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Abstract
Purpose: Metabarcoding, and metagenomic sequencing have enabled the characterization of
highly diverse environmental communities. The challenge of estimating the metabolic functions
carried out by these communities has led to the development of several state-of-the-art methods,
most of which are tailored to a specific gene marker. However, the increasing diversity of
approaches resulting from advances in sequencing technologies drives the need for methods
capable of handling heterogeneous microbial community data. Moreover, predictions often
depend on their internal analysis pipelines and are influenced by the underlying databases,
which link marker genes to specific functional annotations. This limits users’ ability to evaluate
the quality of predictions by tracing internal data and processes. Finally, users are constrained by
the specific annotations provided by these methods (e.g. EC numbers), limiting their ability to
conduct further specialized analyses based on intermediate results.
Methods: EsMeCaTa predicts consensus proteomes and their associated functions from
taxonomic affiliations. A key feature of EsMeCaTa is its explainability and flexibility. To support
the flexible integration of heterogeneous sequencing data, EsMeCaTa utilizes taxonomic
affiliations obtained through analyses of diverse sequencing datasets. To provide insight into the
knowledge available for each taxonomic affiliation and to interpret the relevance of predicted
functions, EsMeCaTa identifies a taxonomic rank within a given affiliation that is sufficiently
represented by documented proteomes in the UniProt database. The proteins of the UniProt
proteomes are clustered and filtered according to a threshold to create consensus proteomes.
These consensus proteomes are automatically annotated with functional information (e.g., EC
numbers, GO terms) but they are also designed to be used in further customized annotation
workflows. Functional annotations are reported in a functional table, which can be enriched with
taxon abundances to generate comprehensive functional profiles.
Results: EsMeCaTa predictions have been validated using multiple datasets and compared to a
state-of-the-art method. Additionally, it was applied to a novel metabarcoding dataset from a
methanogenic reactor, characterizing the microbial community and biogas production across
different time points and intake condition. Our results demonstrate the link between biogas
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production, intake condition and the dynamics of the metabolic functions predicted by EsMeCaTa
in the microbial communities.

Background
Metabarcoding andmetagenomic sequencing have allowed the characterisation of environmental
communities, such as human [1], soil [2] or marine [3] microbiota. While metabarcoding focuses
on the sequencing of an amplified marker gene of interest (also named amplicon), metagenomic
sequencing provides broader information about the entire genomic content of the sample, allow-
ing for the assembly and binning of genomes [4]. The growth of such sequencing data has led to
the creation of open access databases, such as MGnify [5, 6], which provides a unique overview of
the availability of environmental sequencing data. For example, 480,962 amplicon data, 57,629 as-
semblies and 39,920 metagenomes are available from MGnify in 20241. Estimating the metabolic
functions performed by the community, its functional profile, is an important issue. HUMAnN3 [7]
creates functional profiles directly from themetagenomic sequencing data. For amplicon data, too,
several methods have been developed to create functional profiles (called in this article functional
profiling methods): PICRUSt/PICRUSt2 [8, 9], Paprica [10], Tax4Fun/Tax4Fun2 [11, 12], Piphillin [13,
14], MicFunPred [15] or PanFP [16]. In these cases, a preliminary task is to estimate taxonomic
affiliations of the amplicons. Then functions are associated with the taxa or with the sequences
directly. Finally, the functions are scaled by the abundances of the taxa in the sample to produce
the functional profile.

Functional profiling methods rely on marker gene to predict the functions. One of the first step
is to place the gene marker sequences inside a reference space associated with genomic data to
find the closest related organisms. The 16S rRNA gene is one of the earliest marker genes used to
analyse the bacterial diversity in environmental communities [17] and is currently the most widely
used marker gene. Therefore, several methods (such as PICRUSt2) focus their input on this gene
and compute functional profiles according to a curated internal database. However, other genes
have shown interesting performance in taxonomic characterisation, such as the rpob gene [18]. In
addition, there are other sequencing methods that provide taxonomic characterisation from en-
vironmental samples, such as shallow whole genome sequencing [19, 20] or metatranscriptomics
[21]. In this context, an appropriate strategy to deal with the heterogeneity of these sequencing
data is to use their common output feature: the taxonomic affiliations of the community, i.e. all
taxa from the taxonomic lineage (from highest taxonomic rank, such as superkingdom, to lowest
taxonomic rank, such as genus) of each identified organism, as done in PanFP [16].

The estimation of functions associated with a given taxon relies on comparative genomics
approaches applied to the available related reference genomes. PICRUSt2 uses genomes from
the IMG database [22], Paprica from the NCBI Genbank database [23] and PanFP from the NCBI
Genomes resource [24]. The predictions for a given taxon are strongly influenced by the available
information associated with the known organisms and the phylogenetic distances between the
identified organisms and the closest reference genomes. For metabolic annotation, the greater
this phylogenetic distance is, the lower the accuracy of the predicted functions is [25]. This favors
methods that allow users to filter relevant predictions, e.g. according to the distance to the closest
organisms with available genomes.

The availability of reference genomes is not the only factor impeding the prediction accuracy.
Indeed, functional profiling methods rely on an annotation database to link the selected genomes
with specific functions and generate functional annotations with internal tools [8, 9, 16]. A first
issuewith respect to these local databases is that functions are predicted from the genomes during
the creation of the database, implying that their predictions may not be up-to-date with respect
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to current knowledge. A second issue is that the types of predicted functions are limited to the
ones selected by the method (for example, EC numbers, KEGG Orthologs and MetaCyc pathways),
preventing users to enrich annotations with their own dedicated annotations tools. These issues
prompted us to develop a method complementary to currently available methods, providing to
the users more flexibility for function prediction by giving access to the sequences leading to the
prediction of the taxa functions.

This paper presents EsMeCaTa, a method which predicts consensus proteomes and their as-
sociated functions. To allow a flexible management of heterogeneous sequencing data, EsMe-
CaTa uses as input taxonomic affiliations preliminary obtained through either barcoding, metabar-
coding or metagenomics sequencing data. To give insight into the available knowledge for each
taxonomic affiliation and interpret the relevance of the predicted functions, EsMeCaTa selects a
taxonomic rank in the affiliation of a taxon for which enough proteomes are documented in the
UniProt database. As a key output towards explainability and user flexibility, EsMeCaTa creates
consensus proteomes, the consensus sequences created from the clustering of UniProt proteomes
at a specific taxonomic rank. These sequences are automatically associatedwith functional annota-
tions (EC numbers, GO terms, Kegg IDs) but they also aim to be integrated into further customized
annotation approaches. Functional annotations are reported in a function table which can be fur-
ther enriched with taxon abundances (when available) to create functional profiles. Altogether,
EsMeCaTa ensures explainability by comprehensively reporting information at each step of the
pipeline, such as taxa metadata, Uniprot proteomes, UniProt protein IDs, consensus sequences
and eggNOG-mapper predicted annotations.

EsMeCaTa was benchmarked using an algal microbiota dataset comprising paired 16S rRNA se-
quences and genomes, along with four large-scale microbial community datasets retrieved from
the MGnify database. These datasets encompassed diverse environments, including marine mi-
crobiota and host-associated microbiota. The benchmarking assessed the accuracy of EsMeCaTa
against metagenomes in predicting functions from taxonomic affiliations and evaluated the rele-
vance of its consensus proteome predictions. EsMeCaTa was also compared to the sate-of-the-art
method PICRUSt2. The results demonstrated the robustness, accuracy and flexibility of EsMeCaTa,
particularly at the species, genus, and family taxonomic ranks. To further showcase its utility, we
applied EsMeCaTa to a case study involving a novel dataset sampled from amethanogenic reactor
at different time points. This application enabled the identification of functions specific to dis-
tinct taxonomic groups by conducting enrichment analyses on EsMeCaTa predicted annotations.
It allowed the exploration of three methanogenic pathways based on the predicted functions and
consensus proteomes leading to the classification of OTUs based on their enzymatic potential to
perform these pathways. This analysis demonstrated that biogas productionmeasurements could
be explained by the combination of different methanogenic pathways, performed by different ar-
chaeal taxa.
Results
EsMeCaTa: Predicting organism functions from taxonomic affiliations
Using the organisms’ taxonomy, publicly-available proteomes and comparative genomics, EsMe-
CaTa provides estimations of metabolic capacity from taxonomic affiliations.
Method overview
We first illustrate the method on a set of 13 different taxa selected to cover both prokaryotic
(Gammaproteobacteria) and eukaryotic (Alveolata) taxa of diverse taxonomic ranks (from clade to
genus). These examples illustrate the amount of available proteomes and the biases toward most
studied groups (column "Input taxa" in Table 1, see Methods).

The method takes as input a tabulated text file containing taxonomic affiliations compatible
with the NCBI Taxonomy [26], that is, the taxonomic lineage describing an organism going from
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the highest taxonomic rank (such as the Kingdom) to the lowest one possible (such as the species
or genus). The input can be the result of different analyses such as taxonomic assignments of
marker genes (such as 16S rRNA gene), manually selected taxa or taxa identified from genomes or
metagenomes.

The method is divided into three steps (described in following paragraphs and in Fig 1), each
yielding a global survey of the current knowledge about each taxon of interest. First, the pipeline
retrieves on UniProt [27] the proteomes associated with each taxonomic affiliation (Fig 1, step 1
"proteomes"). Second, it estimates the clusters of homologous proteins shared by the proteomes
using MMseqs2 [28]. EsMeCaTa filters the protein clusters according to a threshold 𝑇𝑟 (Fig 1, step2 "clustering") leading to the creation of a consensus proteome for each taxon. Third, the consen-
sus proteomes are annotated using eggNOG-mapper [29, 30], providing the predicted functions
for the taxon (Fig 1, step 3 "annotation"). From the latter predictions, a function table is created
summarising the occurrences of annotations (EC numbers and GO Terms) in each taxon. This func-
tion table is a key output for the user to undergo further specialized analyses, at both taxon and
community scales.

Input taxa Selected taxa Proteome Protein clusters Annotations
Name Rank Name Rank number 𝑅𝑝 > 0 𝑅𝑝 ≥ 0.5 𝑅𝑝 ≥ 0.95 GO EC
Escherichia genus Escherichia genus 11 (ref.) 8527 3410 2451 4967 999
Citrobacter genus Citrobacter genus 95 29000 3058 0 4755 994
Cronobacter genus Cronobacter genus 14 8679 3141 0 4605 933

Enterobac-
Lelliottia genus teriaceae family 53 (ref.) 29376 2527 372 4699 884

Enterobac-
Jejubacter genus teriaceae family 53 (ref.) 29376 2527 372 4699 884

Enterobac-
Edaphovirga genus teriaceae family 53 (ref.) 29376 2527 372 4699 884
Enterobac- Enterobac-
teriaceae family teriaceae family 53 (ref.) 29376 2527 372 4699 884
Enterobac- Enterobac-
terales order terales order 101 49740 2486 4 4627 894
Gammapro- Gammapro-
teobacteria class teobacteria class 99 81362 1358 202 3008 648
Plasmodium genus Plasmodium genus 17 (ref.) 21291 4254 1273 5320 401
Leucocyto- Haemospo-
zoon genus rida order 18 (ref.) 22799 4313 1081 5378 402
Corallicola genus Conoidasida class 8 (ref.) 36260 2316 132 4985 291
Acavomonas genus Alveolata clade 51 (ref.) 305085 728 56 4109 170

Table 1. Predictions of EsMeCaTa on the toy example dataset. In column "Proteome number", "ref."denotes the use of reference proteomes only, in the case there was at least 5 reference proteomes, otherwisethe reference proteomes were used with other proteomes. In column "Protein clusters", 𝑅𝑝 frequency of thecluster’s proteins among proteomes, when superior to 0, it corresponds to all protein clusters found byMMseqs2 (thus similar to a pan-genome), at value 0.5, it corresponds to the default threshold used byEsMeCaTa and when superior or equal to 0.95, it corresponds to the notion of relaxed core-genome (proteinclusters found in almost all proteomes).

All three EsMeCaTa steps give insights into the number of available related proteomes (columns
"Selected taxa" and "Proteome number" in Table 1), the clustering of their proteins (column "Pro-
tein clusters" in Table 1), and the functions associated with these protein clusters (column "Anno-
tations" in Table 1).
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Figure 1. Method workflow. The input to EsMeCaTa consists in a list of taxonomic affiliations (denoted TA inthis figure) compatible with the NCBI taxonomy (figure top left). Step 1 is referred to as "EsMeCaTaproteomes" and consists in selecting for each of the input taxonomic affiliations the lowest possibletaxonomic rank such that a defined number of proteomes is available in the UniProt proteome database.Step 2 called "EsMeCaTa clustering" consists in computing the clusters of homologous proteins shared acrossthe selected proteomes using MMseqs2, and then in filtering the clusters whose proteins are shared by atleast half of the proteomes. Step 3 denoted as "EsMeCaTa annotation" consists in annotating the consensusproteins of each filtered protein clusters using eggNOG-mapper, which provides as output the predictedannotations such as Enzyme Commission (EC) numbers and Gene Ontology (GO) terms (figure bottom right).The predictions for all the different taxonomic affiliations of a dataset are then merged in a function tableshowing the occurrence of the functions according to the predictions made by EsMeCaTa.

Step 1: Accounting for the knowledge available about the taxa
For a given taxonomic affiliation (for example, cellular organisms; Bacteria; Proteobacteria; Gammapro-
teobacteria; Enterobacterales; Enterobacteriaceae; Escherichia for genus Escherichia), EsMeCaTa searches
for the associated proteomes in the UniProt proteomes database [27]. It filters out proteomeswith
BUSCO score lower than 80% [31]. It selects the taxon associated with at least 𝑁 proteomes and
having the lowest taxonomic rank as defined by the input affiliation (𝑁 ≥ 5 proteomes are consid-
ered by default). UniProt flags some proteomes as reference proteomes, which are landmarks in
the proteome space of organisms. EsMeCaTa first considers reference proteomes and use them
if there are at least 5 reference proteomes, otherwise it uses reference and non-reference pro-
teomes. If there are less than 5 reference and non-reference proteomes for the taxon, themethod
performs again this search with a higher taxonomic rank.
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In the example Table 1, six genera in the family Enterobacteriaceae are considered. For the
genera Escherichia, Citrobacter and Cronobacter, sufficient proteomes are available at the genus
level. In contrast for genera Lelliottia, Jejubacter and Edaphovirga, predictions have to be made at
the next higher rank, family, to obtain enough proteomes. All three genera are represented by
the same proteomes from the Enterobacteriaceae family, and hence, are described by the same
functions (columns "Selected taxa" in Table 1).

Likewise the four eukaryote genera exemplified as input to the method belong to a heteroge-
neously studied clade, the Alveolata. Within this clade, genus Plasmodium is awell-studied organism
and gathers 17 reference proteomes, so that predictions can be drawn at this genus level. For the
other three illustrated genera (Leucocytozoon, Corallicola and Acavomonas) few or no proteomes
are available in UniProt and predictions have to be drawn from higher taxonomic ranks, order
Haemosporidia, class Conoidasida and clade Alveolata (columns "Selected taxa" in Table 1). Note
that proteomes of the most studied taxa, e.g. genera Escherichia and Plasmodium in the latter ex-
amples, are over represented in the predictions made at higher taxonomic ranks. For example,
the 18 proteomes associated with order Haemosporidia include the 17 proteomes of Plasmodium.
This also means that certain proteomes can be used several times, for the functional predictions
as illustrated in Fig 2A.
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Step 2: Estimating the protein families shared across the proteomes of a given taxon
The proteins from the proteomes selected at the previous step are grouped into protein clusters
using MMseqs2 [28]. Then, the frequency of each protein cluster among proteomes is estimated
and denoted as the cluster’s representativeness 𝑅𝑝. Following the terminology applied in pange-
nomics [32], the core proteome corresponds to the subset of clusters whose proteins are shared
by all the proteomes belonging to a taxon (representativeness 𝑅𝑝 = 1). The pan-proteome stands
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for all the clusters found in at least one proteome, thus having a representativeness 𝑅𝑝 > 0.
The distribution of protein clusters over the selected proteomes displayed global trends in line

with current findings in pangenomics (columns "Protein clusters" in Table 1, Fig 2B). In particular
the relaxed core proteomes (𝑅𝑝 ≥ 0.95) consisted in a few thousand protein clusters at the genus
level, 2,451 for the genus Escherichia and 1,273 for genus Plasmodium (Table 1). This was congruent
with the core genome sizes reviewed in [32], ranging from 522 to 2,811 in six bacterial genera. The
core proteome estimation was sensitive to the quality of the proteomes retrieved in the database,
as shown by the two genera Citrobacter and Cronobacter for which no protein cluster was shared by
more than𝑅𝑝 ≥ 95% of the selected proteomes. Themethod also selected non-reference proteome
for these two genera, having BUSCO scores greater than 80%. The proteins potentially missing in
several proteomes lead to decreasing the core-proteome size. Along with lesser quality proteomes
considered, the higher number of proteomes analysed for genera Citrobacter and Cronobacter (95
and 14 proteomes respectively, Table 1) would contribute to estimating empty core proteomes.
Finally, the obtained core proteomes were smaller when higher taxonomic ranks were considered
(Fig 2B), due to the higher taxonomic diversity. This was congruent with previous estimations of
the core genomes in class Bacilli and phylum Chlamydiae involving 143 and 560 genes, respectively
[32].

At the genus level, the estimated pan-proteomes included from 8,527 to 29,000 protein clus-
ters (Table 1), consistent with the estimation of pan-genomes ranging from 3,320 to 12,483 gene
families in nine bacterial species [33] (containing Escherichia coli). Moreover, a wider taxonomic
diversity induces a wider gene family diversity: we consistently observed that the higher the con-
sidered taxonomic rank, the larger the estimated pan-proteome (Fig 2B).

Finally, EsMeCaTa applies a threshold of 𝑇𝑟 = 0.5, meaning that protein clusters are considered
for the next annotation step if their proteins are represented in at least half of the selected pro-
teomes (𝑅𝑝 ≥ 0.5). This threshold has been chosen based on validations with bacterial proteomes
presented below, and can be parameterised by the users. For each protein cluster retained, a
consensus sequence is computed. Altogether the consensus sequences constitute the consensus
proteome.
Step 3: Predicting the functions of the taxa from the protein clusters
Consensus sequences are then annotated using eggNOG-mapper [29, 30] (see Methods). For each
taxon, a tabulated file containing the predictive annotations is created. Finally, these results are
summarised into the function table, a matrix displaying the occurrence of each annotation (EC num-
ber and GO Terms, denoted hereafter as predicted functions) in the different taxa (columns "Anno-
tations" in Table 1 and Fig 2 C).

The function table can be examined thanks to several proposed representations. For example,
hierarchical diagrams summarise the functions predicted for the taxa, according to the ECnumbers
(Sup Figure S1). Predictions are also suitable for analyses using dedicated tools, such as function
representation using Brenda [34] or Revigo [35], and enrichment analysis using GSEApy [36] and
Orsum [37]. In the last sections of the manuscript, we illustrate how the functions predicted from
metabarcoding data can be investigated using enrichment analysis and pathway profiling.
Assessing EsMeCaTa on marine environmental samples and pig, bee and human
host-associated microbial communities
Predictions of EsMeCaTa (both consensus proteomes and function tables) were assessed using
several microbial datasets from environmental data. EsMeCaTa was applied to the Ectocarpus sp.
microbiota dataset and the MGnify dataset (see Methods).

A first comparison focused on an internal assessment of the cluster filtering threshold 𝑅. This
experiment required to launch EsMeCaTa multiple times with different cluster filtering threshold
𝑅, so it was done on a dataset of 10 bacterial complete genomes and 35MAGs from symbionts [38,
39].
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Further comparisonswere then performedusing theMGnify datasets [5, 6] to assess themethod
accuracy. A comparisonwith a state-of-artmethod for predicting functional profiles (PICRUSt2) was
performed. A third comparison was made by using all the MAGs with a completeness greater than
or equal to 90% to check the quality of predictions made by EsMeCaTa based on three features: (1)
EC number (as in previous comparison), (2) GeneOntology terms and (3) protein sequences. Finally,
a fourth comparison assessed the quality of the consensus proteomes predicted by EsMeCaTa
according to the corresponding proteins from the MAGs.
The cluster filtering threshold of 𝑇𝑟 = 0.5 as a balance between recall and precision for
EC prediction on complete genomes and MAGs dataset
To explore the impact of the cluster filtering threshold on EsMeCaTa prediction accuracy, an ex-
periment was performed on a dataset combining 10 bacterial complete genomes from [38] and
35 MAGS having at least 90% of completeness from [39] (the Ectocarpus sp. microbiota dataset,
see Method). Five runs of EsMeCaTa were performed on this dataset with five different values of
the representativeness thresholds 𝑇𝑟 (0, 0.25, 0.5, 0.75 and 0.95). The predicted EC numbers for
each proteome predicted by EsMeCaTa were compared to the EC numbers from the associated
genome annotations. A confusion matrix was then created and F-measures, precision and recall
were computed.

Cluster filtering threshold (𝑇𝑟 = 0) corresponding to pan-proteome is associated with the lowest
precision but the best recall (Figure 3 A). This is expected as, by definition, the pan-proteome con-
tains all the protein clusters of a taxon, and thus a maximum number of true positives and false
positives. Conversely, cluster filtering threshold (𝑇𝑟 = 0.95) corresponding to core proteome is as-
sociated with the highest precision but the lowest recall. There is in this case a limited amount of
protein clusters kept, but which are widely represented in the taxon, thus inducing a low false pos-
itive rate. The threshold 𝑇𝑟 = 0.5 corresponded to a balance between precision and recall (Figure 3
A).
EsMeCaTa performed similarly to PICRUSt2 for EC prediction
MAGs from the MGnify database [5, 6] were used as a reference to estimate the predictive perfor-
mances of the method. For each MAG of the MGnify dataset, four elements were extracted and
used in this analysis: (1) their taxonomic affiliations, (2) their proteomes, (3) their annotations (re-
sulting from eggNOG-mapper runs applied to their protein contents) and (4) their predicted rRNAs.
The MAG taxonomic affiliations were considered as input to EsMeCaTa, which predicted the corre-
sponding consensus proteome and annotations. These results were compared to the MAG’s own
protein sequences and annotations.

FourMAGdatasetswere considered fromdiverse environments: honeybee-gut-v1-0 (627MAGs),
human-oral-v1-0 (1,225 MAGs), marine-v1-0 (1,504 MAGs) and pig-gut-v1-0 (3,972 MAGs, see Meth-
ods). Among these MAGs, only the ones with a completeness greater than or equal to 90% were
kept, reducing these datasets to a total of 3,664 MAGs. Among the 3,664 MAGs, 1,094 MAGs con-
tained 16S rRNA sequences (Table 2), of which 565 could be analysed using PICRUSt2 [8, 9] (198
from honeybee-gut, 55 from human-oral, 187 frommarine and 125 from pig-gut datasets). The de-
crease in MAGs used for this analysis from 3,664 to 1,094 could be explained by the fact that 16S
rRNA sequences are often missing from MAGs [40]. The decrease from 1,094 to 565 was caused
by poor alignment of the sequences to PICRUSt2 reference sequences (no match with identity su-
perior or equal to 80%).

EC numbers predicted by PICRUSt2 from these 565 16S rRNA sequences were extracted and
compared to the corresponding MAG annotations to compute F-measures. These F-measures
were then compared with the F-measures from EsMeCaTa predictions. GO Terms predicted by
EsMeCaTa were not used in the comparison as PICRUSt2 did not predict them. The computed F-
measures indicate that both PICRUSt2 and EsMeCaTa have comparable performances to predict
EC numbers for an organism (Fig 3 B).
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Figure 3. Validation of EsMeCaTa on several datasets. A. Impact of cluster filtering threshold on
performance metrics on EC number predictions on the algal microbial dataset. F-measures, precisionand recall obtained by comparing EsMeCaTa predictions to genome annotations on the EC numberpredictions. Comparison with 10 paired data of 16S rRNA and complete genomes from [38] and 35 MAGsfrom [39]. B. Comparison of EsMeCaTa and PICRUSt2 predicted ECs with annotations from MAGs of
MGnify dataset. F-measures measured on predictions of both methods according to the taxonomic ranksover the whole 565 MAGs. Taxonomic ranks of the MAGs correspond to the rank selected by EsMeCaTa.Bracket with star indicates significant difference between F-measures when comparing the two methodsinside a taxonomic rank, according to a Mann–Whitney U test (see Methods). C. Validation of EsMeCaTa
predictions against 3,664 MAGS from MGnify database according to the taxonomic rank selected by
EsMeCaTa ofMGnify dataset. F-measures computed from EC number, GO Terms and Reciprocal Best Hits(RBH) between EsMeCaTa proteomes and their associated MAGs (used as the reference). D. Validation of
EsMeCaTa predicted proteomes against 3,664 MAGS from MGnify database ofMGnify dataset.Percentage of Conserved Proteins (POCP) between EsMeCaTa predicted proteomes and their associatedMAGs according to the taxonomic rank used by EsMeCaTa to make predictions. Compact Letter Display (a, b,c, d and/or e) indicates significant difference of Dunn’s post-hoc tests when comparing variable distribution(such as F-measures) according to either the threshold used (Panel A) or the taxonomic ranks (panels B, C andD). For more information on compact letter display, see Methods.

The two method performances were further examined according to the taxonomic ranks con-
sidered by EsMeCaTa for prediction. Both EsMeCaTa and PICRUSt2 achieved better performances
for the lowest taxonomic ranks (such as species and genus, Fig 3 B, Kruskal-Wallis chi-squared =
713.19, df = 6, p-value< 2.2𝑒−16). Low taxonomic ranks considered by EsMeCaTa for predictions im-
ply that closely related proteomes are available in UniProt, which are expected to encompassmore
similar protein contents and sequence homology, thus helping in accurate comparative genomics
predictions. In contrast, higher taxonomic ranks involve larger taxonomic diversity, broader range
of gene contents and higher homologous sequence divergence, impeding prediction accuracy.

The decrease of F-measures could be explained by a similar availability and diversity of genome
or proteome in UniProt (used by EsMeCaTa) and in the PICRUSt2 database. This suggests that PI-
CRUSt2 also has decreasing prediction performances for the organisms from less described taxo-
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sub- super-
Rank species genus family order class class phylum kingdom Total
EsMeCaTa 247 1,279 1,209 291 1 541 64 32 3,664
16S rRNA 80 422 281 100 1 155 37 18 1,094
PICRUSt2 39 226 133 50 0 90 19 8 565

Table 2. Number of MAGs considered for validating EsMeCaTa predictions, of 16S rRNA available in thoseMAGs and of 16S rRNA that could be analysed using PICRUSt2. Columns correspond to taxonomic ranksselected by EsMeCaTa. The row denoted as "EsMeCaTa" indicates the number of MAGs in the four datasetshaving a completeness greater or equal to 90% and considered by EsMeCaTa. The row denoted as "16S rRNA"corresponds to the number of MAGs used by EsMeCaTa and having a predicted 16S rRNA. The row"PICRUSt2" corresponds to the number of MAGs with 16S rRNA sequence from which PICRUSt2 was able tomake predictions.

nomic groups. Note however that the taxonomic ranks indicated on the abscissa of Fig 3 B corre-
spond to the ranks used by EsMeCaTa to make the predictions. A similar information is given by
PICRUSt2 with the "Nearest Sequenced Taxon Index".
Accurate prediction of functions until order when compared to MAGs from MGnify
The prediction made by EsMeCaTa on the 3,664 MAGs were assessed regarding three features:
(1) EC numbers, (2) Gene Ontology terms and (3) protein contents. For the latter comparison, the
consensus sequences of the homologous protein clusters predicted by EsMeCaTa were compared
to the corresponding protein sequences of the MAGs (Fig 3 C). Confusion matrices were created
and F-measures were computed from them (see Methods).

The results of EC numbers comparison in Fig 3 C presented similar patterns as the comparisons
in the previous section with the 565 MAGs. GO Terms showed similar F-measures as EC numbers
but with a greater variability. This may be due to the fact that GO Terms include more diverse
annotations (metabolism, regulation, localisation) than EC numbers and thus GO Terms are more
numerous (around 45,000 terms compared to 9,000 EC numbers), possibly encompassing less con-
served annotations.

For all taxonomic ranks, the two functional annotations (GO terms and EC numbers) had bet-
ter F-measures than the consensus protein sequences. These annotations were predicted from a
subset of the proteins. A possible explanation of the difference could be that the functional anno-
tations are inferred from the most conserved protein sequences that are more easily predicted by
EsMeCaTa.

A complementary analysis was performed to identify the impact of the dataset on EC numbers,
GO Terms and RBH predictions (see Supplemental Figure Sup Fig S2). The honeybee and human
oral datasets exhibited better predictions than the marine and pig gut datasets, highlighting the
heterogeneity of knowledge available for different environments.
EsMeCaTa consensus proteomes obtained relevant POCP score at the genus level when
compared to MAGs from MGnify
To refine the results from the previous section, another analysis on the consensus proteomes of
EsMeCaTa was performed using the Percentage of Conserved Proteins (POCP) metrics [41]. POCP
is ametrics used to compute the similarity between two proteomes. It was defined to create bound-
aries between prokaryotic genera based on protein sequence similarity. A POCP greater than 50%
was defined to assign a proteome to a specific genus. In this article, the POCP metrics was con-
sidered to estimate the similarity of the consensus proteome of EsMeCaTa to the corresponding
MAG. Amajority of proteomes estimated from genus rank had POCP ranging from 50% to 90% (Fig
3 D). These values are close to the ones proposed by [41], supporting the fact that the consensus
proteomes estimated by EsMeCaTa, in term of sequence conservation, could be considered as be-
longing to the same genus as their associated MAGs. Thus, it could be used as a representative of
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the MAG taxonomic group. As expected, this metrics decreases as the taxonomic rank increases
(Fig 3 D). Overall, in terms of conserved proteins, these results suggest that EsMeCaTa provides
accurate estimates of proteomes up to the genus and family ranks.
Exploring predicted functions in a methanogenic reactor microbial community
Themicrobial community fromanexperimentalmethanogenic reactorwas studiedusing ametabar-
coding sequencing approach. Methanogenic reactors are anaerobic biological processes wheremi-
crobial communities (composed of bacteria and methanogenic archaea) degrade complex organic
matter mainly into methane, CO2 and water. During a 195 days long experiment, 27 samples of
digestate were retrieved from the reactor and their microbial communities were characterised by
DNA extraction and 16S rRNA high throughput DNA sequencing (see Methods and Supplementary
materials). Reads were analysed using FROGS [42], providing taxonomic affiliations for 445 opera-
tional taxonomic units (OTU, see Methods). For each time point, OTU relative abundances (Sup Fig
S3), biogas production and additional physico-chemical parameters (Sup Fig S4) were measured.

The diversity of the OTUs was in line with previous studies, exhibiting a community dominated
by the phyla Bacillota (formerly Firmicutes, see [43]) and Bacteroidota (formerly Bacteroidetes, see
[43]), representing 53% and 16% respectively of the OTUs [44, 45] (see Supplementary Materials
and Sup Fig 3). Few affiliations were as precise as species (58), most corresponded to the ranks
genus and family (306), and 81 were assigned to taxonomic ranks higher than order (lines in Sup
Fig S5).

The 445 taxonomic affiliations were used as input to EsMeCaTa. The method selected the tax-
onomic ranks suitable for prediction according to the proteomes availability in UniProt, provid-
ing insights into the knowledge available for the studied community (Fig 4 A, generated by esme-
cata_report command). For the 364 OTUs identified at the species, genus or family rank by FROGS,
79% (289) were selected by EsMeCaTa at a taxonomic rank of species, genus or family (Sup Fig
S5). For the other OTUs, EsMeCaTa considered higher taxonomic ranks, such as class (72 OTUs) or
phylum (44). This indicated the presence within the methanogenic community of organisms that
are weakly characterised at the genomic level [44]. This concerned, for example the presence of
OTUs from understudied bacterial lineage, such as phyla Cloacimonadota [46] or Hydrogenedentes
[47, 48].

Thousands of metabolic functions were predicted by EsMeCaTa for this methanogenic com-
munity (Sup Figure S6 A and B). An enrichment analysis of metabolic functions across phyla was
first performed using GSEApy [36] and Orsum [37] in order to automatically highlight the major
differences between the phyla present in the community (see Methods). Among the identified
functions, two of the three functions enriched in the phylum Euryarchaeota were associated with
methanogenesis. These corresponded to the EC number 2.8.4.1 catalysing the last reaction of
methanogenesis and the EC number 2.1.1.245, a key enzyme in methanogenesis from acetate (Fig
4 B and Sup Fig S7, generated by esmecata_gseapy command). This is congruent with the diversity
of the Archaea identified in the reactor, which are specifically methanogens (Fig 4 A), and with the
fact that methanogenesis in reactor conditions is exclusively performed by archaeal species [49].

But not all functions could be searched with simply functional annotations. For example, cel-
lulose degradation performed by cellulosome is expected in methanogenic reactor. This intricate
complex is, for example, described by the MetaCyc database as a multi-step reaction (reaction
RXN-14887) without EC number assignment. A method has been proposed to identify potential or-
ganisms containing themby using Genomics and Bioinformatics tools [50]. It is based on homology
search and it has been applied to EsMeCaTa consensus proteomes in order to identify taxon con-
taining cellulosome in the samples. Reference dockerin and cohesin sequences from the literature
were aligned using Diamond [51] against the consensus proteomes (see Method). Both proteins
matched consensus sequences predicted for genera Acetivibrio and Ruminiclostridium (Sup Fig S8).
This suggests a cellulosome activity in those taxa, in agreement with previous works [52, 53].
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Characterising Archeae trophic groups operating methanogenic pathways in the biore-
actor
Several methanogenic pathways were profiled using EsMeCaTa predictions. An overview of these
pathways was generated by combining pathways from metabolic databases and literature (Fig 5,
seeMethods). The pathway reactionswere then searched in twoways : either by directly identifying
EC numbers in the function table, or by aligning reference sequences from SwissProt or KEGG
Orthologs to the consensus proteomes (see Methods).

First, reactions from the hydrogenotrophic methanogenic pathway were found in all Archaea
of the community (by the three annotation procedures), except in Candidatus Methanofastidiosum
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(Fig 5). This is expected as most of the methanogenic archaea observed in reactor conditions are
known to perform hydrogenotrophic methanogenesis [44]. Note however that the presence of the
enzymes does not necessarily indicate that the pathway is active in the community: Methanosaeta
was predicted to possess all the required enzymes, but it can not use hydrogen as an electron
donor and relies on a direct interspecies electron transfer [54, 55].

Second, concerning the acetotrophic methanogenic pathway, EC numbers 2.7.2.1 and 2.3.1.8
were found only in Methanosarcina (Fig 5), consistently with previous results showing its ability to
perform both hydrogenotrophic and acetotrophic methanogenesis [56]. An alternative reaction
involves EC number 6.2.1.1 for acetate degradation, which is used for methanogenesis specifically
inMethanosaeta [57, 58]. This reaction was found in all Archaea of the community, except Candida-
tus Methanofastidiosum (Fig 5). These reactions are reversible and involved in carbon assimilation
through acetate synthesis [59], such as performed by the Wood–Ljungdahl pathway (WLP). Con-
gruently these reactions were predicted in a wide range of bacterial clades, with some known to
perform WLP (Sup Fig S9 and S10). The next step of the acetotrophic methanogenic pathway, EC
number 2.3.1.169, was not predicted by EsMeCaTa annotation step but it was foundwith alignment
to sequences from SwissProt and KEGG Orthologs.

Third, for themethanogenic pathway frommethanethiol (Fig 5), EC number 2.1.1.251was found
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only in the predicted annotations for Methanosarcina, which is consistently known to achieve this
pathway [60, 61]. Moreover, using sequences homology searches, the reaction was also found in
CandidatusMethanofastidiosum (whichwas expected according to literature [62]) and inMethanobac-
terium (which contains species that perform this function [63]).

Altogether, three methanogenic pathways were profiled in six taxa using EsMeCaTa annota-
tions, consensus proteomes with subsequent annotation procedures and literature validations
(Fig 5). These results illustrated also how pathway profiling can be achieved using EsMeCaTa pre-
dictions. In particular the absence of predictions for EC number 2.3.1.169 by eggNOG-mapper
showed the limit of relying on specific annotation, and the usefulness of consensus proteomes for
additional homology search.

The EsMeCaTa annotations and consensus proteomes predictions enabled the association of
the three methanogenic pathways with OTUs exhibiting the enzymatic potential characteristic of
these pathways (Fig. 5 B). Our method predicted that four taxa can activate hydrogenotrophic
methanogenesis (associated with 11 OTUs), two taxa can activate acetotrophic methanogenesis
(associated with three OTUs), and three taxa can activate methylotrophic methanogenesis (associ-
ated with eight OTUs).

Since eachpathway is linked to a specific substrate and to several organisms, OTUswere grouped
into different trophic categories based on the number of substrates they are predicted to degrade.
Five trophic groups were identified in the bioreactor (Fig. 5 C), including complex trophic groups
capable of activating multiple pathways, such as Methanosarcina. More specifically, the tripotent
group comprises two Methanosarcina OTUs; the bipotent group (having both hydrogenotrophic
andmethylotrophic pathways) includes fiveMethanobacteriumOTUs; the hydrogenotrophic group
consists of fourMethanospirillum orMethanomicrobiales OTUs; the methylotrophic group contains
one Candidatus Methanofastidiosum OTU; and the acetotrophic group contains one Methanosaeta
OTU.

The five trophic groups include all the methanogenic taxa identified in the community by Es-
MeCaTa. Thus we hypothesised that the biogas production could be explained by these organism
abundances. In the next sections we investigate the dynamics of these groups in light of the biogas
production over time.
Linking detected functions to microbial groups abundances
To assess the impact on biogas production of the five trophic groups associated with methano-
genesis, as predicted from the EsMeCaTa output (Fig. 6 A), we compared the relative abundances
of these groups to biogas production. For each trophic group, the relative abundances of their
respective OTUs were summed and then normalized using z-score normalization (see Methods).
The normalized abundances were subsequently analyzed in relation to bioreactor perturbations
caused by different intakes over time (pig slurry phase, fruit phase, fat phase, and food waste
phase).

As shown in Fig. 6 B, the time series of trophic group abundances exhibited distinct and charac-
teristic behaviors, and none of them clearly correlates with the biogas production measurements.
The methylotrophic group was abundant during the slurry and fat phases. For the slurry fate, this
is consistent with the presence of methanethiol in slurry [64]. The hydrogenotrophic group was
particularly abundant during the fruit and fat phases, whereas the acetotrophic group displayed
a peak in abundance at the beginning of the slurry phase and increased during the fruit and fat
phases. Both the tripotent and bipotent groups showed increased abundances when food waste
was added.

To test the cumulative effects of the different trophic groups on biogas production, we applied
a linear model (see Methods), whose predictions are shown in Fig. 6 C. The model predicted that
the combined abundances of Archaea explained biogas production significantly better than the
intercept alone (F-statistic: 6.018 on 5 and 21 degrees of freedom, p-value = 0.001321). Two groups
were identified as key contributors to this result: the bipotent group containingMethanobacterium
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(p-value = 0.000588) and the methylotrophic group containing Candidatus Methanofastidiosum (p-
value = 0.001781).

These findings suggest that the trophic groups identified through post-processing of EsMeCaTa
outputs are sufficient to statistically and significantly predict biogas production under a cumulative
hypothesis. This analysis underscores the importance of performingmultiple analyses using EsMe-
CaTa results and combining them with post-analyses (as shown in Fig. 6 A) to better understand
complex behaviors within a bioreactor subjected to multiple perturbations.
Discussion
In this article, we described a method to predict protein sequences and functions for taxa from
their taxonomic affiliations. The method was applied to several datasets in order to validate the
predictions and to illustrate how they might be considered for further investigations. By giving
additional information on the prediction (selected taxonomic rank, available proteomes, consen-
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sus protein sequences associated with the predictions), EsMeCaTa gives an explainable way to
assess the predictions and filter them. These results can be both automatically analysed, for ex-
ample using enrichment analysis, or manually investigated as shown in the section focusing on the
methanogenic reactor.
Handling the heterogeneity of the sequencing data characterizing the environmental tax-
onomic diversity
Several alternative phylogenetic marker genes are also considered to study environmental com-
munities, such as 18S rRNA for eukaryotes [65], ITS for fungi [66], or gyrB [67] and rpoB [18] genes
for bacteria. Obtaining taxonomic affiliation from these gene amplicon sequences is made pos-
sible thanks to plethora of methods [68]. Furthermore, other approaches can be considered to
profile the environmental taxonomic diversity, such as shallow whole genome sequencing [19, 20],
metatranscriptomics [21] or long read sequencing [69].

EsMeCaTahas beendesigned to handle these numerous heterogeneous technologies formetabar-
coding andmetagenomics, by taking as input the common predictions issued from these data : the
sequenced reads’ taxonomic affiliations. We demonstrated this flexibility by applying EsMeCaTa to
several datasets: (1) an example containing 13 manually selected taxa ranging from genus to class,
(2) taxonomic affiliations of MAGs and complete genomes frommetagenomics, and (3) taxonomic
assignment frommetabarcoding of 16S rRNA genes. Thus EsMeCaTa appears suitable to compare
predictions at a functional level issued from different sequencing technologies.

As a perspective, EsMeCaTa could also be used to link metabarcoding and metagenomics in
the same experimental study, especially in time-series community measurements that combine
a large number of metabarcoding samples with a few metagenomics samples. In such an exper-
imental setting, EsMeCaTa could be configured to use protein predictions from the assembled
metagenomes as a basis for function prediction instead of UniProt, at least for the taxa repre-
sented in the metagenome. Thanks to this pairing, the predicted metagenomic profiles could thus
incorporate the particularities of the genomes of the local species, while benefiting from the higher
spatial and temporal resolution provided by metabarcoding approaches.

Similarly, EsMeCaTa could be applied to the analysis of culturomics data banks. This high-
throughput culture approach combines the taxonomic characterization of the bank through am-
plicon sequencing and the complete genome sequencing of a few selected organisms [70]. In this
context, EsMeCaTa could expand functions associated with complete genomes with functional pre-
dictions related to all the bank’s organisms.
Highlighting bias due to the heterogeneity of knowledge associated with taxa
EsMeCaTa predictions were compared to protein sequences and annotations of MAGs from the
MGnify datasets andwith annotations frompaired data consisting in 16S rRNA sequences and com-
plete genomes or MAGs for an algal microbiota dataset. With these comparisons, we illustrated
the impact of available knowledge (here proteomes from UniProt) according to the taxon used as
input. The quality of these predictions were shown to be dependent on the taxonomic ranks that
were selected by EsMeCaTa, less available knowledge requires the use of more distant organisms
and to select larger taxon, then impeding the predictions.

In a comparison with PICRUSt2 on the MGnify datasets, we showed that both methods have
similar performance for EC predictions and that both methods were impacted by the issues of
knowledge availability (despite not using the same database). This highlighted the impact of uncer-
tainty and the explainability given by such methods on functional estimation.

A complementary explanation to the loss of quality prediction of functional annotationmethods
such as EsMeCaTa and PICRUST2 is the ecology and adaptation of the organisms present in the
taxon selected by the tools. Indeed, ecological diversity of organisms in a taxon impacts the pan-
genomeof taxon by the number of shared and unique genes. This is the case for open pan-genome
when newly sequenced genomes continuously reveal new genes [32]. This is for example the case
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with the open pan-genome of the species Escherichia coli [71]. In contrast "closed" pan-genomes
denote taxa encountering few horizontal gene transfers. This highlights the difficulty for any tool
to estimate organisms potential in taxa with open pan-genomes, due to the potential unique genes
present in these organisms resulting, for example, from the numerous horizontal gene transfers
providing new and rare functions.
Explaining and refining predictions with consensus proteomes and intermediate infor-
mation
In order to give more insights on the step leading to the prediction of function, EsMeCaTa pro-
vides intermediary information such as the taxon used by EsMeCaTa, proteomes used, consensus
proteomes estimated... As demonstrated with the methanogenic reactor dataset, this allows for a
better understanding of the predictions made by the method but also to make advanced search.
Consensus proteomes, in particular, are an insightful result of EsMeCaTa that was leveraged to
explore the protein potential of a taxon, for example, by searching specific databases or by char-
acterizing protein complexes.

More generally, by relying on UniProt IDs, EsMeCaTa provides a link between microbial com-
munity datasets and either cross-references from many other databases or results, such as the
predicted structure for millions of proteins [27, 72]. Another information of interest is the envi-
ronmental conditions associated with the studied organisms. Currently EsMeCaTa retrieves all the
proteomes of a taxon. Among the selected proteomes, some could be linked to organisms that
could not be living in the environmental conditions studied. Thus this could require a new filtering
step according to the known living conditions of the associated organisms, for example pH, tem-
perature aerobic or anaerobic. This information could be retrieved from databases, such as the
BacDive database [73]. As perspective, we plan to use this information both to increase the predic-
tion accuracy of EsMeCaTa and to filter the proteomes used to estimate the consensus proteomes.
Taking knowledge advances into account
A key feature of the EsMeCaTa is to be up to date with the latest knowledge available from UniProt,
giving the advantage of computing consensus proteomes associated with newly identified taxa
and following updates from the taxonomy database. But this comes with a cost on performance
(Sup Table 1), reproducibility related to updates of UniProt or NCBI Taxonomy databases, impact
on UniProt servers and ecological impact (necessity of downloading and computing for each run
launched by users). As another perspective, we plan to improve EsMeCaTa by creating precom-
puted database of proteomes predictions according to new release of UniProt associated with
specific version of the NCBI Taxonomy database. This will require to parsemost of the taxa present
in the UniProt database and apply EsMeCaTa on these taxa to create the precomputed database.
Relying on this precomputed database would speed up the predictions and avoid the reprocessing
of the different taxa.
Shifting from population abundances to individual taxa
Many functional characterization methods include a final step of functional profiling based on
abundance data. However, most are tailored to specific genemarkers andmay be considered chal-
lenging [74, 75]. For example, when functional profiles are created using 16S rRNA gene sequenc-
ing, estimating the functional abundances that would have beenmeasuredwithmetagenomic data
requires several steps. These include weighting predicted functions by OTU abundances and, in
the case of 16S rRNA amplicons, normalizing them by gene copy numbers [8, 9].

In this work, however, given that EsMeCaTa accepts a wide range of inputs from different se-
quencing technologies, the main pipeline does not include functional profiling based on organism
abundances. Instead, we adopted a post-processing strategy to enrich functional tables with taxon
abundances and generate comprehensive functional profiles tailored to specific contexts.

The first example of such post-processing is illustrated in the case study on methanogenesis.
Here, functional annotations predicted by EsMeCaTa were used in a post-analysis to design func-
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tional profiles for trophic groups associated with methanogenic pathways. Specifically, we calcu-
lated the sum of OTU abundances involved in each trophic group. Finally, a z-score normalization
was applied, enabling comparison of the trophic group abundance dynamicswithmethane produc-
tion over time. This approach facilitated an assessment of how trophic group dynamics correlated
with methane production trends.

A second example of post-processing for functional profiling is described in [76]. In this study,
EsMeCaTa was applied to metagenomic datasets to associate taxa with functions, followed by a
machine learning approach to identify discriminative functions. Function abundance values were
calculated using a two-step procedure: first, for each taxon in a sample, the number of protein
clusters associated with a given function was summed and multiplied by the taxon’s abundance.
Then, across all taxa in the sample, these values were summed to obtain the total abundance for
each function. These computed function abundances were subsequently used to train random
forest classifiers to distinguish between patient and healthy individuals. Interestingly, classifica-
tion based on predicted function abundances achieved comparable performance to classification
based on organism abundances, while revealing hidden cumulative effects in microbiomes. As a
future direction, we anticipate adapting the classification strategy developed in [76] to multi-level
data, which could provide additional insights into methanogenesis dynamics.
Conclusion
EsMeCaTa is a new software to estimate consensus proteomes and metabolic functions from tax-
onomic affiliations. To handle results from different sequencing approaches (metagenomics or
metabarcoding), EsMeCaTa relies on the taxonomic affiliations inferred from the sequencing data.
This software provides several intermediary results to help understanding its predictions and allow-
ing users to make additional analyses and annotations thanks to predicted consensus proteomes.
Benchmark between EsMeCaTa predictions and MAGs to exhibit its predictions. Furthermore, Es-
MeCaTa and PICRUSt2 were compared to show their similar performances. The possibility of EsMe-
CaTa to study metabarcoding data was shown using a novel dataset from amethanogenic reactor.
This software gives a flexible method to study microbial communities from environmental data.
Methods
Datasets
Four datasetswere considered in the article: (1) an arbitrary taxa list, (2) a dataset ofMAGs and com-
plete genomes from symbiotic bacteria of Ectocarpus sp. brown algae (3) a dataset of Metagenome-
Assembled Genomes (MAGs) from theMGnify database and (4) a microbial community sequenced
from an experimental methanogenic reactor.
Benchmarking datasets
The arbitrary taxa list dataset contains thirteen taxa manually selected to illustrate the EsMeCaTa
workflowand itsmain outputs. Taxawere separated into two groups, a first one containing bacteria
close to the Escherichia genus and a second one containing eukaryota related to the Plasmodium
genus. Both these genera contain model species for which multiple proteomes were available,
allowing functional prediction at the genus level. Few or no proteomes are associated with the
other genera considered, precluding predictions at the genus level. This dataset is available as a
list of taxonomic affiliations ().

The Ectocarpus sp. microbiota dataset was used to investigate the impact of the cluster filter-
ing threshold, or representativeness 𝑅, on the predictions. It contains 10 paired data associating
each a 16S rRNA gene sequence and a complete genome from [38, 77] and 35 MAGs from [39],
having a completeness greater than 90%. The taxonomic affiliations for the complete genomes
were obtained from the 16S rRNA sequencing of the associated organisms available in [77]. The
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taxonomic affiliations for the MAGs were extracted from the supplemental Table S4 in [39]. The
45 taxa affiliations are provided in the .

The MGnify dataset was obtained from the MGnify database [5, 6] and used to estimate the
accuracy of the predicted functions and consensus protein sequences. The following genome cat-
alogues of MGnify were used: honeybee-gut-v1-0 (627 MAGs, taken from https://ftp.ebi.ac.uk/pub/
databases/metagenomics/mgnify_genomes/honeybee-gut/v1.0/), human-oral-v1-0 (1,225 MAGs, taken
from https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-oral/v1.0/), marine-
v1-0 (1,504 MAGs, taken from https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/
marine/v1.0/) andpig-gut-v1-0 (3,972MAGs, taken from https://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/pig-gut/v1.0/).

The subset of 3,664 MAGs with a completeness greater than or equal to 90% were considered
for benchmarking ().
Methanogenic community case-study
The methanogenic reactor dataset corresponds to the diversity sequenced from an experimental
methanogenic reactor and illustrates the application of EsMeCaTa to a real metabarcoding dataset.
A detailed description of the experimental setup was published in [78] and is summarized in the
section "Summary of the methanogenic reactor operation and microbial community characteriza-
tion". The sequencing procedure is described below.

Digestate was sampled weekly from the methanogenic reactor for 195 days to perform a total
DNAextraction of itsmicrobial community using theNucleoSpin®Soil DNAextraction kit (Macherey-
Nagel, USA). Metabarcoding targeted the archaeal and bacterial hypervariable V4-V5 regions of the
16S rRNAgenes using the so-called universal primers 515F (5’- IonA adapter-Barcode-GTGYCAGCMGCCGCGGTA-
3’) and 928R (5’-Ion trP1 adapter-CCCCGYCAATTCMTTTRAGT-3’) and PCR amplification. The re-
sulting amplicons were purified, quantified and sequenced at the metagenomic platform of the
UR1461 PROSE of INRAE (Antony, France) according to manufacturer’s instructions, and as de-
scribed in [79]. Sequencing was performed on an Ion Torrent Personal Genome Machine using
Ion 316 Chip V2 (Life Technologies) and Ion PGM Hi-Q View Sequencing Kit (Life Technologies).

A total of 2,164,633 raw reads were sequenced from the 27 digestate samples and were pro-
cessedwith the FROGSpipeline [42] following the authors’ recommendations on theMIGALEGalaxy
instance (INRAE, Jouy-en-Josas, France). The first processing steps included primer trimming and
quality control, resulting in 1,145,396 reads of approximately 380 base pair length without N. The
next steps consisted in sequences clustering, chimera removal, low abundance OTU filtering at
0.01%, and taxonomic affiliation of the OTUs with 16S SILVA Pintail100 [65]. It resulted in 1,031,447
clean sequences affiliated to 445 taxa, with amean of 38,202 +/- 17,300 sequences per sample. The
445 taxa dataset is provided in the . The metabolites measured in the methanogenic reactor are
provided in .
Metadata of the run
All these different run of EsMeCaTa were done using 10 CPUs and 60 GB of RAM. The runtimes
taken by themethod can be seen in Sup Table S1. The run were performed with EsMeCaTa version
pre-release 0.5.0. The different metadata on the version of the used dependencies are present in
Sup Table S2.
The EsMeCaTa workflow
EsMeCaTa is a Python package predicting protein sequences and functions from taxonomic affil-
iations that can be called with the command esmecata. The step of this pipeline are described in
Figure 1 and below. It takes as input a tabulated file containing a list of taxonomic affiliations and it
outputs consensus proteomes and functions tables indicating the occurrence of functions (EC num-
bers and GO Terms) in the taxa. It relies on several Python packages (Biopython, bioservices, ete3,
pandas, requests), NCBI Taxonomy database, UniProt database, MMseqs2 and eggNOG-mapper.
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Identification of available proteomes and selection of associated taxon from taxonomic
affiliations.
The esmecata proteomes command uses the ete3 Python package [80] to parse the input taxonomic
affiliation file and assign a NCBI taxon ID [26, 81] to each input taxon. A maximum taxonomic
rank can be parameterized by the user to limit the analysis to the lower ranked taxa (option rank
limit). The complete lineage information is used to determine the appropriate NCBI taxon ID when
ambiguities occur.

REST API queries to the UniProt [27] proteome database extract the identifiers of all Uniprot
proteomes associated with each NCBI taxon ID. Metadata of the proteomes allows the selection of
the taxon ID with the lowest rank in the taxonomic affiliations such that it is associated with at least
𝑁 proteomes (defaut value𝑁 = 5) having a BUSCO score [31] greater than 80% and not tagged as
"redundant" and "excluded" in Uniprot.

For each NCBI taxon ID, if the number of selected proteomes is greater than a parameterised
threshold (100 by default), a sub-sampling procedure is performed. A taxonomic tree is created
with the input taxon as root and the organism IDs associated with each of the proteomes as leaves.
This allows sub-sampling 100 random proteomes which conserves the distribution of proteomes
in each sub-group of the taxon and thus the taxonomic diversity. Due to the randomness of the
selection during sub-sampling, one can expect variations with the taxon impacted by this proce-
dure. All selected proteomes are then downloaded. The esmecata check command performs the
same steps without downloading the proteomes, thus simply showing the proteome availability in
the Uniprot proteome database.
Estimation of the consensus proteome from protein clustering and cluster filtering.
The esmecata clustering command computes a consensus proteome by identifying the proteins
shared by the proteomes associated with a taxon. MMseqs2 [28] performs protein sequence clus-
tering from the proteomes and generates consensus protein sequences for each cluster using the
most frequent amino-acid at each position of the profile. The sequence identity threshold is chosen
to match distantly related homologues, with a minimum sequence identity of 30% and a minimum
coverage of 80% [82]. The resulting clusters of homologous proteins are then filtered according to
the distribution of the proteins among the proteomes. The representativeness ratio 𝑅𝑝 betweenthe number of proteomes represented in a protein cluster and the total number of proteomes
selected by the esmecata proteomes command is calculated for each cluster. Then the algorithm
selects all the protein clusters that contain proteins from at least half of the taxon proteomes, that
is 𝑅𝑝 ≥ 0.5 with a threshold 𝑇𝑟 = 0.5. Other cluster filtering thresholds 𝑇𝑟 can be defined by the
user. For a given taxon, the set of consensus sequences from the selected clusters is denoted as
the consensus proteome.
Creation of the function table and the PathoLogic files from consensus protein annota-
tions
The esmecata annotation command uses the consensus proteomes to predict the functions asso-
ciated with each taxon. Each consensus protein sequence is annotated using eggNOG-mapper
[29, 30] with default parameters. The function table, which constitutes EsMeCaTa functional predic-
tions for the input taxa, is constructed by counting the occurrence of EnzymeCommission numbers
and Gene Ontology terms predicted for each input taxonomic affiliation. This information is also
used to create PathoLogic format files, the input format used by Pathway Tools [83, 84] for draft
metabolic networks reconstruction.
EsMeCaTa output post-analysis
Visual summary of EsMeCaTa results
The esmecata_report command produces a HTML report summarising the main predictions of the
EsMeCaTa run, created with DataPane (https://github.com/datapane/datapane). The report is divided
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into panels with figures showing the results of each step of the workflow (drawn with Plotly [85]).
The first panel shows the taxonomic diversity of the input taxa and the taxa considered for predic-
tion. A sunburst chart indicates the names of the taxonomic affiliations provided as input, and the
taxa selected by EsMeCaTa for predictions (see Fig 4A for an example). A Sankey diagram repre-
sents the same information, indicating which input affiliations correspond to which taxa selected
for prediction (i.e. Fig 2 A). The second panel, proteomes summary, shows a summary of the pro-
teome downloading step: the number per taxonomic rank of taxa provided as input and of taxa
selected for prediction, and the distribution of the proteome number per taxon. The third panel,
clustering summary, shows information about the protein clustering step. It displays the number
of protein clusters obtained according to the clustering threshold 𝑅, allowing visualization of the
pan-proteome distributions (i.e. Fig 2 B). The fourth panel, annotation summary, shows the amount
and categories of EC numbers and GO terms predicted for a given dataset. Such figures illustrate
the functional capacity and redundancy from the individual taxon level to the community level. The
fifth panel displays summary results for all the previous steps.

For the sake of reproducibility, the last panel displays metadata concerning the used param-
eters and the dependencies’ versions of the EsMeCaTa run. The report consists in a static HTML
file containing all the figures. Each figure is also exported in the user-specified output directory, in
HTML for visualization outside the report, and JSON formats for downstreammodifications by the
user.
Hierarchical display of EC numbers and taxonomic affiliations
EsMeCaTa uses the OntoSunburst package to graphically display lists of predicted EC numbers
(https://github.com/AuReMe/Ontosunburst). OntoSunburst is a Python package designed to visualize
a set of conceptswithin anontology. Applied to a given set of ECnumbers, it displays the proportion
of each EC class according to the four classification levels of the EC ontology. The EC ontology
has been extracted from the Expasy databases (https://ftp.expasy.org/databases/enzyme/enzclass.txt,
Release : 29-May-2024).

The list of predicted ECs is used as input to the OntoSunburst package, which extracts the EC
ontology subgraph associated with that particular list. This subgraph is then plotted as a sunburst
graph using the Plotly library [85]. The size of the sunburst patches corresponds to the proportion
of the EC subclass in the list.

Similarly, the taxonomic sunburst provides a representation of the taxa diversity in the input
taxonomic affiliation dataset. The proportion of each taxonomic group is represented with patch
proportions. Each taxon selected by EsMeCaTa is coloured according to its taxonomic rank. Other-
wise it appears in grey. The complete lineage of each taxon is retrieved from the NCBI taxonomy
using the Python package ete3.
Function enrichment analysis
The esmecata_gseapy command performs an enrichment analysis and automatically identifies the
predicted functions that are enriched in a given taxon, using GSEApy [36] and Orsum [37]. Labels
of annotations are retrieved from the Expasy ENZYME [86, 87] database for the EC numbers and
from the Gene Ontology [88] database for the GO Terms. The enrichment analysis is performed
by replacing the gene names by the taxa names given as input to EsMeCaTa. A pseudo GMT (Gene
Matrix Transposed) file is then created with annotation IDs in the first column, annotation label in
the second column and the list of observation name (the names of the taxa containing the annota-
tion) in the following columns. The enrichr module of the GSEApy package uses the GMT file and
the list of taxa of a phylum (by default) to find the annotations enriched in that phylum compared
to the annotations present in the whole community. It creates one list of enriched terms per group.
These lists of enriched annotations are finally provided to the Orsum method to extract a sublist
of enriched annotations and compute several visualisation files.
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Comparison of EsMeCaTa predictions with MAGs and complete genomes
Prediction assessment and statistical analysis
Confusion matrices were computed as follows for the different benchmarks considered. When
comparing a feature predicted by EsMeCaTa (i.e., an EC number or a consensus sequence) with a
feature present in a genome (or, equivalently, in a MAG) considered as a reference, a true positive
(TP) consisted of a feature found both in the reference genome and in the EsMeCaTa predictions.
A feature that was present in the EsMeCaTa predictions but not in the reference genome was
considered a false positive (FP). A feature missing from the EsMeCaTa prediction but present in
the reference genome was considered as a false negative (FN). Then the performance metrics,
precision, recall and F-measure, were computed as follow:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃+𝐹𝑃 )

,
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

(𝑇𝑃+𝐹𝑁)
,

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗𝑇𝑃
2∗𝑇𝑃+𝐹𝑃+𝐹𝑁

.
The measure distributions were visualised with boxplots and analysed with statistical tests.

Due to the non-normality of the ANOVA residuals, Kruskal-Wallis tests were used in association
with Dunn’s post-hoc tests (with Bonferroni correction for multiple tests). In Figure 3 B, for each
taxonomic rank, Mann–Whitney U tests were performed (with Benjamini-Hochberg correction for
multiple tests) to compare the performance of the two methods (EsMeCaTa against PICRUSt2).

To present the results of the post-hoc tests, compact letter displays were created using mult-
compView [89]. Each variable were assigned a letter that indicated if its mean was different from
the ones of the other considered variables. If two variables shared the same letter, their mean
were not statistically different whereas if they had different letters, their means were statistically
different. Furthermore, compact letter display ranked the variables from the highest mean to the
lowest mean.

Figures and statistical tests were computed using R version 4.4.1 [90] with the packages ggplot2
version 3.5.1 [91], FSA version 0.9.5 [92], rcompanion version 2.4.36 [93], multcompView version
0.1.10 [89] and tidyverse version 2.0.0 [94]. Linearmodel wasmade with stats package of R version
4.4.1 [90].
Benchmarking the impact of 𝑅 cluster filtering threshold on EC prediction
Five runs of EsMeCaTa were performed on the Ectocarpus sp. microbiota dataset to test the effect of
the representativeness threshold 𝑇𝑟. For each run a different value for 𝑇𝑟 was used: 𝑇𝑟 = 0, 𝑇𝑟 = 0.25,
𝑇𝑟 = 0.5, 𝑇𝑟 = 0.75 and 𝑇𝑟 = 0.95 (option –threshold of esmecata clustering). Annotations of the
genome or the MAGs were predicted using eggNOG-mapper version 2.1.9 with eggNOG database
version 5.0.2. The EC predictions from EsMeCaTa were then compared with the annotation of the
genomes and MAGs in order to compute precision, recall and F-measure (see above).
Assessing EC number and GO Term predictions compared to MGnify metagenomes
EsMeCaTa was applied to the MGnify dataset to evaluate its predictive performance on real envi-
ronmental data. The taxonomic affiliations of the MAGs were used as input to EsMeCaTa. The
annotations of the MAGs were retrieved from the corresponding eggNOG-mapper files in the MG-
nify database. Then the EC numbers and the GO terms predicted by EsMeCaTa were compared
with the EC and GO terms contained in the annotation file of the MAG (see above).
Benchmarking EsMeCaTa and PICRUSt2 EC number predictions against MGnfiy metag-
neomes
The predictions of EsMeCaTa were compared with the predictions of PICRUSt2 [8, 9] on theMGnify
dataset. For this purpose, 16s rRNA sequences were extracted from the rRNA fasta files provided
with each genome in the MGnify genome catalogs. If more than one 16S rRNA sequences was an-
notated in a genome, the longest one was selected as the representative. The PICRUSt2 (version
2.5.2) script "place_seqs.py" was then run to place the sequences within the PICRUSt2 database
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phylogenetic tree, creating a tree with the 16S rRNA sequences as new leaves. This tree was then
passed to the PICRUSt2 script "hsp.py" to perform hidden-state prediction and predict the EC num-
bers. These EC numbers were compared with those in the annotation file of the MGnify MAGs, as
described above in the "Measure of performance" section. Then the F-measures computed with
predictions from PICRUSt2 were compared with the ones computed by EsMeCaTa in Figure 3 B.
Evaluating the quality of consensus proteomes compared to MGnify metagenome pro-
teins
A comparison was made between the consensus protein sequences predicted by EsMeCaTa and
the protein sequences included in the MAGs. For each MAG, Diamond version 2.1.9.163 [51] was
run on theMAG fasta file and on the consensus sequences predicted by EsMeCaTa. Two runs were
performed, a first run with theMAG as query and the EsMeCaTa consensus proteome as reference
and, reciprocally, a second run with the EsMeCaTa consensus proteome as query and the MAG as
reference. The identified matches were filtered using an e-value greater than 1𝑒 − 05, a sequence
identity greater than 40% and an alignment coverage greater than 50%, according to [41].

In order to test the similarity between the predicted consensus proteome and its MAG counter-
part, twometrics were used, the Percentage of Conserved Proteins (POCP, [41]), and the Reciprocal
Best Hits (RBH, [95]). First, the Percentage Of Conserved Proteins corresponds to the addition of
the number of matches of the MAG to the EsMeCaTa proteome plus the number of matches of
the EsMeCaTa proteome to the MAG, divided by the total number of sequences contained in both
MAG and EsMeCaTa proteomes.

A confusion matrix was computed using RBH. An RBH was identified when, for two proteins
(one from the MAG and one from the EsMeCaTa proteome), each protein matches the other as its
best scoringmatch in the other proteome. An RBHwas considered as a true positive (TP), a protein
in the MAG without an RBH was considered as a false negative (FN) and a protein in the EsMeCaTa
proteome without an RBH was considered as a false positive (FP). These measures are considered
to compute precision, recall and F-measure (see above).
Application of EsMeCaTa on a biogas reactor microbial communities
Exploring specific functions of phyla from the community
The command esmecata_gseapy was used on the output of the run of esmecata workflow to identify
functions enriched in a phyla compared to the all community. To this end, the EsMeCaTa version
pre-release 0.5.0 was used with gseapy version 1.1.2. Orsum version 1.7.0 was used as to create
Figure 4 B.
Analysis of methanogenic pathways
An overview of several metabolic pathways of the methanogenesis was generated by combin-
ing searches in metabolic databases (MetaCyc version 28.0 [96, 97], KEGG version 110 [98, 99,
100], ENZYME Release of 29-May-2024 [86]) and literature [62, 101]. From MetaCyc, two pathways
were used as reference: one consuming acetate (acetotrophicmethanogenesis, MetaCyc Id: METH-
ACETATE-PWY) and the other consuming H2 and CO2 (hydrogenotrophicmethanogenesis, MetaCyc
Id: METHANOGENESIS-PWY). METH-ACETATE-PWYwasmodified as some Archaea used acs instead
of pta and ackA at the beginning of this pathway [59]. A pathway frommethanethiol was also added
to verify the predictions for Candidatus Methanofastidiosum [62].
Homology search using the consensus protein sequences
Sequence homology searches against UniProt and KEGG for the methanogenic pathways and us-
ing proteins from literature for the cellulosome complex were carried out using the consensus pro-
teomes predicted by EsMeCaTa. Diamond version 2.1.9.163 [51] was used for aligning the consen-
sus proteomes from EsMeCaTa and the reference sequences. A first batch of reference sequences
were made by mapping UniProt IDs and EC numbers from the ENZYME database flat files [86] (Re-
lease of 29-May-2024). A second set of reference sequences were retrieved from KEGG Orthologs
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(KO) [102, 103] associated with the EC number (KEGG Release 110.0). For each KO, a python script
(using bioservices) extracted the protein sequences associated with the reference articles from its
KEGG page. For the cellulosome complex, the dockerin and cohesin protein sequences from [50]
were used as references. The identified matches were filtered using the ultra-sensitive option of
Diamond, an e-value greater than 1𝑒 − 05, a sequence identity greater than 30% and an alignment
coverage greater than 80%. Then, the resulting matches were filtered according to the RBH proce-
dure. Two alignments were performed with Diamond, a first run with the reference protein sets
as query and the EsMeCaTa consensus proteome as reference and, reciprocally, a second run with
the EsMeCaTa consensus proteome as query and the reference protein sets as reference. Then a
match between a protein from EsMeCaTa and a reference protein is kept only if each of the protein
finds the other one as its best scoring match. Matches found with SwissProt were shown as stars
and matches with KEGG Orthologs as circles (Fig 5).
Impact of methanogenic OTU abundances on biogas production
To study the impact of trophic groups associated with methanogenic pathways on biogas produc-
tion, the abundances of their OTUs were used. First, for each trophic group, the abundances of
each OTU contained in themwere summed. Then this summed abundance was normalised with a
z-score normalisation across the different time points for each group. This normalised abundance
was plotted. To decipher the cumulative effect of each group, a linear model was fitted from the
non-normalised abundance of each group with R stat package version 4.4.1 [90].
Additional Files
Sup File 1.
Toy example dataset. A tabulated file showing the thirteen taxa selected as toy example.
Sup File 2.
Ectocarpus sp. microbiota dataset. A tabulated file indicating the 45 taxa from the Ectocarpus sp.
microbiota.
Sup File 3.
MGnify dataset. A tabulated file showing the the 3,664 taxa selected from MGnify.
Sup File 4.
Methanogenic reactor dataset. A tabulated file containing the 445 taxa sequenced from the
experimental methanogenic reactor and their absolute abundances at the different time points of
measure.
Sup File 5.
Methanogenic reactormetabolitemeasures. Anexcel file indicating themeasures of themetabo-
lites (biogas, fatty acids) in the methanogenic reactor.
Additional file 6.
Additional pdf file on EsMeCaTa runs, toy example dataset analysis andmethanogenic reac-
tor experiments. The additional file contains detailed description of EsMeCaTa runs (Sup Tables
S1 and S2 for dependencies and runtimes on the experiments), further information on toy ex-
ample dataset (Sup Fig S1), on validation dataset (Sup Fig S2) and on the methanogenic reactor
experiments (Sup Fig S3-S10).
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