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Abstract

We characterize the long time behaviour of a discrete-in-time approximation of the
volume preserving fractional mean curvature flow. In particular, we prove that the
discrete flow starting from any bounded set of finite fractional perimeter converges
exponentially fast to a single ball. As an intermediate result we establish a quantitative
Alexandrov type estimate for normal deformations of a ball. Finally, we provide
existence for flat flows as limit points of the discrete flow when the time discretization
parameter tends to zero.
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Introduction

We consider the geometric evolution of sets called the volume preserving fractional
mean curvature flow. The classical mean curvature flow is defined as a flow of sets
(Et)0≤t≤T in RN following the motion law

vt = −HEt on ∂Et,
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where vt denotes the component of the velocity relative to the outer normal vector of ∂Et
and HE is the mean curvature of the set E. In order to include the volume constraint,
one can consider the following velocity

vt = H̄Et −HEt on ∂Et

for all t ∈ [0, T ] , where H̄Et denotes the average of HEt over ∂Et. The defined geometric
evolution is called volume preserving mean curvature flow, as one can observe that the
volume of the evolving sets is constant.

In the fractional setting, the velocity of the flow is given by the fractional mean cur-
vature, a geometric quantity introduced by Caffarelli, Roquejoffre and Savin in [5] and
defined as the first variation of the fractional perimeter functional. The latter functional
is defined on a measurable set E ⊂ RN simply as

P s(E) =

ˆ
E

ˆ
Ec

1

|x− y|N+s
dx dy.

It turns out that its first variation on any C2 set E is given by the formula

Hs
E(x) :=

ˆ
RN

χE(y)− χEc(y)

|x− y|N+s
dy ∀x ∈ ∂E.

In both the previous formulae, the integrals are intended in the principal value sense.
In analogy with the classical case, the evolution law for the volume preserving fractional
mean curvature flow is given by

vt = H̄s
Et
−Hs

Et
on ∂Et, (0.1)

with the notations previously introduced.
Up to now, a satisfactory study of this type of evolution is still missing. While the

evolution without the volume constraint is well-understood (see e.g. [10, 19]), the lack of
a comparison principle in our case makes the study much harder. Moreover, the gener-
ated flow may present singularities of different kinds, as happens for the classical mean
curvature flow: see [12] some some explicit examples of pinch-like singularities. In [20] a
short-time existence is provided for the smooth flow (0.1), while existence of the smooth
flow starting from convex sets (under suitable assumptions) is proved in [11].

We will then follow the approach of the celebrated papers by Luckhaus and Sturzen-
hecker [23] and Almgren, Taylor and Wang [2] consisting in building a discrete-in-time
approximation of the flow via a variational approach and then sending the time discretiza-
tion parameter to zero. Our approach follows closely the work done by Mugnai, Seis and
Spadaro in [25], where the variational problem studied incorporates a volume penaliza-
tion to take into account the volume constraint. First of all we define a discrete-in-time
approximation of the flow that will be called the discrete flow. Given any initial set E0,

with |E0| = m, and a time-step h > 0 we define E
(h)
0 := E0 and, iteratively, for n > 0

E
(h)
n+1 ∈ argmin

{
P s(F ) +

1

h

ˆ
F

sd
E

(h)
n

(x) dx+
1

h
s

1+s

||F | −m| : F ⊂ RN measurable

}
,
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where sd
E

(h)
n

is the signed distance function from the set E
(h)
n . We can define for every

t ≥ 0, the discrete flow by E(h)(t) := E
(h)
[t/h]. We will prove that such a flow is well-defined.

Any L1
loc-limit point of this flow as the time-step h converges to zero will be called a flat

flow. For the classical mean curvature flow, under the hypothesis of convergence of the
perimeters, this approach produces global-in-time distributional solutions of the evolution
law 0.1, as shown in [25]. In the fractional case, we fall short of this result. Nonetheless, we
will prove in the Appendix the existence of flat flows, defined simply as L1

loc−limit points
of the discrete flow as h → 0, and address some of its continuity properties. Moreover,
under the additional hypothesis of boundedness of the flow, we will prove that the flat
flow is volume-preserving.

In the recent years, the study of the long time behaviour of the volume preserving
mean curvature flow has attracted more and more attention. In the classical case, after
some preliminary studies [15, 18], in a recent paper [24] the authors proved the asymptotic
behaviour of the classical discrete flow by showing its convergence to unions of equal balls.
Then, they improved their results in [21], proving uniform estimates with respects to the
time parameter h in dimension N = 2, thus obtaining the same result for the classical
flat flow. Also the situation in the periodic setting is quite studied, with results for the
discrete flow in [14] and for the flat flow in dimensions N = 3, 4 in [26]. In the fractional
setting some recent results have been proved. For example, in [11] the authors prove
that the smooth flow starting from a convex set converges to a ball, up to translations
possibly depending on time and under the hypothesis of equiboundedness for the fractional
curvatures along the flow.

In this paper the long-time convergence analysis is developed in the fractional setting.
The main result of the paper is Theorem 0.1 below. It provides a complete characteri-
zation of the long-time behaviour of the discrete fractional mean curvature flow starting
from any bounded set of finite fractional perimeter, providing also an estimate on the
convergence speed. We will assume that the dimension N is such that any Λ−minimizer
of the fractional perimeter is a smooth set. Namely, we will assume that either:

• N = 2;

• N ≤ 7 and s ∈ (s0, 1), where s0 is the constant of Proposition 3.1, item ii).

This is a technical hypothesis that could be dropped if we knew that the evolving sets were
smooth. In particular, it is essential to characterize the possible long-time limit points for
the discrete flow. We are then able to prove the following result.

Theorem 0.1. Let m, M > 0 and let E0 be an initial bounded set with P s(E0) ≤ M ,
|E0| = m. Then, for h = h(s,M,m) > 0 small enough the following holds: for any discrete

flow E
(h)
n starting from E0, there exists ξ ∈ RN such that

E(h)
n − ξ → B(m) in Ck

for all k ∈ N. Moreover, the convergence is exponentially fast.

We stress the difference between our result and the one holding in the classic setting,
where the limit points of the discrete flow are in general unions of disjointed balls having
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the same radius. This is a peculiar feature of the nonlocal perimeter considered, that
penalizes non-connected components.

A crucial intermediate result consists in generalizing the Alexandrov-type estimate [24,
Theorem 1.3] and [14, Theorem 1.3] (see also [22]) to the fractional setting. This result
provides a stability inequality for C1−normal deformations of balls. We briefly give some
definitions to present some further details. Set B = B1(0) and let f : ∂B → R be a
function with ‖f‖L∞(∂B) is sufficiently small. The normal deformation Bf of the set B is
defined as

∂Bf := {x(1 + f(x)) : x ∈ ∂B}.
A normal deformation Bf is said to be of class Ck if f ∈ Ck(∂E). The quantitative
Alexandrov type estimate proved in [24] is the following.

Theorem 0.2 (Theorem 1.1 in [24]). There exist δ ∈ (0, 1/2) and C > 0 with the fol-
lowing property: for any f ∈ C1(∂B) ∩H2(∂B) such that ‖f‖C1(∂B) ≤ δ, |Bf | = ωN and
bar(Bf ) =

´
Bf
x dx = 0, we have

‖f‖H1(∂B) ≤ C‖HBf
− H̄Bf

‖L2(∂B).

We are able to extend the previous result to the fractional setting. Namely, we obtain
the following.

Theorem 0.3. There exist δ > 0 with the following property: for any f ∈ C1(∂B) such
that ‖f‖C1(∂B) ≤ δ, |Bf | = ωN and bar(Bf ) =

´
Bf
x dx = 0, then

i) for any s ∈ (0, 1), there exists C = C(N, s) > 0 such that

‖f‖
H

1+s
2 (∂B)2

≤ C‖Hs
Bf
− H̄s

Bf
‖L2(∂B)2 ;

ii) there exist s∗ ∈ (0, 1) and C = C(N) > 0 such that, for any s ∈ (s∗, 1), it holds

(1− s)‖f‖2
H

1+s
2 (∂B)

≤ C
∥∥(1− s)

(
Hs
Bf
− H̄s

Bf

)∥∥2
L2(∂B)

; (0.2)

iii) if f ∈ C2(∂B), as s→ 1, estimate (0.2) tends to

‖f‖H1(∂B)2 ≤ C‖HBf
− H̄Bf

‖L2(∂B)2 .

In the previous results, we have set H̄s
Bf

:=
ffl
∂BH

s
Bf

(x+ f(x)x) dHN−1(x).

In particular, we recover Theorem 0.2 as a corollary of our result. The proof of the
previous theorem follows closely the proof of the quantitative Alexandrov type estimate
obtained in the flat torus and contained in [14]. In particular, the approach is based on
some Taylor approximations of the factor H̄s

Bf
−Hs

Bf
(x) combined with the coercivity of

the second variation of the fractional perimeter, proved in [16].
After this work was completed, we were informed that a similar quantitative Alexan-

drov type estimate, more precisely a result analogous to item i) in Theorem 0.3, has
been independently proved in [9]. In this paper the authors use this result to prove both
global existence of a flow of smooth sets satisfying (0.1), starting from a smooth normal
deformation of a ball, and its asymptotic exponential convergence to the same ball.
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Notation

We work in the Euclidian space RN , with N ≥ 1. We denote with | · | the standard
Lebesgue measure in RN , M(RN ) is the family of measurable set of RN and Mf (RN ) ⊂
M(RN ) is the family of subsets of RN having finite measure. We denote with Ec the
complement of a set E ⊂ RN . We denote by HN−1 the Hausdorff measure, and sometimes
denote dHN−1x := dHN−1(x). If E is a set with smooth boundary the outer normal to E
at a point x in ∂E is denoted by ν = νE(x). We will denote B = B(0, 1). We will denote
the ball of radius r and center x both as B(x, r) and Br(x). Also, with B(m) we denote
the ball centered in 0 and having volume |B(m)| = m. Finally, we denote by C(∗, · · · , ∗) a
constant that depends on ∗, · · · , ∗; such a constant may change from line to line.

1 Preliminaries

Let s ∈ (0, 1) we define the s-fractional perimeter as the following function

P s : Mf (RN )→ [0,+∞], P s(E) :=

ˆ
E

ˆ
Ec

1

|x− y|N+s
dx dy =

1

2
[χE ]

H
s
2
.

More in general, for every E,F ∈ Mf (RN ) we set

Ls(E,F ) :=

ˆ
E

ˆ
F

1

|x− y|N+s
dx dy

and, for any bounded set Ω, we define the fractional perimeter of E relative to Ω as

P s(E; Ω) := Ls(E ∩ Ω, Ec ∩ Ω) + Ls(E ∩ Ω, Ec \ Ω) + Ls(E \ Ω, Ec ∩ Ω).

Let E ∈ Mf (RN ) be a set of class C2. Given a vector field X ∈ C1
c (RN ;RN ), let

Φ : R× RN → RN , Φ(t, x) = x+ tX(x).

We recall that the first variation of the s-fractional perimeter of E in the direction of X
is given by

δP s(E)[X] :=
d

dt

∣∣∣
t=0

P s(Φ(t, E)) =

ˆ
∂E
Hs
E(x)X(x) · νE(x) dHN−1x ,
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where Hs
E(x) is the s-fractional mean curvature of E evaluated at x ∈ ∂E, that is

Hs
E(x) :=

ˆ
RN

χE(y)− χEc(y)

|x− y|N+s
dy,

where the integral has to be intended in the principal value sense. Applying the divergence
theorem, the fractional curvature can be written as

Hs
E(p) =

ˆ
∂E

(x− p) · νE(x)

|x− p|N+s
dHN−1(x) ∀ p ∈ ∂E.

We recall some useful results concerning sets of finite fractional perimeter.

Proposition 1.1 (Lower semi-continuity). Let {En}n∈N ⊂ Mf (RN ) such that χEn → χE
in L1

loc, as n→ +∞, for some E ∈ Mf (RN ). Then, for all s ∈ (0, 1), we have

P s(E) ≤ lim inf
n→+∞

P s(En).

Theorem 1.2 (Compactness). If R > 0 and {En}n∈N ⊂ M(RN ), with

En ⊂ B(0, R) ∀n ∈ N and sup
n∈N

P s(En) < +∞,

then, up to a subsequence, En → E in L1(RN ), where E ⊂ B(0, R) and P s(E) < +∞.

Theorem 1.3. (Relative isoperimetric inequality) Let Ω ⊂ RN be an open bounded set
with Lipschitz boundary and let E ⊂ RN be a measurable set. Then there exists a constant
C = C(s,N,Ω) > 0 such that

P s(E,Ω) ≥ Ls(E ∩ Ω, Ec ∩ Ω) ≥ C min
{
|E ∩ Ω|

N−s
N , |E \ Ω|

N−s
N

}
.

We recall the following pointwise convergence theorems. The first one concerns the
convergence of the fractional perimeter to the classical one: its proof can be found in [6,
Theorem 1].

Theorem 1.4. Let E be a bounded, C1,α set for α ∈ (0, 1). Then,

lim
s→1

(1− s)P s(E) = ωN−1P (E).

The second one relates to the pointwise convergence of the fractional curvatures. It
was proved in a more general setting in [1, 6, 7].

Theorem 1.5. Let E be a bounded, C2 set. Then,

lim
s→1

(1− s)Hs
E = ωN−1HE

uniformly on ∂E.

Finally, we recall the pointwise convergence of the fractional Gagliardo seminorms
to the Sobolev one. The classical proof is contained in [3, Corollary 2], see also [17,
Proposition 3.7] for the same result in a more general setting.

Theorem 1.6. Assume f ∈ Hs(∂B). Then

lim
s→1

(1− s)[f ]2
H

1+s
2 (∂B)

= C‖∇f‖2L2(∂B),

where C > 0 is a constant that depends only on N .
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2 A fractional quantitative Alexandrov type estimate

In this section, we are going to prove the quantitative Alexandrov inequality Theo-
rem 0.3 in the nonlocal setting of the fractional perimeter. From now on we set

[f ]21+s
2

:= [f ]2
H

1+s
2 (∂B)

=

ˆ
∂B

ˆ
∂B

|f(x)− f(y)|2

|x− y|N+s
dHN−1x dHN−1y .

We start by recalling representation formulas for the s-fractional perimeter and its first
variation on smooth sets.

Lemma 2.1. The following equalities hold true:

1. If f ∈ C1(∂B) with ‖f‖∞ sufficiently small, then

P s(Bf ) =
P s(B)

P (B)

ˆ
∂B

(1 + f)N−s dHN−1+

+
1

2

ˆ
∂B

ˆ
∂B

ˆ 1+f(x)

1+f(y)

ˆ 1+f(x)

1+f(y)
F|x−y|(r, ρ) dr dρ dHN−1x dHN−1y ,

(2.1)

where, for every x, y ∈ ∂B, we have set

F|x−y|(r, ρ) :=
rN−1ρN−1

|rx− ρy|N+s
, ∀r, ρ ∈ (0,+∞).

2. If f ∈ C1(∂B) with ‖f‖∞ sufficiently small, then we have

δP s(Ef )[ψ] = (N − s)P
s(B)

P (B)

ˆ
∂B

(1 + f)N−s−1ψ dHN−1

+

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

(
ψ(x)F|x−y|(1 + f(x), 1 + ρ)− ψ(y)F|x−y|(1 + f(y), 1 + ρ)

)
.

(2.2)

Proof. By explicit computations one can obtain equation (2.1), see for example the calcu-
lations in the proof of [16, Theorem 2.1]. To prove (2.2), we take the derivative

d

dt

∣∣∣
t=0

P s(Bf+tψ)

in formula (2.1) and, recalling that

d

dt

[ˆ β(t)

α(t)

ˆ β(t)

α(t)
f(r, ρ) dρdr

]
=

ˆ β(t)

α(t)
(f(β(t), ρ)β′(t)− f(α(t), ρ)α′(t)) dρ

+

ˆ β(t)

α(t)
(f(r, β(t))β′(t)− f(r, α(t))α′(t)) dr

7



for every function α, β : R→ R of class C1 and f ∈ L1
loc(R× R), we conclude

δP s(Bf )[ψ] =

ˆ
∂B

ˆ
∂B

ˆ 1+f(x)

1+f(y)

(
ψ(x)F|x−y|(1 + f(x), ρ)− ψ(y)F|x−y|(1 + f(y), ρ)

)
dρ

+ (N − s)P
s(B)

P (B)

ˆ
∂B

(1 + f)N−s−1ψ dHN−1.

A simple change of coordinates then yields the thesis.

Lemma 2.2. If f ∈ C1(∂B) with ‖f‖∞ sufficiently small, then we have

δP s(Bf )[1] = (N − s)P
s(B)

P (B)

ˆ
∂B

(
1 + (N − s− 1)f +O(f2))

)
dHN−1 +O([f ]21+s

2

),

(2.3)

δP s(Bf )[f ] = (N − s)P
s(B)

P (B)

ˆ
∂B

(
1 + (N − s− 1)f +O(f2))

)
f dHN−1

+

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
+O([f ]21+s

2

)(‖f‖∞ + ‖f‖2C1).

(2.4)

Proof. First, we remark that, by expanding the first term in (2.2), we obtain

δP s(Bf )[ψ] = (N − s)P
s(B)

P (B)

ˆ
∂B

(1 + (N − s− 1)f +O(f2))ψ dHN−1

+

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

(
ψ(x)F|x−y|(1 + f(x), 1 + ρ)− ψ(y)F|x−y|(1 + f(y), 1 + ρ)

)
.

Now, set u = f(x) and v = f(y), and define the auxiliary function

g(1 + u, 1 + v, ρ) := ψ(x)F|x−y|(1 + u, 1 + ρ)− ψ(y)F|x−y|(1 + v, 1 + ρ).

We remark that

F|x−y|(1 + u, 1 + ρ) =
(1 + (N − 1)u+O(u2))(1 + (N − 1)ρ+O(ρ2))

|(1 + u)x− (1 + ρ)y|N+s

=
(1 + (N − 1)u+O(u2))(1 + (N − 1)ρ+O(ρ2))

|(u− ρ)2 + (1 + u)(1 + ρ)|x− y|2|
N+s
2

=
1 + (N − 1)u+ (N − 1)ρ+O(u2 + ρ2)

|x− y|N+s((u− ρ)2/|x− y|2 + u+ ρ+ uρ+ 1)
N+s
2

.

(2.5)

Now, since ‖f‖C1 ≤ δ and ρ is between f(y) and f(x), |u − ρ| ≤ δ|x − y|, we can then
expand (2.5) and obtain

1 + (N − 1)u+ (N − 1)ρ+O(u2 + ρ2)

|x− y|N+s

(
1− N + s

2

(
(u− ρ)2

|x− y|2
+ u+ ρ+ uρ

))
=

1 + (N − 1− N+s
2 )(u+ ρ)

|x− y|N+s
− C (u− ρ)2

|x− y|N+s+2
+
O(u2 + ρ2)

|x− y|N+s
,

8



from which we deduce

g(1 + u, 1 + v, ρ) =
ψ(x)− ψ(y)

|x− y|N+s
+ C1

(
ψ(x)(u+ ρ)

|x− y|N+s
− ψ(y)(v + ρ)

|x− y|N+s

)
+ C2

(
−ψ(x)(u− ρ)2

|x− y|N+s+2
+
ψ(y)(v − ρ)2

|x− y|N+s+2

)
+
O(u2 + v2 + ρ2)

|x− y|N+s
,

where the constants C1,2 can also be non-positive. Finally, we obtain

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)
g(1 + f(x), 1 + f(y), 1 + ρ)

=

ˆ
∂B

ˆ
∂B

(ψ(x)− ψ(y))(f(x)− f(y))

|x− y|N+s

+ C1

ˆ
∂B

ˆ
∂B

(f(x)− f(y))(3f(x)/2 + f(y))

|x− y|N+s
ψ(x)

+ C2

ˆ
∂B

ˆ
∂B

(ψ(x)− ψ(y))(f(x)− f(y))3

|x− y|N+s+2

+O

(ˆ
∂B

ˆ
∂B

(f(x)− f(y))

|x− y|N+s
f2
)
.

If ψ = 1, using the fact that, by symmetry,

ˆ
∂B

ˆ
∂B

(f(x)− f(y))f(x)

|x− y|N+s
=

1

2
[f ]21+s

2

, (2.6)

we obtain

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)
g(1 + f(x), 1 + f(y), 1 + ρ) = O([f ]21+s

2

).

If ψ = f , using again (2.6), we get

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)
g(1 + f(x), 1 + f(y), 1 + ρ) =

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s

+O([f ]21+s
2

)(‖f‖∞ + ‖f‖2C1).

In order to prove Theorem 0.3, we need the following lemma, which states the coer-
civity of the second variation of the fractional perimeter of a ball with respect to normal
deformations. Its proof is contained in [16, Theorem 8.1]. We start by defining

λs1 := s(N − s)P
s(B)

P (B)
. (2.7)
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Lemma 2.3. There exists δ > 0 small such that, if f ∈ C1(∂B) with ‖f‖C1(∂B) ≤ δ,
|Bf | = ωN and bar(Bf ) = 0, then we have

δ2P s(B)[f ] =

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1x dHN−1y − λs1

ˆ
∂B
|f |2 dHN−1

≥ 1

4

(
[f ]21+s

2

+ λs1‖f‖2L2(∂B)

)
.

We are now in position to prove Theorem 0.3.

Proof of Theorem 0.3. We start by proving item i). Without loss of generality, we assume
that ‖Hs

Bf
− H̄s

Bf
‖L2 ≤ 1. Let Φ : ∂B → ∂Bf ⊂ RN be the map defined by Φ(x) =

(1 + f(x))x, by direct computations one can prove that

JΦ(x) = (1 + f(x))N−1(1 + (1 + f(x))−2|∇f(x)|1/2.

For every ψ ∈ C1(∂B), let

ψ : RN → RN , ψ̄(x) :=
x

|x|
ψ

(
x

|x|

)
.

Employing the area formula we get

δP s(Bf )[ψ] =

ˆ
∂Bf

Hs
Bf
νBf
· ψ dHN−1

=

ˆ
∂B
Hs
Bf

(p)νBf
(p) · xψ(x)JΦ(x) dHN−1x

=

ˆ
∂B
Hs
Bf

(p)ψ(x) (1 + f(x))N−1 dHN−1x ,

where we have set p = (1 + f(x))x (for more details see [24, Section 1] and [14, Section
3]). Now, by a simple Taylor expansion we obtain

δP s(Bf )[ψ] =

ˆ
∂B
Hs
Bf

(p)ψ(x) (1 + (N − 1)f(x) +O(f2)) dHN−1x . (2.8)

We recall that

Hs
B(x) = (N − s)P

s(B)

P (B)
for all x ∈ ∂B.

If ψ = 1, by combining formulas (2.8) and (2.3), we inferˆ
∂B

(Hs
Bf

(p)−Hs
B)(1 + (N − 1)f(x) +O(f2)) dHN−1x =

ˆ
∂B
O(f) dHN−1 +O([f ]21+s

2

)

(2.9)

and if ψ = f , by combining equations (2.8) and (2.4), we getˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1x dHN−1y − s(N − s)P

s(B)

P (B)

ˆ
∂B
f2 dHN−1

=

ˆ
∂B

(
Hs
Bf

(p)−Hs
B

)
(1 + (N − 1)f(x) +O(f2))f(x) dHN−1x

+O([f ]21+s
2

)(‖f‖∞ + ‖f‖2C1).

(2.10)

10



Using the same arguments of the proof of [14, Theorem 1.3] (see also [24, Theorem 1.3])
we can conclude. Anyway for the interested reader we report a sketch of the proof.

By (2.9), for δ sufficiently small, using Hölder’s inequality we obtain∣∣∣H̄s
Bf
−Hs

B

∣∣∣ ≤ ∣∣∣∣− 
∂B

(Hs
Bf
−Hs

B)((N − 1)f +O(f2)) dHN−1
∣∣∣∣

+

ˆ
∂B
O(|f |) dHN−1 +O([f ]21+s

2

)

≤
∣∣∣∣ 
∂B

(Hs
Bf
− H̄s

Bf
)((N − 1)f +O(f2)) dHN−1

∣∣∣∣
+

∣∣∣∣ 
∂B

(H̄s
Bf
−Hs

B)((N − 1)f +O(f2)) dHN−1
∣∣∣∣

+

ˆ
∂B
O(|f |) dHN−1 +O([f ]21+s

2

)

≤ δ N − 1 + Cδ

P (B)1/2
‖Hs

Bf
− H̄s

Bf
‖L2 + δ (N − 1 + Cδ) |H̄s

Bf
−Hs

B|

+

ˆ
∂B
O(|f |) dHN−1 +O([f ]21+s

2

),

with C = C(N). For δ small enough, recalling that ‖HBf
− H̄Bf

‖L2 ≤ 1, the previous
inequality implies

1

2
|H̄s

Bf
−Hs

B| ≤ Cδ‖Hs
Bf
− H̄s

Bf
‖L2 +

ˆ
∂B
O(|f |) dHN−1 +O([f ]21+s

2

) ≤ Cδ. (2.11)

By (2.10), using again Hölder’s inequality and by the previous remark, we get

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1x dHN−1y − s(N − s)P

s(B)

P (B)

ˆ
∂B
f2 dHN−1

=

ˆ
∂B

(
Hs
Bf

(p)−Hs
B

)
(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)(‖f‖∞ + ‖f‖2C1)

=

ˆ
∂B

(Hs
Bf

(p)− H̄s
Bf

)(1 + (N − 1)f +O(f2))f dHN−1

+

ˆ
∂B

(H̄s
Bf
−Hs

B)(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)(‖f‖∞ + ‖f‖2C1)

≤ C‖Hs
Bf
− H̄s

Bf
‖L2‖f‖L2 + |H̄s

Bf
−Hs

B|
ˆ
∂B

(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)(‖f‖∞ + ‖f‖2C1). (2.12)

Since |Bf | = ωN , we have ∣∣∣ ˆ
∂B
f dHN−1

∣∣∣ =

ˆ
∂B
O(f2) dHN−1. (2.13)

11



By (2.13) and (2.11), we obtain

|H̄s
Bf
−Hs

B|
ˆ
∂B

(f +O(f2)) dHN−1 ≤ δ
ˆ
∂B
O(f2).

Finally, by the above inequality, (2.13) again and by combining (2.12) with (2.11) we
deduce that, for any η > 0, it holds

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1x dHN−1y − s(N − s)P

s(B)

P (B)

ˆ
∂B
f2 dHN−1

≤ C‖Hs
Bf
− H̄s

Bf
‖L2‖f‖L2 + Cδ(‖f‖2L2 + [f ]21+s

2

) (2.14)

≤ 1

η
C2‖Hs

Bf
− H̄s

Bf
‖2L2 + η‖f‖2L2 + Cδ(‖f‖2L2 + [f ]21+s

2

). (2.15)

The conclusion then follows combining (2.15) with Lemma 2.3 and taking δ and η suffi-
ciently small.

Item ii) then follows from item i), remarking that (2.14) can be read as

(1− s)
(ˆ

∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1x dHN−1y − s(N − s)P

s(B)

P (B)

ˆ
∂B
f2 dHN−1

)
≤ C

∥∥∥(1− s)
(
Hs
Bf
− H̄s

Bf

)∥∥∥
L2
‖f‖L2 + Cδ(‖f‖2L2 + [f ]21+s

2

).

Thus, we obtain

1− s
4

(
λs1‖f‖2L2 + [f ]21+s

2

)
≤ C2

η

∥∥∥(1−s)
(
Hs
Bf
− H̄s

Bf

)∥∥∥2
L2

+η‖f‖2L2 +Cδ(‖f‖2L2 +[f ]21+s
2

).

Recalling (2.7) and the pointwise convergence Theorem 1.4, we conclude. Finally, item
iii) is a corollary of item ii) and Theorems 1.5 and 1.6, recalling that Theorem 1.4 implies

lim
s→1

(1− s)λs1 = (N − 1)ωN−1.

We just remark that, since the convergence is uniform, (1− s)H̄s
Bf
→ H̄Bf

.

3 The asymptotic of the discrete volume-preserving mean
curvature flow

In this section we start by introducing the incremental minimum problem which defines
the discrete-in-time approximation of the volume preserving fractional mean curvature
flow.

Let E 6= ∅ be a bounded, measurable subset of RN . In the following we will always
assume that E coincides with its Lebesgue representative. Fixed h > 0, m > 0, we consider
the minimum problem

min

{
P s(F ) +

1

h

ˆ
F

sdE(x) dx+
1

h
s

s+1

||F | −m| : F ⊂ RN
}
, (3.1)

12



where sdE(x) := distE(x)− distEc(x) is the signed distance from the set E. Observe that
the minimum problem (3.1) is equivalent to the problem

min

{
P s(F ) +

1

h

ˆ
F4E

dist∂E(x) dx+
1

h
s

s+1

||F | −m| : F ⊂ RN
}
.

We set Fh(·, E) : Mf (RN )→ (−∞, +∞] the functional

Fh(F, E) = P s(F ) +
1

h

ˆ
F

sdE(x) dx+
1

h
s

s+1

||F | −m|.

The following proposition recalls some properties of minimizers of problem (3.1).

Proposition 3.1. Let M > 0, h > 0, s ∈ (0, 1) and m > 0. Let E ⊂ RN be a bounded,
measurable set such that P s(E) ≤ M and |E| ≤ M . Then, there exists a minimizer F of
(3.1), which is bounded. Moreover, the following properties hold:

i) There exists Λ = Λ(h,N, s) > 0 such that F is a Λ-minimizer of the perimeter,
namely

P (F ) ≤ P (F ′) + Λ|F4F ′|
for all measurable set F ′ ⊂ RN such that diam(F4F ′) ≤ 1.

ii) The boundary ∂F is of class C2,α for any α ∈ (0, s) outside of a closed set Σ of
Hausdorff dimension at most N − 3. Moreover, there exists s0 ∈ (0, 1) such that,
if s ∈ (s0, 1), then ∂F is of class C1,α for any α ∈ (0, 1) outside a closed set Σ of
Hausdorff dimension at most N − 8.

iii) There exist c0 = c0(N, s) > 0 and a radius r0 = r0(h,N, s) > 0 such that for every
x ∈ ∂F \ Σ and r ∈ (0, r0] we have

|Br(x) ∩ F | ≥ c0rN and |Br(x) \ F | ≥ c0rN .

iv) The following Euler-Lagrange equation holds: there exists λ ∈ R such that for all
X ∈ C1

c (RN ,RN ) we haveˆ
∂F

sdE
h
X · νF dHN−1 +

ˆ
∂F
Hs
FX · νF dHN−1 = λ

ˆ
∂F
X · νF dHN−1, (3.2)

where λ = sgn(m − |F |)h−
s

1+s if |F | 6= m, otherwise it is the Lagrange multiplier
associated with the volume penalization.

v) There exist k0 = k0(h,N, s,M,m) ∈ N and d0 = d0(h,N, s,M,m) > 0 such that F
is made up of at most k0 connected components having diameter larger than d0.

Proof. For the existence of minimizers of (3.1) see for example [8, Theorem 1.1]. The

Λ−minimality property is easily deduced, for instance we can choose Λ = 2(h−1 +h−
s

1+s ).
Concerning property ii), it follows from [8, Theorem 1.1] and [6, Theorem 5]. The density
esimates can be found in [5, Theorem 4.1]. The Euler-Lagrange equation in item iv) is
easily deduced performing variations of (3.1). The bound on the number of connected
components and on the diameter of the components follows from a covering argument, as
in [24, Proposition 2.3].
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By induction we can now define the discrete-in-time, volume preserving fractional mean

curvature flow {E(h)
n }n∈N and we will refer to it as the discrete flow. Let E0 ⊂ RN be a

measurable set such that |E0| = m, we define E
(h)
1 as a solution of (3.1) with E0 instead of

E. Assume that E
(h)
k is defined for 1 ≤ k ≤ n−1, we define E

(h)
n as a solution of (3.1) with

E replaced by E
(h)
n−1. We then recall the classical density estimate (see [5, Theorem 4.1]).

Proposition 3.2. There exists a constant C = C(N, s) > 0 with the following property:
given E ⊂ RN , R, µ > 0 and x0 ∈ ∂E such that

P s(E) ≤ P s(E \Br(x0)) + µ|E ∩Br(x0)| ∀0 < r < R,

then
CrN ≤ |E ∩Br(x0)| ∀0 < r < min{R,Cs,Nµ−1/s}.

Corollary 3.3. Let E ⊂ RN be a bounded set of finite fractional perimeter and let F be a
minimizer of Fh(·, E). Then, for every r ∈ (0, γh1/1+s) and for every x0 ∈ ∂∗F, it holds

min{|Br(x0) \ F |, |F ∩Br(x0)|} ≥ crN (3.3)

crN−s ≤ P s(F,Br(x0)) ≤ CrN−s, (3.4)

where the constants only depend on N and s.

Proof. Since F is a minimizer of Fh(·, E), for any x0 ∈ ∂F , it holds that Fh(F,E) ≤
Fh(F ∪Br(x0), E), which implies

P s(F ) ≤ P s(F ∪Br(x0)) +
1

h

ˆ
Br(x0)\F

sdE dx+
1

hs/1+s
|Br(x0) \ F |

≤ P s(F ∪Br(x0)) +
C

hs/1+s
|Br(x0) \ F |.

Analogously, one can show that

P s(F ) ≤ P s(F \Br(x0)) +
C

hs/1+s
|F ∩Br(x0)| (3.5)

= Ls(F \Br(x0), F c \Br(x0)) + Ls(F \Br(x0), Br(x0)) +
C

hs/1+s
|F ∩Br(x0)|

Therefore, by Proposition 3.2, we deduce

min {|F ∩Br(x0)|, |Br(x0) \ F |} ≥ crN ∀0 < r < γh1/1+s.

The first inequality in (3.4) is now an immediate consequence of the relative isoperimetric
inequality. To prove the second inequality, by (3.5) we get

P s(F,Br(x0)) = Ls(F ∩Br(x0), F c) + Ls(F \Br(x0), F c ∩Br(x0))
= P s(F )− Ls(F \Br(x0), F c \Br(x0))

≤ Ls(F \Br(x0), Br(x0)) +
C

hs/1+s
|Br(x0) \ F |

≤ P s(Br(x0)) +
Cγs

rs
ωNr

N ≤ C(N, s)rN−s,

where we used that r ≤ γh1/1+s.
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We employ the density estimates above to bound the distance function between two
consecutive sets of the discrete flow.

Proposition 3.4. There exists a constant γ = γ(N, s) > 0 with the following property.
Let F ⊂ RN be a bounded set of finite fractional perimeter and let E be a minimizer of
Fh(·, F ), then

sup
E4F

dist∂F ≤ γh1/1+s.

Proof. Let γ = max{3, 2s+1/sP s(B)1/s/C1/s}, where C = C(N, s) is the constant given
by the Proposition 3.2. Let c > γ and x0 ∈ E4F . Suppose by contradiction that
dist∂F (x0) > ch1/1+s. Since the other case is analogous, we assume x0 ∈ E \ F . We then
have

sdF (x0) > ch1/1+s (3.6)

and thus any ball Br(x0) of radius r ≤ ch1/1+s/2 is contained in F c. By the minimality
of E, we have Fh(E,F ) ≤ Fh(E \Br(x0), F ), therefore

P s(E) ≤ P s(E \Br(x0))−
1

h

ˆ
E∩Br(x0)

sdF dx+
1

hs/1+s
|E ∩Br(x0)|.

We use (3.6) and r ≤ ch1/1+s/2 to infer that

−1

h

ˆ
E∩Br(x0)

sdF dx < − c

2hs/1+s
|E ∩Br(x0)|.

Then we have

P s(E) ≤ P s(E \Br(x0))−
1

hs/1+s

( c
2
− 1
)
|E ∩Br(x0)|. (3.7)

By assumption c > 3 and we can apply the Proposition 3.2 with µ = 0 and obtain

CrN ≤ |E ∩Br(x0)| ∀0 < r <
c

2
h1/1+s. (3.8)

On the other hand, from (3.7) we deduce, for every 0 < r < ch1/1+s/2, that

1

hs/1+s

( c
2
− 1
)
|E ∩Br(x0)| ≤ P s(E \Br(x0))− P s(E) ≤ P s(Bc

r) = P s(B)rN−s (3.9)

(where the last inequality follows from the subadditivity of the perimeter on E and Bc
r).

Combining (3.8) and (3.9), we get that

CrN ≤ |E ∩Br(x0)| ≤ P s(B)
( c

2
− 1
)−1

hs/1+srN−s ≤ 2P s(B)hs/1+srN−s

for all 0 < r < ch1/1+s/2, which gives the desired contradiction to the choice of c as soon
as r → ch1/1+s/2.
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We now characterize the stationary sets E for the discrete flow. We say that E is a
stationary set for the discrete flow if it is a fixed set for the functional (3.1), that is,

E = E(h)
n ∀n ∈ N.

Remark 3.5. From the monotonicity of the energy Ps(·)+h−
s

1+s || · |−m| along the discrete

flow, one can observe that, for h = h(m,M) small, |E(h)
n | ∈ (m/2, 3m/2) for all n ∈ N.

In the following, we will always assume that either:

• N = 2;

• N ≤ 7 and s ∈ (s0, 1), where s0 is the constant of Proposition 3.1, item ii).

This hypothesis is essential for the proof of the following result.

Proposition 3.6. Every stationary set E for the discrete flow is a critical set of the
s−perimeter, that is, a single ball.

Proof. It is an immediate consequence of the Euler-Lagrange equation (3.2). Since E is a
stationary point for the discrete flow, it satisfies

ˆ
∂E
Hs
E dHN−1 = λ

ˆ
∂E
X · νE dHN−1

for all X ∈ C1
c (RN ,RN ), i.e. E is a critical point for the s−perimeter. Employing [4,

Theorem 1.1] and [13, Theorem 1.1], we conclude that E is a single ball having fractional
mean curvature Hs

E = λ.

Before proving the convergence of the flow up to translations, we recall the following
lemma from [24] that will be used in the proof of the next proposition.

Lemma 3.7. Let {E(h)
n }n∈N be a volume preserving discrete flow starting from E0 and

let E
(h)
kn

be a subsequence such that E
(h)
kn

+ τn → F in L1 for some set F and a suitable

sequence {τn}n∈N ⊂ RN . Then dist
∂E

(h)
kn−1

(·+ τn)→ dist∂F uniformly.

The following result proves the convergence of the discrete flow to a union of disjointed
balls, all having the same radius. Moreover, we prove that the flow eventually has fixed
volume. A this point, we can not rule out that the flow is converging to different balls
(each at infinite distance from the others) and that the translations introduced are different
along different subsequences. We will provide a sharper result in the final theorem.

Proposition 3.8. Let m, M > 0 and E0 be an initial bounded set with P s(E0) ≤ M ,

|E0| = m. Then, for h = h(s,M,m) small enough and for any discrete flow E
(h)
n starting

from E0 the following hold:

i) for n sufficiently large |E(h)
n | = m;

ii) there exists
P s∞ = lim

n→∞
P s(E(h)

n );
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iii) E
(h)
n is made of K = (P s∞/ω

s
N )

N
s (ωN/m)

N
s
−1 distinct connected components E

(h)
n,i ,

and E
(h)
n,i − bar(E

(h)
n,i ) converges in Ck, for every k ∈ N, to the ball centered at the

origin and having mass m/K.

Proof. Let {E(h)
kn
}n∈N be any given subsequence of {E(h)

n }n∈N. By Proposition 3.1, each

set E
(h)
kn

is made up of ln ≤ k0 connected components having diameter uniformly bounded

by d0. Therefore, there exist ln balls {Bd0(ξin)}, each containing a different component of

E
(h)
kn

and such that E
(h)
kn
⊂ ∪lni=1Bd0(ξin). Up to subsequences, we can assume that ln = l̃,

and for all 1 ≤ i < j ≤ l̃ the following limits exist

lim sup
n→∞

|ξin − ξjn| =: di,j ∈ [0,+∞].

Now we define the following equivalence classes: we say that i ≡ j if and only if di,j < +∞.
Denote by l ≤ l̃ the number of such equivalence classes, let j(i) be a representative for each
class i ∈ {1, . . . , l}, and set σin := ξj(i) for i = 1, . . . , l. We have constructed a subsequence

E
(h)
kn

satisfying E
(h)
kn
⊂ ∪li=1BR(σin), where R = d0 + max{di,j : di,j < +∞}+ 1, and for all

i 6≡ j it holds |σin − σ
j
n| → +∞ as n→ +∞.

Now, fix 1 ≤ i ≤ l, and set

F in := E
(h)
kn
− σin, F̃ in := (E

(h)
kn
− σin) ∩BR, mi

n := |F̃ in|.

Up to a subsequence, we have mi
n → mi > 0. Moreover, by Lemma 3.7 and by the

compactness of sets of equi-bounded fractional perimeters, there exist F̃ i b BR such that,
up to a subsequence,

F̃ in → F̃ i in L1, sd
E

(h)
kn−1

(·+ σin)→ sdF̃ i(·) locally uniformly. (3.10)

Let G̃i be any bounded set with |G̃i| = mi
n and let G̃in :=

(
mi

n

mi

) 1
N
G̃i. We set now

Gin := (F in \ F̃ in) ∪ G̃in so that, for n sufficiently large, |F in| = |Gin|. By the minimality of

E
(h)
kn

we have

P s(F in) +
1

h

ˆ
F i
n

sd
E

(h)
kn−1

(x+ σin) dx ≤ P s(Gin) +
1

h

ˆ
Gi

n

sd
E

(h)
kn−1

(x+ σin) dx.

For n sufficiently large, we obtain

P s(F̃ in) +

ˆ
F̃ i
n

ˆ
F i
n\F̃ i

n

1

|x− y|N+s
dx dy +

1

h

ˆ
F̃ i
n

sd
E

(h)
kn−1

(x+ σin) dx

≤ P s(G̃in) +

ˆ
G̃i

n

ˆ
F i
n\F̃ i

n

1

|x− y|N+s
dx dy +

1

h

ˆ
G̃i

n

sd
E

(h)
kn−1

(x+ σin) dx.

Passing to the limit as n→∞, using (3.10) and the uniform boundedness of F̃ in and G̃in,
we deduce that

P s(F̃ i) +
1

h

ˆ
F̃ i

sdF̃ i(x) dx ≤ P s(Gi) +
1

h

ˆ
Gi

sdF̃ i(x) dx.
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This minimality property extends by density to all competitors Gi with finite perimeter
and volume mi, so that we deduce that F̃ i is a fixed point for the discrete scheme with
prescribed volume mi, and, whence by Proposition 3.6, it is a ball. Moreover, since F̃ i

are uniform Λ−minimizer by Proposition 3.1, we also deduce that F̃ in converge to F̃ i in
C1,α for every α ∈ (0, 1). In particular, for n large enough, F̃ in has only one connected
component.

We have shown that, for n large enough, E
(h)
kn

is made up by a fixed number K of

connected components E
(h),i
kn

, i = 1, . . . ,K and E
(h),i
kn
− bar(E

(h),i
kn

) → BRi where |BRi | =
mi. Now, we show that all the radii Ri are equal to R. To this aim, we consider the
Euler-Lagrange equation (3.2)

1

h
sd
E

(h)
kn−1

+Hs

E
(h)
kn

= λn on ∂E
(h)
kn
.

By Proposition 3.4, we deduce that

|λn| ≤ h−1‖sdE(h)
kn−1

‖
L∞(∂E

(h)
kn

)
+ ‖Hs

E
(h)
kn

‖
L∞(∂E

(h)
kn

)
≤ c+ ‖Hs

E
(h)
kn

‖
L∞(∂E

(h)
kn

)
.

To bound the right hand side, we use the Λ−minimality of E
(h)
kn

to obtain

‖Hs

E
(h)
kn

‖
L∞(∂E

(h)
kn

)
≤ Λ.

Therefore, by passing to a further subsequence, we can assume λn → λ ∈ R. Arguing as
before, we can localize the Euler-Lagrange equation to each single F in and obtain

1

h
sd
E

(h)
kn−1

(x+ σin) +Hs
F i
n
(x) = λn x ∈ ∂F in.

We can pass to the limit as n→∞ thanks to Lemma 3.7 and the continuity property of
the fractional mean curvature (see e.g. [13, Lemma 2.1]). Thus, taking into account that
F̃ i is a fixed set for (3.1), we deduce that

Hs
F̃ i = λ on ∂F̃ i.

In particular, this shows that Ri = cλ−s, for a suitable constant c depending only on s
and N .

In order to prove that, eventually, |E(h)
n | = m, we proceed as follows. Set |BRi | =

c1λ
−sN and P s(BRi) = c2λ

−s(N−s). From Remark 3.5, we take h = h(s,M) small enough
such that

|E(h)
kn
| ∈
[
m

2
,
3m

2

]
, P s(E

(h)
kn

) ≤ P s(E0) ≤M

and, for n large enough, this implies

K∑
i=1

mi
n ∈

[
m

2
,
3m

2

]
,

K∑
i=1

P s(F̃ in) ≤M.

18



Passing to the limit as n→∞ we obtain

Kc1λ
−sN ∈

[
m

2
,
3m

2

]
, Kc2λ

−s(N−s) ≤M,

which implies

λs
2 ≤ 2c1M

mc2
. (3.11)

If we suppose that |E(h)
kn
| 6= m for infinitely many indexes, then λ = sgn(m− |E(h)

kn
|)h−

s
1+s

which is a contradiction to (3.11) if h is sufficiently small. We have thus proved item

i). Since, for n large enough, |E(h)
n | = m, the sequence {P s(E(h)

n )}n∈N is eventually non-
increasing, from which item ii) follows. Knowing the exact values of the volume and
s−perimeter of any limit point, we are able to compute K and obtain the convergence in
L1 of the whole sequence. Moreover, arguing as in [8] we conclude the convergence in Ck

for every k ∈ N via a bootstrap method.

In order to prove the main theorem, we need to recall some results of [24].

Lemma 3.9. Let η > 0. There exists δ > 0 with the following property: if f1, f2 ∈ C1(∂B)
with ‖fi‖C1(∂B) ≤ δ and |Bfi | = |B| for i = 1, 2 we have

C1(1− η)‖f1 − f2‖2L2(B) ≤D(Bf1 , Bf2) ≤ C1(1 + η)‖f1 − f2‖2L2(B)

1− η
2

ˆ
∂Bf−1

sd2
Bf2

dHN−1 ≤D(Bf1 , Bf2) ≤ 1 + η

2

ˆ
∂Bf−1

sd2
Bf2

dHN−1

|bar(Bf1)− bar(Bf2)|2 ≤C2‖f1 − f2‖2L2(B) ≤
C2

C1(1− η)
D(Bf1 , Bf2)

for suitable constants C1, C2 > 0.

The following lemma proves the crucial dissipation-dissipation inequality (3.12). This
result will play a central role in the proof of Theorem 0.1. Its proof is based on the
Alexandrov-type estimate contained in Theorem 0.3 and will be omitted as it is the same
of [24, Lemma 3.8].

Lemma 3.10. Let h > 0. There exist constants C(h,m, s), δ > 0 with the following prop-

erty: given two normal deformations B
(m)
f1

, B
(m)
f2

with fi ∈ C2(∂B(m)), ‖fi‖C1(∂B(m)) ≤ δ,
and such that |B(m)

f2
| = m, bar(B

(m)
f2

) = 0 and

H
B

(m)
f2

+

sd
B

(m)
f1

h
= λ on ∂B

(m)
f2

(3.12)

for some λ ∈ R, we have

D(B(m), B
(m)
f2

) ≤ CD(B
(m)
f2

, B
(m)
f1

).
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We are finally able to prove Theorem 0.1. We will follow closely the proofs of [24,
Theorem 3.3] and [14, Theorem 1.1]. The main difference is that we use the fractional
perimeter framework previously studied instead of the classical one. We present a sketch
of the proof.

Proof. We start by proving the exponential decay of the dissipations, corresponding to
Step 1 in [24, Theorem 3.3].

From Proposition 3.8 we know that any limit point of the discrete flow is given by the
union of K disjoint balls, all having volume m/K. We then use two competitors to obtain

a discrete Gronwall-type inequality. Firstly, testing the minimality of E
(h)
n with E

(h)
n−1 and

summing from n to infinity, we obtain∑
k≥n−1

D(E
(h)
k , E

(h)
n−1) ≤ P (E(h)

n )− P s∞ = P (E(h)
n )−KP s(B(m/K)).

On the other hand, recalling Proposition 3.8, the sets (E
(h)
n )i−bar((E

(h)
n )i) =: (E

(h)
n )i−ξin

are eventually C1,α−deformations of B(m/K), having volume |(E(h)
n )i| = mi

n. We consider

the admissible competitor for E
(h)
n given by

Bn =
K⋃
i=1

(
B(mi

n−1) + ξin−1

)
.

Testing the minimality of E
(h)
n against Bn, one can obtain

P s(E(h)
n )− P s(Bn) ≤ CD(E

(h)
n−1, E

(h)
n−2).

Recalling that, if a measurable set F has L disjointed connected components F i, i =
1, . . . , L, then

P s(F ) =
L∑
i=1

P s(F i)− 2
∑
i<j

ˆ
F i

ˆ
F j

1

|x− y|N+s
dx dy,

by concavity, we estimate

P s(Bn) ≤
K∑
i=1

P s(B(mi
n−1)) ≤ KP s(B(m/K)).

Thus, combining the previous two estimates, we obtain the discrete Gronwall-type estimate∑
k≥n−1

D(E
(h)
k , E

(h)
n−1) ≤ CD(E

(h)
n−1, E

(h)
n−2).

Finally, employing [24, Lemma 3.10] we conclude the exponential convergence of the dis-
sipations

D(E(h)
n , E

(h)
n−1) ≤

(
1− 1

C + 1

)n
2

(P s(E0)−KP s(B(m/K))).
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From now on, one can follow directly the proof of [24, Theorem 3.3] to conclude that the

discrete flow E
(h)
n is eventually contained in a compact set and converges in Ck to a union

of K disjoint balls. Now, from Proposition 3.6 we deduce that the limit point is indeed a
single ball, having volume equal to m, thus reaching the conclusion of the proof.

As a corollary of the previous result, we prove the following characterization of the
long-time behaviour of the discrete volume-preserving mean curvature flow associated with
the classical perimeter. The definition is analogous to the discrete flow associated with
the fractional perimeter, but in this case we consider the following minimum problem (cp.
the problem (3.1))

min

{
P (F ) +

1

h

ˆ
F

sdE(x) dx+
1√
h
||F | −m| : F ⊂ RN

}
.

A careful study of the previous results highlights that the classical perimeter behaves
essentially in the same manner. In particular, Proposition 3.8 still holds for s = 1,
replacing “P 1” with the classical perimeter. Thus, we conclude the following.

Proposition 3.11. Let m, M > 0 and let E0 be an initial set with P (E0) ≤M , |E0| = m.

Then, for h = h(M,m) small enough the following holds: for any discrete flow E
(h)
n

starting from E0, there exist xi ∈ RN , i = 1, . . . ,K, where K = N−NωNm
1−NPN∞ such

that

E(h)
n →

K⋃
i=1

(
B(m/K) + xi

)
in Ck

for all k ∈ N. Moreover, the convergence is exponentially fast.

The proof is essentially the same, the major difference being that the limit point of
the flow now are union of disjoint balls (see [24, Proposition 3.1] for details) and not a
single ball.

A Existence of flat flows

In order to prove the existence of flat flows, we follow the lines of [25, Section 3]. In
this appendix we drop the assumption on the dimension and work in RN , N ≥ 2. We

start by remarking that the minimality of the sets E
(h)
n implies

P s(E
(h)
t ) +

1

h

ˆ
E

(h)
t 4E

(h)
t−h

dist
∂E

(h)
t−h

(x) dx+
1

hs/1+s
||E(h)

t | −m|

≤ P s(E(h)
t−h) +

1

hs/1+s
||E(h)

t−h| −m| ∀t ∈ [h,+∞) (A.1)
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and, by iterating (A.1) and using |E0| = m, we get

P s(E
(h)
t ) ≤ P s(E0), (A.2)

1

hs/1+s
||E(h)

t | −m| ≤ P s(E0), (A.3)

ˆ T

h

ˆ
E

(h)
t 4E

(h)
t−h

dist
∂E

(h)
t−h

(x)

h
dx ≤ P s(E0),

for all t ≥ 0 and for every T > h. We are then able to bound the L1−distance between
two consecutive sets of the discrete flow.

Proposition A.1. Let t > 0. Then

|E(h)
t 4E

(h)
t−h| ≤ C

(
lsP s(E

(h)
t−h) +

1

l

ˆ
E

(h)
t 4E

(h)
t−h

dist
∂E

(h)
t−h

(x) dx

)
∀l ≤ γh1/1+s.

Proof. In order to estimate |E(h)
t 4E

(h)
t−h|, we split it into two parts:

|E(h)
t 4E

(h)
t−h| ≤ |{x ∈ E

(h)
t 4E

(h)
t−h : dist∂F (x) ≤ l}|+ |{x ∈ E(h)

t 4E
(h)
t−h : dist

∂E
(h)
t−h

(x) ≥ l}|.

The second term is estimated by

|{x ∈ E(h)
t 4E

(h)
t−h : dist

∂E
(h)
t−h

(x) ≥ l}| ≤ 1

l

ˆ
E

(h)
t 4E

(h)
t−h

dist
∂E

(h)
t−h

(x) dx.

To estimate the first term, we use a covering argument to find a collection of disjoint

balls {Bl(xi)}i∈I with xi ∈ ∂E(h)
t−h and I ⊂ N a finite set such that ∂E

(h)
t−h ⊂ ∪i∈IB2l(xi).

Observe that, by (3.3), (3.4) and the relative isoperimetric inequality, for every i ∈ I, we
get

|B3l(xi)| ≤ C min{|E(h)
t−h ∩Bl(xi)|, |Bl(xi) \ E

(h)
t−h|}

≤ CLs(E(h)
t−h ∩Bl(xi), Bl(xi) \ E

(h)
t−h)N/N−s

≤ Cls Ls(E(h)
t−h ∩Bl(xi), Bl(xi) \ E

(h)
t−h)

≤ Cls Ls(E(h)
t−h ∩Bl(xi),R

N \ E(h)
t−h).

Since the set {x ∈ E(h)
t 4E

(h)
t−h : dist

∂E
(h)
t−h

(x) ≤ l} is covered by {B3l(xi)}i∈I , by summing

over i and by the choice of the balls {Bl(xi)}i∈I , we obtain

|{x ∈ E(h)
t 4E

(h)
t−h : dist

∂E
(h)
t−h

(x) ≤ l}| ≤
∑
i∈I
|B3l(xi)|

≤ Cls
∑
i∈I
Ls(E(h)

t−h ∩Bl(xi),R
N \ E(h)

t−h)

≤ ClsP s(E(h)
t−h).
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Proposition A.2. Let h ≤ 1, then it holds

|E(h)
t1
4E(h)

t2
| ≤ C|t1 − t2|s/s+1 ∀0 ≤ t1 ≤ t2 < +∞. (A.4)

Proof. It is enough to consider the case t2 − t1 ≥ h. Let j ∈ N and k ∈ N \ {0} be such
that t1 ∈ [jh, (j+ 1)h) and t2 ∈ [(j+ k)h, (j+ k+ 1)h). Then, we can use Proposition A.1
with l = γh/|t1 − t2|s/s+1 (note that l ≤ γh1/s+1 by the assumption t2 − t1 ≥ h) and
estimate in the following way

|E(h)
t1
4E(h)

t2
| ≤

k∑
i=1

|E(h)
(j+i)h4E

(h)
(j+i−1)h|

≤ C
k∑
i=1

hs

|t1 − t2|s2/s+1
P s(E

(h)
(j+i−1)h)

+ C

k∑
i=1

|t1 − t2|s/s+1

h

ˆ (h)

E
(h)
(j+i)h

4E(j+i−1)h

|sd
E

(h)
(j+i−1)h

|dx.

By using (A.1) we estimate the sum above by

|E(h)
t1
4E(h)

t2
| ≤ C

k∑
i=1

hs

|t1 − t2|s2/s+1
P (E0)

+ C

k∑
i=1

|t1 − t2|s/s+1(P (E
(h)
(j+i−1)h)− P (E

(h)
(j+i)h))

+ C
k∑
i=1

|t1 − t2|s/s+1

hs/s+1

(
||E(h)

(j+i−1)h| −m| − ||E
(h)
(j+i)h| −m|

)
≤ C khs

|t1 − t2|s2/s+1
P (E0) + C|t1 − t2|s/s+1(P (E

(h)
t1

)− P (E
(h)
t2

))

+ C
|t1 − t2|s/s+1

hs/s+1

(
||E(h)

t1
| −m| − ||E(h)

t2
| −m|

)
.

Now, by (A.2) and (A.3), we get

|E(h)
t1
4E(h)

t2
| ≤ C|t1 − t2|s/s+1P (E0),

where we used that khs ≤ 2|t1 − t2|hs−1 ≤ 2|t1 − t2|s since h ≤ |t1 − t2|.

We are now able to prove the existence of fractional flat flows, defined as L1
loc−limit

points of the discrete flow previously introduced.

Proposition A.3. Let E0 be a bounded initial set of finite fractional perimeter and volume

m. For any h > 0, let {E(h)
t }t≥0 be a discrete flow. Then, there exist a family of sets

{Et}t≥0 of finite fractional perimeter and a subsequence hk → 0 such that, as k → ∞, it
holds

E
(hk)
t → Et in L1

loc, for all t ∈ [0,+∞).
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Moreover, the flow satisfies ∀ 0 ≤ s ≤ t,

|Et4Es| ≤ C|t− s|
s

1+s ,

P s(Et) ≤ P s(E0).

Proof. We follow [25, Theorem 2.2]. Considering t ∈ Q+, from (A.2) and the compactness
of sets of finite fractional perimeter, we find a subsequence hk → 0 such that

L1
loc − lim

k→∞
E

(hk)
t = Et ∀t ∈ Q+.

By the triangular inequality, it’s easy to see that (A.4) passes to the limit. Finally, a

simple continuity argument implies that the whole sequence E
(hk)
t converges to the sets

Et for all t ∈ [0,+∞).

If we assume the following hypothesis:

1. given T > 0 and an initial bounded set E0 of finite fractional perimeter, there exists

R > 0 independent of h such that E
(h)
t ⊂ BR for all h > 0, t ∈ [0, T ],

we are able to prove that the flat flow is indeed volume-preserving.

Corollary A.4. Under hypothesis 1, let E0 be a bounded initial set of finite fractional

perimeter and volume m. For any h > 0, let {E(h)
t }t≥0 be a discrete flow. Then, there

exist a family of sets {Et}t≥0 of finite fractional perimeter and a subsequence hk → 0 such
that, as k →∞, it holds

E
(hk)
t → Et in L1 for all t ∈ [0,+∞).

Moreover, the flow satisfies ∀ 0 ≤ s ≤ t,

|Et| = |E0|

|Et4Es| ≤ C|t− s|
s

1+s ,

P s(Et) ≤ P s(E0).

Proof. The proof is analogous to the one of Proposition A.3. By uniform boundedness,
the limits are in L1 instead of L1

loc. Then, passing to the limit h→ 0 in (A.1) we conclude
that |Et| = m for all t ≥ 0.
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[4] X. Cabré, M. M. Fall, J. Solà-Morales, and T. Weth. “Curves and surfaces with
constant nonlocal mean curvature: meeting Alexandrov and Delaunay”. In: J. Reine
Angew. Math. 745 (2018), pp. 253–280. issn: 0075-4102. doi: 10.1515/crelle-
2015-0117. url: https://doi.org/10.1515/crelle-2015-0117.

[5] L. Caffarelli, J.-M. Roquejoffre, and O. Savin. “Nonlocal minimal surfaces”. In:
Comm. Pure Appl. Math. 63 (2010), pp. 1111–1144.

[6] L. Caffarelli and E. Valdinoci. “Regularity properties of nonlocal minimal surfaces
via limiting arguments”. In: Adv. Math. 248 (2013), pp. 843–871. issn: 0001-8708.
doi: 10.1016/j.aim.2013.08.007. url: https://doi.org/10.1016/j.aim.
2013.08.007.

[7] A. Cesaroni, L. De Luca, M. Novaga, and M. Ponsiglione. “Stability results for
nonlocal geometric evolutions and limit cases for fractional mean curvature flows”.
In: Comm. Partial Differential Equations 46.7 (2021), pp. 1344–1371. issn: 0360-
5302. doi: 10.1080/03605302.2021.1875485. url: https://doi.org/10.1080/
03605302.2021.1875485.

[8] A. Cesaroni and M. Novaga. “Long-time behavior of the mean curvature flow with
periodic forcing”. In: Communications in Partial Differential Equations 38.5 (2013),
pp. 780–801.

[9] A. Cesaroni and M. Novaga. “Stability of the ball under volume preserving fractional
mean curvature flow”. In: preprint (2022).

[10] A. Chambolle, M. Morini, and M. Ponsiglione. “Nonlocal curvature flows”. In: Arch.
Ration. Mech. Anal. 218.3 (2015), pp. 1263–1329. issn: 0003-9527. doi: 10.1007/
s00205-015-0880-z. url: https://doi.org/10.1007/s00205-015-0880-z.

[11] E. Cinti, C. Sinestrari, and E. Valdinoci. “Convex sets evolving by volume-preserving
fractional mean curvature flows”. In: Anal. PDE 13.7 (2020), pp. 2149–2171. issn:
2157-5045. doi: 10.2140/apde.2020.13.2149. url: https://doi.org/10.2140/
apde.2020.13.2149.

[12] E. Cinti, C. Sinestrari, and E. Valdinoci. “Neckpinch singularities in fractional mean
curvature flows”. In: Proc. Amer. Math. Soc. 146.6 (2018), pp. 2637–2646. issn: 0002-
9939. doi: 10.1090/proc/14002. url: https://doi.org/10.1090/proc/14002.

[13] G. Ciraolo, A. Figalli, F Maggi, and M. Novaga. “Rigidity and sharp stability es-
timates for hypersurfaces with constant and almost-constant nonlocal mean cur-
vature”. In: Journal für die reine und angewandte Mathematik (Crelles Journal)
2018.741 (2018), pp. 275–294. doi: doi:10.1515/crelle-2015-0088. url: https:
//doi.org/10.1515/crelle-2015-0088.

[14] D. De Gennaro and A. Kubin. “Long Time Behaviour of the Discrete Volume Pre-
serving Mean Curvature Flow in the Flat Torus”. In: preprint (2022).

25

https://doi.org/10.1515/crelle-2015-0117
https://doi.org/10.1515/crelle-2015-0117
https://doi.org/10.1515/crelle-2015-0117
https://doi.org/10.1016/j.aim.2013.08.007
https://doi.org/10.1016/j.aim.2013.08.007
https://doi.org/10.1016/j.aim.2013.08.007
https://doi.org/10.1080/03605302.2021.1875485
https://doi.org/10.1080/03605302.2021.1875485
https://doi.org/10.1080/03605302.2021.1875485
https://doi.org/10.1007/s00205-015-0880-z
https://doi.org/10.1007/s00205-015-0880-z
https://doi.org/10.1007/s00205-015-0880-z
https://doi.org/10.2140/apde.2020.13.2149
https://doi.org/10.2140/apde.2020.13.2149
https://doi.org/10.2140/apde.2020.13.2149
https://doi.org/10.1090/proc/14002
https://doi.org/10.1090/proc/14002
https://doi.org/doi:10.1515/crelle-2015-0088
https://doi.org/10.1515/crelle-2015-0088
https://doi.org/10.1515/crelle-2015-0088


[15] J. Escher and G. Simonett. “The volume preserving mean curvature flow near
spheres”. In: Proc. Amer. Math. Soc. 126.9 (1998), pp. 2789–2796. issn: 0002-9939.
doi: 10.1090/S0002-9939-98-04727-3. url: https://doi.org/10.1090/S0002-
9939-98-04727-3.

[16] A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini. “Isoperimetry and stability
properties of balls with respect to nonlocal energies”. In: Comm. Math. Phys. 336.1
(2015), pp. 441–507. issn: 0010-3616. doi: 10.1007/s00220-014-2244-1. url:
https://doi.org/10.1007/s00220-014-2244-1.

[17] B.X. Han and A. Pinamonti. “On the asymptotic beahaviour of the fractional
Sobolev seminorms in metric measure spaces: Bourgain-Brezis-Mironescu’s Theo-
rem revisited”. In: preprint (2021).

[18] G. Huisken. “The volume preserving mean curvature flow”. In: J. Reine Angew.
Math. 382 (1987), pp. 35–48. issn: 0075-4102. doi: 10.1515/crll.1987.382.35.
url: https://doi.org/10.1515/crll.1987.382.35.

[19] C. Imbert. “Level set approach for fractional mean curvature flows”. In: Interfaces
Free Bound. 11.1 (2009), pp. 153–176. issn: 1463-9963. doi: 10.4171/IFB/207. url:
https://doi.org/10.4171/IFB/207.

[20] V. Julin and D. A. La Manna. “Short time existence of the classical solution to the
fractional mean curvature flow”. In: Ann. Inst. H. Poincaré C Anal. Non Linéaire
37.4 (2020), pp. 983–1016. issn: 0294-1449. doi: 10.1016/j.anihpc.2020.02.007.
url: https://doi.org/10.1016/j.anihpc.2020.02.007.

[21] V. Julin, M. Morini, M. Ponsiglione, and E. Spadaro. “The Asymptotics of the Area-
Preserving Mean Curvature and the Mullins-Sekerka Flow in Two Dimensions”. In:
(2021). cvgmt preprint. url: http://cvgmt.sns.it/paper/5399/.

[22] B. Krummel and F. Maggi. “Isoperimetry with upper mean curvature bounds and
sharp stability estimates”. In: Calc. Var. Partial Differential Equations 56.2 (2017),
Paper No. 53, 43. issn: 0944-2669. doi: 10.1007/s00526-017-1139-3. url: https:
//doi.org/10.1007/s00526-017-1139-3.

[23] S. Luckhaus and T. Sturzenhecker. “Implicit time discretization for the mean curva-
ture flow equation”. In: Calc. Var. Partial Differential Equations 3.2 (1995), pp. 253–
271. issn: 0944-2669. doi: 10.1007/BF01205007. url: https://doi.org/10.1007/
BF01205007.

[24] M. Morini, M. Ponsiglione, and E. Spadaro. “Long time behavior of discrete volume
preserving mean curvature flows”. In: J. Reine Angew. Math. 784 (2022), pp. 27–51.
issn: 0075-4102. doi: 10.1515/crelle-2021-0076. url: https://doi.org/10.
1515/crelle-2021-0076.

[25] L. Mugnai, C. Seis, and E. Spadaro. “Global solutions to the volume-preserving
mean-curvature flow”. In: Calc. Var. Partial Differential Equations 55.1 (2016),
Art. 18, 23. issn: 0944-2669. doi: 10.1007/s00526-015-0943-x. url: https:
//doi.org/10.1007/s00526-015-0943-x.

26

https://doi.org/10.1090/S0002-9939-98-04727-3
https://doi.org/10.1090/S0002-9939-98-04727-3
https://doi.org/10.1090/S0002-9939-98-04727-3
https://doi.org/10.1007/s00220-014-2244-1
https://doi.org/10.1007/s00220-014-2244-1
https://doi.org/10.1515/crll.1987.382.35
https://doi.org/10.1515/crll.1987.382.35
https://doi.org/10.4171/IFB/207
https://doi.org/10.4171/IFB/207
https://doi.org/10.1016/j.anihpc.2020.02.007
https://doi.org/10.1016/j.anihpc.2020.02.007
http://cvgmt.sns.it/paper/5399/
https://doi.org/10.1007/s00526-017-1139-3
https://doi.org/10.1007/s00526-017-1139-3
https://doi.org/10.1007/s00526-017-1139-3
https://doi.org/10.1007/BF01205007
https://doi.org/10.1007/BF01205007
https://doi.org/10.1007/BF01205007
https://doi.org/10.1515/crelle-2021-0076
https://doi.org/10.1515/crelle-2021-0076
https://doi.org/10.1515/crelle-2021-0076
https://doi.org/10.1007/s00526-015-0943-x
https://doi.org/10.1007/s00526-015-0943-x
https://doi.org/10.1007/s00526-015-0943-x


[26] J. Niinikoski. “Volume preserving mean curvature flows near strictly stable sets in
flat torus”. In: J. Differential Equations 276 (2021), pp. 149–186. issn: 0022-0396.
doi: 10.1016/j.jde.2020.12.010. url: https://doi.org/10.1016/j.jde.
2020.12.010.

27

https://doi.org/10.1016/j.jde.2020.12.010
https://doi.org/10.1016/j.jde.2020.12.010
https://doi.org/10.1016/j.jde.2020.12.010

	1 Preliminaries
	2 A fractional quantitative Alexandrov type estimate
	3 The asymptotic of the discrete volume-preserving mean curvature flow
	A Existence of flat flows

