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Abstract

Summary: Predicting the functional potential of microorganisms in
environmental samples from cultivation-independent techniques is a ma-
jor challenge. A persistent difficulty lies in associating taxonomic profiles
obtained from metabarcoding experiment with accurate functional pro-
files, particularly for poorly-resolved taxonomic groups. In this paper, we
present EsMeCaTa a python package predicting shared proteins from tax-
onomic affiliations. EsMeCaTa relies on the UniProt database to retrieve
the public proteomes associated with a taxon and then uses MMseqs2 in
order to compute the set of proteins shared in the taxon. Finally, Es-
MeCaTa extracts the functional annotations of these proteins to provide
an accurate estimate of the functional potential associated to taxonomic
affiliations.
Availability: EsMeCaTa is available at: https://github.com/AuReMe/esmecata
under the GPL-3 license.

1 Introduction

Sequencing of gene markers, such as 16S rRNA gene, is commonly applied to
characterize the diversity of organisms in environmental samples. From these
data, taxonomic affiliations, such as Operational Taxonomic Units (OTUs), can
then be used to estimate the potential functions in the environment.

Various tools have been developed to estimate functional profiles associated
with an OTU, such as PICRUSt2 (Douglas et al., 2020), Paprica (Bowman
and Ducklow, 2015), Tax4fun2 (Wemheuer et al., 2020). These tools have been
developed mainly to proceed 16S rRNAs, although other gene markers can be
considered (e.g. Ogier et al. (2019)). Apart from marker genes, taxonomic

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.16.484574doi: bioRxiv preprint 

https://github.com/AuReMe/esmecata
https://doi.org/10.1101/2022.03.16.484574
http://creativecommons.org/licenses/by-nc-nd/4.0/


affiliations can be obtained from shallow whole genome sequencing data, but
the association of function with these data remains uneasy.

We developed EsMeCaTa (Estimating Metabolic Capabilities from Taxo-
nomic affiliations) as a method permitting the estimation of functions inde-
pendently of the taxonomic assignment method used. EsMeCaTa is a python
package that relies on the UniProt database to estimate the shared proteins
associated with prokaryotic or eukaryotic taxa considered as input, providing
insights into their putative metabolic capabilities.

2 Approach

EsMeCaTa takes as input a tabulated file containing two columns. The first
column is an identifier and the second contains a taxonomic affiliation (starting
with the highest taxonomic rank, such as kingdom, to the lowest taxonomic
rank, such as species) as defined by the NCBI Taxonomy database (Schoch
et al., 2020). The outputs of the workflow are, for each taxon (1) fasta files
of all proteomes selected by EsMeCaTa, (2) a fasta file of the shared proteins
clustered by MMseqs2 from these proteomes, and (3) a tabulated file containing
the functional annotations associated with these proteins (Gene Ontology Terms
(GO), Enzyme Commission (EC)).

The first part of the workflow selects the lowest taxonomic rank of each
input taxonomic affiliation for which the UniProt Proteomes database (The
UniProt Consortium, 2021) contains at least one proteome exhibiting a BUSCO
score higher than 80% and considered ”non-redundant” and ”not-excluded” by
UniProt (column ’Proteomes selection’ in Table 1). More precisely, the taxo-
nomic affiliation is processed using the ete3 python package (Huerta-Cepas et al.,
2016) in order to associate a taxon ID (from the NCBI taxonomy database) to
each taxon from the affiliation. Using this ID, queries against the UniProt Pro-
teomes database find the lowest-ranking taxon for which there is at least one
reference or non-reference proteome in the database and download those pro-
teomes. If the number of proteomes is greater than a threshold (100 by default),
only a subsample is downloaded.

The second part of the workflow aims at identifying proteins shared by pro-
teomes associated with a taxon. With the downloaded proteomes, EsMeCaTa
performs protein clustering using MMseqs2 (Steinegger and Söding, 2017) and
selects clusters such that proteins are shared by at least X% of the proteomes
(see the column ’Protein clusters (MMseqs2)’ in Table 1). The threshold X = 0
corresponds to the case where all protein clusters are selected (called ’Pan-
proteome’, abbreviated Pan-P, in reference to pan-genome). A second threshold
at X = 0.95 retains only the clusters containing a protein originating from at
least 95% of the proteomes (called ’Soft core proteome’, abbreviated Soft-P).
A third threshold at X = 0.5 retains cluster containing proteins occurring in
at least 50% of the proteomes (called ’Shell core proteome’, abbreviated Shell-
P). For each protein cluster, EsMeCaTa selects the representative protein (first
sequence in the alignment made by MMseqs2) to represent the cluster. The
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selected sequences of the representative proteins are stored in a fasta file using
biopython (Cock et al., 2009).

The final step of the workflow annotates the protein clusters by querying the
UniProt database (GO, EC, see the columns ’Functional annotation of clusters’
in the Table 1).

3 Results

Input Taxons selected by EsMeCaTa Proteomes selection (Busco ≥ 0.8) Protein clusters (MMseqs2) Functional annotation of clusters

Lowest taxon
name Taxon rank

Taxon rank
used

Taxon name
used

UniProt
total

UniProt
references

EsMeCaTa
proteomes

Pan-P Soft-P Shell-P Pan-P Soft-P Shell-P
GO EC GO EC GO EC

Escherichia Genus Genus Escherichia 1,506 3 3 5,821 2,421 3,298 2,183 866 1,661 679 1,906 792
Citrobacter Genus Genus Citrobacter 138 2 2 5,674 2,753 5,674 2,013 772 1,835 708 2,013 772
Cronobacter Genus Genus Cronobacter 15 0 15 9,057 101 3,128 970 677 0 12 600 603
Lelliottia Genus Genus Lelliottia 5 0 5 5,252 2,651 3,245 1,993 756 1,784 687 1,884 718
Jejubacter Genus Genus Jejubacter 1 1 1 3,915 3,915 3,915 1,983 837 1,983 837 1,983 837
Edaphovirga Genus Family Enterobacteriaceae 2,435 42 42 25,822 415 2,581 2,253 867 514 193 1,560 595

Enterobacteriaceae Family Family Enterobacteriaceae 2,435 42 42 25,822 415 2,581 2,253 867 514 193 1,560 595
Enterobacterales Order Order Enterobacterales 3,028 129 96 53,617 375 2,145 2,475 1,010 487 175 1,383 512

Gammaproteobacteria Class Class Gammaproteobacteria 8,271 911 96 85,797 329 1,183 2,650 1,040 387 123 924 327
Plasmodium Genus Genus Plasmodium 67 17 17 21,287 1,276 4,263 1,305 225 611 104 1,103 200
Leucocytozoon Genus Order Haemosporida 68 18 18 22,813 1,076 4,313 1,327 259 546 95 1,090 199
Corallicola Genus Class Conoidasida 30 10 10 46,959 76 1,326 1,919 530 94 14 717 121
Acavomonas Genus Clade Alveolata 124 48 48 248,878 50 785 3,746 924 42 7 418 76

Table 1: Result of EsMeCaTa on 13 taxonomic affiliations (described by
names and ranks). Soft-P: Soft core proteome. Shell-P: Shell core proteome. Pan-P:
Pan-proteome.

Table 1 shows the application of EsMeCaTa (with UniProt 2021 03 and
MMseqs2 13.45111) to 13 different taxonomic affiliations (the lowest taxon in
these affiliations is indicated in the ’Lowest taxon name’ column) selected to
cover both prokaryotic (Gammaproteobacteria) and eukaryotic (Alveolata) taxa
with different taxonomic ranks (from class to genus), in order to illustrate the
uncertainty in the input taxonomic affiliation, the available knowledge and the
biases toward most documented clades.

For 9 taxonomic affiliations, proteomes were selected using the lowest tax-
onomic rank, whereas for the 4 other affiliations, EsMeCaTa selected a higher
taxonomic rank (bold in the column ’Taxon rank used’). For the 13 selected
taxa, UniProt contained from 1 to 8,271 proteomes. In two cases (Cronobacter
and Lelliottia), no reference proteome was found and EsMeCaTa returned non-
reference proteomes of Uniprot. In 9 cases (such as Escherichia), EsMeCaTa
returned the reference proteomes found in Uniprot (from 1 to 48). In the last
two cases (Enterobacterales and Gammaproteobacteria), more than 99 reference
proteomes were found, of which 96 proteomes were selected by the subsampling
procedure.

We observe that in general (in the column ’Protein clusters (MMseqs2)’ of the
table 1), the size of the Pan-P increases with the number of selected proteomes,
while the size of the Soft-P decreases. The size of the Shell-P appears to be
much more stable. The numbers of GOs and ECs recovered follow the same
trends and are systematically lower than the Pan-P, Shell-P and Soft-P sizes
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(column ’Functional annotation of clusters’ of Table 1).
To test EsMeCaTa on environmental samples, we analysed the taxonomic af-

filiations contained in the 16S rRNA (413 OTUs) and rpoB (309 OTUs) datasets
provided in Ogier et al. (2019). Run of EsMeCaTa on the 722 OTUs took 2
days and 10 hours on a 20 CPU cluster. For the 16S and rpoB taxonomic af-
filiations respectively, means of 31 and 22 proteomes were recovered. Soft-P
contained respectively 1,335 and 1,669 proteins clusters in average, associated
with respectively 815 and 1,014 GOs, and 288 and 367 ECs in average.

This suggests that EsMeCaTa can be used for the analysis of environmental
samples by predicting proteins and functions. This paves the way to study the
metabolic capabilities of taxa present in the sample.
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