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Abstract

In this work, we propose a new method to fill the gap within an incomplete turbulent
and incompressible data field in such a way to satisfy the topological and intensity
changes of the fluid flow after a non-parameterized geometrical variation in the fluid
domain. This work extends the one that has been published as a conference
proceeding to the 2018 AIAA Scitech Forum and Exposition (Akkari et al. in Geometrical
reduced order modeling (ROM) by proper orthogonal decomposition (POD) for the
incompressible navier stokes equations. In: 2018 AIAA Aerospace Sciences Meeting,
AIAA SciTech Forum, (AIAA 2018-1827), 2018). A single baseline large eddy simulation
(LES) is assumed to be performed prior geometrical variations. The proposed method is
an enhancement of the Gappy-PODmethod proposed by Everson and Sirovich in 1995,
in the case where the given set of empirical eigenfunctions is not sufficient and is not
interpolant for the recovering of the modal coefficients for each Gappy snapshot by a
least squares procedure. This happens when the available data cannot be written as an
interpolation of the baseline POD modes. This is typically the case when we introduce
non-parameterized geometrical modifications in the fluid domain. Here, after the
baseline simulation, additional solutions of the incompressible Navier–Stokes equations
are solely performed over a restricted fluid domain, that contains the geometrical
modifications. These local LESs that we will call hybrid simulations are performed by
using the immersed boundary technique, which uses of a fluid boundary condition and
the baseline velocity field. Then, we propose to update the POD modes using a local
modification of the baseline POD modes in the restricted fluid domain. Furthermore,
we will propose a physical correction of the latter enhanced Gappy-POD modal
coefficients thanks to a Galerkin projection of the Navier–Stokes equations upon the
new modes of the available data. This enhancement procedure on the global velocity
reconstruction by the physical constraint was tested on a 3D semi-industrial test case of
a typical aeronautical injection system and, a 2D laminar and unsteady incompressible
test case. The speed-up relative to this new technique is equal to 100, which allows us
to perform an exploration of two new designs of the aeronautical injection system.

Keywords: Proper orthogonal decomposition (POD), Updated Gappy-POD,
Gappy-POD, Non-parameterized geometrical variation, Hybrid approach, Locally
available data, Galerkin projection, Dynamic extrapolation, Navier–Stokes equations,
Large eddy simulation (LES), Aeronautical injection system, Design exploration in
industry, Efficiency, Robustness
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Introduction
A large number of complex simulations of 3D unsteady and incompressible turbulent
flows encountered in aeronautical engines, associated with different geometrical config-
urations, are crucial for designing new technologies. We consider the conception of the
injection system in an aeronautical engine. We need multiple 3D incompressible and
unsteady simulations of the non-reacting fluid flow in the primary zone of the combus-
tor that occurs before the ignition point. These simulations are associated with different
geometries of the injection system, so that the topology of the resulting incompressible
and turbulent fluid flow could influence the flame stability in the combustion zone of the
gas turbine. This industrial process is challenging because of the size and the complexity
of these numerical simulations. We propose to use reduced order modeling technologies
to speed computational return times. Recently, we have proposed a new physical method-
ology to stabilize the classical POD-Galerkin Reduced Order Modeling (ROM) for the
turbulent and incompressible Navier–Stokes equations, in order to cover a proper evolu-
tion of the Turbulent Kinetic Energy (TKE) spectrum and guarantee a conservation of the
kinetic energy within the ROM, see [1,2]. Nevertheless, if the proposed ROM is accurate
for a given geometrical configuration, its accuracy is not guaranteed for complex geomet-
rical variations, such as non-parameterized topological ones. The geometrical inaccuracy
within a baseline reduced order model associated with a reference reduced order POD
basis comes mainly from the first POD mode corresponding to the mean motion. The
velocity field needs to be predicted correctly in the entire domain, so that the Galerkin
projection is predictible, for the newgeometrical configuration. To remedy for this inaccu-
racy, we propose an approach based on the application of the Gappy-POD algorithm. The
Gappy-POD has been first introduced in [3] as a technique for reconstruction of incom-
plete data field, assuming that the incomplete data vector represents a solution whose
behavior can be characterized with an existing snapshots set. In [4], the POD technique
was applied for inverse design purpose, in order to determine the optimal airfoil shape
as an interpolation of known designs. In this paper, the POD technique was also applied
in an iterative procedure in order to determine a POD associated with an incomplete
pressure field on an airfoil at a given angle of attack. This iterative scheme was proposed
for the first time in [3] for finding empirical eigenfunctions from the gappy data and it
was shown numerically that the method yields to eigenfunctions that are close to those
obtained from unmarred data. In [5], the Gappy-POD was applied in order to complete
velocity data obtained using particle image velocimetry, which is often marred by miss-
ing data in various spatial locations due to inconsistent seeding and other factors. The
results demonstrate that the Gappy-POD can provide an estimate that is accurate within
the experimental uncertainty of the measured data. In [6], the Gappy-POD approach was
performed on the inverse design of various airfoil shapes. In [7], the Gappy-PODmethod
was applied to replace erroneous measurements in digital particle velocimetry (DPIV),
where a locally adaptive criterion allows for determination of the optimum number of
POD modes required for the reconstruction of each replaced measurement. In [8], the
Gappy-POD was applied for aerodynamic shape optimization. In [9], the Gappy-POD is
used to fuse wind-tunnel measurements and computational fluid dynamics (CFD) data to
provide a consistent andmore comprehensive output of greater utility. In [10], theGappy-
POD was applied in a sensor-CFD data fusion procedure for airflow field estimation.
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Other than Gappy-POD methods have been proposed to deal with flows in variable
geometries. Ref. [11] have used the Lagrangian sensitivitywith respect to shape parameters
of a baseline POD, in order to compute subsequently a reduced order model at perturbed
states. However, there is no guarantee these bases will be divergent free once mapped on
any other geometry. This technique was applied for the 2D incompressible Navier–Stokes
equations for a flow over a square cylinder. The considered mapping is the rotation of the
cylinder. Ref. [12] developed a PODmethod for modeling nonlinear flows with deforming
meshes, thanks to dynamic functions that depend on parameters associated with flow
unsteadiness. Ref. [13] developed a reductionmethod for immersed boundary techniques,
where a new method for snapshots collection and compression describes the position of
moving boundaries. Ref. [14] proposed a parametric and geometric reduced basis method
for the Stokes equations using the immersed boundary equations.
In thiswork, we consider the incompressible and unsteadyNavier–Stokes equations and

we assume a non-parameterized geometric variation locally in the fluid flow domain. We
want to predict correctly and efficiently the velocity field in the scope of this new geome-
try, from a high-fidelity computational knowledge available in a Restricted Fluid Domain
(RFD). The RFD surrounds the geometrical modifications. A Gappy-POD is used as a first
prediction step of the flow field in the scope of the new geometry defined by the interpo-
lation of a pre-computed POD basis associated with one baseline high-fidelity simulation.
The interpolation modal coefficients are determined via an optimization problem of the
squared L2-error between the available high-fidelity data around the non-parameterized
geometric modification and the interpolation, evaluated only in the RFD.
We propose a second correction step which requires the local modification of the base-

line POD basis vectors in order to fit the coherent structures of the local geometrical
available physical data. The new basis vectors are termed updated modes. The residual
of the optimization Gappy-POD problem will be equal to zero in this case. We precise
also that our proposed algorithm for the correction of the predicted missing data is effi-
cient, because only one local POD performed with the local available data followed by a
Gappy-POD is sufficient to correct and refine the topology of the fluid flow in the scope of
the geometrical modification. Furthermore, it is important to precise that the local data
around the geometrical modification is obtained thanks to the solution of a hybrid model
coupling the restricted fluid domain to the reduced projection of the equations outside
this domain. The coupling is an application of a penalization approach of the velocity field
by setting a reference reduced order solution associated with a reference configuration as
a physical fluid immersed boundary that defines unsteady and non-homogeneous bound-
ary conditions on the RFD. This means that at the beginning we do not have access to any
time and space information of the fluid flow in the new geometrical configuration, and
we will access this information successively thanks to the hybrid approach and the newly
proposed Gappy reduced order method. This method is termed updated Gappy-POD
(UGPOD).
The paper is organized as follows: in “Proper orthogonal decomposition (POD)” sec-

tion, we briefly recall the proper orthogonal decomposition technique. In “Gappy-POD”
section, we recall the Gappy-POD technique. In “Model order reduction by POD” sec-
tion, we give the mathematical framework of the POD-Galerkin projection of the 3D
Navier–Stokes equations.
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In “Proposition of an updated Gappy-POD for CFD applications” section, we propose
the UGPOD technique as discribed above. In “Numerical framework and experiments”
section, numerical applications on a 3D semi-industrial aeronautical injection system, are
presented. This enables us to perform a robust design exploration of this semi-industrial
injection system with respect to non-parameterized geometrical variations in the swirler,
such as the opening diameter of the primary zone of the combustor or the opening angle
of this zone, with a speed up of the order of 100 with respect to a LES computation.

Proper orthogonal decomposition (POD)
We denote by X = [L2(�)]3 the functional Hilbert space of the squared integrable
functions over a bounded 3D-open set �. The corresponding inner product is the one
associated with the kinetic energy of an incompressible fluid flow. They will be denoted
respectively by (., .) and ‖.‖. Consider U (t) ∈ X the baseline velocity field of an unsteady
incompressible flow, prior any geometrical modification. A reduced order POD subspace
is obtained thanks to the snapshots method [15]. More precisely, if we discretize the time
interval toM points, then the snapshots set is given as follows: S = {U (ti) i = 1, . . . ,M}.
The associated POD eigenmodes �n, n = 1, . . . ,M, computed via the snapshots POD
[15] start with the solution of the following eigenvalues problem given the temporal cor-
relations matrix:

Cij = (U (ti) , U
(
tj)

)
, (1)

of sizeM×M.We denote by (An)n=1,...,M = (Ai,n)1≤i≤M and (λn)n=1,...,M for n = 1, . . . ,M,
sets of respectively orthonormal eigenvectors and eigenvalues of the matrix C . Then, the
POD-eigenmodes associated with λn, are given by:

�n(x) = 1√
λn

M∑

i=1
Ai,nU (ti, x) ,∀x ∈ � ∀n = 1, . . . ,M. (2)

Gappy-POD
By following [3], a mask has to be defined. Here, the support of this mask is the RFDwhere
the POD modes of the baseline simulation are not consistent with the new geometry. In
what follows, we precise some notations for the remainder of the paper:

• �: the fluid domain.
• U : the nominal high-fidelity (HF) solution.
• GNew : the new configuration of the fluid domain.
• �R: the RFD containing the geometrical modification of the initial fluid domain.
• U (GNew): the HF velocity for the new geometry of the fluid domain.
• Upredicted(GNew): Gappy-POD prediction.
• UROM(GNew): New ROM prediction.

These notations are represented on the following Fig. 1, for more clarification.
Now, given a baseline POD (�i)i=1,...,M with a baseline snapshots set of the nominal solu-

tionU , then the predicted intermediate velocity field for the new geometry is determined
as follows in the Gappy-POD algorithm:

N∑

n=1
bn(t, GNew)�n(x), (3)
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Fig. 1 Notations

where the interpolationPODcoefficientsbn are determinedby the followingminimization
of the instantaneous error between the interpolation (3) and the HF solution, on �R only:

(
b1(t, GNew), . . . , bN (t, GNew)

)

= argminβ1 ,β2 ,...,βN

∥∥
∥∥∥

N∑

n=1
βn(t)�n − U (t, GNew)

∥∥
∥∥∥

2

[L2(�R)]3
. (4)

Finally, the complete predicted velocity field Upredicted for the new geometry is obtained
by:

• Upredicted(t, GNew, x) = U (t, GNew, x) if x ∈ �R ,

• Upredicted(t, GNew, x) =
N∑

n=1
bn(t, GNew)�n(x) otherwise.

We precise that we supposed that we knowU (t, GNew) restricted to�R.Wewill propose
in “Hybrid approach: localHF solution/global reduced order solution” section a procedure
to derive a fastly computed prediction for U (t, GNew)|�R .

Model order reduction by POD
Let us denote by UROM the reduced approximation of the field given by a LES model.
To achieve the POD reduced order modeling, the approximated velocity field is

expressed in the reduced order POD subspace:

UROM(t, x) =
N∑

n=1
an(t)�n(x), ∀x ∈ �, (5)

where, N << M denotes the number of retained high energetic POD modes, and a1(t),
a2(t), . . . , aN (t) are the temporal weights which are solutions of the following coupled
dynamical system:

⎧
⎪⎨

⎪⎩

dan
dt + (

div(UROM(t) ⊗ UROM(t)),�n
) = ν

(
�UROM(t),�n

) − 1
ρ (∇p(t),�n)(

q, div(UROM(t))
)
H0 = 0 ,∀q ∈ H0

an(0) = (U (0),�n)
(6)
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where div denotes the divergence operator, p(t) is the pressure field, ρ the density, ν

denotes the kinematic viscosity, U (0) is the initial condition of the velocity field and H0

is the subspace of the divergence free X-functions.
We point out the fact that the equations upon which we perform the POD-Galerkin

projection are the HF incompressible Navier–Stokes equations without any turbulence
model and numerical scheme taken into account. However, the POD computation is
associated with HF snapshots U (t) obtained from LES of the Navier–Stokes equations.
In general, the first POD mode which describes the mean topology of the fluid flow is

not kept and a ROM of the fluid dynamics equations represents only the fluctuating part.
Here, POD modes are not restricted to the fluctuation part of U , they also approximate
the mean motion. This is necessary because we are interested in using the reduced order
modeling in order to predict the flow for new geometries [16]. This enables the ROM to
consider naturally the influence of the velocity fluctuations on the velocity mean.
So, we point out the following two remarks concerning our formulation of the reduced

order modeling:

• The POD modes contain only the energetic scales of the flow. The dissipative scales
at the Taylor macro-scale are not present in the basis.

• The flow rate in the flow domain is not guaranteed except if penalization is added in
the pressure term to take into account the pressure difference between the inlet and
the outlet.

We proposed in [1,2] to tackle these limits thanks to a physical stabilization by satisfying
the kinetic energy budget. It is based on the enrichement of the POD-Galerkin ROMwith
the flow rate driving forces and with the most dissipative scales based on the velocity
gradient. We refer to [2] for more details concerning this enrichment strategy of the
POD-Galerkin ROM.
This stabilization step is done because we need to have a reference POD basis which

is rich enough to take into account the large features of scales in the case of turbulent
and incompressible fluid flows. We will denote by �E the dissipative basis. This is very
important from the following two points of view:

• The reference dissipative POD basis constitutes a good candidate when applying the
UGPOD method in order to reconstruct new incomplete snapshots set.

• The reference reduced order modeling obtained by the POD Galerkin projection of
the Navier–Stokes equations upon the reference and enriched POD basis is stable
in the sense of the kinetic energy conservation physical constraint. So, it reproduces
well the non-homogeneous and unsteady inlet conditions of the LES in the RFD with
global penalization of the reference reduced order velocity field.

Proposition of an updated Gappy-POD for CFD applications
Hybrid approach: local HF solution/global reduced order solution

We will begin our fluid flow computation by applying a hybrid approach between �R
and � \ �R. The fluid domain outside the RFD, � \ �R, is defined by a reference fluid
flow forced around the RFD. In the RFD we run the finite volume HF equations of the
Navier–Stokes model with unsteady and non-homogeneous boundary conditions. We
denote Uhybrid the velocity field obtained by this approach. In this paper, we propose to
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solve this coupled problem by applying the classical immersed boundary method [17],
widely used in the literature. Therefore, we propose to solve the Cauchy problem defined
by the Navier–Stokes equations with unsteady boundary conditions on the RFD thanks
to the immersed boundary technique. By construction:

• Uhybrid(GNew)�R = U (GNew)

• Uhybrid(GNew)�\�R =
N∑

n=1
an�E

n .

So practically, the immersed boundary solver is run on the whole fluid domain � by
setting a level set on � \ �R where the velocity is equal to the baseline reduced order
velocity fluid flow field. Hence, indirectly we define the boundary conditions of the local
HF solution by the reference reduced order velocity on the interface of the RFD. We
precise also that the reference reduced order solution is saved on a coarser grid for�\�R
in order to gain efficiencywhen computing the pressure field during the hybrid (immersed
boundary) simulation along the whole fluid domain.

Updated Gappy-PODmethod (UGPOD)

We will apply the UGPOD in order to update the velocity field in the wake of the new
geometry (� \ �R), as follows:

1. We define updated modes 	n from the local modification of the reference ones in
such a way to include the coherent structures of the newly computed HF solution in
the RFD by the hybrid approach. These updated modes are obtained thanks to the
following steps:

• Compute Upredicted(t, GNew, x) with the classical Gappy-POD approach (4). We
precise that the Gappy-PODmodes�n in (4) are here the reference PODmodes
�E

n projected on the coarse mesh of � \ �R.
• Computation of a new POD basis associated with the previous reconstructed

aerodynamic fields Upredicted(t, GNew, x): 	n(x) = 1√cn

∑M

i=1
Ci,nUpredicted

(ti, GNew, x), where (Cn)n=1,...,M are the eigenvectors of the correlations matrix
defined by:
(
Upredicted(ti, GNew), Upredicted(tj , GNew)

)
[L2(�)]3 , and (dn)n=1,...,M is the sequence

of the associated eigenvalues.

2. Galerkin projection step of the Navier–Stokes equations (still with no modelling of
the turbulence) over the new POD basis 	n: 	c(t, GNew) are the temporal coefficients
of the Galerkin projection of the Navier–Stokes equations upon 	n.

• UROM(t, GNew, x) = Uhybrid(t, GNew, x) if x ∈ �R.
• UROM(t, GNew, x) =

∑N

n=1
cn(t, GNew)�E

n (x) otherwise, where�E
n are the refer-

ence global POD modes defined on the refined reference grid.

It is important to note that the modes 	n are mainly with local support �R and are
the locally updated modes defined in step 1 by the coherent structures obtained by
data compression of the snapshots set

{
Uhybrid(t, GNew, x), x ∈ �R

}
.

Hence, the latter temporal coefficients cn(t, GNew) describe mainly the dynamics of
the new hybrid solution defined on �R. Moreover, it is important to notice that the
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UGPOD reconstruction is done as usual following�E
n but with temporal coefficients

cn(t, GNew) that on the contrary to the Gappy-PODwill describe the dynamics of the
new hybrid solution defined on �R.

We recall the notations used so far.

• U : the nominal HF solution.
• Uhybrid(GNew): obtained by the immersed boundary technique (see “Hybrid approach:

local HF solution/global reduced order solution” section).
• Upredicted(GNew): Gappy-POD prediction.
• UROM(GNew): New ROM prediction.

We mention that the choice of the RFD is based only on the a priori knowledge of
the place where the geometrical changes are imposed, with the only condition that it is
a connected domain around these changes. Furthermore, we show numerically that the
length of the RFD did not affect the results obtained by the UGPOD.

Consistence of the UGPOD

Without geometrical modification, the UGPOD is error free, under the following assump-
tion: the reference PODmodes�E

n are orthogonalwith respect to theGappy inner product
(., .)[L2(�R)]3 .

Proposition 1 The UGPOD proposed in “Updated Gappy-POD method (UGPOD)” sec-
tion is consistent.

Proof Without geometrical modification U (GNew) = U . There exists N ≤ M such that
∀ i = 1, . . . ,M,

∥∥
∥U (ti) − ∑N

n=1(U (ti),�E
n )[L2(�)]3�

E
n

∥∥
∥
2

[L2(�)]3
= M × 0. In particular, this

squared difference is zero on �R ⊂ �: ∀ i = 1, . . . ,M,∥∥
∥U (ti) − ∑N

n=1(U (ti),�E
n )[L2(�)]3�

E
n

∥∥
∥
2

[L2(�R)]3
= 0. Hence, thanks to the fact that the

reference POD modes are orthogonal using the Gappy inner product (., .)[L2(�R)]3 , the
unique solution of (4) for � = �E is bn(ti, GNew = Gref ) = (U (ti),�E

n )[L2(�)]3 . Then

Upredicted
�\�R

=
N∑

n=1
(U (ti),�E

n )[L2(�)]3 (�E
n )�\�R = U (t)�\�R . Besides, U

predicted
�R

= U�R .

Hence Upredicted = U , and the POD basis on these snapshots are identical, namely �E

and 	 are identical. ��
The hypothesis made for this proposition is simply based on the fact that the Gappy-

POD on the RFD �R is accurate because it is performed with the dissipative POD basis
�E associated with the same complete data over � that has been restricted to �R.

Numerical framework and experiments
Flow solver

For thepresented simulations, the low-Machnumber solverYALES2 [18] for unstructured
grids is retained. This flow solver has been specifically tailored for the direct numerical
simulation and large-eddy simulation of turbulent reacting flows on large meshes count-
ing several billion cells using massively parallel super-computers [19,20]. The Poisson
equation that arises from the low-Mach formulation of the Navier–Stokes equations is
solved with a highly efficient Deflated Preconditioned Conjugated Gradient method [20].
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In what follows we consider a 3D semi-industrial test case of a typical aeronautical
injection system and, a 2D laminar and unsteady incompressible test case.

2D laminar and unsteady incompressible test case

Test case presentation

In what follows, we apply the UGPOD for a 2D unsteady, laminar and incompressible
fluid flow in a rectangular channel, given a constant inlet velocity on the channel inlet, an
outlet boundary condition on the channel outlet and a wall boundary condition on the
upper and lower walls of the channel: we have the access to two high fidelity aerodynamic
simulations corresponding to two geometric configurations of the rectangular channel,
as shown on Figs. 2 and 3. The 2D laminar flow in the rectangular channel presented in
Fig. 3 is considered. The kinematic viscosity is μ = 10−5 m2/s. The rectangular channel
is discretized into 10,000 triangles. The presented twoHF simulations with 100 snapshots
each, are concatenated in order to build in what follows the reference POD basis.

Fig. 2 On the left, the level set function with an obstacle on the upper and lower walls. On the right, the
level set function with a new obstacle translated with respect to the first one in the horizontal direction, and
with a new length

Fig. 3 On the left, a velocity field snapshot with the first channel configuration. On the right, a velocity field
snapshot with the second channel configuration, see Fig. 2



Akkari et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:3 Page 10 of 34

Fig. 4 On the left, �E
1 the first POD mode with the set of all snapshots with the two configurations. On the

right, �E
2 the second POD mode with this set

Fig. 5 On the left, the level set function with two obstacles on the lower and upper walls situated
respectively at the same position of the above ones, but with a new intermediate length and two different
widths. On the right, a mask vector describing the restricted fluid domain �R of the new solution by the red
color, and the unknown flow field data zone by the blue color

Construction of a reference POD basis and limits of the classical Gappy-POD

In this section, we illustrate the limits of the Gappy-POD for our particular application.
Let

(
�E

i
)
i=1,...,N be the POD basis (Fig. 4) with the baseline instantaneous snapshots set

where all the snapshots are completely known.
LetU (t, GNew) (seeFigs. 5 and6)be another solutionvectorwith anewconfiguration.We

have two classical ways to build the fluid velocity field associated with the new technology:
(1) either we apply directly an order reduction of the Navier–Stokes equations upon the
POD basis associated with the baseline snapshots. Then, it is clear that the baseline POD
basis functions will fail to characterize the flow data close to the new geometry. We note
from Fig. 4 that the enriched PODmodes have a non-zero velocity of the fluid flow even in
the obstacles associated with each ones of the baseline test cases shown on Fig. 3. Hence,
these POD velocity modes could not be used in a confident way to model correctly a
new geometrical fluid flow. (2) Another possibility is to apply a Gappy-POD procedure if
we have the access to some high-fidelity informations with the corresponding mask n, as
shown on Fig. 5.
The complete predicted velocity field Upredicted(t, GNew) by Gappy-POD for the new

geometry is shown on Fig. 6, and the associated high-fidelity solution in Fig. 6.
In this case when compared to the high-fidelity model solution, the Gappy-POD under

estimates the velocity field in the fluid domain. This could be explained because the
baseline PODmodes are not interpolant within the local zoom in red defined by the mask
vector.



Akkari et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:3 Page 11 of 34

Fig. 6 On the left, the final time step predicted flow field Upredicted(tfinal , GNew ) by Gappy-POD. On the right,
U(tfinal , GNew ) the final time step 2D laminar incompressible flow in the new channel configuration

Fig. 7 On the left, the final time step corrected flow field UROM(tfinal , GNew ) by the UGPOD. On the right,
U(tfinal , GNew ) the final time step 2D laminar incompressible flow in a channel with the new configuration

Application of the UGPOD

Now we apply the UGPOD to the laminar 2D case where we identified some limits of
the classical Gappy-POD approach to tackle geometrical variations in “Construction of a
reference POD basis and limits of the classical Gappy-POD” section. The new geometrical
entire flow data is now illustrated on Fig. 7.
The relative [L2(�)]2 instantaneous error between the corrected flow field and the high

fidelity one,
∥
∥U (t,GNew)−UROM (t,GNew)

∥
∥2
[L2(�)]2

‖U (t,GNew)‖2
[L2(�)]2

, is plotted on Fig. 8.

A posteriori verification of the ROMquality on a 2D quantity of interest

In what follows we consider a 2D quantity of interset, which is the pointwise relative error
on the magnitude of the unsteady velocity fields in the wake of the two obstacles, between
the Gappy-POD and the proposed UGPOD. The zone in the wake of these obstacles is
chosen so that the high fidelity fluid flow in not equal to zero on each cell of the mesh and
outside the RFD. On Fig. 9 we illustrate the high fidelity flow of interest in the wake of the
two obstacles.
The pointwise relative errors with respect to the fluid flow in the wake of the new

obstacles shown on Fig. 9 associated respectively with the application of the Gappy-POD
and the UGPOD are shown on Fig. 10.
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Fig. 8 The relative [L2(�)]2 instantaneous error,
∥∥U(t,GNew )−UROM (t,GNew )

∥∥2
[L2(�)]2

‖U(t,GNew )‖2
[L2(�)]2

Fig. 9 The high fidelity flow of interest in the wake of the two obstacles

Fig. 10 On the left, the pointwise errors with the Gapp-POD. On the right, the pointwise errors with the
UGPOD

3D turbulent and incompressible semi-industrial test case

Test case presentation

In what follows, we apply our new approach for a 3D unsteady, turbulent and incom-
pressible fluid flow in a fuel injection system. The main objective is to be able to have
an efficient strategy for the computation of the aerodynamic field in the primary zone of
the combustion chamber. The Preccinsta test case [21,22] is presented in Fig. 11. This
lean-premixed burner has been widely studied in the combustion community to validate
large-eddy simulation models [19,23–28].
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Fig. 11 The 3D unsteady turbulent and incompressible flow in a fuel injection system and in the primary
zone of the combustion chamber, given a constant inlet velocity, an outlet boundary condition on the
channel outlet and a wall boundary condition on the upper and lower walls of the channel

The 3D turbulent flow in the complex configuration presented in Fig. 11 is considered.
The kinematic viscosity ν = 10−5 m2/s yields a Reynolds number 45,000 based on the
inlet velocity and the length of the duct. The presented HF simulation with 14 million
tetrahedra runs over 512 cores during 5 days in order to obtain a physical simulation time
equal to 250 ms. In order to build the dissipative reduced basis, 2500 snapshots of the
solution are taken, extracted at each time step of the original HF simulation.We point out
the fact that these 2500 snapshots are taken among 6644 time steps of the HF simulation
corresponding to the final 25 ms of its total physical time.

Construction of a reference POD basis

As explained in the previous sections, we first need to construct a reference POD basis
which is rich enough to take into account the large features of scales in the case of turbulent
and incompressiblefluidflows.This referencePODbasis is obtained in this semi-industrial
case of the Preccinsta burner, in association with snapshots data generated from only
one LES HF simulation of the Navier–Stokes equations with the reference geometrical
configuration presented in Fig. 11. We illustrate that the UGPOD is robust with only one
complete HF simulation, the baseline simulation, and one dissipative large scale reduced
order basis in association.All the detailed informations concerning the dissipative reduced
order basis construction can be found in [2]. However, we precise that the number of the
baseline POD modes used in the UGPOD method is the same as the one that have been
chosen in order to ensure an accuracy of the reference reduced order solution with no
geometrical change. It is in this case equal to 54 as discussed in [2].
The velocity-based and gradient velocity-based POD modes were computed through

a snapshots POD. The CPU ressources needed for this computation are 768 cores, to
guarantee a memory availability to read the 2500 time snapshots. The computation runs
during 6 h for the velocity-based PODmodes and 9 h for the gradient velocity-based POD
modes. However, these operations were not well distributed over the 768 cores due to the
following issue: inYALES2, the post-processingwould lead to at least one file per snapshot.
In this case, a temporal snapshot was not post-processed as one file per subdomain, i.e.
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Fig. 12 Velocity mode �E
1 = �1 [2]

Fig. 13 Velocity mode �E
2 = �2 [2]

Fig. 14 Velocity mode �E
3 = �3 [2]

the number of solution files per time step was less than the number of mesh partitions
which is 128 in this case. This is due to the limited number of files that we might save on
the super computer, especially when considering 2500 snapshots.
By applying the dissipative POD approach, we get a new velocity-based reduced order

basis as shown from Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23. The enforcement
of the small scales is done starting from the 5th mode in the reduced order basis. This
choice is made in order to enforce the highly non-linear scales of the flow within the
earliest ranks of the reduced order basis and so to take advantage in the stability this may
offer to the reduced dynamical system by the Galerkin projection. The new velocity-based
modes �E

5 , �E
6 , �E

7 , �E
8 , . . . ,�

E
12 show very large features of spatial scales which were

not observed within the classical POD modes. Moreover, the largest scales exhibit local
structures in the fluid domain which are the small vortices carrying out the dissipative
energy, by analogy with the gradient velocity-based POD modes (see [2] for more details
concerning the dissipative reduced basis construction).

Introducing new geometric configurations

Two new configurations of the injection system are introduced, see Fig. 24.
Wepoint out the fact that our geometricalmodifications are non-parameterizedbecause

the level set functions are not necessarily defined by a parametric function but rather by a
“if loop” that delimits the spatial location of the immersed solid boundary, please see [17].
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Fig. 15 Velocity mode �E
4 = �4 [2]

Fig. 16 Velocity mode �E
5 [2]

Fig. 17 Velocity mode �E
6 [2]

Fig. 18 Velocity mode �E
7 [2]

Wewill apply our UGPOD in order to determine for each of these two configurations, the
new fluid flow topology and the new recirculation zones.

Hybrid approach: local HF solution/global reduced order solution

As mentioned in “Proposition of an updated Gappy-POD for CFD applications” section,
the first step of our enhancement algorithm is to compute locally the new geometrical
velocity field in a restricted fluid domain that is identified by a mask, see Fig. 25.
The result of the hybrid approach is illustrated in Fig. 26, when applied to configuration

1 of Fig. 24. The physical time needed in order to obtain a solution with good statistics
is far less than the time we fixed in this case which is 21 ms. This physical time is ten
times greater than the flow through time associated with the zoom box in red. Therefore,
the maximal CPU time needed in order to perform the LES in the RFD in red is in this
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Fig. 19 Velocity mode �E
8 [2]

Fig. 20 Velocity mode �E
9 [2]

Fig. 21 Velocity POD mode �E
10 [2]

Fig. 22 Velocity mode �E
11 [2]

Fig. 23 Velocity mode �E
12 [2]
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Fig. 24 Two new configurations are considered by introducing solid obstacles in the swirler’s zone. These
obstacles are defined using level set functions

Fig. 25 Mask vector that defines the RFD in red �R of interest around the geometrical variations. In blue,
� \ �R

case 3.5 h on 128 cores. We have a very important reduction in the CPU time needed
for this local LES with respect to the complete LES, as a consequence of the reduction
of the computation domain. � \ �R is defined by the reference reduced order velocity
field associated with the reference configuration, which has been saved on a coarser grid
for this region. We finally point out the fact that the pressure field is computed all over
the fluid domain by the HF solver, because our reference dissipative reduced order model
does not contain the pressure field. The pressure computation in the hybrid simulation is
efficient as we did a derefinement step by 40% for the reference dissipative velocity modes
in � \ �R in blue, see Fig. 25. In other words, the dissipative velocity modes, see Figs. 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23, are saved on a coarser grid in the blue zone of
Fig. 25.
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Fig. 26 An unsteady solution field of the hybrid simulation: the inlet unsteady and non-homogeneous
boundary conditions on the left of the RFD are well reproduced thanks to the nominal dissipative reduced
order solution: the LES in the RFD is stable

Fig. 27 Locally updated velocity modes 	1,	2 , 	3, with respect to the HF solution in the RFD associated
with the first configuration. The first two modes are of global support � and starting from the third mode,
they all have a local support �R

The flow must be determined in the wake of the new swirler. In what follows, we apply
ourUGPODmethod in order to adapt the fluid flow topology outside the red box of Fig. 25
for it to follow the geometrical variation of the swirler.

Application of the UGPOD for the two new configurations

We now apply the UGPOD method proposed in “Proposition of an updated Gappy-
POD for CFD applications” section to the two new configurations, see Figs. 27 and 28
respectively, then we get the reduced order model coefficients associated respectively
with these PODmodes with the predicted fields by Gappy-POD (see Figs. 29, 30, 31, 32, 33
and 34) and, the calibrated entiremeanflowfieldswith respect to the geometrical variation
are represented in Figs. 35 and 36 .We can remark that by the UGPOD, the reconstructed
velocity outside the RFD follows the new topology of the HF velocity in the scope of the
RFD. A detailed analysis of these results is considered in the following part.
Nevertheless, it is important to note that a discontinuity on the interface between the

RFD and the remainder of the fluid domain is very clear on the POD modes (see Figs. 27
and 28) with the predicted fields by the original Gappy-POD, because of the impact of the
actual geometrical modification on the mean motion, hence the drawback of the Gappy-
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Fig. 28 Locally updated velocity modes 	1,	2 , 	3, with respect to the HF solution in the RFD associated
with the second configuration. Only the first mode is of global support � and starting from the second mode
they have a local support �R

POD approach in this case. This naturally violates the divergence free condition of these
PODmodes, however thanks to the fact that the fluctuating PODmodes within this basis
are for the most of them (of local support) null in the remainder of the fluid domain,
the space integrals of the terms of the Galerkin projection upon these POD modes will
be performed naturally only within the RFD where the divergence free condition on the
modes is verified.
The fluctuating POD modes are in their majority of local support because of the draw-

back of the Gappy-POD to represent the new mean motion and so this follows to all
the unsteady scales which could not be taken into account, hence the Gappy-POD gives
almost steady reconstructed velocity fields. Now, the reason why we might have a second
mode of global support as it can be seen on Fig. 27 was investigated in [29], it is rather
a vector potential mode related to the unsteady and non-homogeneous inlet boundary
conditions on the RFD. The existence of such mode with a second source of potential
has been proven theoretically in [29]. The rank and the number of these velocity poten-
tial modes depend only on the potential created by the unsteady and non-homogeneous
boundary conditions within the corresponding fluid configuration.
Moreover a comparison has been done between the distributions of the POD modes

with the predicted velocity fields by Gappy-POD and the correct POD modes associated
with the HF LES solutions after the non-parameterized geometrical modifications of con-
figuration 2. These POD modes of the global HF LES are shown on Fig. 37. It is clear that
on the RFD, the POD modes with the predicted fields by the original Gappy-POD are
different from the PODmodes with the HF LES solutions after the geometrical modifica-
tion. A POD mode is a linear combination of the snasphots following the eigenelements
of an eigenvalue problem with the temporal correlations matrix. These temporal corre-
lations will contain information on the resulting coherent structures in the POD modes
of the corresponding solutions. The correlations between the predicted fields by Gappy-
POD will be very strong on the RFD where we have the HF unsteady information by the
hybrid simulation, however they will be very poor between the RFD and � \ �R as the
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Fig. 29 The first temporal weight by the Galerkin projection upon 	 : c1(t, G1)

reconstructed velocity fields by Gappy-POD are almost steady in this case, so don’t con-
tain fluctuating scales. Hence, the eigenelements with these correlations already defined
in “Updated Gappy-POD method (UGPOD)” section by, (Cn)n=1,...,M and (dn)n=1,...,M ,
are different from the ones with the correlations between the (global unsteady) HF LES
solutions with the new configuration. Hence on the RFD, the linear combination of the
HF snasphots (by the hybrid approach) following (Cn)n=1,...,M and (dn)n=1,...,M is different
from the one following the singular value decomposition of the HF LES correlations i.e.
the resulting POD modes in the two cases are different on the RFD.
We precise that the computation of the updated POD basis 	 was done in a completely

distributed fashion by processing all the predicted snapshots as one file per subdomain
which yields 128 files. Indeed, wewere able to save the predicted snapshots byGappy-POD
in one HDF5 file as the Gappy-POD is performed outside the HF solver, so we are able
to control the data processing. Hence, the distributed Snapshots POD over a multiple of
128 cores will be able to read effciently a large number of snapshots (2500 in this case) per
computational subdomain i.e. per CPU process.
The Galerkin projection coefficients respectively with the locally updated modes for

the two new configurations are shown on Figs. 29, 30, 31, 32, 33 and 34. These coefficients
describe the dynamics of the local HF LES on the RFD during at least 21 ms which is the
time duration of this hybrid simulation. Notice that we performed a time extrapolation
of the ROM with the updated POD modes of the second configuration, until 50 ms.
This is a time extrapolation of a solution with a cyclic behavior under a constant in time
loading. Thismeans that the 	c(t, G2) coefficients defined in “UpdatedGappy-PODmethod
(UGPOD)” section of the UGPOD, are obtained by resolving the reduced order equations
until 50 ms, while the updated POD modes 	n are associated with the dynamics of the
local HF LES on the RFD during 21 ms. The purpose of this extrapolation is to emphasize
the stability of this reduced order model (with no modelling of the turbulence) thanks to
the stable reduced order strategy developed in [2] applied to this whirlpool flow.
To summarize the steps that have been done, we refer to the flowchart of Fig. 38 that

represents an illustration of the applied procedure on the geometry of configuration 1.
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Fig. 30 The second temporal weight by the Galerkin projection upon 	 : c2(t, G1)

Fig. 31 The third temporal weight by the Galerkin projection upon 	 : c3(t, G1)

Detailed discussion

We present in what follows the instantaneous results obtained with the UGPOD applied
to configuration 1 of the burner. We compare these results with the instantaneous ones
associated with the nominal (configuration) dissipative reduced order solution (see for
instance [2]). Each one of these results is compared to the corresponding time step high
fidelity fluid flow velocity field: on Fig. 39, we show the result of the nominal dissipative
reduced order model at two different time steps. We can see the accuracy of this latter in
reproducing a large scale of spatial features with respect to integration times. On Fig. 40,
we show two different time steps of the UGPOD approach applied to configuration 1.We
can see that the UGPOD approach allows the reproduction of the unsteady behavior with
a satisfactory accuracy. This issue was one of the problem encountered in the application
of the Gappy-POD approach, as proved by the structure of the updated fluctuating POD
modes 	n, being in their majority of local support.
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Fig. 32 The first temporal weight by the Galerkin projection upon 	 : c1(t, G2)

Fig. 33 The second temporal weight by the Galerkin projection upon 	 : c2(t, G2)

For more results concerning the accuracy of the UGPOD applied to configuration 1, we
show all the three components of the mean and the root mean square flow fields obtained
by this technique.Thesefields are comparedwith the correspondinghighfidelitymeanand
root mean square components with configuration 1 and with the nominal configuration.
These results are summarized from Figs. 41, 42, 43, 44, 45 and 46. Very comparable results
are obtained with a RFD of which the length is smaller than the one considered until now,
please see Figs. 47, 48, 49, 50, 51 and 52.
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Fig. 34 The third temporal weight by the Galerkin projection upon 	 : c3(t, G2)

Fig. 35 The new geometrical mean velocity field for configuration 1

Fig. 36 The new geometrical mean velocity field for configuration 2
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Fig. 37 Velocity modes with respect to the HF solution in the complete fluid domain associated with the
second configuration

Fig. 38 A schematic representation of the UGPOD: this flowchart shows the final time step obtained by the
UGPOD for configuration 1

Specification for the design in combustion: a posteriori verification of the ROMquality on a 1D

quantity of interest

In what follows we show the recirculation zones of each one of the two mean fields with
the two new configurations, given by the new Gappy approach and the complete LES.
These recirculations zones are the same in reacting and non reacting cases. In order to
plot these recirculation zones, we consider three axes in the fluid domain along the y-
direction for z = 0 and for different x-positions outside the RFD, in order to compare the
result of the UGPOD strategy with the one of the LES, see Fig. 53. We add also to these
validation results, a comparison with the recirculation zones obtained when the classical
Gappy-POD approach is applied outside the reduced fluid domain. All these results are
summarized on Figs. 54, 55, 56, 57, 58 and Table 1: it is important to point out the fact that
the small sized fluctuations observed on Figs. 56 and 58 are related to the fact that the
temporal coefficients with the Galerkin projection of the Navier–Stokes equations upon
the POD modes with the predicted velocity fields, are obtained over a time duration that
corresponds to the physical time (21 ms) of the local HF simulation which is ten times



Akkari et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:3 Page 25 of 34

Fig. 39 On the left, two different time steps of the nominal dissipative reduced order. On the right, the same
two time steps LES velocity fields with the nominal configuration

Fig. 40 One the left, two different time steps of the UGPOD applied to configuration 1. On the right, the
same two time steps LES velocity fields with configuration 1
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Fig. 41 On the left, the first component of the mean flow field by the UGPOD applied to configuration 1. In
the middle, the first component of the high fidelity mean flow field with configuration 1. On the right, the first
component of the high fidelity mean flow field with the nominal configuration.

Fig. 42 On the left, the second component of the mean flow field by the UGPOD applied to configuration 1.
In the middle, the second component of the high fidelity mean flow field with configuration 1. On the right,
the second component of the high fidelity mean flow field with the nominal configuration

Fig. 43 On the left, the third component of the mean flow field by the UGPOD applied to configuration 1. In
the middle, the third component of the high fidelity mean flow field with configuration 1. On the right, the
third component of the high fidelity mean flow field with the nominal configuration

Fig. 44 On the left, the first component of the root mean square flow field by the UGPOD applied to
configuration 1. In the middle, the first component of the high fidelity root mean square flow field with
configuration 1. On the right, the first component of the high fidelity root mean square flow field with the
nominal configuration

smaller than the one of the global HF simulation. These fluctuations are less important
for configuration 2 (see Fig. 58) thanks to time extrapolation of the temporal coefficients
with this Galerkin projection upon 50 ms, which is the natural statistical behavior in fluid
dynamics.
We propose in what follows two different criteria in order to evaluate the quality of the

UGPOD to recover the mean velocity field with respect to the complete LES.
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Fig. 45 On the left, the second component of the root mean square flow field by the UGPOD applied to
configuration 1. In the middle, the second component of the high fidelity root mean square flow field with
configuration 1. On the right, the second component of the high fidelity root mean square flow field with the
nominal configuration

Fig. 46 On the left, the third component of the root mean square flow field by the UGPOD applied to
configuration 1. In the middle, the third component of the high fidelity root mean square flow field with
configuration 1. On the right, the third component of the high fidelity root mean square flow field with the
nominal configuration

Fig. 47 Smaller RFD. On the left, the first component of the mean flow field by the UGPOD applied to
configuration 1. On the right, the first component of the high fidelity mean flow field with configuration 1

1. The position of the recirculation zones on each 1D y-axis with respect to each one of
the two walls of the aeronautical injector. If we denote by v(y) a velocity value along
the corresponding y-axis, then this position is defined on each wall side by:

yg =
∫
1D y-axis y(v(y) − v̄)dy
∫
1D y-axis(v(y) − v̄)dy

,

as we can see on Fig. 59. Then, we compute respectively the two relative errors with
respect to the position of the two recirculation zones within the LES.

2. The L2-relative error with respect to the LES on each 1D y-axis.
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Fig. 48 Smaller RFD. On the left, the second component of the mean flow field by the UGPOD applied to
configuration 1. On the right, the second component of the high fidelity mean flow field with configuration 1

Fig. 49 Smaller RFD. On the left, the third component of the mean flow field by the UGPOD applied to
configuration 1. On the right, the third component of the high fidelity mean flow field with configuration 1

Fig. 50 Smaller RFD. On the left, the first component of the root mean square flow field by the UGPOD
applied to configuration 1. On the right, the first component of the high fidelity root mean square flow field
with configuration 1
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Fig. 51 Smaller RFD. On the left, the second component of the root mean square flow field by the UGPOD
applied to configuration 1. On the right, the second component of the high fidelity root mean square flow
field with configuration 1

Fig. 52 Smaller RFD. On the left, the third component of the root mean square flow field by the UGPOD
applied to configuration 1. On the right, the third component of the high fidelity root mean square flow field
with configuration 1

Fig. 53 The three y-axes for the recirculation zones: for (x, z) = (0.035m, 0), (x, z) = (0.05m, 0) and
(x, z) = (0.055m, 0)

The results are shown in Tables 1 and 2 .
We remark first that when no geometrical modification is introduced, see Fig. 54, the

ROM velocity field is accurately the one obtained by the complete LES. We remark also
that the UGPOD approach allows the reduced order solution to follow the real topology
of the fluid flow outside the RFD, after non-parameterized geometrical modifications.We
see that the reduced order solution respects the recirculation zones of the fluid flow, see
Figs. 56 and 58, and Table 2. These recirculation zones are different from the baseline
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Fig. 54 Reference geometry: comparison of the recirculation zones obtained respectively as a consequence
of the dissipative Galerkin ROM by �E in orange and the HF LES in black

Fig. 55 G1: comparison of the recirculation zones obtained respectively as a consequence of the classical
Gappy-POD in red and the HF LES in black

Fig. 56 G1: comparison of the recirculation zones obtained respectively as a consequence of the UGPOD in
orange and the HF LES in black

configuration, see Fig. 54. We see also that the classical Gappy-POD approach does not
provide accurate results neither in the sense of the recirculation zones, nor in the sense
of the 1D L2-relative errors all along the three y-axis respectively as shown in Table 1.
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Fig. 57 G2: comparison of the recirculation zones obtained respectively as a consequence of the classical
Gappy-POD in red and the HF LES in black

Fig. 58 G2: comparison of the recirculation zones obtained respectively as a consequence of the UGPOD in
orange and the HF LES in black

Fig. 59 Illustration of the positions of the two recircluation zones on each wall side
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Table 1 Evaluation of the 1D L2-relative errors along the three
y-axis respectively

Geometry and y-axis Gappy-POD (%) UGPOD (%)

G1: x = 35 mm 32 24

G2: x = 35 mm 36 27

G1: x = 50 mm 41 34

G2: x = 50 mm 50 27

G1: x = 55 mm 31 46

G2: x = 55 mm 32 28

Table 2 Evaluation of the position of the recirculation zones of the two new geometries and their
relative errors, Err1 for our method and Err2 for the Gappy-POD, with respect to the LES ones

Config. HF UGPOD Gappy-POD Err1 (%) Err2 (%)

G1: x = 35 mm yg1 = − 0.0211 yg1 = − 0.019 yg1 = − 0.0246 6 16

G1: x = 35 mm yg2 = 0.022 yg2 = 0.020 yg2 = 0.023 6 6

G1: x = 50 mm yg1 = − 0.0256 yg1 = − 0.024 yg1 = − 0.031 5 22

G1: x = 50 mm yg2 = 0.03 yg2 = 0.028 yg2 = 0.032 6 9

G1: x = 55 mm yg1 = − 0.027 yg1 = − 0.024 yg1 = − 0.031 10 14

G1: x = 55 mm yg2 = 0.028 yg2 = 0.031 yg2 = 0.032 10 13

G2: x = 35 mm yg1 = − 0.021 yg1 = − 0.020 yg1 = − 0.024 5 15

G2: x = 35 mm yg2 = 0.0195 yg2 = 0.0197 yg2 = 0.0234 0.9 19

G2: x = 50 mm yg1 = − 0.027 yg1 = − 0.025 yg1 = − 0.031 8 14

G2: x = 50 mm yg2 = 0.023 yg2 = 0.026 yg2 = 0.032 16 41

G2: x = 55 mm yg1 = − 0.029 yg1 = − 0.028 yg1 = − 0.031 4 6

G2: x = 55 mm yg2 = 0.027 yg2 = 0.031 yg2 = 0.032 16 20

Table 3 Details of the computational costs

Operation Wall clock time

HF YALES2 solver (512 cores) 5 days

HF over the RFD �R (128 cores) 3.5 h

Classical Gappy-POD on �R (512 cores) 3 min

Distributed POD 	 with the predicted fields Upredicted (t, GNew ) (512 cores) 3 min

Galerkin projection of the Navier–Stokes equations upon 	 (512 cores) 3 min

Resolution of the reduced equations (1 core) 3.7 s

Speed up factor 100

CPU time reduction

InTable 3,we evaluate the efficiency of theUGPODapproachwith respect to the complete
HF simulation.
It is important to note that the most CPU-consuming step in the proposed approach

is the hybrid computation by global penalization of the velocity field: the pressure field is
still computed all over the fluid domain, so an effort has been done by coarsening the grid
in the scope of a new geometry. We reached a maximum CPU time equal to 3.5 h on 128
cores.

Conclusion and prospects
In this paper we proposed a reduced order method in order to tackle geometrical vari-
abilities within the unsteady and incompressible Navier–Stokes equations. The proposed
updated Gappy-POD is based on a hybrid approach in order to compute local LES around
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a new design definition and an adaptation of the classical Gappy-POD approach in order
to tackle geometrical variations of turbulent fluid flows that might introduce irregularities
in the flow topology and for which the classical Gappy-POD is no longer sufficient. The
main idea is to update the reference PODbasis of theGappy-PODmethod by the coherent
structures of the local LES of the new design. The optimization problem of the Gappy-
POD is replaced in our method by a Galerkin projection of the governing Navier–Stokes
equations on global and local PODmodeswith the newdesign.Our approach proved good
results when applied to a typical aeronautical injection system. The speed-up associated
with this technique is equal to 100, by taking into account the hybrid computation of the
local large eddy simulation in the Reduced Fluid Domain.
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