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Abstract

Image registration finds a variety of applications in
computer vision. Unfortunately, traditional image registration
techniques tend to be costly. We present a new image
registration technique that makes use of the spatial intensity
gradient of the images to find a good match using a type of
Newton-Raphson iteration. Our technique is faster because
it examines far fewer potential matches between the images
than existing techniques. Furthermore, this registration
technique can be generalized to handle rotation, scaling and
shearing. We show show our technique can be adapted for
use in a stereo vision system.

1. Introduction

Image registration finds a variety of applications in

computer vision, such as image matching for stereo vision,

pattern recognition, and motion analysis. Untortunately,

existing techniques for image registration tend to be costly.

Moreover, they generally fail to deal with rotation or other

distortions of the images.

In this paper we present a new image registration

technique that uses spatial intensity gradient information to

direct the search for the position that yields the best match.

By taking more information about the images into account,

this technique is able to find the best match between two

images with far fewer comparisons of images than

techniques which examine the possible positions of

registration in some fixed order. Our technique takes

advantage of the fact that in many applications the two

images are already in approximate registration. This

technique can be generalized to deal with arbitrary linear

distortions of the image, including rotation. We then describe

a stereo vision system that uses this registration technique,

and suggest some further avenues for research toward

making effective use of this method in stereo image

understanding.

2. The registration problem

The translational image registration problem can be

characterized as follows: We are given functions F(x) and

G(x) which give the respective pixel values at each location

x in two images, where x is a vector. We wish to find the

disparity vector h which minimizes some measure of the

difference between F(x + h) and G(x), for x in some region of

interest R. (See figure 1).

Figure 1: The image registration problem
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We will propose a more general measure of image difference,

of which both the L2 norm and the correlation are special

cases. The L1 norm is chiefly of interest as an inexpensive

approximation to the L2 norm.
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3. Existing techniques

An obvious technique for registering two images is to

calculate a measure of the difference between the images at

all possible values of the disparity vector h—that is, to

exhaustively search the space of possible values of h. This

technique is very time consuming: if the size of the picture

G(x) is NXN, and the region of possible values of h is of size

MXM, then this method requires O(M2N2) time to compute.

Speedup at the risk of possible failure to find the best h
can be achieved by using a hill-climbing technique. This

technique begins with an initial estimate h0 of the disparity.

To obtain the next guess from the current guess hk, one

evaluates the difference function at all points in a small (say,

3X3) neighborhood of hk and takes as the next guess hk+1

that point which minimizes the difference function. As with all

hill-climbing techniques, this method suffers from the

problem of false peaks: the local optimum that one attains

may not be the global optimum. This technique operates in

O(M2N) time on the average, for M and N as above.

Another technique, known as the sequential similarity

detection algorithm (SSDA) [2], only estimates the error for

each disparity vector h. In SSDA, the error function must be

a cumulative one such as the L1 or L2 norm. One stops

accumulating the error for the current h under investigation

when it becomes apparent that the current h is not likely to

give the best match. Criteria for stopping include a fixed

threshold such that when the accumulated error exceeds

this threshold one goes on to the next h, and a variable

threshold which increases with the number of pixels in R
whose contribution to the total error have been added. SSDA

leaves unspecified the order in which the h’s are examined.

Note that in SSDA if we adopt as our threshold the

minimum error we have found among the h examined so far,

we obtain an algorithm similar to alpha-beta pruning in min-

max game trees [7]. Here we take advantage of the fact that

in evaluating minh ∑x d(x, h), where d(x, h) is the contribution

of pixel x at disparity h to the total error, the ∑x can only

increase as we look at more x’s (more pixels).

Some registration algorithms employ a coarse-fine search

strategy. See [6] for an example. One of the techniques

discussed above is used to find the best registration for the

images at low resolution, and the low resolution match is

then used to constrain the region of possible matches

examined at higher resolution. The coarse-fine strategy is

adopted implicitly by some image understanding systems

which work with a "pyramid" of images of the same scene at

various resolutions.

It should be nated that some of the techniques mentioned

so far can be combined because they concern orthogonal

aspects of the image registration problem. Hill climbing and

exhaustive search concern only the order in which the

algorithm searches for the best match,  and  SSDA  specifies

only the method used to calculate (an estimate of) the

difference function. Thus for example, one could use the

SSDA technique with either hill climbing or exhaustive

search, in addition a coarse-fine strategy may be adopted.

The algorithm we present specifies the order in which to

search the space of possible h's. In particular, our technique

starts with an initial estimate of h, and it uses the spatial

intensity gradient at each point of the image to modify the

current estimate of h to obtain an h which yields a better

match. This process is repeated in a kind of Newton-

Raphson iteration. If the iteration converses, it will do so in

O(M2 log N) steps on the average. This registration

technique can be combined with a coarse-fine strategy,

since is requires an initial estimate of the approximate

disparity h.

4. The registration algorithm

In this section we first derive an intuitive solution to the

one dimensional registration problem, and then we derive an

alternative solution which we generalize to multiple

dimensions. We then show how our technique generalizes to

other kinds of registration. We also discuss implementation

and performance of the algorithm.

4.1. One dimensional case

In the one-dimensional registration problem, we wish to

find the horizontal disparity h between two curves F(x) and

G(x) = F(x + h). This is illustrated in Figure 2.

Figure 2: Two curves to be matched

Our solution to this problem depends on a linear

approximation to the behavior of F(x) in the neighborhood of

x, as do all subsequent solutions in this paper. In particular,

for small h,

F x
F x h F x

h
' ( )

( ) ( )≈ + −
(1)

= −G x F x

h

( ) ( )
,

so that

h
G x F x

F x
≈ −( ) ( )

' ( )
(2)
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The success of our algorithm requires h to be small enough

that this approximation is adequate. In section 4.3 we will

show how to extend the range of h’s over which this

approximation is adequate by smoothing the images.

The approximation to h given in (2) depends on x. A natural

method for combining the various estimates of h at various

values of x would be to simply average them:

h
G x F x

F x xx
≈ − ∑∑ ( ) ( )

' ( )
/ 1. (3)

We can improve this average by realizing that the linear

approximation in (1) is good where F(x) is nearly linear, and

conversely is worse where |F"(x)| is large. Thus we could

weight the contribution of each term to the average in (3) in

inverse proportion to an estimate of |F"(x)|. One such

estimate is

F x
G x F x

h
' ' ( )

' ( ) ' ( )≈ −
. (4)

Since our estimate is to be used as a weight in an average,

we can drop the constant factor of 1/h in (4), and use as our

weighting function

w x
G x F x

( )
| ' ( ) ' ( ) |

=
−
1 . (5)

This in fact appeals to our intuition: for example, in figure 2,

where the two curves cross, the estimate of h provided by

(2) is 0, which is bad; fortunately, the weight given to this

estimate in the average is small, since the difference

between F'(x) and G'(x) at this point is large. The average

with weighting is

h
w x G x F x

F x
w x

xx
≈ − ∑∑ ( )[ ( ) ( )]

' ( )
/ ( ). (6)

where w(x) is given by (5).

Having obtained this estimate. we can then move F(x) by

our estimate of h, and repeat this procedure, yielding a type

of Newton-Raphson iteration. Ideally, our sequence of

estimates of h will converge to the best h. This iteration is

expressed by

h0 = 0,

h h
w x G x F x h

F x h
w xk k

k

k
xx+ = +

− +
+ ∑∑1

( )[ ( ) ( )]

' ( )
/ ( ).        (7)

4.2. An alternative derivation

The derivation given above does not generalize well to two

dimensions because the two-dimensional linear

approximation occurs in a different form. Moreover, (2) is

undefined where F'(x) = 0, i.e. where the curve is level. Both

of these problems can be corrected by using the linear

approximation of equation (1) in the form

F(x + h) ≈ F(x) + hF’(x), (8)

to find the h which minimizes the L2 norm measure of the

difference between the curves:

E F x h G x
x

= + −[ ]∑ ( ) ( ) 2 .

To minimize the error with respect to h, we set

0 = ∂
∂
E

h

≈ + −[ ]∑∂
∂h

F x hF x G x
x

( ) ' ( ) ( ) 2

2F x F x hF x G x
x

' ( )[ ( ) ' ( ) ( )]+ −∑
from which

h
F x G x F x

F x
x

x

≈
−∑

∑
' ( )[ ( ) ( )]

' ( )2
. (9)

This is essentially the same solution that we derived in (6),

but with the weighting function w(x) = F'(x)2 As we will see the

form of the linear approximation we have used here

generalizes to two or more dimensions. Moreover, we have

avoided the problem of dividing by 0, since in (9) we will

divide by 0 only if F'(x) = 0 everywhere (in which case h really

is undefined), whereas in (3) we will divide by 0 if F'(x) = 0

anywhere.

The iterative form with weighting corresponding to (7) is

h0 = 0,

h h
w x F x h G x F x h

w x F x h
k k

k kx

kx

+ = +
+ − +

+
∑

∑1 2

( ) ' ( )[ ( ) ( )]

( ) ' ( )
,       (10)

where w(x) is given by (5).

4.3. Performance

A natural question to ask is under what conditions and how

fast the sequence of hks converges to the real h. Consider

the case

F(x) = sin x,

G(x) = F(x + h) = sin (x + h).

It can be shown that both versions of the registration

algorithm given above will converge to the correct h for |h| <

π, that is, for initial misregistrations as large as one-half

wavelength. This suggests that we can improve the range of

convergence of the algorithm by suppressing high spatial

frequencies in the image, which can be accomplished by

smoothing the image, i.e. by replacing each pixel of the

image by a weighted average of neighboring pixels. The

tradeoff is that smoothing suppresses small details, and

thus makes the match less accurate. If the smoothing

window is much larger than the size of the object that we are

trying to match, the object may be suppressed entirely, and

so no match will be possible.
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Since lowpass filtered images can be sampled at lower

resolution with no loss of information, the above observation

suggests that we adopt a coarse-fine strategy. We can use

a low resolution smoothed version of the image to obtain an

approximate match. Applying the algorithm to higher

resolution images will refine the match obtained at lower

resolution.

While the effect of smoothing is to extend the range of

convergence, the weighting function serves to improve the

accuracy of the approximation, and thus to speed up the

convergence. Without weighting, i.e. with w(x) = 1, the

calculated disparity h1 of the first iteration of (10) with f(x) =

sin x falls off to zero as the disparity approaches one-half

wavelength. However, with w(x) as in (5), the calculatian of

disparity is much more accurate, and only falls off to zero at

a disparity very near one-half wavelength. Thus with w(x) as

in (5) convergence is faster for large disparities.

4.4. Implementation

Implementing (10) requires calculating the weighted sums

of the quantities F'G, F'F, and (F')2 over the region of interest

R. We cannot calculate F'(x) exactly, but for the purposes of

this algorithm, we can estimate it by

F x
F x x F x

x
' ( )

( ) ( )≈ + −∆
∆

,

and similarly for G'(x), where we choose ∆x appropriately

small (e.g. one pixel). Some more sophisticated technique

could be used for estimating the first derivatives, but in

general such techniques are equivalent to first smoothing

the function, which we have proposed doing for other

reasons, and then taking the difference.

4.5. Generalization to multiple dimensions

The one-dimensional registration algorithm given above

can be generalized to two or more dimensions. We wish to

minimize the L2 norm measure of error:

E F x h G x
x R

= + −∑ [ ( ) ( )]2

ε
,

where x and h are n-dimensional row vectors. We make a

linear approximation analogous to that in (8),

F x h F x h
x

F x( ) ( ) ( )+ ≈ + ∂
∂

,

where ∂/∂x is the gradient operator with respect to x, as a

column vector:

∂
∂

∂
∂

∂
∂

∂
∂x x x xn

T= [ ... ]
1 2

.

Using this approximation, to minimize E, we set
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∂h

E
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F
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F

x
F x h
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∑ ∑

−
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∂
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∂

∂
∂
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1

,

which has much the same form as the one-dimensional

version in (9).

The discussions above of iteration, weighting, smoothing,

and the coarse-fine technique with respect to the one-

dimensional case apply to the n-dimensional case as well.

Calculating our estimate of h in the two-dimensional case

requires accumulating the weighted sum of five products ((G
- F)Fx, (G - F)Fy, F2

x, F2

y, and FxFy) over the region R, as

opposed to accumulating one product for correlation or the

L2 norm. However, this is more than compensated for,

especially in high-resolution images, by evaluating these

sums at fewer values of h.

4.6. Further generalizations

Our technique can be extended to registration between

two images related not by a simple translation, but by an

arbitrary linear transformation, such as rotation, scaling, and

shearing. Such a relationship is expressed by

G(x) = F(xA + h),

where A is a matrix expressing the linear spatial

tranformation between F(x) and G(x). The quantity to be

minimized in this case is

E F xA h G x
x

= + −∑ [ ( ) ( )]2 .

To determine the amount ∆A to adjust A and the amount ∆h

to adjust h, we use the linear approximation

F x A A h h( ( ) ( ))+ + +∆ ∆

≈ + + +F xA h x A h
x

F x( ) ( ) ( )∆ ∆ ∂
∂

 (11)

When we use this approximation the error expression again

becomes quadratic in the quantities to be minimized with

respect to. Differentiating with respect to these quantities

and setting the results equal to zero yields a set of linear

equations to be solved simultaneously.

This generalization is useful in applications such as stereo

vision,  where the two different views of the object will be diff-
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erent views, due to the difference of the viewpoints of the

cameras or to differences in the processing of the two

images. If we model this difference as a linear

transformation, we have (ignoring the registration problem

tor the moment)

F(x) = αG(x) + β.

where α may be thought of as a contrast adjustment and β
as a brightness adjustment. Combining this with the general

linear transformation registration problem, we obtain

E F xA h G x
x

= + − +∑ [ ( ) ( ( ) )]α β 2

as the quantity to minimize with respect to α, β, A, and h.

The minimization of this quantity, using the linear

approximation in equation (11), is straightforward. This is the

general form promised in section 2. If we ignore A, minimizing

this quantity is equivalent to maximizing the correlation

coefficient (see, for example, [3]); if we ignore α and β as

well, minimizing this form is equivalent to minimizing the L2

norm.

5. Application to stereo vision

In this section we show how the generalized registration

algorithm described above can be applied to extracting

depth information from stereo images.

5.1. The stereo problem

The problem of extracting depth information from a stereo

pair has in principle four components: finding objects in the

pictures, matching the objects in the two views, determining

the camera parameters, and determining the distances from

the camera to the objects. Our approach is to combine

object matching with solving for the camera parameters and

the distances of the objects by using a form of the fast

registration technique described above.

Techniques for locating objects include an interest

operator [6], zero crossings in bandpass-filtered images [5],

and linear features [1]. One might also use regions found by

an image segmentation program as objects.

Stereo vision systems which work with features at the

pixel level can use one of the registration techniques

discussed above. Systems whose objects are higher-level

features must use some difference measure and some

search technique suited to the particular feature being used.

Our registration algorithm provides a stereo vision system

with a fast method of doing pixel-level matching.

Many stereo vision systems concern themselves only with

calculating the distances to the matched objects. One must

also be aware that in any real application of stereo vision the

relative positions of the cameras will not be known             

with perfect accuracy.  Gennery [4] has shown how to  simul-

taneously solve for the camera parameters and the

distances of objects.

5.2. A mathematical characterization

The notation we use is illustrated in figure 3. Let c be the

vector of camera parameters that describe the orientation

and position of camera 2 with respect to camera 1's

coordinate system. These parameters are azimuth,

elevation, pan, tilt, and roll, as defined in [4]. Let x denote

the position of an image in the camera 1 film plane of an

object. Suppose the object is at a distance z from camera 1.

Given the position in picture 1 x and distance z of the object,

we could directly calculate the position p(x, z) that it must

have occupied in three-space. We express p with respect to

camera 1's coordinate system so that p does not depend on

the orientation of camera 1. The object would appear on

camera 2's film plane at a position q(p, c) that is dependent

on the object's position in three-space p and on the camera

parameters c. Let G(x) be the intensity value of pixel x in

picture 1, and let F(q) the intensity value of pixel q in picture

2. The goal of a stereo vision system is to invert the

relationship described above and solve for c and z, given x,

F and G.

Figure 3: Stereo vision

5.3. Applying the registration algorithm

First consider the case where we know the exact camera

parameters c, and we wish to discover the distance z of an

object. Suppose we have an estimate of the distance z. We

wish to see what happens to the quality of our match

between F and G as we vary z by an amount ∆z. The linear

approximation that we use here is

F z z F z z
F

z
( ) ( )+ ≈ +∆ ∆ ∂

∂
,

where

∂
∂

∂
∂

∂
∂

∂
∂

F

z

p

z

q

p

F

q
= . (12)

This equation is due to the chain rule of the gradient

operator; ∂q/∂p is a matrix of partial derivatives of the

components of q with respect to the components of p, and

∂F/∂q is the spatial intensity gradient of the image F(q).      

To update  our   estimate of z,  we  want  to find  the ∆z  which
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satisfies

0 = ∂
∂∆z

E

≈ + −∑∂
∂

∂
∂∆

∆
z

F z
F

z
G

x
[ ]2 .

Solving for ∆z, we obtain

∆z
F

z
G F

F

zxx
= − 



∑∑ ∂

∂
∂
∂

[ ] /
2

,

where ∂F/∂z is given by (12).

On the other hand. suppose we know the distances zi, i =
1, 2, ..., n, of each of n objects from camera 1, but we don't

know the exact camera parameters c. We wish to determine

the effect of changing our estimate of the camera

parameters by an amount ∆c. Using the linear approximation

F c c F c c
q

c

F

q
( ) ( )+ ≈ +∆ ∆ ∂

∂
∂
∂

,

we solve the minimization of the error function with respect

to ∆c by setting

0 2= + −∑∑∂
∂ ε∆

∆
c

F c c G
x Ri i

[ ( ) ]

≈ + −∑∑∂
∂

∂
∂

∂
∂∆

∆
c

F c
q

c

F

q
G

xi
[ ]2 ,

obtaining

∆c
q

c

F

q
G F

q

c

F

q

q

c

F

q

T

x

T

x
≈







−




































∑ ∑
−

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

[ ]

1

.

As with the other techniques derived in this paper, weighting

and iteration improve the solutions for ∆z and ∆c derived

above.

5.4. An implementation

We have implemented the technique described above in a

system which functions well under human supervision. Our

program is capable of solving for the distances to the

objects, the five camera parameters described above, and a

brightness and contrast parameter for the entire scene, or

any subset of these parameters. As one would expect from

the discussion in section 4.3, the algorithm will converge to

the correct distances and camera parameters when the ini-

tial estimates of the zi's and c are sufficiently accurate that

we know the position in the camera 2 film plane of each ob-

ject to within a distance on the order of the size of the object.

A session with this program is illustrated in figures 4

through 10. The original stereo pair is presented in figure 4.

(Readers who can view stereo pairs cross-eyed will want to

hold the pictures upside down so that each eye receives the

correct view). The camera parameters were determined

independently by hand-selecting matching points and

solving for the parameters using the program described in

[4].

Figures 5 and 6 are bandpass-flitered versions of the

pictures in figure 4. Bandpass-filtered images are preferred

to lowpass-filtered images in finding matches because very

low spatial frequencies tend to be a result of shading

differences and carry no (or misleading) depth information.

The two regions enclosed in rectangles in the left view of

figure 5 have been hand-selected and assigned an initial

depth of 7.0 in units of the distance between cameras. I f

these were the actual depths, the corresponding objects

would be found in the right view at the positions indicated

figure 5. After seven depth-adjustment iterations, the

program found the matches shown in figure 6. The distances

are 6.05 for object 1 and 5.86 for object 2.

Figures 7 and 8 are bandpass-filtered with a band one

octave higher than figures 5 and 6. Five new points have

been hand-selected in the left view, reflecting the different

features which have become visible in this spatial frequency

range. Each has been assigned an initial depth equal to that

found for the corresponding larger region in figure 6. The

predicted position corresponding to these depths is shown in

the right view of figure 7. After five depth-adjustment

iterations, the matches shown in figure 8 were found. The

corresponding depths are 5.96 for object 1, 5.98 for object 2,

5.77 for object 3, 5.78 for object 4, and 6.09 for object 5.

Figures 9 and 10 are bandpass-filtered with a band yet

another octave higher than figures 7 and 8. Again five new

points have been hand-selected in the left view, reflecting

the different features which have become visible in this

spatial frequency range. Each has been assigned an initial

depth equal to that found for the corresponding region in

Figure 8. The predicted position corresponding to these

depths is shown in the right view of figure 9. After four depth-

adjustment iterations, the matches shown in figure 10 were

found. The corresponding depths are 5.97 for object 1, 5.98

for object 2, 5.80 For object 3, 5.77 for object 4, and 5.98 for

object 5.

5.5. Future research

The system that we have implemented at present requires

considerable hand-guidance. The following are the issues we

intend to investigate toward the goal of automating the

process.

• Providing initial depth estimates for objects: one should

be able to use approximate depths obtained from low

resolution images to provide initial depth estimates for

nearby objects visible only at higher resolutions. This

suggests a coarse-fine paradigm not just for the problem

of finding individual matches but for the problem of

extracting depth infortnation as a whole.

• Constructing a depth map: one could construct a depth

map from depth measurements by some interpolation

method, and refine the depth map with depth

measurements obtained from successively higher-

resolution views.

• Selecting points of interest: the various techniques

mentioned in section 3 should be explored.
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• Tracking sudden depth changes: the sudden depth

changes found at the edges of objects require some set

of higher-level heuristics to keep the matching algorithm

on track at object boundaries.

• Compensating for the different appearances of objects in

the two views: the general form of the matching

algorithm that allows for arbitrary linear transformations

should be useful here.
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