)
𝑒𝑥𝑝

[Hz] [K] [MPa] [mK] [mK]

0.1 313 85 0.4 -1.0

1 313 60 3.1 10.0

10 313 39 20.3 85.0

0.1 323 167 0.9 -14.8

1 323 119 6.2 23.2

10 323 76 39.4 143.4

0.1 333 211 1.1 -0.4

1 333 195 10.2 24.4

10 333 151 78.4 189.6

Table 8: Comparison of experimental and theoretical dissipation-induced self-heating for PA6.6

c Partial concluding comments

But then, what can we learn from the analysis of self-heating? For both materials, the trend is

clear: the higher the loading frequency, the more the sample self-heats, at least at the loading

frequencies used. At 𝑓0 = 0.01Hz, the effects of noise were however visible in that negative

values of

(
𝛿𝜃

𝑓0

𝑑

)
𝑒𝑥𝑝

are experimentally detected, especially in the case of PA6.6 samples. At high

frequencies (𝑓0 = 10Hz), the most important self-heating did not exceed 200 mK. It is worth

noting that these thermal effects increase so little from one loading frequency to another. For

example, it can be noticed that at 1 Hz and 10 Hz, the self-heating does not increase in a ratio of

ten, but less, of the order of 2-3 for PS and 6-8 for PA6.6. At these same loading frequencies, we

could have probably amplified these thermal effects by increasing the strain amplitude 𝜀0 which

remains very low (𝜀0 = 10
−3). But it seemed important to stay within a deformation range where

the linear viscoelasticity framework seems to be indisputable. We came back to this important

point in the final concluding comments.

3.3.3 Energy rate balance
The previous paragraphs have shown that the thermal effects induced by thermoelasticity and

dissipation have comparable ranges, of the order of a hundred mK. It seemed interesting to see

now what the associated heat rates correspond to. For this purpose, energy rate balances are

proposed. We have chosen, this time, to show these balances for PS specimens loaded under

extreme conditions (see Figures 9a-b).

The terms defining the energy balance rate are gathered in Eqs. (22a-22d). The deformation

energy rate𝑤•
𝑑𝑒𝑓

is made of elastic (𝑤•
𝑒 ) and dissipated (𝑤•

𝑑
) energy rates. We also added the

thermoelastic energy rate𝑤•
𝑡ℎ𝑒

, even if it does not appear in the classic DMTA.



𝑤•
𝑑𝑒𝑓

= 𝜎 ¤𝜀 = 𝑤•
𝑒 +𝑤•

𝑑
,

𝑤•
𝑒 = 𝜎𝑟 ¤𝜀 = 𝐸′

M (𝜀 − 𝜆𝑡ℎ𝜃 ) ¤𝜀 ≈
1

2

𝐸′
M𝜀2

0
𝜔0 sin(2𝜔0𝑡),

𝑤•
𝑑
= 𝜎𝑖𝑟 ¤𝜀 = 𝐸′′

M𝜀2
0
𝜔0 cos

2(𝜔0𝑡),
𝑤•
𝑡ℎ𝑒

= −𝜆𝑡ℎ𝑇𝐸′
M ¤𝜀 = −𝜆𝑡ℎ (𝑇0 + 𝜃 )𝐸′

M𝜀0𝜔0 cos(𝜔0𝑡).

(22a)

(22b)

(22c)

(22d)

The approximation made in Eq. (22b) comes from the fact that 𝜆𝑡ℎ𝜃 ≪ 𝜀.

The first obvious result is that the thermoelastic energy rate involved in the transformation is

undoubtedly the most important term of the balance. In Figure 9, it should be noted that to make

the comparison of the curves easier, the thermoelastic energy rate has been divided by 25.

The second result, equally obvious, is the extreme lowness of dissipation. The dissipation is

so low that the deformation energy rate is almost identical to that of the elastic one. Nevertheless,

it has been underlined that these small mechanical dissipations (always positive) generated
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Figure 9: Energy rate balances for PS: (a) 𝑇0 = 313 K, 𝑓0 = 0.1Hz; (b) 𝑇0 = 363 K, 𝑓0 = 10Hz

temperature variations comparable to those induced by (alternating) thermoelastic coupling

sources.

3.3.4 Hysteresis area
The energy preponderance of coupling effects led us to control the influence that their presence

can have on the hysteresis loop area Aℎ . Using Eq. (15b), we get:

Aℎ =

∫ 𝑡+𝑓 −1
0

𝑡

𝜎 (𝜏) ¤𝜀 (𝜏)d𝜏 = 𝜋𝐸′′𝜀2
0
= A𝑑

ℎ
+ A𝑡ℎ𝑒

ℎ
, (23)

where A𝑑
ℎ
and A𝑡ℎ𝑒

ℎ
stand for the dissipative and the thermoelastic contributions. The viscous

term A𝑑
ℎ
is naturally defined by:

A𝑑
ℎ
=

∫ 𝑡+𝑓 −1
0

𝑡

𝑑1(𝜏)d𝜏 . (24)

The presence of strong thermomechanical coupling mechanisms in non-adiabatic situation,

leads to time effects that contribute to the creation of a hysteresis loop. In the case of thermoelastic

effects, this contribution A𝑡ℎ𝑒
ℎ

is written as, using Eq. (12):

A𝑡ℎ𝑒
ℎ

=

∫ 𝑡+𝑓 −1
0

𝑡

𝑤•
𝑡ℎ𝑒

d𝜏 =

∫ 𝑡+𝑓 −1
0

𝑡

−𝐸′
M𝜆𝑡ℎ

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜

sin(𝜔0𝜏 + 𝜙𝑡ℎ𝑒)︸                            ︷︷                            ︸
𝜃𝑡ℎ𝑒 (𝜏 )

𝜀0𝜔 cos(𝜔0𝜏)︸          ︷︷          ︸
¤𝜀 (𝜏 )

d𝜏 . (25)

Then, after integration over time, we get:

A𝑡ℎ𝑒
ℎ

=

𝜋𝐸′
M𝜀0𝜆𝑡ℎ

(
𝛿𝜃

𝑓0
𝑒

)
𝑡ℎ𝑒𝑜√︃

1 + 𝜔2

0
𝜏2
𝑡ℎ

= 𝜋𝐸′′
T𝜀

2

0
. (26)

In Tables 9 and 10 both types of hysteresis areas have been computed.

The remarkable finding is that despite the preponderance of thermoelastic effects in the

energy rate balance, the contribution of these coupling effects to the creation of a hysteresis area
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𝑓0 𝑇0 𝐸′ 𝐸”

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

Aℎ A𝑡ℎ𝑒
ℎ

(Hz) (K) (MPa) (MPa) (mK) (Jm
−3
) (J m

−3
)

0.1 313 3490 67 51.5 210 1.85

1 313 3564 65 52.6 205 0.19

10 313 3608 64 53.3 199 0.02

0.1 348 2882 86 47.3 269 1.40

1 348 2977 77 48.9 242 0.15

10 348 3046 73 50.0 229 0.02

0.1 363 2529 140 43.3 441 1.13

1 363 2673 86 45.8 269 0.13

10 363 2826 39 48.4 123 0.01

Table 9: Computations of the hysteresis area Aℎ and A𝑡ℎ𝑒
ℎ

for DMTA tests on PS samples

𝑓0 𝑇0 𝐸′ 𝐸”

(
𝛿𝜃

𝑓0
𝑒

)
𝑒𝑥𝑝

Aℎ A𝑡ℎ𝑒
ℎ

(Hz) (K) (MPa) (MPa) (mK) (Jm
−3
) (J m

−3
)

0.1 313 3137 85 41 267 1,61

1 313 3228 60 42 187 0,17

10 313 3292 39 43 122 0,02

0.1 323 2653 167 35 526 1,16

1 323 2850 119 38 375 0,14

10 323 2992 76 40 238 0,01

0.1 333 1920 211 26 663 0,62

1 333 2211 195 30 614 0,08

10 333 2497 151 34 474 0,01

Table 10: Computations of the hysteresis area Aℎ and A𝑡ℎ𝑒
ℎ

for DMTA tests on PA6.6 samples

remains negligible in the loading conditions considered here, particularly at high frequency. This

is the same type of conclusion obtained when studying the influence of thermoelastic effects

on the definition of dynamic moduli (see Eq. (15b) and Tables 5 and 6). But, as announced in

Subsection 3.3.1, we sought to see if coupling effects still have as little relative importance on

the size of hysteresis loop at very low frequencies. In other words, at very low frequencies, is

irreversibility associated with intrinsic or thermal dissipation, viscosity or material thermo-

dilatability?

3.3.5 Possible extrapolation to very low frequencies

Since the thermal effects at very low loading frequencies are experimentally unreachable,

numerical simulations were performed using a basic visco-thermo-elastic Zener-type model

(Fig. 10)) (see Moreau et al. (2005)). The parameters used in the simulations are listed in Table 11.

The values of thermal expansion coefficient 𝜆𝑡ℎ , of the mass density 𝜌 , of the specific heat 𝐶

were the ones retained for the PS samples. The elastic moduli 𝐸1 and 𝐸2 and the viscosity 𝜇2
were chosen to get the same hysteresis area Aℎ and A𝑡ℎ𝑒

ℎ
obtained for PS samples at 𝑇0 = 363 K,

𝑓0 = 0.1Hz (see bold line in Table 12). We also made sure that the chosen 𝐸1, 𝐸2 and 𝜇2 give

dynamic moduli that follow as well as possible their experimental evolutions with 𝑓0 at𝑇0. At best

only, because the euristic Zener model, which has only one thermoelastic and one viscoelastic

branch, remains a rather simple model.
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𝐸!

𝐸" 𝜇"

𝜆#$

𝜎 𝜎

𝜀

Figure 10: Basic sketch of the Zener-type rheologi-

cal model

Parameters Values

𝐸1 [MPa] 2500

𝐸1 [MPa] 620

𝜇2 [MPa s] 241

𝜏2 [s] 0.39

𝜆𝑡ℎ [10−6K−1] 75

𝜌 [kgm−3] 1060

𝐶 [J kg−1 K−1] 1400

𝜏𝑡ℎ [s] 40

𝜀0 [−] 0.01

Table 11: Values of the model parameters used in

the numerical simulations

The energies Aℎ and A𝑡ℎ𝑒
ℎ

were computed for different low frequencies and gathered in

Table 12. As the loading frequency decreases, the contribution of thermoelastic effects to the

hysteresis area R =
A𝑡ℎ𝑒

ℎ

Aℎ
=

𝐸′′
T

𝐸′′ increases. In Table 12, we see that the ratio R tends numerically

to a limit value when the loading frequency tends to zero. An analytical calculation of the ratio

associated with the thermoelastic model of Zener type, gives a limit value equal to:

lim

𝑓0→0

R =
𝐸2
1
𝜆2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝐸2
1
𝜆2
𝑡ℎ
𝑇0𝜏𝑡ℎ + 𝜌𝐶𝜇2

= 0.588. (27)

This result can be easily obtained using the expression of the dynamic moduli associated with

the Zener-type model. We classically get:


𝐸′ = 𝐸1 + 𝐸2

𝜔2

0
𝜏2
2

1 + 𝜔2

0
𝜏2
2

,

𝐸′′ = 𝐸2
𝜔0𝜏2

1 + 𝜔2

0
𝜏2
2

,

(28a)

(28b)

where 𝜏2 =
𝜇2
𝐸2

is the relaxation time of the viscoelastic branch.

𝑓0 A𝑑
ℎ

A𝑡ℎ𝑒
ℎ

R
[Hz] [J m−3] [J m−3] [%]
10

−4
0.47 0.68 58.7

10
−3

4.7 6.3 56.9

10
−3

47.3 9.1 16.2

10
−1 441 1.1 0.25

10
0

669 0.12 0.02

10
1

79.7 0.01 0.015

10
2

8.0 0.001 0.015

Table 12: Relative importance of thermoelastic effects at different loading frequencies

At very low frequencies, for the material characteristics selected here, the preponderance of

the thermoelastic effects is then indisputable. This means that, at these frequencies, the loss

modulus is preferentially induced by thermomechanical coupling effects associated with heat

diffusion rather than viscous effects. One could introduce at this level the concept of "coupling

viscosity" 𝜇𝑐 induced by the thermo-dilatability character of the material in a non-adiabatic,

non-isothermal context. At very low frequencies, the thermoelastic effects will be more important

than viscous effects if the “coupling viscosity” is greater than the material viscosity:
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𝜇𝑐 =
𝐸2
1
𝜆2
𝑡ℎ
𝑇0𝜏𝑡ℎ

𝜌𝐶
> 𝜇2. (29)

In Table 12, one can also notice the non-monotonic evolution of A𝑡ℎ𝑒
ℎ

when the loading

frequency 𝑓0 increases, following a passage from isothermal (i.e., low frequencies) to adiabatic

(i.e., high frequencies) processes.

4 Concluding comments
In this work, we first sought to develop with an infrared device allowing to reach the very small

temperature variations accompanying the cyclic loading of polymer samples during DMTA tests.

The first important finding, in agreement with the DMTA interpretation framework, is that the

temperature variations of the specimen during the tests remain so small that the assumption of

isothermal testing is well acceptable from a purely thermal standpoint, but not necessarily from

an energy standpoint since, for solid materials (high mass density, high specific heat), a small

thermal effect can reveal important energy mechanisms.

To interpret the thermomechanical results and their energy consequences, we integrated the

rheological equations of the DMTA in the framework of the nonlinear TIP with internal state

variables.

The thermodynamic analysis of mechanical and thermal data, obtained during various loading

frequencies and temperatures, led us first to justify the introduction of thermoelastic effects. As

far as thermoelasticity is concerned, (i) its temperature ranges have been of the same order of

magnitude as those induced by viscous effects, (ii) it was very largely preponderant within the

energy rate balance, (iii) but unexpectedly and fortunately its contribution to the mechanical

hysteresis area remained negligible in the loading conditions experimentally considered. However,

at very low frequencies, numerical predictions from a Zener-type model showed that, depending

on the material characteristics, the loss modulus might be preferentially attributed to coupling

effects rather than viscous effects.

As for the dissipative effects: (i) they were more difficult to observe because the intensity

of dissipation remained extremely low (more than 100 times lower than the thermoelastic

energy rates), (ii) we could nevertheless highlight that the dissipation increased with the loading

frequency but in a proportion lower than the ratio of the frequencies, (iii) this last result is

certainly to be refined but it agrees with the fact that the area of the mechanical hysteresis

loops decreases with the loading frequency. This result is also compatible with the predictions

of the Generalized Maxwell model, at least if the equivalent viscosity remains a sufficiently

decreasing function of the loading frequency. Indeed, if 𝐸1(𝑇0), . . . , 𝐸𝑖 (𝑇0), . . . 𝐸𝑛−1(𝑇0), 𝐸𝑛 (𝑇0)
denote the elastic moduli and 𝜇1(𝑇0), 𝜇2(𝑇0), . . . , 𝜇𝑖 (𝑇0), . . . 𝜇𝑛 (𝑇0), the viscosity coefficients of

these 𝑛 viscoelastic branches placed in parallel (with 𝐸𝑛 (𝑇0) = ∞ and 𝜇1(𝑇0) = ∞), it is classically

shown (Ferry 1980) that the equivalent loss modulus 𝐸′′
can be written as:

𝐸′′ =

(
𝑛∑︁
𝑖=2

𝜇𝑖 (𝑇0)
1 + 𝜏2

𝑖
𝜔2

0

+ 𝜇𝑛 (𝑇0)
)
𝜔0, (30)

according to Eq. (23), the hysteresis area Aℎ is therefore written:

Aℎ =

(
𝑛∑︁
𝑖=2

𝜇𝑖 (𝑇0)
1 + 𝜏2

𝑖
𝜔2

0

+ 𝜇𝑛 (𝑇0)
)

︸                         ︷︷                         ︸
𝜇𝑒𝑞 (𝑇0,𝑓0 )

2𝜋2𝜀2
0
𝑓0, (31)

where 𝜏𝑖 (𝑇0) = 𝜇𝑖 (𝑇0 )
𝐸𝑖 (𝑇0 ) is the relaxation time associated with branch #𝑖 . As long as the apparent

viscosity 𝜇𝑒𝑞 (𝑇0, 𝑓0) is frequency dependent, a decay of the hysteresis area with the loading

frequency is possible, but once the asymptotic value 𝜇𝑒𝑞 (𝑇0, 𝑓0) = 𝜇𝑛 (𝑇0) is reached, the hysteresis
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loop area must become an increasing linear function of 𝑓0. It seems then difficult to interpret the

near constancy of 𝐸′′
observed on the PS at 333 K (see Fig. 4). This constancy would tend to

show that only the viscous (pure) branch is active its viscosity 𝜇𝑛 evolving in 𝑓 −1
0

, which is not

consistent with the framework of linear viscoelasticity. This will be discussed in more detail in a

future work, where we will seek to identify from the DMTA results on PS and PA6.6, a possibly

non-linear generalized Maxwell model taking the thermoelasticity into account.
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