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Abstract—The textual content of a document and its publica-
tion date are intertwined. For example, the publication of a news
article on a topic is influenced by previous publications on similar
issues, according to underlying temporal dynamics. However,
it can be challenging to retrieve meaningful information when
textual information conveys little information or when temporal
dynamics are hard to unveil. Furthermore, the textual content of
a document is not always linked to its temporal dynamics. We
develop a flexible method to create clusters of textual documents
according to both their content and publication time, the Powered
Dirichlet-Hawkes process (PDHP). We show PDHP yields signif-
icantly better results than state-of-the-art models when temporal
information or textual content is weakly informative. The PDHP
also alleviates the hypothesis that textual content and temporal
dynamics are always perfectly correlated. PDHP allows retrieving
textual clusters, temporal clusters, or a mixture of both with
high accuracy when they are not. We demonstrate that PDHP
generalizes previous work –such as the Dirichlet-Hawkes process
(DHP) and Uniform process (UP). Finally, we illustrate the
changes induced by PDHP over DHP and UP in a real-world
application using Reddit data.

Index Terms—clustering, temporal Bayesian prior, powered
Dirichlet process, Hawkes process

I. INTRODUCTION

Online information is generated at an unprecedented rate.
Every minute, 500,000 comments are posted on Facebook,
400 hours of videos are uploaded on Youtube, and 500,000
tweets are published on Twitter. A possible approach to make
sense out of this mass of information is to cluster publication
events together. Grouping similar publications together help
understanding topics of interest or generate summaries of daily
news. Many clustering algorithms are based on text similarity,
that is, how similar the words of two published documents
are [1]–[3]. Another relevant variable to group information
together is the time of publication [4], [5]. For example, two
news articles about forest fires might be unrelated if the second
article were published years after the first one despite a close
lexical similarity. Imagine a news website that publishes a
series about history every day at midday. Temporal dynamics
would help understand that a publication the next day at
midday is likely to be related to previous publications, even
if the story (and thus the vocabulary) is different.

Many models that aim at understanding the temporal dy-
namics of clusters work by selecting a subset of observations

according to a temporal sampling function [5]–[7]. However,
sampling observations in time implies defining a sampling
function that might not correctly model the temporal dynamics
at stake. Besides, these works are based on a Dirichlet prior
(DP) for clustering. The DP considers counts as a parameter,
where a document always counts for 1. It has been argued that
such modeling is not fit to account for the arrival of documents
in continuous-time settings. In [8], the authors combine tech-
niques of standard textual clustering with point processes. The
idea is to infer the time-sampling function parameters as well
as the rest of the model. Explicitly, they derive the Dirichlet-
Hawkes process (DHP) prior for documents cluster allocation
that takes time as a parameter and yields non-integer counts. It
has been argued that this method cannot handle limited cases
where text is less informative (e.g., short texts, overlapping
vocabularies) [7].

Our present work develops the Powered Dirichlet Hawkes
process (PDHP) as a mean to handle this case. Besides, we
highlight other limiting cases for which DHP fails whereas
PDHP yields good results, for instance when temporal infor-
mation conveys little information (overlapping Hawkes inten-
sities, few observations). We also show there are cases where
documents within a textual cluster do not follow the same
temporal dynamics, which the DHP is not designed to handle.
For instance, an article published by a popular newspaper is
unlikely to have the same influence on subsequent similar
articles (temporal dynamics) as the same article published by
a less popular newspaper. We overcome all these limitations
by developing the Powered Dirichlet-Hawkes process, which
yields better results than DHP on every dataset considered
(up to +0.3 NMI). It also allows us to distinguish textual
clusters from temporal clusters (documents that follow the
same dynamic independently from their content).

Our contributions are listed below:
• We highlight and explain the limitations of the DHP

prior: it does not handle weakly informative temporal
and textual information and it is not designed to consider
different dynamics between text and time.

• We derive the Powered Dirichlet Hawkes process (PDHP)
as a new prior in Bayesian non-parametric for the tem-
poral clustering of a stream textual documents, which is
a generalization of the Dirichlet-Hawkes process (DHP)



and of the Uniform process (UP).
• We show how the PDHP prior performs better than

DHP and UP priors through thorough evaluation and
comparison on several synthetic datasets and real-world
datasets from Reddit.

• We show that PDHP prior allows to select the information
clusters are based on; we choose to favor their generation
more according to documents’ textual content or temporal
dynamics.

II. BACKGROUND

A. How publication times carry valuable information

Before reviewing existing methods incorporating a temporal
dimension into text clustering, we detail how this information
is relevant to the task. Recent works on the online spread
of textual documents have highlighted several key properties
regarding the link between textual content and date of publi-
cation.

Firstly, it has been shown that textual documents do not
get published independently one from the other. Often, the
arrival of a document is conditional on the publication of
earlier documents. A straightforward illustration is that a new
research paper is built on previous publications and is likely to
treat a similar topic; the present article exists because of all the
references it cites. A 2012 research paper highlights the critical
role played by interactions in the re-publication of a tweet on
Twitter [9]. The authors claim the probability of retweets vary
by 71% on average when considering temporal interactions.
More recent works find that although the interaction between
publications plays a significant role in later publications, the
interaction matrix is often sparse [10] – an article on textual
clustering is more likely to appear conditional to publications
about NLP, whose vocabulary is only a small subset of the
scientific literature’s one. It highlights the need to cluster
words together to retrieve temporal interaction relevant to a
textual clustering problem. In this context, a cluster should
carry information about the interaction between the documents
it contains.

Secondly, a problem that arises is the temporal aspect
of interaction. It has been shown that online information
interaction decays quickly with time [11], [12]. Although the
rate at which interaction influence decays depends on the
dataset, it seems to fade rapidly for most online spreading
processes [13]. To keep the temporal information relevant,
clusters must depend on time. For example, two series of news
articles about vaccines might not be related (one might not
trigger the other) if one was published in 2010 and the other
in 2021; they are two different clusters since both obey their
own dynamics, although their vocabulary is similar.

B. Temporal clustering of textual documents

The use of temporal dimension in documents clustering has
been studied on many occasions; a notable spike of interest
happened in 2006. Many authors tackled the problem of
inferring time-dependent clusters from models based on LDA
[5], [14], [15]. However, most of these models are parametric,

meaning the number of clusters is fixed at the beginning of
the algorithm. Depending on the considered time range and
the dataset, the number of clusters needs to be fine-tuned
with several independent runs, making them hardly usable for
many real-world applications. In all three references cited, the
authors mention that a non-parametric version of the model
might be derivable.

In 2008, A. Ahmed & al proposed the Recurrent Chinese
Restaurant Process (RCRP) as an answer to this problem [6].
Instead of considering a fixed-size dataset, this model can han-
dle a stream of documents arriving in chronological order, and
the number of clusters is automatically updated. In this model,
time is split into episodes to capture the temporal aspect of
cluster formation; it considers an integer count of publications
within a given time window. A later version of the model from
2010, the Distance-Dependent Chinese Restaurant Process
(DD-CRP), tries to alleviate this approximation by replacing
fixed-time episodes with a continuous-time sampling function
[16]. However, the model still considers integer counts with
only their distribution over time changing. Thus, the model
is not designed to consider every temporal information in a
continuous-time setting.

In 2015, N. Du & al answered this problem by combining
the Dirichlet process with the Hawkes process, used to model
the appearance of events in a continuous-time setting. The
key idea is to replace the counts of a Dirichlet process
with the intensity function of the Hawkes process. The re-
sulting Dirichlet-Hawkes process (DHP) is then used as a
prior for clustering documents appearing in a continuous-time
stream. The inference is realized with a Sequential Monte-
Carlo (SCM) algorithm. Following DHP, two articles have
been published extending the idea: the Hierarchical Dirichlet
Hawkes process (HDHP) [17] in 2016 and Indian Buffet
Hawkes process in 2018 [18]. Another work proposed an EM
algorithm for the inference [19] in 2017 (it uses a heuristic
method to update the number of clusters and cannot handle a
stream of documents).

A common feature of all the models we mentioned is
that they use a non-parametric Dirichlet process (DP) prior
or variations built on it, such as DHP and HDHP. Yet, on
several occasions, it has been pointed out that there are no
specific reasons to use this process in particular and that
alternative forms might work better depending on the dataset.
In [20], the author relaxes several conditions associated with
DP and shows that alternative priors are an equally valid
choice in Bayesian modeling. In [21], the authors derive the
Uniform process (UP) and show that it performs better on
a document clustering task. In [22], the authors generalize
UP and DP within a more general framework, the Powered
Dirichlet process (PDP), and show it performs better than DP
on several datasets.

Moreover, it has recently been highlighted that DHP does
not work well when the textual information within documents
conveys little information, that is when the text is short [7]
or when vocabularies overlap significantly. To answer this
problem, the authors develop an approach based on Dirichlet



process mixtures, which is not designed for continuous-time
document streams – the temporal aspect comes from a sam-
pling function as in [6], [16]. There are other limiting cases for
DHP, for instance when temporal information is conveys little
information (few observations, overlapping temporal intensi-
ties) or when documents within textual clusters do not follow
the same temporal dynamics. To overcome those limitations,
we develop the Powered Dirichlet-Hawkes process in the next
section.

III. MODEL AND ALGORITHM

A. Dirichlet prior and alternatives

We briefly recall the definition of a Dirichlet prior. A
Dirichlet prior for clustering implements the assumption that
the more a cluster is populated, the more chances a new
observation belongs to it (“rich-get-richer” property). Besides,
there is still a chance that a new observation gets assigned to a
newly created cluster. It is often expressed using a metaphor,
the Chinese Restaurant process (CRP), and it goes as follows:
if an ith client arrives in a Chinese restaurant, they will sit
at one of the K already occupied tables with a probability
proportional to the number of persons already sat at this table.
They can also sit alone at a new table K+1 with a probability
inversely proportional to the total number of clients in the
restaurant. When their choice is made, the next client arrives,
and the process is repeated. Let c be the cluster chosen by the
ith customer, ~C− the table assignment of previous customers
up to i − 1, Nc the population of table c, C the number
of already occupied tables and α0 ∈ R+ the concentration
parameter. The process can be written formally as:

CRP(Ci = c| ~C−, α0) =

{
Nc

α0+N if c = 1, 2, ..., C
α0

α0+N if c = C+1
(1)

The Uniform process [21] has been proposed as an alterna-
tive to the DP prior. In this context, a new customer entering
the restaurant has an identical chance to sit at either of the
occupied tables, and a chance to sit at an empty table inversely
proportional to the number of occupied tables. Formally:

U-CRP(Ci = c| ~C−, α0) =

{
1

α0+C if c = 1, 2, ..., C
α0

α0+C if c = C+1
(2)

Finally, the Powered Dirichlet process [22] generalizes the
two above, stating that the probability for a new client to sit
at a new table depends arbitrarily on the number of customers
already sat at this table:

P-CRP(Ci = c|r, ~C−, α0) =


Nr

c

α0+
∑

c′ N
r
c′

if c = 1, 2, ..., C
α0

α0+
∑

c′ N
r
c′

if c = C+1
(3)

where r ∈ R+ is an hyper-parameter. Varying r allows to give
more or less importance to the “rich-get-richer” hypothesis of
DP. Note that P−CRP (r = 0, ~C−, α0) = U−CRP ( ~C−, α0)

and that P−CRP (r = 1, ~C−, α0) = CRP ( ~C−, α0). We will
use this more general form in the rest of this work and make
r vary to compare those priors in the experimental section.

B. Hawkes processes

A Hawkes process is defined as a self-stimulating temporal
point process. It is used to determine the probability of an
event happening given the realization of all previous events in
a continuous space. Point processes are fully characterized by
the intensity function λ(t), which is related to the probability
P of an event happening between t and t + ∆t by λ(t) =

lim∆t→0
P (tevents∈[t;t+∆t])

∆t . In the case of Hawkes processes,
λ(t) is defined conditionally on all the events that happened at
times lower than t. In our setup, we define one Hawkes process
for each cluster, independent from the others. The intensity of
the Hawkes process associated with cluster c is defined as:

λc(t|H<t,c) =
∑
H<t,c

~αc
T · ~κ(ti,c) (4)

where ti,c is the time of the ith observed in cluster c,
H<t,c = {ti,c|ti,c < t}i=1,2,... is the history of events in
cluster c up to t, ~αc is a vector of coefficients, ~κ(t) is a
vector of kernel functions with the same dimension as ~α and
· represents the dot product. The kernel functions are set on
stone. We will later infer the weights vector ~α to determine
which entries of the kernel vector are the most relevant for a
given situation. This technique has become standard in Hawkes
processes modeling and used in several occasions [4], [23].
Finally, we consider an additional time-independent Hawkes
process (that is a Poisson process) of intensity λ(t) = λ0.
This process is used as the Dirichlet-Hawkes equivalent of the
concentration parameter α0 in a Dirichlet process (see Eq. 1).
It translates the probability of opening a new cluster as the
realization of a Poisson process. In the same way that in DP
no observation is assigned to a cluster whose counts is α0 but
instead to a new cluster, no observation will be associated with
the Poisson process but instead to a new Hawkes process.

Finally, the likelihood of a combination of independent
Hawkes processes can be written:

L(~λ|H<T,c) = L(λ0|H<T,c)
∏
c

Lc(λc|H<T,c)

= e−
∫ T
0
λ0dt

∏
c

e−
∫ T
0
λc(t)dt

∏
ti,c

λc(ti|H<ti,c,c)

= e−λ0T+
∑

c

∫ T
0
λc(t|H<t,c)dt

∏
ti,c′ ,c

′=c

λc(ti,c′ |H<ti,c′ ,c)

(5)

where T is the upper time of the considered observation
window, going from 0 to T . Note that L(λ0) = e−

∫ T
0
λ0dt

because no event will be assigned to the Poisson process.

C. Powered Dirichlet-Hawkes process

Following the reasoning in [8], we substitute the counts
Nk of the PDP with the inferred Hawkes intensities in the



Fig. 1. Schematic workflow of the SMC algorithm — For each new observation from a stream of document, we run steps 1 (sample document’s cluster),
2 (update sampled cluster’s internal dynamics) and 3 (update particle hypothesis’ likeliness) for each particle, and then discard particles containing the less
likely hypothesis on cluster allocation.

PDP, resulting in the following form for the Powered Dirichlet-
Hawkes prior:

P (Ci = c|ti, r, λ0,H<ti,c) =


λr
c(ti)

λ0+
∑

c′ λ
r
c′ (ti)

if c≤C
λ0

λ0+
∑

c′ λ
r
c′ (ti)

if c=C+1
(6)

where ti is the arrival time of document i. We reformulated
the Dirichlet-Hawkes process in order to allow nonlinear
dependence (r) on the non-integer counts (~λ).

D. Textual modeling

We choose to model the textual content of documents as
the result of a Dirichlet-Multinomial distribution. This model
is purposely simple to ease the understanding, but can easily
be replaced by a more complex one. A more complete textual
modeling is out of the scope of this work, which aims to
highlight the efficiency of the PDHP. Here, a document will be
associated to a given cluster according to words count in every
cluster and words count in the document only. The generative
process is as follows:

θi ∼ Dir(θ0) ; ωv,i ∼Mult(θi) (7)

where θi is the cluster of document i, and ωv,i is the vth word
of document i. Let Ltxt(~C<i,c|N<i,c, θ0) be the marginal joint
distribution of every document’s cluster allocation up to the ith

one. The likelihood of the ith document belonging to cluster

c can then be expressed as:

L(Ci = c|N<i,c, ni, θ0) = P (ni|Ci = c,N<i,c, θ0)

=
Ltxt(~C<i,c|N<i,c, θ0)

Ltxt(~C<i−1,c|N<i,c, θ0)

=

���Γ(θ0)
Γ(Nc+ni+θ0)

∏
v

Γ(Nc,v+ni,v+θ0,v)

���Γ(θ0,v)

���Γ(θ0)
Γ(Nc+θ0)

∏
v

Γ(Nc,v+θ0,v)

���Γ(θ0,v)

=
Γ(Nc + θ0)

Γ(Nc + ni + θ0)

∏
v

Γ(Nc,v + ni,v + θ0,v)

Γ(Nc,v + θ0)

(8)

where Nc is the total number of words in cluster c from
observations previous to i, ni is the total number of words
in document i, Nc,v the count of word v in cluster c, ni,v the
count of word v in document i and θ0 =

∑
v θ0,v .

E. Posterior distribution

The resulting posterior distribution of the ith document over
clusters is calculated using Bayes theorem. It is proportional
to the product of the textual likelihood Eq.5 and the temporal
Powered Dirichlet-Hawkes prior Eq.8:

P (Ci = c|r, ni, ti, Nc,H<t,c)
∝P (ni|Ci = c,N<i,c, θ0)︸ ︷︷ ︸

Textual likelihood

P (Ci = c|ti, r, λ0,H<ti,c)︸ ︷︷ ︸
Temporal prior

=
Γ(Nc + θ0)

Γ(Nc + ni + θ0)

∏
v

Γ(Nc,v + ni,v + θ0,v)

Γ(Nc,v + θ0)

×


λr
c(ti)

λ0+
∑

c′ λ
r
c′ (ti)

if c = 1, ..., C
λ0

λ0+
∑

c′ λ
r
c′ (ti)

if c = C+1

(9)



0 20 40 60 80 100
Clusters

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Probability when r=0.1
Probability when r=1.0
Probability when r=2.0
Textual likelihood
Hawkes intensity

Fig. 2. Effect of r on cluster selection probabilities — The probability
for each cluster to get chosen (solid lines) for several values of r and fixed
individual textual likelihood (blue bars) and Hawkes intensity (orange bars).

We recall that λc(t) is defined Eq. 4. The textual likelihood
of cluster C + 1 is computed by setting NC+1,v = 0.

F. Algorithm and changes induced by PDHP

We use a similar algorithm to the one in [8]. Briefly, the
algorithm is a sequential Monte-Carlo (SMC) that takes one
document at a time in their order of arrival. The algorithm
starts with a number Npart of particles whose weights are
ωp = 1

Npart
, each of which will keep track of a hypothesis

on documents clusters. After a few iterations, particles that
contained unlikely allocation hypotheses are discarded and
replaced by more likely ones. The likeliness of a hypothesis
is encoded in the weights of each particle ωp.

For each particle, when a new document arrives, (1) the
cluster of the document is sampled according to a Categorical
distribution over all clusters, whose weights are determined by
Eq. 9. After the cluster of the new document has been sampled,
(2) the kernel weights ~α from Eq. 4 are updated using Eq. 5.
For efficiency purpose, we infer ~α using Gibbs sampling from
a set of Ns pre-computed ~α vectors. We finally (3) update the
weights ωp of each particle according to the posterior Eq. 9
such as ω(n+1)

p = ω
(n)
p ×Eq. 9. If the weight of a particle falls

below a value ωthres, the particle is discarded and replaced by
another existing one with sufficient weight. The whole process
is illustrated Fig. 1. By updating incrementally the likelihood
associated with each of the pre-computed ~α sample vectors,
the algorithm treats each new observation in constant time
O(1).

The task of updating kernels coefficients (2) is the same
as in any Hawkes process, and the task of updating particles
weights and resampling them (3) is common to any SMC
algorithm. The change induced by the PDHP compared to the
DHP happens at step (1). First of all, we note that for r = 1 the
PDHP prior is identical to the DHP prior. From [22], lowering
the value of r reduces the “rich-get-richer” aspect of the PDP
(“rich-get-less-richer”), whereas increasing it leads to a “rich-

get-more-richer” effect. These metaphors can be translated
as follows in our temporal context: for lower values of r,
the relative difference between cluster’s temporal intensities
plays a less important role in cluster selection, whereas higher
values of r tend to exacerbate these differences and make the
temporal aspect of the greatest consequence on the choice
of a cluster. In other words, tuning the value of r allows
to give more or less importance to the temporal aspect of
the clustering. This is illustrated in Fig. 2, where we plot the
probability for various clusters to be chosen (which is directly
proportional to the posterior distribution, Eq. 9) according to
r when their textual likelihood and Hawkes process intensity
is known. Note that for r = 0, the probability for any cluster
to get chosen is directly proportional to its textual likelihood
(Dirichlet-Uniform process), whereas when r increases, the
probability of getting chosen gets closer to a selection only
based on the temporal aspect.

This makes the main interest of the PDHP model. Tuning
the parameter r allows one to choose whether inferred clusters
are based on textual or temporal considerations. It generalizes
several state-of-the-art works, which are special cases of the
PDHP for different values of r. The DHP [8] is equivalent to
PDHP for r = 1; the UP [21] is equivalent to PDHP when
r = 0. In the following sections, we show how fine-tuning r
systematically yields significantly better results than setting it
to r = 0 or r = 1 (up to a gain of 0.3 on our experiments’
normalized mutual information metric). We also show how
varying it allows to recover one kind of clustering or the other
(textual or temporal) with high accuracy and see how it affects
clustering results on several real-world datasets.

IV. EXPERIMENTS

A. Synthetic data generation

We simulate a case where only two clusters are considered.
Each cluster has its own vocabulary distribution over 1 000
words and its own kernel weights ~α, with Gaussian Hawkes
kernel functions ~κ(t) of parameters (µ, σ)=(3, 0.5), (7, 0.5)
and (11, 0.5) (see Eq. 4). Finally, we set λ0 = 0.05. We first
simulate one independent Hawkes process per cluster using
the Tick Python library [24]. The processes are stopped at
time t = 1500, which makes a rough average of 7 000 events
per run. Then we associate each simulated observation with
a sample of 20 words drawn from the corresponding cluster’s
word distribution. Inference has been performed using a 8 core
processor (i7-7700HQ) with 8GB of RAM on a laptop, which
underlines how scalable the algorithm is. As stated before, the
algorithm treats each new document in constant time O(1),
which ranged from 0.05s on synthetic data to maximum 1s on
real-world data. Note that this number is directly proportional
to the number of active inferred clusters, and thus depends
strongly on the dataset.

We generate ten such datasets for every considered value
of vocabulary overlap and Hawkes intensities overlap, which
leave us with ∼200 datasets. Overlap is defined as the common
area of two distributions, normalized by the total area under
the distributions. For example, if the vocabulary of one cluster



Fig. 3. Overlaps — (Left) Temporal overlap is defined as the ratio between
the area common to two Hawkes intensities and the total area under the
intensity functions. (Right) Textual overlap is defined as the proportion of
vocabulary that is common to two clusters, weighted by the probability of
words within their respective cluster.

ranges from words ”1” to ”100” with uniform distribution,
and the vocabulary of another cluster from words ”50” to
”150” with uniform distribution, the overlap equals 50%. We
define the overlap of Hawkes process intensity in the same
way. If the triggering Hawkes kernel of one cluster is a
Gaussian function with (µ, σ) = (3, 1) and one associated
observation at t = 0, and the triggering kernel of the other is
also a Gaussian function but with (µ, σ) = (5, 1) also with
an associated observation at t = 0, the overlap equals 32%
(see Fig. 3). When computing the Hawkes intensity overlap,
every observation within a cluster and its associated timestamp
are considered. The definition of overlaps is illustrated in
Fig. 3. To enforce a given vocabulary overlap (Fig. 3-right), we
shift the word distributions of the clusters from which events’
vocabulary is sampled. To enforce a given Hawkes intensities
overlap (Fig. 3-left), we shift the event times of every event
in one of the clusters until we get the correct overlap (±5%).

Note that we consider ten different datasets instead of
considering ten runs per dataset for two reasons. Firstly, the
generation of Hawkes processes is highly stochastic, so a
model might perform significantly better on a single dataset
only by chance. Secondly, given the way the SMC algorithm
works, the standard deviation between runs is small: at each
iteration, Npart clustering hypotheses are tested, which is
equivalent to running Npart times a single clustering algo-
rithm. We heuristically set Npart = 8, as we observe no
significant improvement using more particles.

The other parameters we use for clustering syn-
thetic data are: α0 = 0.1, θ0 = 1, ~κ(t) =
[G(t; 3, 0.5),G(t; 7, 0.5),G(t; 11, 0.5)] with G(t;µ, σ) the
Gaussian function, Nsamples = 2.000 and ωthres = 1

2Npart
.1

We are interested in varying both vocabulary and intensities
overlap to exhibit the limits of DHP and how PDHP overcomes
them. Note that in the synthetic data experiments in [8]
(Figs.3a and 3b), the intensities overlap is almost null, which
makes the task easier for the Hawkes part of the algorithm. The
primary metric we use throughout the experimental section
is the normalized mutual information (NMI). During the
experiments, we also considered the Adjusted normalized rand

1All codes and implementations are available at
https://github.com/GaelPouxMedard/PDHP

Fig. 4. PDHP yields good NMI values — Normalized mutual information
(NMI) for various values of r, intensities overlap and vocabulary overlap, for
one dataset per combination. The results for r = 0 are the output of the
Uniform process, the results for r = 1 are the output of the DHP [8], and
the other values of r correspond to other special cases of PDHP. The darker
the better. Overall, PDHP yields good values of NMI.

index and the V-measure, which are well adapted to evaluate
clustering results when the number of inferred clusters is
different from the true number of clusters. The observed trends
in results from these other metrics are identical to the ones
observed for NMI. Therefore we choose to report only the
results of the latter for clarity. These additional measurements
are provided in the linked repository along with the code and
datasets.

B. PDHP yields better results as vocabulary overlap increases

We report our results when the intensities overlap is null,
with varying r and the vocabulary overlap in Fig. 5a. Because
we consider ten different datasets for each set of overlap
parameters, it makes no sense to report the absolute average
NMI since it can vary greatly from one dataset to the other.
Instead, we plot the relative NMI difference between PDHP
and DHP (r = 1), which we expect to be less dependent on the
datasets we consider. However, to give an idea of the typical
performance for some parameters, we also provide raw results
for one run in Fig. 4.

There is a clear correlation between efficiency, vocabulary
overlap and r, with a gain on NMI up to +30% of its
maximal value over DHP. As stated at the end of the ”Model”
section, this result was expected: the more vocabulary overlap
grows, the less textual content carries valuable information
for clustering the documents. This observation supports the
concerns raised in [7] about the efficiency of DHP for cluster-
ing short text documents. However, Hawkes intensities overlap
being null, the arrival time of events carries highly valuable
information when textual content does not allow to distinguish
clusters well. Therefore, PDHP provides a way to tackle the
problem raised in [7] without the need to sample observations.

Conversely, when vocabulary overlap is null, the textual
content provides enough information to distinguish clusters



Fig. 5. PDHP performs better than DHP — Difference between the
normalized mutual information (NMI) of PDHP and DHP model [8] for
various values of r, intensities overlap and vocabulary overlap, averaged
over all the datasets. Red means PDHP performed better, blue means PDHP
performed less well. Because PDHP(r = 1)=DHP, the column r = 1 show
no difference. PDHP allows to increase results on NMI by as much as 0.3
over DHP.

correctly. The temporal dimension only allows refining the
results with no significant improvement for all values of r.

Finally, we can see how the Dirichlet-Uniform process
(DUP, r = 0) consistently yields worse performances under
these settings. Once again, this is expected since, in this
synthetic experiment, intensities overlap carry valuable infor-
mation about events clustering; DUP only considers textual
information and therefore misses valuable clues.

C. PDHP yields similar results for null vocabulary overlap

We report similar results in Fig. 5b. Here, we consider
a null vocabulary overlap for various values of r and of
Hawkes intensities overlap. The situation is now the opposite:
the textual content always carries valuable information about
clusters, whereas the temporal aspect does not. We observe
the same trend as in Fig. 5a –note that the color scale is the
same. Varying the value of r does not significantly change the
performances of clustering, meaning the textual content always
carries enough information. This plot shows that PDHP can
handle greater intensities overlap without collapsing into un-
realistic clustering. Since in most real-case applications, many
clusters with various dynamics may coexist simultaneously, it
is comforting that the PDHP can also handle this case.

Fig. 6. Textual (orange) and temporal (blue) NMI vs r when textual and
temporal clusters are decorrelated — From top-left to bottom-right, there
are 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of generated events
that have been randomly re-assigned a textual cluster. The orange curves are
the textual NMI vs r, that evaluate how well events whose vocabulary has been
sampled from the same distribution are clustered together; the blue curves are
the temporal NMI vs r, that evaluate how well events following the same
temporal dynamic are correctly clustered together. Values presented are for
one dataset. We clearly see that varying r allows to retrieve the right temporal
(r large) or textual clusters (r small).

D. PDHP yields better results in more realistic situations

We finally report the results for intermediate values of
intensities and vocabulary overlaps in Fig. 5c. In real-world
applications, it seldom happens that topics vocabularies do not
overlap at all. For example, a quick analysis of The Gutenberg
Webster’s Unabridged Dictionary by Project Gutenberg shows
that there are 22% of English words that are associated with
more than one definition. A more detailed analysis would need
to consider the usage frequency of words to get correct statis-
tics. Still, this number provides an estimate of the effective
vocabulary overlap in real-world situations.

In Fig. 5c, we present the results for a fixed vocabulary
overlap of 0.5 for various values of r and intensities overlap.
Once again, we see that, on average, using PDHP can increase
the NMI over DHP up to +20% of the maximum possible
value.

E. PDHP finds textual or temporal clusters depending on r

We now slightly modify our experimental setup. Instead
of considering that textual clusters and Hawkes intensities
are perfectly correlated, we consider a decorrelated case. A
document whose vocabulary is drawn from cluster C1 can
now follow the same temporal dynamics as cluster C2. If
we imagine a dataset of news articles published online, it is
clear why this might happen frequently. If popular newspapers
such as New York Times or Reuters publish an article on
topic A at time t, it is likely to trigger snowball publications
of similar articles from less popular journals. “Popularity”
is chosen as an indicator in this example, but it may be
any other external parameter (centrality in news networks,
support of publications, etc.). In this case, the article’s textual
content allows to uncover a “story of publication”, that is,



Fig. 7. Varying r allows to choose between textual or temporal clustering
— The black line plots the difference between the NMI of textual and temporal
clustering. For small r, textual clustering is far better than temporal clustering,
and for large r, the situation is reversed. This is because r determines the
importance given to the temporal dimension and therefore allows choosing
between retrieving temporal or textual clusters.

how the article has been spread, when publication spikes are,
etc. However, the temporal information would help understand
the dynamics of publications interaction: which reduced set of
articles triggered the publication of subsequent ones.

In [8], it is assumed that every document within clusters
follow a unique dynamics. We relax this hypothesis in our
datasets as follows. For null textual and temporal overlaps,
after a dataset has been generated, we resample the textual
clusters of a fraction of randomly selected events, as well as
the words associated with the event. Doing so, we decorrelate
temporal and textual clusters. Therefore, an event is now
described by two cluster indicators: its temporal cluster (which
Hawkes intensity made the event appear where it is) and a
textual cluster (which vocabulary has been used to sample the
words the event contains).

For completeness, we also show the results for for various
decorrelations for one run in Fig. 6. To better understand the
tendency of NMIs with respect to r, we plot the average
difference between the NMI of textual clustering and the

NMI temporal clustering over all the datasets. Explicitly:
∆NMI = NMItext − NMItemp. The results are reported
in Fig. 7.

As supposed at the end of the “Model” section, varying r
allows retrieving one clustering or the other. Note that the
value r of transition from text to time clustering depends
directly on the dataset considered: number of words sampled,
vocabulary size, overlaps, etc.

F. PDHP efficiently infers the temporal dynamics of each
cluster

Finally, we mention that PDHP correctly infers kernels’ pa-
rameters in every situation where events are correctly assigned
to their temporal cluster. We looked at the mean absolute error
(MAE) between the vector ~α used to generate the dataset
and the inferred one. When documents are correctly classified,
the MAE according to the actual ~α entries is systematically
lower than 0.1. We do not discuss this metric further because
it is directly correlated to the NMI metric. If documents are
correctly classified, the inferred intensity function is based on
the correct observations and corresponds to the one used for
data generation. If documents are not correctly classified, the
inferred intensity function is close to the optimal one (∼ 5%
MAE) given the available information but may be far from the
one used to generate datasets because events are misclassified.

G. Real-world application on Reddit

We use the PDHP prior to model real streams of textual
documents. We consider three Reddit datasets2 about dif-
ferent topics. The News dataset is made of 73.000 titles
extracted from the subreddits inthenews, neutralnews, news,
nottheonion, offbeat, open news, qualitynews, truenews and
worldnews, from April 2019. We chose this month because
of the wide variety of events that happened then (for in-
stance, Sri Lanka Easter bombings, Julian Assange arrest,
first direct picture of a black hole, Notre-Dame cathedral
fire). We also consider 15.000 post titles of the subreddit
TodayILearned (TIL dataset) and 13.000 post titles of the
subreddit AskScience (AskScience dataset) on January 2019.
We extracted the nouns, verbs, adjectives and symbols from
the textual data. We run the experiments using the following
parameters: α0 = 0.5, θ0 = 0.01, Nsamples = 2.000,
Npart = 8 and ωthres = 1

2Npart
. The kernel vector ~κ is made

of Gaussian functions, with means located at 0.5, 1, 4, 8, 12,
24, 48, 72, 96, 120, 144 and 168 hours. The variance of each
are set to 1, 1, 3, 8, 12, 12, 24, 24, 24, 24, 24 and 24 hours.
The algorithm will then infer the weights ~α associated with
each entry of the kernel vector ~κ for each cluster.

1) PDHP recovers meaningful stories: As an illustrative
example, we consider the inferred clusters the most related
to Sri Lanka easter bombings of April 21st 2019 in Fig.8.
We plot the triggering kernels on a log-log scale, because
most of the intensity is focused on small times: dynamics
of information spread are bursty [25]. We see that inferred

2Available for download at https://files.pushshift.io/reddit/submissions/



Fig. 8. Wordclouds, triggering kernels and intensities for clusters the most
closely related to Sri Lanka 2019 bombings for various values of r. The points
at the bottom of the intensity plots are individual publication events. Note that
triggering kernels are plot on a log-log scale for visualisation purpose, because
most of the intensity is focused on small times: dynamics are bursty.

dynamics change with r, which is expected since clusters do
not contain the same documents. For r = 0, the Uniform
process makes clusters based on textual information only; the
triggering kernel is inferred afterward. For r = 2.5 on the
contrary, clusters are formed based on the triggering kernel,
and textual information follows; we see from the right-plot that
this cluster captures publications exhibiting a daily intensity
cycle. Given the intensity spikes on 21st, 22nd, and 23rd, it is
not surprising that articles about Sri Lanka bombings are also
part of this cluster. Note that the more r increases, the more
intense the triggering kernel is around 24h. We see from Fig.8
that DHP is a specific case of the dynamics one can retrieve
using temporal information.

2) PDHP favors temporal or textual clustering depending
on r: We report the values of log-likelihoods for every dataset
and various values of r in Fig.9. The textual likelihood is
defined Eq.8, and the likelihood of a Hawkes process is
defined Eq.5. Note that r does not appear in any of these
expressions. Those likelihoods evaluate how well the textual or

Fig. 9. r allows to favour text-based of time-based clustering on real world
datasets — Textual likelihood and Hawkes process likelihood for various
values of r. The lower r the higher textual likelihood is, and the higher r the
higher Hawkes process likelihood is.
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Fig. 10. Textual clusters are more informative for low values of r —
Weighted average entropy of words distribution for every dataset. Weights
corresponds to the number of words within clusters. The error bar represents
the standard error over all the clusters.

temporal aspect of the dataset is modeled without considering
the PDHP process. As expected, varying r makes the model
more sensitive to either textual or temporal data —low r favors
a text-based clustering, whereas high r favors a time-based
clustering.

3) PDHP infers sharper textual clusters for low r: We
evaluate how meaningful textual cluster are using entropy. We
would like a set of words within a cluster to carry a meaningful
information. A way to measure this is to see how spread the
vocabulary of a cluster is. Let Nc,v be the count of word v
in cluster c. The normalized Shannon entropy of a cluster c is



defined as:

S( ~Nc) =
1

− log(V )

V∑
v

log(
Nc,v∑′
v Nc,v′

)
Nc,v∑′
v Nc,v′

(10)

An entropy of 0 means the vocabulary of the cluster is
concentrated on a single word; an entropy of 1 means that
every of the V words is present to the same extent. In
Fig.10, we plot the mean entropy for various values of r
for all the datasets, along with the standard error over the
clusters. The results show that vocabulary is more concentrated
within clusters for low values of r. The inflection point of the
curves corresponds to what has been previously observed with
likelihoods in Fig.9. On the contrary, higher values of r lead to
clusters that comprise a less dense vocabulary. This is expected
because as r increases, the textual information is no longer the
most relevant data for cluster formation.

V. CONCLUSION

We built the Powered Dirichlet-Hawkes process as a gener-
alization of the Dirichlet-Hawkes process and Uniform process
and showed how it improves performance on various datasets.
When textual information conveys little information, or when
temporal information conveys little information, and when
both do, our model is able to correctly retrieve the original
clusters used in the generation process with high accuracy.
A central consideration in document clustering is that there
are no “right” clusters. For instance, we illustrate how textual
content and temporal dynamics can be decorrelated in real-life
applications. The framework we developed is flexible enough
to allow users to choose the weight they wish to give to
temporal or textual information depending on the situation;
when textual and temporal clusters are decorrelated, the model
allows one to choose which of those to infer.

Many future extensions are possible for PDHP. For instance,
it would be interesting to develop its hierarchical version
(PHDHP) as it has already been done with HDHP for DHP.
Another interesting perspective would be to create a version
considering multivariate Hawkes processes to study how tex-
tual clusters’ dynamics relate to each other. Given several
recent works have been based on the regular Dirichlet-Hawkes
process, it would be insightful to study how their results vary
when using the Powered Hawkes-Dirichlet process instead. A
study on the influence of the language model used along with
PDHP would also be interesting since the text model we used
here was simple on purpose (our focus being on the PDHP
prior and not on the model it gets associated with).

Finally, it would be interesting to see how this model would
work in another context where temporal and textual infor-
mation are intertwined. For instance, in latent social network
inference, we may be able to create clusters according to the
observed temporal dynamics of publications, or according to
the textual information shared between users, or according to
a combination of both.
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