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Abstract

Diffuse low grade gliomas are invasive and incurable brain tumors that inevitably transform

into higher grade ones. A classical treatment to delay this transition is radiotherapy (RT).

Following RT, the tumor gradually shrinks during a period of typically 6 months to 4 years

before regrowing. To improve the patient’s health-related quality of life and help clinicians

build personalized follow-ups, one would benefit from predictions of the time during which

the tumor is expected to decrease. The challenge is to provide a reliable estimate of this

regrowth time shortly after RT (i.e. with few data), although patients react differently to the

treatment. To this end, we analyze the tumor size dynamics from a batch of 20 high-quality

longitudinal data, and propose a simple and robust analytical model, with just 4 parameters.

From the study of their correlations, we build a statistical constraint that helps determine the

regrowth time even for patients for which we have only a few measurements of the tumor

size. We validate the procedure on the data and predict the regrowth time at the moment of

the first MRI after RT, with precision of, typically, 6 months. Using virtual patients, we study

whether some forecast is still possible just three months after RT. We obtain some reliable

estimates of the regrowth time in 75% of the cases, in particular for all “fast-responders”.

The remaining 25% represent cases where the actual regrowth time is large and can be

safely estimated with another measurement a year later. These results show the feasibility

of making personalized predictions of the tumor regrowth time shortly after RT.

Author summary

This work addresses the question of making predictions on the remission time patients

suffering from brain tumors (gliomas) may expect after a radiotherapy treatment. It is a

very crucial question often asked by patient’s to their practician in order to plan some

important life projects (as traveling, retiring, having children) but that is difficult to

answer since there is a large variability among patient reactions to radiotherapy. We then

build a statistical model using the recorded evolution of the glioma size of previously
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treated patients. It allows, for the first time, to make these predictions, with a few months

accuracy.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Diffuse gliomas are primary brain tumors originating from glial cells (oligodendrocytes and/or

astrocytomas). In its 2016 classification, The World Health Organization defines four grades

[1]: while the first grade gliomas are benign, second grade gliomas (or low grade gliomas,

LGG) are invasive, growing at a rate of 2 to 8 mm/year [2] in diameter, but without involving

metastasis or necrosis. Unfortunately, they cannot be cured by oncological treatments [3] so

one needs to contain their growth as long as possible, before they transform into grade III and

IV (glioblastomas) with a dramatically low survival rate. LGG are detected with magnetic reso-

nance imaging (MRI) scans under a T2-FLAIR sequence. Since they are diffuse tumors that

extend beyond the observed boundaries [4, 5], the uncertainty on their size is irreducible. Clas-

sical treatments include resection (when possible), chemotherapy and radiotherapy (RT) [6].

Standard conformational radiotherapy for LGG is generally performed during 6 weeks (5

days a week) and the classical dose is around 50 Gy. Irradiation of gliomas involves a large

number of physical processes [7] and its effect varies across patients. However, some general

features emerge: the tumor shrinks during a period that varies between a few months and sev-

eral years, before regrowing at a rate similar to the one observed before radiotherapy.

Mathematical modeling of natural and under treatment tumor growth has a long and rich

history (in particular for gliomas, one can refer to the recent review [8]). For invasive tumor

such as gliomas that cannot be removed by surgery, one aspect that is of special interest for cli-

nicians is the response of tumor to treatments and in particular, radiotherapy [9–13]. Its pri-

mary goal is to optimize treatments “virtually”: for example, choosing the optimal radiation

fraction of doses [14], finding the best way to combine it to chemotherapy [15] or studying its

interplay with the immune system [16]. Beyond describing qualitatively the different processes

at stake, the real usefulness of a model would be to predict the response of individual patients

to a treatment, even before the end of the treatment. Such predictions would allow the clinician

to personalize the follow-up (and the treatment) for each patient. There has been some

attempts to predict tumor growth and the effects of treatments on individual patients. If purely

statistical or image-based models can be used to predict glioma growth [17], mechanistic mod-

els are usually used for instance to predict the metastatic relapse in breast cancer [18], tumor

growth in leukaemia and ovarian cancer [19], response of high grade gliomas to chemoradia-

tion [20], or the patient-specific evolution of resistance in the context of prostate cancer [21].

For low-grade gliomas, individualized predictions from the tumor size dynamics and

genetic characteristics, have been made for the response to a chemotherapy treatment [22]. To

our knowledge, such individual predictions do not exist in the case of low-grade glioma and

RT. In this article, we show that it is possible to predict the evolution of LGGs under RT, for

individual patients, with an approach based on a practical mechanistic model, even in the case

where the number of patients is not sufficient to apply standard machine-learning techniques.
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In order to be used for predictions, a model should have a limited number of parameters.

Models that are too detailed are useful to describe qualitatively the tumor evolution but usually

involve too many unknown parameters [23]. Given the scarcity of clinical data, only a small

number of parameters can be deduced. The goal here is to keep as few as possible parameters

but still to capture the essential dynamics of the tumor.

In a previous work [13], we analyzed a large number (43) of LGG radial evolutions under

RT and proposed a physically motivated model, with 4 parameters, that fitted well all the pro-

files of tumor evolution during patient’s follow-up. Following that work, we now try to make

predictions using that model. This is challenging given the variety of possible in-vivo reactions

to radiation. We have chosen to focus on the moment when the tumor stops shrinking and

starts to regrow, what we call in the following the “regrowth time”. This is an essential feature

of the tumor dynamics for two reasons. First, the patients often ask their clinician when the

tumor will regrow in order to plan some major life projects (as having a child, traveling, retir-

ing, etc.). This would be a valuable information to improve their life-quality. Second, the the

dates for the next MRIs are currently fixed and not optimal on an individual basis. By making

predictions we may adjust them more precisely for personalized follow-ups.

2 Materials and methods

2.1 Ethics statement

The study received required authorizations (IRB#1: 2021/20) from the human research institu-

tional review board (IRB00011687). The requirement to obtain informed consent was waived

according to French legislation (observational retrospective study).

2.2 The patients

We had at our disposal a set of 43 patients with LGGs who were diagnosed at the Sainte-Anne

Hospital (Paris, France) from 1989 to 2000. These patients were selected according to precise

criteria that are detailed elsewhere [24]. In short, only adults with typical LGGs (that is, no

angiogenesis and, thus, no contrast enhancement on gadolinium-T1 images), available clinical

and imaging follow-ups before, during, and after RT, and RT as their first oncological treat-

ment except for stereotactic biopsies were eligible. The external conformational RT was given

using the same methodology (total dose, 50.4–54 Gy; 6-week period) at 2 outside institutions.

The patients had an MRI follow-up before, during, and after RT. Three tumor diameters in the

axial, coronal, and sagittal planes on each MRI image with T2-weighted and FLAIR sequences

were measured manually. The mean radiological tumor radius was defined as half the geomet-

ric mean of these three diameters and was measured as a function of time. The error bars for

the measured mean radii were estimated by clinicians and were set to ±1 mm. From this

cohort, we discarded the patients that did not have any sign of tumor regrowth at the last time

point or those that had fewer than five time points in their follow-up.

2.3 The model

A biologically motivated model with the effect of RT on LGG has been presented in [13] and

validated by the fits on 43 patient follow-ups. It is based on a standard diffusion-proliferation

equation [25] and RT is modeled with a time-dependent death rate (κD(t)). The evolution of

the glioma cell density then follows the equation

@r

@t
¼ DDrþ ½k � kDðtÞ�rð1 � rÞ; ð1Þ
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where ρ(r, t) is a function of the radius r (assuming a spherical symmetry) and time t (conven-

tionally set to zero at the beginning of RT), D is the diffusion coefficient and κ the proliferation

rate. In its most simple (thus predictive) form, the death-term is characterized by an amplitude

and a characteristic time

kDðtÞ ¼ kde� t=td for t � 0; ð2Þ

and is considered as null before RT.

Assuming that the tumor growth-rate when patients consult is already in the asymptotic

state, i.e. that it evolves linearly with a speed v ¼
ffiffiffiffiffiffiffiffiffi
2Dk
p

, and neglecting diffusion after RT, the

radius evolution can be approximated by [13]

RðtÞ ¼ R0 þ vt � vtd
kd

k
ð1 � e� t=tdÞ: ð3Þ

Inspired by this formula, we simplify the model Eq (1) by proposing a purely geometrical

one in the form

RðtÞ ¼ R0 þ vt � kð1 � e� t=tÞ: ð4Þ

which has 4 free parameters: R0, v, k, τ. They cannot be related to the ones obtained by solving

numerically Eq (1) since Eq (3) neglects diffusion. This simple geometrical model has the con-

siderable advantage of being analytical. The role of each terms is clear and sketched in Fig 1. It

captures the 3 phases of the evolution: first the linear growth, then the exponential decay of a

fraction of the tumor and therefore of its radius, third, the regrowth with the same velocity as

before RT. This phenomenological model is similar to one proposed for the evolution of pros-

tate cancer [26], although in our case the tumor grows linearly with time before RT, while the

prostate one grows exponentially.

To test whether this model does fit our data appropriately, we construct a classical objective

function as the mean squared error from the set of measured values {ti, Ri}

w2ðR0; v; k; tÞ ¼
XN

i¼1

½Ri � Rðti;R0; v; k; tÞ�
2
=s2

i ð5Þ

Fig 1. Illustration of the analytical model describing the tumor radial evolution. Before RT (t< 0), the radius

evolves linearly with the asymptotic speed v and reaches R0 at t = 0. Then it becomes the sum of an exponential decay

of amplitude R0 − k and characteristic time τ (death term) and a linear vt regrowth.

https://doi.org/10.1371/journal.pcbi.1011002.g001
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where σi = 1 mm. This is a 4-parameter real valued function that we minimize easily with a

standard optimization algorithm [27] since the model is analytical. To obtain physical results,

we impose as limits that all parameters be positive and that the radial asymptotic speed lie in

the range 0.5� v� 4 mm/yr [2]. We then obtain the best-fit parameter values given in Table 1

and show, in Fig 2, the comparison between the data and the fitted model on a set of 20

patients who possess at least 9 data points. The agreement is excellent. Although the results are

quite similar to the ones obtained in [13], we have considerably simplified the model and

reduced drastically the run-time which will be useful later in making predictions.

2.4 Constraining the parameters space

We now study whether some common features appear in our best-fit parameters. Fig 3 shows

the histograms for each parameter on the 20 patients. No parameter displays a clearly peaked

distribution. For a given patient, the expected parameters are random variables and a priori

unpredictable, although within some bounds. We then consider the correlation between the

variables by computing their Pearson coefficients and show the results in Table 2. The struc-

ture is far from being diagonal, indicating non-trivial correlations among most pairs of vari-

ables. Of particular interest is the large (k, v) correlation since it relates a quantity defined

before RT (v) to a one after RT (k).

To make use of the information in the most efficient way, we first decorrelate the variables.

This is performed by diagonalizing the covariance matrix, which is always possible since the

covariance matrix is by construction always positive-definite. From the eigenvectors, we build

the transformation matrix T that projects our parameters pT = (R0, v, k, τ) onto an orthogonal

Table 1. Parameters of the least-square solutions of Eq (5) corresponding to the fits shown on Fig 2. The first col-

umns represents the patients’ ID, (R0, v, k, τ) are the estimated parameters of the model, and the regrowth time (tmin) is

derived from them. Lengths (R0, k) are expressed in mm and times (τ, tmin) in years.

id R0 v k τ tmin

(0) 17.95 0.50 7.29 1.98 3.95

(1) 29.03 1.33 10.49 0.19 0.72

(2) 24.56 3.24 17.69 1.40 1.91

(3) 16.86 0.96 13.28 1.57 3.42

(4) 25.40 1.11 5.20 0.10 0.39

(5) 28.72 1.37 10.78 0.47 1.33

(6) 27.00 1.99 17.00 2.39 3.04

(7) 23.26 1.23 5.92 1.18 1.66

(8) 15.83 2.45 6.84 0.45 0.82

(9) 31.60 1.13 8.35 0.38 1.12

(10) 26.45 4.00 16.15 0.45 0.98

(11) 14.67 1.54 4.66 0.32 0.72

(12) 41.20 4.00 30.74 1.83 2.63

(13) 16.64 3.59 13.83 1.06 1.37

(14) 20.21 1.30 14.84 3.64 4.16

(15) 19.33 0.70 7.80 0.81 2.11

(16) 23.61 3.37 23.15 2.28 2.51

(17) 32.68 0.72 7.30 0.43 1.36

(18) 35.02 2.19 15.32 0.99 1.93

(19) 28.06 0.52 10.16 1.29 3.52

https://doi.org/10.1371/journal.pcbi.1011002.t001
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Fig 2. Comparison between the measured values of the tumor radius and the bestfit model for 20 patients. The points represent the measured

values and the red line our model obtained by minimizing Eq (5). The abscissa represent time in years (with the origin set at RT) and the ordinate the

tumor radius (in mm). The error bars on the measurements are of 1 mm. The dashed vertical red line shows the model minimum, i.e. the moment

regrowth starts.

https://doi.org/10.1371/journal.pcbi.1011002.g002
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basis where the new variables XT = (x1, x2, x3, x4) are uncorrelated. From our data we measure

the following projection matrix:

T ¼

0:75 0:07 0:65 0:02

0:65 � 0:13 � 0:74 � 0:11

� 0:06 � 0:64 0:17 � 0:74

0:01 � 0:75 0:05 0:66

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð6Þ

and the linear change of variables is then simply

X ¼ Tp ð7Þ

Considering the important terms in the matrix, we see that the first 2 lines link essentially the

size of the tumor (R0) to the amplitude of the RT reaction (k). The next two ones relate in a

non-trivial way, the growth speed (v) to the RT effect (k, τ).

We now consider the distribution of these new {xi=1,� � �,4} variables that which, we recall, are

mutually uncorrelated by construction. Their histograms are shown on Fig 4.

The nice feature now is that, unlike the original variables (Fig 3), the distributions are now

approximately Gaussian Although it is a slightly questionable assertion for x2, the standard

deviation of the fit is large enough to capture reasonably all the points. For each variable we fit

the mean (μi) and standard-deviation σi.

Fig 3. Histograms of the bestfit parameters.

https://doi.org/10.1371/journal.pcbi.1011002.g003

Table 2. Correlation coefficients measured between the 20 bestfit parameters of our model. Since the matrix is sym-

metric with ones on the diagonal we only show its upper half.

R0 v k τ
R0 1 0.17 0.46 -0.09

v 1 0.73 0.10

k 1 0.52

τ 1

https://doi.org/10.1371/journal.pcbi.1011002.t002
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We can now build a term that contains the extra-information about the correlations among

the variables in the form

w2
consðR0; v; k; tÞ ¼

X4

i¼1

ðxiðR0; v; k; tÞ � miÞ

si

� �2

; ð8Þ

where the xi’s are computed according to Eq (7), and (μi, σi) are the parameters of the Gaussian

fits shown on Fig 4.

We then add this term to the original χ2 function (Eq (5))

w2
TOTðR0; v; k; tÞ ¼ w2ðR0; v; k; tÞ þ w2

consðR0; v; k; tÞ ð9Þ

and perform the minimization. The constraint acts as a Bayesian prior, i.e. it includes all the a

priori information we have between the parameters. It should not be used it on the previous

Fig 2 fits (since it was derived from them), but we checked that the best-fits obtained using

w2
TOT are exactly the same as the ones with only the χ2 term, meaning that we are not over-con-

straining the parameters with the constraint.

So why add such a term? Suppose we have few data, for instance 2 measurements before RT

and one after, then we have only 3 points to determine 4 parameters. Using Eq (8) we intro-

duce some extra equations and the problem becomes at least technically solvable.

In the following we focus on the regrowth time, which according to our model (Eq (4)) is

tmin ¼ t ln
k=t
v

� �

: ð10Þ

It depends mostly on τ and logarithmically on the relative speed between the shrinkage due to

RT (k/τ = vd) and the intrinsic tumor growth (v). The w2
TOTðR0; v; k; tÞminimization leads to

the (R̂0 ; v̂; k̂; t̂) estimates and we use those values in Eq (10) to estimate the regrowth time.

Fig 4. Histograms of the transformed decorrelated variables. The new variables are linear combinations of the fitted

(R0, v, k, τ) parameters as described in the text. They are normalized to unit area and the result of the Gaussian fit is

shown in black.

https://doi.org/10.1371/journal.pcbi.1011002.g004
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3 Results

3.1 Data validation

We first validate the procedure on our dataset by assessing the performances of our predictions

with a single point after RT.

Among our patients, we choose 6 follow-ups, with at least two points before RT and enough

subsequent points for the minimum of the fit to be robust (see Fig 2). We then take the points

before RT and the first one just after it, and perform the constrained minimization (Eq (9)). We

obtain an estimate of tmin and compare it to the one from the full fit. In order to avoid mixing

the training and test samples, for each patient we rebuild the constraint on the lines of section

2.4, removing each time the patient’s data from the datasets. The results are shown in Fig 5.

The tmin predictions for most of the patients lie within a few months of the value deter-

mined with all data, which is quite successful given the little amount of information and the

fact that each patient react differently to the treatment. For patient (13) it is slightly larger (10

months). This is an interesting case, since the point after RT is above the one before. This can

be due to statistical fluctuations or to the fact that RT produces sometimes an oedema that can

be misidentified as the tumor radius. However even in this case, we obtain a reasonable esti-

mate. This shows that, at the date of the first MRI after RT, we could have guessed in most

cases efficiently the regrowth time of the tumor and plan more efficiently the dates of the next

MRIs.

3.2 Predictions

We now evaluate on virtual patients a strategy to estimate as soon as possible the tumor

regrowth time. To this aim, we must first fix the times of the MRI measurements which are

constrained in the following way.

Fig 5. Predictions for the regrowth time on real data with the first point after RT. The black dashed curve shows

the best fit model using all the data points and the vertical black line shows its minimum (same as Fig 2). We then only

consider the red circled points consisting of all the points before RT and the first one just after, and perform the

constrained minimization described in the text. The result for the model is the dashed red curve with the estimated

regrowth time shown as the vertical red line.

https://doi.org/10.1371/journal.pcbi.1011002.g005
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1. Although we showed results with many points before RT (Fig 5), today’s clinical paradigm

is to reduce the tumor as soon as possible. We thus consider the case where the radiother-

apy sessions are planned immediately after the first MRI within typically 6 months.

2. Since this is a central point, a second MRI should be performed around the RT date.

3. Fast-responders reacting within a few months, we propose to perform an MRI measure-

ment 3 months after RT.

We will then consider the cases where the measurement times are located at tmes = [−6, 0,

+3] months and test if we can still make some predictions for the regrowth time. This is a very

challenging situation since we only have 3 nearby points with important relative errors. To

assess statistically the performances of the prediction, we adopt a Monte-Carlo approach. For a

given set of “true” parameters (R0, v, k, τ), we first compute the tumor radius at tmes. We then

add to each point a random Gaussian noise with a σ = 1 mm standard deviation, and from

these virtual measurements, estimate the regrowth time. Since we noticed that a few hundreds

of iterations is sufficient to reach a stable distribution, we repeat the procedure 1000 times. We

then consider the mean of the predictions and the 95% confidence-level interval (obtained

from the [0.05, 0.95] percentiles) that we compare to the true tmin value. This procedure is illus-

trated in Fig 6.

We use our 20 best-fits as a representative set of “true models”. We perform the Monte-

Carlo study described previously for each set of parameters and compare the mean and 95%

confidence-level interval of our estimated regrowth times to the true value on Fig 7.

First, we notice that 15 predictions out of 20 (75%) are good, the mean value being typically

within 6 months of the true. In these cases, the guess follows roughly the true values which

confirms that the method is not only driven by the constraint (which would lead always to the

same interval) but also incorporates the information of the 3 measurements. Fast-responders

(patients (1),(4),(8) and (11)) are correctly predicted and tend to lead to predictions under 1

year which could be the threshold to plan a next MRI rapidly (possibly 3 months later).

Fig 6. Characterization of there growth time estimation with a Monte-Carlo method. The black curve represents a

model (which is here the bestfit of patient (18)) with its minimum shown as the vertical black line (“truth”). One draws

some Gaussian noise of σ = 1 mm at the measurement times tmes = [−6, 0, 3] months, and performs the tmin estimation

described in the text. This is repeated 1000 times which allows to construct the red histogram of all the tmin estimates.

The red vertical dashed line shows its mean value and the horizontal one the [0.05,0.95] percentile region.

https://doi.org/10.1371/journal.pcbi.1011002.g006
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There are also 5 outliers out of 20 (25%) corresponding to the cases where the true regrowth

times are the largest (3–4 years), i.e. to the slowest responders. A point at 3 months for them is

much too soon to infer any information about the curvature, so that the prediction is only

driven by the constraint and goes to its mean value of about 2 years. More precisely, by Taylor-

expanding our model near t = 0+

RðtÞ ¼ R0 þ ðv � vdÞt þ �t2=2þOðt3Þ ð11Þ

Fig 7. Performances of the regrowth time estimates with 3 measurements at tmes = [−6, 0, 3] months for a set of

true parameters corresponding to the bestfits of our 20 patients. Black points represent the mean of the estimates

and the bars the 95% confidence-level interval. The red point is the true value associated to each best-fit for the patients

labeled on the vertical axis (corresponding to the dashed lines in Fig 2). Note that only the best-fit parameters of each

patient are being used here.

https://doi.org/10.1371/journal.pcbi.1011002.g007
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where vd� k/τ is the speed of the collapse and the curvature term is � = vd/τ. For slow-

responders, there is almost no curvature at 3 months, �! 0 and τ = vd/� diverges leading to a

very broad (and even sometimes bi-modal) tmin distribution. In this case, the prediction is only

driven by the constraint.

Although pessimistic for the patient, the predicted value is still large (around 2 years, see

Fig 7). Thus we can safely plan a next MRI 1 year after RT. We consider the case where the

times for the radial measurement are at tmes = [−6, 0, 3, 12] months and perform the prediction

again. The result is shown in black in Fig 8.

Unfortunately, the constraint Eq (8) is still pulling tmin to too low values. We need to switch

to a looser constraint. As is clear from Eq (11), the linear term, that is the best constrained, is

related to the slopes measured before (v) and after (vd) RT. In the absence of good knowledge

of the curvature, we may try to relate these slopes to the regrowth time. Indeed, on our dataset,

we observe a strong correlation between vd and tmin (Fig 9) that we fit to a power-law

tmin ¼ 9:0=v0:61
d : ð12Þ

This correlation, that emerges from the data, is highly non-trivial. According to Eq (10)

tmin ¼ t ln
vd
v

� �
: ð13Þ

If τ, v and vd were uncorrelated, the regrowth time would raise logarithmically with vd. This

correlation thus relates what happens before RT (v) to what happens after (vd, τ). Understand-

ing its nature would require a full biophysical model of radiation effects that is outside the

scope of our phenomenological approach.

We can use this correlation to build a new estimator for tmin: we fit on the data only the lin-

ear terms in Eq (11) in order to get vd which we transform according to Eq (12). Since this

method uses a single correlation, we call it the loose constraint. We show the result of applying

this procedure on the outliers in blue on Fig 8. The distributions are much better centered on

Fig 8. Monte-Carlo estimates of the regrowth time with an extra point at 1 year for the 5 outliers of Fig 7 (tmin> 3

years). The black bars (model 1) corresponds to the 95% confidence-level intervals obtained from the standard

constraint (Eq (8)) and the blue ones (model 2) with the loose constraint described in the text. The black/blue points

corresponds to the mean values and the red point is the true value of each model.

https://doi.org/10.1371/journal.pcbi.1011002.g008
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the true values. One may ask why not always use this constraint. As clear in the figure, the

uncertainty is larger with the loose-constraint method. This is the classical bias/variance trade-

off of any estimator. Although it gives indeed less biased results for outliers, the method would

miss fast-responders at 3 months, since the slopes determination is then extremely noisy. On

the contrary, with a point at 1 year, there is enough lever-arm to determine the slope quite pre-

cisely and take advantage from the correlation to let the data “speak for themselves”.

We point out that the loose-constraint method is very simple and may be used by any clini-

cian without even a computer. First measure the slope before RT to obtain v, then the slope

after RT (v − vd) to obtain vd, and finally use Eq (12) to predict the regrowth-time.

4 Discussion

We have proposed a new simple model to describe the evolution of diffuse low-grade gliomas

before and after radiotherapy. It is analytical and describes in a satisfactory way the follow-ups

of 20 patients with measured tumor radii before and after RT. This model has 4 free parame-

ters, 2 before RT and 2 after, that vary for each patient. From the study of the correlation

between all the parameters we proposed a way to include a prior information to any follow-up,

which allows to perform predictions for the regrowth-time of the tumor rapidly after RT.

From the data we had at our disposal, we showed that including this information allows to pre-

dict the regrowth time of the tumor at the very first MRI measurement after RT typically

within 6 months. Using virtual patients, we have shown that is is possible to predict reasonably

well the regrowth time with only one point 6 months before RT, one around RT and one 3

months after, in 75% of the cases. The remaining 25% for which our prediction is pessimistic,
have all large regrowth-time (’ 4 years) and may draw benefit from another measurement 1

year after RT, leading to more correct estimates.

Fig 9. Correlation between vd and tmin measured on our set of 20 patients. The red line shows the power-law fit.

https://doi.org/10.1371/journal.pcbi.1011002.g009
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These results assume that our database is representative of all LGG evolution and would

profit from incorporating more patients’ data. Similar profiles are obtained for chemotherapy

treatments [22, 28] and it would be interesting to redo the analysis in this case.

This work is based on a 4-parameters model which is a simplified version of a biologically

motivated model. This choice can be challenged; why not use some non-parametric method

that are often efficient? First, the low dataset (43 patients but in practice 20 with a sufficient

number of points to inform our model) precludes the possibility of using general purpose

Machine Learning techniques like Deep Neural Networks, Random Forests, Boosted Decision

Trees (as described for instance in this recent review [29]), as well as Recurrent Networks dedi-

cated to Time Series (e.g. [30]). Second, we could think of using Gaussian Processes (GP)

method (e.g. [31]) that can work on small samples with some optimized kernel. We have tried

it, with a squared exponential kernel and a white noise. However, by construction, outside the

data input region the naive “vanilla” model converges to a constant and cannot describe the

regrowth phase. To overcome this failure, one is forced to use a time dependent function of

the mean which is exactly the meaning of the 4-parameters model developed in this article.

This clarifies why modeling, especially based on physical arguments, is superior to all purely

statistical methods. This was the key to the success of making predictions from a restricted

dataset and with very few data points.

Here, we have varied the patient’s population and shown that the method has the potential

to make some predictions among various patients profile. The problem is different for a per-

sonalized follow-up (which is the practical clinical case) since the prediction depends on the

details of the measurements (times and values). Using a Monte-Carlo Markov Chain tech-

nique, one can obtain an individualized probability distribution of the regrowth-time that can

help clinicians adapt their treatment and the dates of the next MRIs.

Nowadays, radiotherapy is no longer used as a first intention main treatment for low-grade

gliomas. The actual recommended treatment for high-risk patients is predominantly a combi-

nation of radiation and chemotherapy, after surgery whenever feasible [32]. However, an

exclusive radiotherapy can still be proposed for high-risk low-grade gliomas when surgery and

chemotherapy are not feasible. It would be interesting to study whether our simple model

could be adapted to model the effect of the combination on low-grade gliomas (without

surgery).
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