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Certifiable Memory Management System for Safety
Critical Partitioned System

Alexy Torres Aurora Dugo, Jean-Baptiste Lefoul, Serge Harnois, Felipe Gohring de Magalhaes and Gabriela
Nicolescu

Abstract—Aerospace systems are safety-critical systems that need
to respect tight constraints in terms of execution time, resource
usage and predictability. This industry is currently transitioning
from predictable single-core processors to less predictable multi-
core architectures. This transition reveals multiple challenges due to
interferences. The contention of different cores on shared resources
introduces interferences. This phenomenon prevents the required
isolation between applications and the estimation of their worst-case
execution time. To prevent interferences and ease the certification
of robust partitioned multi-core systems, guidance documents, such
as the CAST-32A, provide objectives on resource isolation and
management. In this paper, we propose a memory manager to mitigate
memory interferences generated in shared cache, main memory and
memory bus. Our results show an increase in timing predictability by
68.1%. Aside the memory manager, based on our results, we provide
a set of recommendations to assist system integrators’ decisions and
ease the certification process by conforming to the current guidance.

Keywords—Aerospace, ARINC-653, Certification, Critical sys-
tems, Interference, Resource management, RTOS

I. INTRODUCTION

The aerospace domain relies on highly critical software
to ensure the reliability and safety of the system. The first
generation of computer-assisted functionalities in planes is
based on the federated architecture. This type of architecture is
designed such that each computer-assisted functionality has its
controller or computer, called Line Replaceable Unit (LRU).
LRU communicate through different networks and buses.
Due to the increased number of computer-assisted features
in planes, the use of federated architecture is impossible to
sustain. The increase in communication nodes often results in
network contention and poor fuel efficiency of the plane due
to the equipment weight [1].

To leverage the size, weight and power (SWaP) of federated
architectures, the Integrated Modular Avionics (IMA) archi-
tecture was proposed. The IMA architecture is designed such
that multiple functionalities are gathered in the same module.
This design eases the communication between applications,
reduces the SWaP and facilitates the maintenance of the
equipment. Multiple IMA units can be scattered in the plane
and communicate via networks and buses.

IMA architectures rely on Real Time Operating Systems
(RTOS) to manage the different components in the system
and the different applications running concurrently. Real time
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systems are subject to strong constraints in terms of execution
time and response latency. Hence, it is imperative to ensure
the Worst-Case Execution Time (WCET) of all applications.
Nowadays, IMA architectures are implemented relying on
Commercial Off-The-Shelf (COTS) hardware [1]. This reduces
the cost of the equipment but also reduces the design’s
flexibility.

Despite the determinism of single-core processors, more
energy-efficient and powerful multi-core architectures slowly
replace them [2]. Multi-core processors provide better per-
formance by the ability to execute multiple applications at
the same time. With the increasing production of multi-core
architectures, single-core processors slowly disappear from
the market. Aerospace system designers need to transition to
multi-core architectures to keep the equipment up to date.

However, optimizations brought by multi-core processors
make execution times less predictable and impact WCET.
The execution of multiple parallel applications also introduces
contention on the shared resources. These phenomena are
called interferences [2]. Interference channels exist at different
levels of the architecture. In this paper, we focus on memory
interferences for which channels are the shared caches, shared
memory bus and shared DRAM. We propose a memory
manager to mitigate memory interferences. For this purpose,
we extend the cache, memory and bus management methods
proposed by the Single-Core Equivalent framework [3] to
allow better integration with certifiable RTOS and without the
use of virtualization. We propose a flexible design to accom-
modate with different architectures and certification processes.
Our results show an increase in timing predictability by 68.1%
on average while increasing the execution time of applications
by 22.3% on average. The Certification Authorities Software
Team (CAST) published a guidance paper, the CAST-32A,
that provides objectives to be met when certifying multi-core
critical systems. Based on this paper, we propose a set of rules
and insights to the system integrator (SI) to improve safety and
performance of the system [4]. Our work brings the following
contributions:

1. We propose a novel memory manager enabling to reduce
cache and memory interferences as well as the bus
interferences. By integration of most efficient methods
for cache and memory partitioning and bandwidth man-
agement, we obtain a solution applicable to certifiable
systems in a context where hardware-assisted virtualiza-
tion is not available;

2. Improving the bus bandwidth management by proposing
an extension of MemGuard [5], a memory bandwidth
manager, to allow more flexibility and I/O bandwidth



Fig. 1. Multi-core same-length MAjor Time frame defined on two cores

management by extending configuration capabilities, per
application budgeting, and an initial budget pool;

3. The proposition of guidelines, named safety net as per
CAST-32A [4], to ensure quality of service (QoS) and
safety in the RTOS and ease the certification process in
avionic systems. We further formalize the notion of robust
partitioning for shared memory and bus.

II. BACKGROUND AND CONTEXT

To allow their certification, civilian aerospace systems must
follow strict rules. Multiple standards exist to ease the de-
velopment process and RTOS use (e.g., ARINC-653 [6]). In
this section we present those requirements and the current
challenges of certification in multicore systems.

A. Multicore Safety Critical Systems Challenges

The notion of robust partitioning implies that an application
cannot impact any other applications in the system. This is
true from a software perspective, where the undefined behavior
of the application cannot block or impact the execution of
another application [6]. This is also enforced in the hardware
aspect, where an application should not change the state of the
hardware to the point that it might impact another application.
In this context, applications are called partitions [6].

ARINC-653 compliant systems must conform to the fol-
lowing constraints: (1) Time isolation: a partition must execute
during a given time slot without being preempted. As shown in
Figure 1, the scheduling relies on a MAjor time Frame (MAF)
that is repeated indefinitely. (2) Space isolation: a partition
can only access resources it has been explicitly allocated. For
instance, a Memory Management Unit (MMU) can enforce
space partitioning. CAST-32A [4] also proposes the integration
of a safety net that should provide means to monitor and
recover from failure in space and time isolation.

To allow the use of multi-core processors in critical systems
two approaches are foreseen. The first is to take interferences
into account during system analysis to consider their impact
on timing. With this approach, one could account every access
to the cache as a cache miss. This provides overly pessimistic
results. The second approach is to bound or eliminate them to
allow the use of known analysis methods. In this work, we al-
low robust partitioning of the shared resources. The objectives
provided by the CAST-32A are abstract are sometimes difficult
to transpose into system’s constraints. Thus, we propose to
formalize these objectives regarding shared memories and bus
for robust partitioned systems in Section 5.

B. Interferences

In this section, we present the interferences that we consider
in our work. We also describe the interference channels studied
and their impact on the system’s execution.

1) Cache Interferences: Cache interferences in multi-core
systems appear in two contexts: shared caches and private
caches [2]. Shared caches interferences occur when multiple
cores share the same cache. Two types of interferences might
appear in this context: (1) Contention interferences, when
multiple cores try to access the cache at the same time, only
one core is granted access and other core wait to access the
bus. (2) Eviction interferences, when an application on a core
evict data owned by another application on another core.

2) Bus Interferences: Bus or interconnect interferences
occur when multiple components (cores, coprocessors, etc.)
try to access the bus at the same time [5]. This contention
results from the arbitration of the controller on the bus. Only
one component may access and process transaction on the bus
at a given time. Thus, the system puts other components that
request the access on hold and wait for their turn to use the
bus. Although multiple arbitration policies have been proposed
to reduce or remove bus interferences, they are rarely available
on COTS hardware.

3) Memory Interferences: Main memory interferences can
be observed at different levels. Memory can be accessed
through different independent channels without showing any
interference [7]. However, if two core access the memory
through the same channel, the contention on that channel
generates interferences.

The second type of interferences appears at the bank level
[8]. Each bank comprises a row buffer, which stores the
content of the last accessed row in the DRAM. The row buffer
acts as a cache that allows accessing the data contained in the
same row faster. When multiple core access the same memory
banks, the row buffer unpredictably changes its content to
accommodate cores access patterns. Thus, affecting the ex-
ecution time of partitions executing on the different cores.

C. Interferences Mitigation Means
Different mechanisms are present in COTS hardware to

isolate components and make the platform more predictable.
Table I provides a summary of the mitigation methods we
discuss in this article. We also provide the availability of
the solution, where it is said to be low when additional
hardware is required and such type of hardware is usually not
present in COTS processors. A high availability means that the
hardware required to apply such technique is usually present
in COTS processors (e.g., Performance Monitoring Counter
(PMC), Memory Management Unit (MMU), etc.).

Cache way partitioning relies on hardware facilities to
allocate ways of the cache to designated cores. Hardware
specific registers must be set to allow segregation of the cache.

Cache set partitioning or cache coloring, relies on the
structure of cache memories and the physical address of the
data to know where the data will be placed in caches. Figure
3 shows the physical address layout that allows to know in
which set the data will be loaded. Based on this information,
the RTOS can wisely choose the virtual to physical translation
to place pages in selected sets of the cache.

Finally, cache line partitioning is a combination of ways and
set partitioning, where the RTOS allocate a set of cache ways
and cache sets to a partition.



TABLE I
LIST OF INTERFERENCE MITIGATION MEANS AVAILABLE IN COTS

HARDWARE

Mitigation method Interference Availability
Cache way partitioning Shared cache eviction Low
Cache set partitioning Shared cache eviction High
Cache line partitioning Shared cache eviction Low
Memory bank partitioning DRAM Row buffer High
Memory channel partitioning DRAM channel Low
Bus budgeting Bus contention High

Memory banks and channels partitioning work the same
way as cache set partitioning. By wisely choosing the physical
address of a data, the RTOS knows in which DRAM bank and
channel the data are stored. Placing data of different partitions
into different banks will remove bank interferences (row buffer
interferences). Channel partitioning allows assigning unique
channels to cores. When a core accesses the DRAM, it can
do so without contention on its channel due to another core
requesting data.

Bus budgeting relies on the monitoring of memory accesses
done by a core. When the number of accesses made during a
given period of time exceeds a certain amount, the core stops
its execution by scheduling an idle task or halting the core.
This method has the effect to stop the contending core and
release the bus bandwidth it uses.

All the previously mentioned methods provide the same
amount of isolation and can be used for safety-critical systems.
The choice of a technique over another should be based on the
availability of the hardware and the overhead it introduces.

III. RELATED WORK

In this section we present the current state of the art and
position our work with regard to the interference channels we
study in this article.

A. Cache Interferences

In [9], the authors present a survey of the different tech-
niques for cache partitioning. Cache way partitioning is shown
as the most used implementation. While line partitioning
offers finer granularity, it also brings a higher execution and
development overhead. Finally, set partitioning is known to be
more complex to implement but offer better portability.

In [10], the UCP (Utility-Based Cache Partitioning) ap-
proach was introduced. It defines cache partitioning and mon-
itoring hardware module to update the cache configuration at
run-time. In the avionic domain, all configurations should be
static and validated prior to system deployment as certification
requires it [11]. Thus, we cannot apply dynamic approaches
in this context. In [12] and [13], semi-partitioned caches are
explored to improve performance while keeping the system
in a more predictable state. The work of [14] extends this
concept by clustering applications and partitioning caches on
a per-cluster basis. In [15], the authors present a scheduling
technique to account of the cache usage and reduce the
performance hit introduced by cache partitioning.

In [16] and [17] cache partitioning is proposed alongside
prefetching techniques. In our context, the system design
often disables performance improvement facilities such as

prefetching or branch prediction to reduce non-determinism
produced by them. In [18], the authors use different processor
management methods to reduce energy consumption. Litera-
ture also studied super pages with cache partitioning but the
existing solutions use additional hardware [19].

In [20] and [21], hypervisors and the notion of virtual
CPUs are proposed to ease cache partitioning implementation.
The use of an hypervisor allows the application of cache
partitioning to existing OS without modifying their code.
However, it yields to an increased overhead in memory size
and execution time.

B. Memory Interferences

In [22] the authors give a comprehensive list of mem-
ory interferences in COTS platform. The authors propose a
methodology to analyze and understand the impact of the
different mechanism in DRAM on predictability and latency.
In [23] the authors propose a multi-policy resource allocation
method. They use DRAM and cache partitioning together to
leverage interferences in the system. Their approach relies on
the analysis of a huge data set (2000 workloads) of execution
(over 10000 experiments).

In [24], [25], [26] scheduling is explored to reduce in-
terferences in the memory hierarchy. This approach allows
reducing contention on the shared resources and thus, increase
the throughput of tasks naturally. However, in [25], only
one application can execute on multiple cores. Even-though
scheduling reduces interferences, it does not ensure isolation
between the partitions and makes certification more difficult
in systems where robust partitioning is required [4].

In [27] the authors propose a software memory coloring
approach to separate applications’ memory between DRAM
banks and channels. The method relies on a dynamic approach
that changes the number of allocated banks and channels to
threads at run-time. However, we cannot apply this method
to hard real-time systems as the dynamic behavior would
introduce non-determinism and make WCET estimation more
complex due to the added factors to consider.

In [8], the authors coordinate the use of cache coloring
and bank coloring. The duality of the approach and the
conflict between cache and bank coloring is explained. In this
paper, we review the approach proposed in [8] to allow faster
integration and certification in safety-critical systems.

In [28] the authors propose a bank partitioning method
to improve performance while considering the profile of the
applications. The method relies on application profiling and
clustering to categories their memory usage. However, we
cannot use additional hardware to gather the metrics needed
by the online algorithm. Similarly, in [29] the authors propose
to isolate concurrent threads to use different memory banks for
data sampling applications. Performances are further improved
by balancing the load between the different memory banks.

C. Bus Interferences

Bus bandwidth management is a widely studied approach
to leverage bus interferences. In [5] the authors present an ap-
proach called MemGuard. MemGuard regulates bus bandwidth



and propose different mechanisms to increase performances.
Each core has an allowed amount of access to the bus during
a quantum of time. If the core exceeds its budget, the RTOS
puts it on hold until the next quantum of time. MemGuard uses
per-core budget allocation and lacks configuration flexibility.
These two main limitations that are further explained and
addressed in Section 4.2.

In [25], [30] and [31], scheduling frameworks to lever-
age predictability in multi-core systems are proposed. The
approaches use memory bandwidth throttling mechanisms to
ensure bus and memory interferences bounding. In [32], the
authors propose to isolate bus resources when hard real-time
applications execute, thus, giving them exclusive access to the
bus. In [33], critical applications are mapped to a single core,
leaving the other cores to use by best effort applications.

In [21], the authors design a resource management frame-
work based on virtualization to leverage cache partitioning and
memory bandwidth limitation. The approach is based on the
use of virtual CPU (vCPU).

Execution models were introduced to manage bus and
memory interferences. In [34] and [35] the authors use the
Acquisition Execution Restitution model (AER). The objective
of this method is to separate the computation (Execution
phase) from memory accesses (Acquisition and Restitution)
during run-time and schedule the memory phases so only one
partition can be in those phases at a time. Thus, the RTOS
schedules access phases to ensure no contention occurs.

Other works rely on hardware mechanism to reduce, bound
and remove interferences. In [24], [36], [37] and [38] memory
controllers and arbiters are proposed to improve predictability
while increasing the performance. However, these approaches
are not compatible with COTS hardware as it requires addi-
tional hardware that is not certifiable in some cases. In [39] the
authors study three techniques to manage memory bandwidth:
thread packing, clock modulation and Intel MBA technology.

We cannot apply the exclusive use of resources at a given
time such as the method proposed in [32]. We consider
all the partitions in the system as highly critical. Applying
this method would be useless as only one application could
execute at a time. The approach provided in [30] reduces
the overhead and improves the performance but we cannot
afford to change the criticality of the applications nor provide
different execution modes. Unfortunately, we cannot rely on
the additional hardware components used in [40]. Moreover,
contrary to the proposed method, isolation must be maintained
at any moment in the execution window. Finally, our objective
is to reduce applications WCET contrary to optimizing the
average performance. Work such as [39] does not provide
strict isolation of resources and thus, makes certification more
tedious. In [3] the Single-Core Equivalence principle was
proposed. We base our work on this approach and refine it
to enable easier integration with non-virtualized environments.
While virtualization allows a better management of resources,
this method is not applicable in our context. We aim to rely
on a bare-metal RTOS that does not allow virtualizing the
system’s resources and to reduce the overhead introduced by
these techniques.

Using the AER model is not applicable in our context as

Fig. 2. Memory hierarchy with key points where our management framework
applies.

we need to keep compatibility with legacy applications that
do not make use of such model.

In [41], the authors show that per application budgeting
increases the system’s performance and scheduling feasibility.
In this paper, we provide an extension to MemGuard that
allows per application budgeting instead of the per core
budgeting previously allowed by MemGuard.

In this paper, we choose to use set based cache partitioning
alongside with DRAM bank partitioning. Both approaches are
portable to any architecture with virtual to physical address
translation and are applicable to COTS hardware. For the same
reason, we choose to extend the MemGuard approach that
relies on COTS available features such as PMC (Performance
Monitoring Counters) [5]. To enable portability, our solution
can be extended for cache way partitioning use.

IV. GLOBAL MEMORY MANAGER

In this section, we present our centralized memory manager.
This module extends the state-of-the-art approaches to ease
their certification in the context of aerospace systems. Figure
2 provides an overview of the system’s architecture with key
points where our method applies. While the memory allocator
manages how shared caches and DRAM is allocated across
partitions, the bus budgeting module monitors and controls
bus usage by the partitions. Finally, the safety net module is
scattered across the memory hierarchy, to monitor the system’s
health. In case of an error, the safety net triggers an error to the
heal monitoring manager. Throughout this section, we explain
in detail each module and how they interact with each other.

A. Memory Management

Three main approaches exist to partition the cache. Way
partitioning allows segregating caches in ways, by allocating
them across cores. Set partitioning, also named cache coloring,
profits from the virtual to physical translation mechanism to
arrange the memory layout and allocate cache sets to different
applications. Finally, line partitioning allows allocating cache
lines to applications. Line partitioning is available when both
set and way partitioning are possible. Set partitioning is privi-
leged over way partitioning as it allows more cache partitions
and is easily portable to different architectures. It is worth to
be mentioned that our approach can be extended to use way
or line cache partitioning with few modifications.

As discussed in [8], cache coloring (set partitioning) may
interfere with memory coloring. Figure 3 shows the different
memory layouts encountered during our study on architectures.



Fig. 3. Memory coloring layouts found in 40 different architectures.
(a) allows separate allocation of banks and cache partitioning, (c) show
overlapping bits while (b) and (d) show that bank coloring completely overlaps
cache coloring and vice versa.

Fig. 4. Two-level memory allocator flow. We use the same process for both
private and shared memory.

[8] also discuss the bank bit randomization technique used
in modern processors. Such process is not present in all
architecture but should be considered by the system designer
when studying the memory address layout of the system.
Our allocator takes into account overlapping bits in memory
coloring to ensure complete isolation of the resources.

We propose a two-level memory allocator. First the allocator
selects a memory bank based on the core the application is
running on. In our design, we allocate banks on a per-core
basis while allocating cache partition on per-application basis.
Using private cache partitions for each applicative partition
allows the systems to skip cache flush and invalidate when
switching between partitions as recommended by the CAST-
20 [42]. This method allows us to use cache more efficiently
while reducing the partition switch time.

We define an allocation unit by the couple (B;C) where B
is the bank identifier and C the cache color. An application can
have one or more assigned (B;C) couples. Shared memory
regions (between application on the same or different cores)
use the (B;C) couples of all applications sharing the region.
Figure 4 depicts the execution flow of the allocation process.
Our method ensures compatibility with all layouts depicted
in Figure 3. It is also extensible to other future layouts. The
safety net is explained in the next section of this paper.

When applications’ private and shared memory have multi-

ple allowed couples, the allocator select the (B;C) couple to
evenly distribute the workload on all available memory.

Once the algorithm selected the memory bank, the allocator
provides one or more cache colors to the application. Each
memory bank contains at least one cache color. We compute
the number of cache colors per bank by subtracting the number
of overlapping bits between the cache color bits and the bank
color bits to the number of cache color bits.

To provide a faster allocation, we do not rely on linked list
to represent free memory. We represent the memory banks
with the bank_color structure.

struct bank_color {
uint8_t bank_id;
uint32_t free_mem;
ptr_t cache_color_head[nb_cc];}

In this structure, the cache_color_head array represents the
next free address in memory for a given cache color. We also
use nb_cc to represent the number of cache color associated
with the current bank. Using this structure, the allocation
process is straightforward. When allocating a page to an
application, the allocator sets the cache color head referred
by (B;C) to the next free page in (B;C).

B. Bus bandwidth budgeting

We propose to extend the MemGuard [5] approach by
adding the following features: (1) Per application budget
allocation: each application receives a static amount of budget
for the duration of its time window in the MAF; (2) An initial
reclaiming 1 pool budget to accommodate with the scenario
where all applications are critical; (3) Introduction of four
application modes that we present later in this section;

1) Reclaiming modes: The computation of the initial re-
claiming pool size as well as the budget allocation are out of
the scope of this article and can be computed using the method
proposed in [41].

To accommodate with the critical nature of ARINC-653
systems and render our approach more flexible, we propose to
classify applications in four categories to extend the reclaiming
feature:

• Full reclaiming mode, which allows an application to
reclaim budget and provide budget to the reclaiming
pool. Soft real-time partitions can use this mode. We
also propose to further constrain the budget prediction to
provide bounds on the budget removal of the application.

• Greedy mode for which an application does not provide
any budget to the global budget pool but can reclaim
budget from this same pool. This is suitable for any
hard and soft real-time partitions, however, hard real-time
applications are more prone to use this mode.

• Altruist mode, which allows an application to provide
budget to the global pool but not reclaim budget from this
pool. This mode is suitable for best-effort applications
which can run in degraded mode.

• Strict mode, which forbids budget reclaiming and pro-
viding budget to the global pool.

1Reclaiming budget means that an application can request more budget than
it was allocated by the means of a shared budget pool.
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Fig. 5. Partitions’ scheduling behavior when using full reclaiming mode (a), greedy mode (b), altruist mode (c) and strict reclaiming mode (d).

Figure 5 (a) depicts the execution of a partition under full
reclaiming mode, which means that it can reclaim budget
from the global pool and provide budget to it. At time 1
the partition starts executing. At the end of the budgeting
periods 2 and 3 , it was predicted that the partition will
use less budget than initially provided. Budget is removed
from the partition to provide it to the global pool. At 4 the
partition exceeded its budget and reclaimed a fixed amount of
free budget from the global pool. At 5 , the does not remove
budget from the partition. Finally, at 6 the partition exceeds
its budget but the global pool is empty, the partition is removed
from execution until the next timer’s period.

Figure 5 (b) shows the execution of a partition under greedy
mode. This time the partition’s budget is exceeded at 2 , 3
and 4 and is replenished at 2 and 4 by reclaiming budget
from the global pool and at 1 and 5 from the bus budgeting
replenish server. In greedy mode, no prediction is made and
the partition does not provide any budget to the global pool.

Similarly Figure 5 (c) shows the execution of a partition
under altruist mode. The budget can only be replenished by
the bus budgeting server (at times 1 , 2 , 4 and 6 ).
The partition can provide budget to the global pool and gets
removed from execution when it exceeds its budget at times
3 and 5 .

Finally, Figure 5 (d) depicts the execution for a partition
using strict mode. Here, the partition does not give any budget
to the global pool but also cannot reclaim any. The only
replenish events occur at 1 , 2 , 3 and 5 and the partition
is removed from execution at times 4 and 6 .

The proposed reclaiming modes allow a complete flexibility
on the system bus management. The system can change the
mode at any moment and for any partition during the execution
of the RTOS. Changing the reclaiming more is done through an
API proposed by the RTOS. This API allows reconfiguring the
budgeting mode while ensuring highly critical partitions are
still correctly isolated. The API can be called at any moment
by the partition during its execution.

Algorithm 1 shows the execution flow of the periodic
server interrupt. This process is executed before restoring the
application’s context. Algorithm 2 depicts the process executed
when an application exceeds its allocated budget. As proposed

Algorithm 1 Periodic server timer handler function.
1: function TIMERHANDLER
2: App = ScheduledApp()
3: nextBud = App.initBud
4: if App is (full reclaiming or altruist) then
5: nextBud = PredictNextBudget()
6: AddSlackBudgetToPool(App.initBud - nextBud)
7: end if
8: if HealthCheck() is Failure then
9: RaiseHMError()

10: Return
11: end if
12: UpdatePMC(nextBud)
13: UnlockCore()
14: end function

in MemGuard, when all cores become idle because of budget
exceeding, the mechanism will reschedule all applications.
Finally, we explain the HealthCheck block in the next section
and refers to the safety net feature proposed by the CAST-32A
document.

Algorithm 2 Interrupt handler executed when an application
exceeds its budget.
1: function PMCHANDLER
2: App = ScheduledApp()
3: if HealthCheck() is Failure then
4: RaiseHMError()
5: Return
6: end if
7: if App is (full reclaiming or greedy) then
8: nextBud = ReclaimBudget()
9: UpdatePMC(nextBud)

10: Schedule(App)
11: end if
12: if AllCoresIdle() then
13: ForceResetTimer()
14: else
15: ScheduleIdle()
16: end if
17: end function

In our context, we consider systems with hard real-time
applications only. We cannot afford removing budget from
a partition using s. Thus, we introduce an initial reclaiming
pool containing free budget for any application. The global
pool contains budget that the partitions can reclaim when



their budget is exceeded. This global pool is replenished at
each budget server’s tick. This approach allows improving the
overall system’s performance as presented in our result section.
The benefits of this method are presented in the results section.

Both the periodic replenish server and the PMC interrupt
handler are integrated from scratch in the RTOS. We have
chosen to implement the different modules from scratch and
not use a patched version of MemGuard because the architec-
ture of an ARINC-653 compliant RTOS greatly differs from
the Linux kernel. The periodic replenish servers consists in
an interrupt service routine called every time the global timer
triggers its periodic interrupt. In the same manner, when the
PMC detect that the budget is exceeded, an interrupt handler
is called and an idle task is scheduled to replace the running
application as presented in Algorithm 2.

V. SAFETY NET

To ease the certification process, we define a set of rules that
should always be verified during the system’s execution. Apart
from the CAST-32A guideline, we provide a way to ensure
synchronization between cores regarding the MAF timings.

A. Core Verification

The RTOS architecture we use offers an Asymmetric Multi-
Processing paradigm to manage the CPU. In this architecture,
each CPU executes a separate instance of the RTOS. Small
shared memory region enables the inter-core communications.

Each CPU has its own timer and uses a tick-less scheduler.
This means no periodic tick is present in the system and timers
interrupt occur only when needed (for instance, when the next
application should be executed). To ensure synchronization,
we add constraints to the MAF length. All CPUs can have
different MAF length; however, we define a global hyper
period based on the least common multiple Q between all
CPUs MAF.

We define qi the length of the MAF Mi defined for CPU
i. Mi will be executed Q

qi
times before reaching a synchro-

nization point. When reaching such point, the CPU waits for
the synchronization barrier release. When all CPUs reach the
barrier, the kernel releases the CPU and immediately start a
new MAF. This process corrects the drift between CPU clocks
while ensuring real-time constraints are met on all cores. Our
results show that the overhead introduced by the synchro-
nization mechanism does not break any real-time constraint
nor introduces deadline miss in the system. We provide the
overhead considerations and experiments in Section 6.3. Q
may be further constrained to reduce the drift between CPUs
clocks. The smaller Q is, the faster the synchronization module
correct the time drift.

B. Runtime Verification

To ensure safety of the proposed memory manager, we
define a set of constraints that are verified at critical points
during execution. Table II defines the set of variables we use
to formalize the system. We further define the following rules:

TABLE II
LIST OF VARIABLES ASSOCIATED WITH SAFETY NET CONSTRAINTS

Q
System’s hyperperiod, defined as the least
common multiple between all CPUs MAF

qi The length of the MAF Mi defined for CPU i.
Ai Application i

CAi The memory colors set allocated to the application i.
AC

i The CPU identifier where Ai is mapped.
AB

i The bus bandwidth budget allocated to Ai.

AM
i

The maximum number of bus access done by
Ai during a single MAF.

Acc(Ai, t) Accessed number done by an Ai at time t.

SC
i

The memory colors set allocated to the shared
memory region i.

SA
i Applications set sharing the memory region i.

G(t) The free budget in the global pool at t.
R(Ai, t) 1 when Ai executes at time t, 0 otherwise.
Bmax The maximal bus bandwidth.

TABLE III
FORMALIZED SAFETY NET RULES

Rule 1 AC
i ̸= AC

j ⇒ CAi

⋂
CAj

= ∅
Rule 2 SC

i ⊆
⋃

∀Aj∈SA
i

CAj

Rule 3 ∀t ∈ [0;Q], G(t) +
∑

∀Ai
AB

i ×R(Ai, t) ≤ Bmax

Rule 4 ∀Ai,
∑q

AC
i

t=1 Acc(Ai, t) ≤ AM
i

Rule 1: At any time during the system’s execution, co-
running applications must not share memory or cache color.

Rule 2: Shared memory regions color set must only contain
colors allocated to the applications that share this region.

Rule 1 and rule 2 are verified during the system startup
when allocating memory. It is further verified during a page
fault, when the RTOS handles the page fault, it ensures that the
address generating the fault is mapped to a physical address
in the application’s colors set. This rule does not apply to
explicitly shared memory.

Rule 3: At any time t during execution, the sum of the
bus bandwidth budget of the executing applications and the
global budget pool must not exceed the maximal bandwidth
permitted by the bus.

Rule 4: For safety purpose and fault detection, we define a
maximum number of bus access for each application and IO
in the system. The system should never reach this number to
ensure the system’s stability.

To verify rule 3, we add the HealthCheck function in
Algorithm 1. Every time the system changes the budget con-
figuration, the health monitor ensures that rule 3 is satisfied.
If not, the health monitor handles the error. Rule 4 is verified
in Algorithm 1 when handling applications budget overflow.

Bmax can be provided by the processor’s manufacturer or
can be empirically measured with benchmarks. In this paper,
we rely on the work presented in [43] to compute the value
of Bmax for our architecture.

VI. RESULTS

In this section we present the study of our global approach
and compare it to the current literature.

Our test bench comprises an NXP T2080RDB-PC board
with four PowerPC e6500 cores running at 1.8GHz. We
rely on a proprietary ARINC-653 RTOS (M-RTOS [44]) to
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Fig. 6. Allocation time for different allocation sizes. The results show that
our allocator allows faster allocation time.

retrieve our experiments results. We study the system using the
TACLeBench [45] benchmark suite. We do not show results
for the safety net other than its overhead. This is because the
safety net is a part of the environment that is evaluated. All
measures and results presented here are conducted with the
safety net enabled.

A. Memory Allocation Overhead

We compare the execution time of our memory allocator
for different allocation sizes to the one proposed in [8]. Our
allocator initialization time is 2 us compared to 7120 us for the
one proposed in [8]. This is because we do not have to create
a linked list of available pages at initialization. Furthermore,
we do not have to maintain this list during allocation. Figure 6
shows the allocation time reduction that benefits our method.

Memory allocation only occurs at the system’s startup,
which implies that the allocator’s overhead only impacts the
system’s performance during boot time. In our test environ-
ment, memory allocation represents 9.39% (2.04ms) of the
total startup time (21.74ms), which justifies the need to reduce
its impact as much as possible. Our allocator reduces the
startup time of the RTOS we use in our experiments by
24.8% (21.74ms) compared to the method proposed in [8]
(28.91ms). After allocation, the cache partitioning technique
has no overhead. Indeed, it relies on the MMU to perform a
controlled translation of addresses. This process also occurs
when not partitioning the cache.

B. Bandwidth Limitation Overhead

Our second experiment evaluates the overhead introduced
by the bandwidth limitation module. We compare our im-
plementation that adds reclaiming modes with the overhead
introduced by MemGuard. Figure 7 present the overhead of
our bus bandwidth management technique.

We based our test environment in the same context as
what is proposed in [5]. To measure the overhead introduced
by bandwidth limitation mechanisms, we use the following
settings:

• For server’s timer overhead, we disable bandwidth limita-
tion mechanism by disabling PMCs interrupts. The rest of
the mechanism is enabled. Figure 7 (a) shows our results.

• For server’s timer overhead and budget exceeding mech-
anism, we enable bandwidth limitation mechanism by
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Fig. 7. Bandwidth limitation mechanism overhead depends on the timer’s
period.
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Fig. 8. Absolute overhead of the safety net compared to the smoothed
overhead introduced at run-time.

enabling PMCs interrupts. We also make sure that the
application only exceeds its budget once every server’s
period expires. The RTOS directly reschedule the appli-
cation once its budget is exceeded to measure only the
limitation mechanism’s overhead. Figure 7 (b) shows our
results.

We compare our approach when using a predictor to add
budget to the global budget pool and when not using any
predictor. Results show that our extension of MemGuard
to support per applications budgeting as well as reclaiming
modes adds a small overhead (less than 0.5%). Our experi-
ments show that the bus usage predictors introduce the most
overhead.

Finally, we studied the impact that the mode change API
has on the execution time of partitions. The mode change was
implemented to only impact the calling core. Thus, this API
call is no different than any system call made by the user
to the RTOS (e.g. mutex acquisition, display print, etc.). The
API performs a constant number of accesses to the memory.
Based on the measurements of the execution time of common
API and system calls in the used RTOS, changing mode is
4.6 times faster than a semaphore signaling, 8.5 times faster
than getting the current partition’s status and takes sensibly
the same time as retrieving the current process’s identifier.

C. Safety Net Overhead

We further study the impact of the safety net on the
performance. We provide two metrics to express the overhead.
We define the absolute overhead, which gives the absolute
execution time added by the safety net. We also define the
smoothed overhead, which describes the impact of the safety
net on the applications execution time. It is important to note
that the safety net overhead should be reduced as much as
possible at its routines frequently executed in the system (e.g.,
TLB miss handlers, context switch, etc.).



Figure 8 presents the absolute and smoothed overhead of
the safety net. BL stands for “Bandwidth Limitation”. While
we manage to maintain the overhead under 1% for most
safety nets, the allocation safety net (Rule 1 and Rule 2)
overhead reaches 4.56%. However, this overhead only occurs
during the system startup and slows down the boot process by
1.5%. Therefore, we do not provide any allocation smoothed
overhead metric, as it is nonexistent.

The time synchronization overhead presented in Figure 8
refers to the overhead added by the core MAF synchronization
mechanism. Two factors cause this overhead. First, the syn-
chronization routine itself must access shared data atomically
to know the state of the synchronization barrier. The second
factor comes from the potential synchronization of the cores.
The more a core drifts, the more it is prone to reach the
synchronization barrier late. In this test, the synchronization
primitive causes the absolute overhead while the smoothed
overhead accounts for the total overhead (synchronization
primitive and drift of the cores clocks). The second factor
is the more impacting, hence the bigger smoothed overhead.
The results were gathered by measuring the number of cycles
the cores stay in the synchronization routine at every MAF
renewal and compared to the number of cycles the complete
MAF renewal routine takes. The synchronization happens at
most once every MAF start. Current timing analysis methods
can take this overhead into account in the MAF renewal time.
The overhead added by the synchronization was measured to
be 0.56% of the MAF renewal time in the worst case. To
gather the results, we measured 100,000 MAF renewal.

D. Scalability of the solution

The partitions-related safety net as well as the bus band-
width limitation mechanism are designed to be independent
for each core and are based on an AMP RTOS architecture.
The cache coloring run time mechanism solely relies on the
MMU and, thus, is independent of each core that has a private
MMU. By construction, those mechanisms are not impacted
by the number of cores in the system.

The startup memory allocation mechanism is impacted by
the number of cores in the system. Memory allocation must
keep global structures to ensure correct memory allocation
between cores, thus synchronization primitives are used to
ensure exclusive use of these structures. The worst case
happens when all cores allocate memory at the same time. To
access the shared data structures, a core might wait until all
other cores have finished their allocation. Thus, the allocation
time can be multiplied linearly by the number of cores in
the system. To validate our assumption, we artificially created
such a case by adding a barrier before each core allocates
the partitions’ memory. Each core has the same amount
of memory to allocate. Our experimental measures show a
maximal allocation time of 233µs on 1 core, 429µs on 2
cores, and 849µs on 4 cores. Finally, the core synchronization
mechanism itself is not impacted by the number of cores.
However, the time waited for all cores to reach the barrier
may differ and is likely to increase with the number of cores.
The equation

∑N
i=1 Di provides a way to compute the worst
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Fig. 9. WCET (a) and predictability improvements (b) provided by the
memory manager. We compare the proposed metrics when using cache and
bank coloring (CC + BC), bus budgeting (CC + BC + BB) and the initial
reclaiming pool (CC + BC + BB GRP)

synchronization time where N is the number of cores and Di

is characterized by the amount of time the clock of the core i
drifts between two synchronizations.

E. Effect on Predictability

We validate our approach by studying the predictability of
eight concurrent applications. We define the predictability of
an application based on the standard deviation of the execution
time. We compare the predictability with interference manage-
ment to the predictability without interference management.
A lower value means the partitions’ execution time is more
predictable.

To approximate the measured WCET2, we analyze each
application under the same input data for all executions.
We further executed each application multiple times until no
higher execution time is detected after 1000 executions. In a
safety-critical context, a more formal approach should be used,
however, timing analysis in presence of interference in multi-
core system is not yet attainable and provides results that are
too pessimistic [35].

This method provides a way to analyze the impact our
work has on the applications’ actual WCET. The WCET
increase entailed by the interference mitigation mechanism is
compared to the applications’ WCET measured with a single-
core setup, where only one application exclusively uses the
system’s resources. The lower the WCET increase, the better
our method performs.

Finally, the bus budgets as well as the initial reclamation
pool size are computed using the method proposed by [41]
where an ILP formalism to the budget allocation that fits our
experimental environment is defined.

Figure 9 (a) shows the relative increase of measured WCET
compared to the WCET measured in single-core execution.
Lower values are better and means the application suffered
less slow down because of the interference mitigation means.
We used 8 applications from the TacleBench suite and co-run
them on 2 cores. Interferences are naturally introduced by the
memory usage of each application. Table IV sump up our test

2We use a measured approximate WCET because current state of the art
in multicore WCET analysis does not provide precise means of analysis in
presence of interference. Our work is a step towards the use of conventional
analysis methods, but other interferences exist and need to be addressed before
being able to use regular analysis methods.



TABLE IV
TEST ENVIRONMENT APPLICATIONS

Application Description Core

ADPCM Analog to digital filter
Memory intensity: medium 0

QuickSort Array sorting algorithm
Memory intensity: high 0

FFR Fast Fourrier Transform implementation
Memory intensity: medium 0

JFDCTINT Forward discrete cosine transform implementation
Memory intensity: low 0

MEPG2 MPEG2 manipulation
Memory intensity: medium 1

Petrinet Petrinet simulation implementation
Memory intensity: low 1

MSort Array sorting algorithm
Memory intensity: high 1

IO-Part Application performing IOs on the serial port
Memory intensity: high 1

payload. The period of each partition on the core 0 is 50 ms
while periods for the core 1 are 75 ms. This ensures that with
enough executions of the system, all partitions of the core
1 are co-run at least once with all partitions of the core 0.
Our approach reduces the impact of isolation on the WCET
while drastically increasing the predictability. In Figure 9 (b),
the predictability corresponds to the standard deviation of
execution time where 100% is the standard deviation in multi-
core processors with the same setup but without interference
mitigation. We show that in our test bench, we reduce the
standard deviation of execution times by 68.1% on average.

Isolation is ensured by design. When using cache coloring,
shared caches are strictly segregated into different areas and
partitions using strictly different cache colors cannot share any
cache area. It is the same for memory banks. Bus budgeting
will also detect when a budget is exceeded and stop the parti-
tion at the very instruction where the budget is exceeded. Thus,
isolation on cache and bus is ensured. However, in multicore
systems, far more interference channels exist. For instance,
cache coherence protocols will introduce delays when in need
to update private caches [2]. Other hardware mechanisms such
as the Miss Status Holding Registers (MSHR) will create
interferences [46]. Thus, is it impossible to reach the same
predictability in multi-core systems compared to single-core
ones. Our objective is to remove the most critical one to
lower the analysis pessimism and further conduct the system’s
analysis considering the remnant interferences.

It must be noted that the increase in predictability as
well as the increase of the WCET is not the same for all
applications. Indeed, in the system, some applications are
more prone to interferences (usually applications that use
more memory). Thus, memory-intensive applications (in our
experiments MSort, QuickSort) will see their execution time
increased more than other applications because of the resource
restriction cache coloring and bus budgeting apply to them. For
the same reason, the increase of the WCET is not proportional
to the decrease of the standard deviation of execution time.

We also show that for highly critical system with only
hard real-time applications, the initial reclaiming pool allows
improving the overall system performance. Based on experi-
ments with the proposed benchmark, we use an initial global
reclaiming pool containing 10% of the maximal bus budget.

This configuration yields to the best performance by providing
additional budget for hard real-time applications using full-
reclaiming and greedy modes while avoiding budget waste.
Our study shows that while using an initial global reclaiming
pool slightly reduces predictability, it allows to reduce the
WCET and reduce the impact of bus budgeting.

Finally, it is important to discuss the tradeoff between
WCET increase and predictability. An increase of less than
2 on dual-core architecture means that the system will be able
to host more partition than a single-core system. Similarly, an
increase of less than 4 on a 4-core architecture would mean
the same. The goal of our interference mitigation means is
to reduce the WCET impact as much as possible to ensure
isolation but also allow more petitions to be hosted by the
system. Based on our results, the method we propose increases
applications’ WCET by 22.3% on average on 2 cores, which is
deemed acceptable to provide an increase of predictability of
68.1% on average. We also applied our approach on a 4-core
setup, which yielded the same results, following the scalability
analysis we provide in Section 6.5. For the sake of space, we
do not present these results in this paper.

VII. CONCLUSION

Safety-critical systems rely on partitioned system to ensure
complete isolation between applications. However, with the
advent of multi-core processors, such isolation is impossible
when using regular resource management methods. The con-
tention on resources shared between the different cores gener-
ates interferences. Interferences are non-deterministic delays
in execution time that prevent certification of safety-critical
systems. The delay interferences introduce at run-time cannot
be predicted. Thus, when measuring the Worst-Case Execution
Time of applications, one must assume the worst case when
sharing resources with other applications. This yields to overly
pessimistic results that render the system unusable.

Research in the domain proposes multiple solutions to
isolate different components and improve predictability. How-
ever, such solutions are not always applicable to safety-
critical systems, where the configuration and implementation
of interference mitigation methods must be deterministic and
known during system design to allow certification.

In this paper, we presented a statically configurable memory
manager that isolates the memory hierarchy between applica-
tions. Our approach enables to mitigate shared cache, DRAM
and bus interferences with deterministic and certifiable meth-
ods. We further provided safety net rules to accommodate with
the CAST-32A guidance document. Finally, we studied the
impact of our method in terms of performance improvement
and overhead. Our approach increases predictability by 68.1%
while reducing the impact of mitigation methods.

As explained in Section 3, other interferences exist. Our
approach restricted interference mitigation to shared caches,
memory bank and bus interferences. Future work could in-
tegrate the use of channel partitioning in our mitigation
framework and study its impact.
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