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Abstract— This work aims at designing a visual predictive
control (VPC) scheme for a mobile manipulator. It consists
in combining image-based visual servoing with model predic-
tive control to benefit from the advantages of both control
structures. Two challenges are addressed in this paper: the
choice of the visual features and the closed-loop stability. The
first ones rely on image moments to improve the end effector
positioning precision. The second one is tackled through a
terminal constraint coupled with suitable input constraints to
reduce the computational burden. Simulation results using ROS
and Gazebo validate the proposed approach.

I. INTRODUCTION
In this paper it is proposed to design a Visual Predictive

Control (VPC) strategy to control a mobile manipulator.
VPC [1] is the fusion between Image-Based Visual Servoing
(IBVS) [2] and Nonlinear Model Predictive Control (NMPC)
[3] [4]. The obtained control scheme thus combines the
advantages of IBVS, i.e., reactivity and absence of met-
ric localization [5], with the ones of NMPC, i.e., ability
to explicitly deal with constraints such as control inputs
boundaries or camera field of view limits. Over the last
decade, the interest for VPC-based controllers has grown and
numerous schemes were designed to control different robotic
systems: a camera mounted on a robotic arm [6] [7] [8], a
flying camera [9] [10], a mobile robot [11], an autonomous
underwater vehicle [12] or a tendon-driven continuum robot
[13]. However, MPC strategies aiming at controlling a mobile
manipulator are usually not defined in the image space. For
example, in [14] the cost function represents the end-effector
pose error and is then minimized using a Sequential Linear
Quadratic Model Predictive Control. Another approach con-
sists in relying on the generalized coordinates of the system
to express the cost function, such as in [15], [16] and [17].
Cameras are sometimes used as the main sensor to control
mobile manipulators but the task is not defined in the image
space. For example, [18] and [19] respectively use a time
of flight camera and a RGB-D camera to retrieve the object
pose, then both rely on a pose-based cost function to achieve
the task. To our knowledge, the work presented in [20] is
the only one to consider a VPC strategy to control a mobile
manipulator. It relies on a hierarchical MPC using points as
visual features to control an underwater manipulator vehicle,
but it does not deal with issues related to stability.
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When considering a VPC scheme to control a mobile ma-
nipulator, it is necessary to take into account two challenges.
The first one is the choice of the visual features and their
prediction model. Indeed, it is well known for classical IBVS,
that the type of visual features has a significant impact on the
trajectories in both the Cartesian and image spaces [2]. For a
VPC scheme, this choice might seem to be less important, as
it is possible to influence the computed trajectories via the
definition of the optimization problem. However, a mobile
manipulator being redundant and the point visual features
strongly dependent, it is challenging to efficiently weight
the cost function to increase the accuracy of the end-effector
pose. For this reason, it is proposed in this work to rely
on image moments as the visual features to define the cost
function. These visual features are independent and it is
then straightforward to weight the cost function in order
to increase the pose accuracy in a given direction. Second,
autonomous robotic systems represent a challenge regarding
the closed-loop stability. Indeed, they usually have to perform
large displacements in environments possibly cluttered with
a priori unknown obstacles1. From an optimal problem point
of view, the presence of obstacles induces frequent updates
of the constraints, leading to significant modification of the
optimal trajectory. For this reason, it is then not possible to
rely on dual mode methods and a terminal constraint has
to be included to guarantee the closed-loop stability [3].
Moreover, the prediction horizon has to be large enough
to allow the predicted trajectory to reach goals, increasing
the computational burden. Here, the constraints on the last
velocities are relaxed as in [21] to obtain a trajectory dealing
with the terminal constraint and the computational burden.

In this work, it is proposed to control a mobile manipulator
by relying on a VPC scheme (i) using image moments as
visual features to increase the end-effector position accuracy,
(ii) including a terminal constraint to guarantee the closed-
loop stability, (iii) relaxing some constraints on the velocities
to reduce the computational burden, and (iv) including a
constraint on the camera field of view to guarantee the
success of the task. The rest of the paper is organized as
follows. First, the different models are introduced. Second,
the VPC strategy aiming at controlling a mobile manipulator
is detailed. Next, results obtained by simulation are presented
and discussed in order to highlight the relevance of the
proposed approach. Finally, the future steps aiming at further
developing the proposed approach are highlighted.

1In this preliminary work, the environment is obstacle free.



II. PRELIMINARIES

A. Robotic system description and modeling

In this paper, we aim at controlling a stereo camera
embedded on a mobile manipulator with respect to a given
landmark. The camera is an Intel Realsense D435 providing
RGB-D data. The system is the TIAGo robot from PAL
Robotics (see Figure 1a). It consists of a 7 degrees of
freedom (DOF) arm embedded on a differential mobile base.
The camera is mounted on the wrist of the arm, thus only 5
DOF of the arm are used to control it (na = 5).

(a) The TIAGo robot with an
Intel Realsense camera mounted

on the forearm

(b) The robot model with the
world frame, base frame and

camera frame

Fig. 1: The robotic system

To model the robotic system, the following frames
are introduced: F0(O0,x0,y0,z0) as the world frame,
Fb(0b,xb,yb,zb) as the mobile base frame and
Fc(Oc,xc,yc,zc) as the camera frame (see Figure 1b).
The mobile base pose and its control vector are defined as:

χb =
[
X ,Y,θ

]T
, ub =

[
v,ω
]T (1)

where X , Y and θ are respectively the base coordinates in
F0 and the angle between Fb and F0. v and ω are the linear
and rotational velocities along xb and around zb. The arm
configuration and its control vector are expressed as:

χa =
[
q1,q2,q3,q4,q5

]T
, ua =

[
q̇1, q̇2, q̇3, q̇4, q̇5

]T (2)

where qi is the ith joint angle and q̇i is the ith joint velocity.
Thus, the mobile manipulator pose and its control vector are:

χmm =
[
χT

b ,χ
T
a
]T

, umm =
[
uT

b ,u
T
a
]T (3)

B. Visual features

In this work, the task is defined in the image space by a set
of visual features S characterizing the considered landmark.
Thus, the goal is to make vector S converge to its desired
value S∗. Classically – and in most VPC schemes – S is
composed the coordinates (xi,yi), expressed in the image
space, of four landmark interest points. This leads to:

Sip =
[
x1,y1,x2,y2,x3,y3,x4,y4

]T (4)

However, these features suffer from one major drawback:
they are coupled and do not offer intuitive solutions to control
the 6 DOF of the task [22]. It is thus difficult to deal with
the xc and yc orientation errors using only interest points
coordinates. Image moments can provide better information
related to position and orientation errors. If O is the observed
object and Op its projection in the image, image moments
mi j and centered moments µi j are defined by:

mi j =
∫∫

Op

xi y j dxdy (5)

µi j =
∫∫

Op

(x− xg)
i (y− yg)

j dxdy (6)

where xg = m10/m00 and yg = m01/m00. Combinations of
such moments allows to build interesting sets of visual
features. Here, 6 adequate visual features designed in [23]
and [22] have been used:

• The quantity an = Z∗
√

a∗
a , which is closely related to

the z-translation error, where the area a = m00, a∗ and
Z∗ are respectively the desired area and depth.

• The normalized coordinates xn = anxg and yn = anyg
of the center of gravity which are respectively closely
related to the x-translation and y-translation errors.

• The orientation α = 1
2 arctan

(
2µ11

µ20−µ02

)
related to z-

orientation error. It corresponds to the orientation of the
ellipse obtained with moments of order less than 3.

• The features sx and sy, respectively related to the x-
orientation and y-orientation errors, and defined as:{

sx = (c2c3 + s2s3)/K
sy = (c2s3− s2c3)/K

(7)

where c1 = µ20−µ02, s1 = 2µ11, c2 = µ03−3µ21, s2 =
µ30− 3µ12, c3 = c2

1− s2
1, s3 = 2s1c1, I1 = c2

1 + s2
1, I3 =

µ20 +µ02, and K = I1I3/2
3 /
√

a.
The final visual features vector is then defined by:

Sm =
[
xn,yn,an,sx,sy,α

]T (8)

Moments mi j and µi j can be computed from the interest
points of arbitrary polygons [24], which leads to Sm = g(Sip)
where g is the corresponding mapping function.

III. VISUAL PREDICTIVE CONTROL

A. The VPC scheme

As mentioned before, VPC is the result of coupling NMPC
with IBVS. It thus shares characteristics from these two
particular control techniques. As NMPC, it is the solution
of a constrained optimal problem. More precisely, it consists
in finding an optimal control sequence U∗(·) that minimizes
a cost function JNp over a Np steps prediction horizon
under a set of user-defined constraints C(U(·)). The obtained
optimal control sequence is a Nc-dimensional vector where
Nc is called control horizon. It means that the Nth

c first
predictions of the Np long prediction horizon are computed
using independent control inputs, while the remaining ones



are all obtained using a unique control input equals to the
Nth

c element of U(·). Similarly to IBVS, the cost function is
defined in the image space. It is expressed as the sum of the
quadratic error between the predicted visual features vector
Ŝ and the desired ones S∗ over the horizon Np. The optimal
problem is then defined as follows:

U∗(·) = min
U(·)

(
JNp(Sm(k),U(·))

)
(9)

with

JNp(S(k),U(·)) =
k+Np

∑
p=k+1

[
Ŝm(p)−S∗m

]T
QS
[
Ŝm(p)−S∗m

]
(10)

subject to

Ŝip(k) = Sip(k) (11a)

Ŝip(p+1) = f (Ŝip(p),U(p)) (11b)

Ŝm(p) = g(Ŝip(p)) (11c)
C(U∗(·))≤ 0 (11d)

where U∗(·) = [u∗mm(k), . . . ,u
∗
mm(k+Nc−1)] is the computed

optimal control and k represents time t = kTs, Ts being the
control sampling period. f and C(U∗(·)) respectively denote
the prediction model and the inequality set of constraints
(see next section). QS is a diagonal matrix which allows to
weight the error S− S∗ and thus to prioritize specific DOF
against others. The efficient use of such a matrix has been
made possible by using image moments instead of point-
wise visual features as classically done in the VPC literature.
Once the problem is solved, only u∗mm(k) is applied to the
robot and the process is repeated. The previous optimization
results are used to warm-start the solver.

B. The prediction model

As shown in Equation 11, it is mandatory to design a
model computing the predicted visual features Ŝm. As it is
more straightforward to obtain a prediction model for point-
wise visual features, it is proposed to first compute Ŝip(p+
1) = f (Ŝip(p),U(p)), then to deduce Ŝm from the relation
Sm = g(Sip). The mapping g being defined in II-B, we now
present the 3 necessary steps to obtain f .

1) The image plane - camera frame relation: First, the
metric coordinates in the image frame

[
xi,yi,Zc,1

]T of a
point of interest can be mapped to their corresponding pixel
coordinates

[
u,v,Zc,1

]T using the following relation:
u
v
Zc
1

=


fx 0 0 u0
0 fy 0 v0
0 0 1 0
0 0 0 1




xi
yi
Zc
1

 (12)

where fx and fy are the focal lengths, and (u0,v0) the
coordinates of the image center, both expressed in pixel2.
Next, the classical pinhole camera model is used to obtain the

2In this work the image coordinates are measured on a plane obtained
with an unity focal, i.e., when Zc = 1.

coordinates
[
Xc,Yc,Zc,1

]T , expressed in the camera frame,
from the ones in the image frame.

xi
yi
Zc
1

=


1
Zc

0 0 0
0 1

Zc
0 0

0 0 1 0
0 0 0 1




Xc
Yc
Zc
1

= iHc


Xc
Yc
Zc
1

 (13)

2) The mobile base frame - camera frame relation: The
coordinates expressed in the camera frame,

[
Xc,Yc,Zc,1

]T ,
are mapped to the ones expressed in the mobile base frame,[
Xb,Yb,Zb,1

]T , via the homogeneous transformation matrix
bHc. This latter is obtained using the forward kinematics
model and thus only depends on the arm configuration χa.[

Xb,Yb,Zb,1
]T

= bHc(χa)
[
Xc,Yc,Zc,1

]T (14)

3) The relation between two robot poses at different
instants: To obtain such a relation, the kinematic models
of a differential robot and of an arm are integrated over Ts.
During this interval, v and ω are constant. It leads to:

X(k+1) = X(k)+ v(k)
ω(k)

(
sin(θ(k)+ω(k)Ts)− sin(θ(k))

)
Y (k+1) = Y (k)− v(k)

ω(k)

(
cos(θ(k)+ω(k)Ts)− cos(θ(k))

)
θ(k+1) = θ(k)+ω(k)Ts

(15)
when ω 6= 0. For ω = 0, the solution is straightforward.
Let us define ∆X = X(k+ 1)−X(k), ∆Y = Y (k+ 1)−Y (k)
and ∆θ = θ(k + 1)− θ(k). Thus, the homogeneous matrix
between two successive mobile frames Fb(k) and Fb(k+1),
denoted bk Hbk+1 , is defined as follows:

bk Hbk+1 =


cos(∆θ) −sin(∆θ) 0 ∆X
sin(∆θ) cos(∆θ) 0 ∆Y

0 0 1 0
0 0 0 1

 (16)

Finally, the prediction model f for point-wise visual
features is given by:

Ŝip(k+1) = iHc(k+1)cHb(k+1)bk+1Hbk
bHc(k)cHi(k)Ŝip(k)

(17)

C. The terminal constraint (TC)

In this work, the closed-loop stability is ensured by a
zero terminal equality constraint [3]. It imposes that the
last predicted visual features vector is equal to the desired
one. The respect of the TC guarantees the existence of a
trajectory leading from the current state to the desired one,
thus insuring the recursive feasibility.

‖Ŝmi(k+Np)−S∗mi‖= 0, ∀i ∈ J1,6K (18)

As a strict equality constraint cannot be satisfied, the con-
straints are converted into inequalities by defining a small
enough threshold δtc.

‖Ŝmi(k+Np)−S∗mi‖−δtc ≤ 0, ∀i ∈ J1,6K (19)



D. The velocity constraints

These constraints aim at taking into account the physical
boundaries of the actuators. With the number of prediction
steps, they define the maximal length of the predicted tra-
jectory. However, in order to respect the TC, the predicted
trajectory has to be long enough. In the mobile manipulation
context, it might represent a challenge due to the distance the
mobile base has to cover to reach the goal, while the number
of prediction steps cannot be too large to minimize the
computational burden. Thus, to insure the TC to be satisfied
all the time while taking into account the physical boundaries
of the actuators, it is proposed to constrain the velocities
of the first part of the inputs according to the physical
boundaries, and to relax the constraints for the second part
of the inputs. This approach leads to the following set of
constraints for the mobile base velocities:[

umm(i)−uu|t
ul|t −umm(i)

]
≤ 0, ∀i ∈ Jk,k+Nc−NrK[

umm(i)−uu|r
ul|r−umm(i)

]
≤ 0, ∀i ∈ Jk+Nc−Nr,k+NcK

(20)

where i ∈ Jk,k+NcK, Nr is the number of prediction steps
with relaxed boundaries, ul|t and uu|t are respectively the
lower and upper tight boundaries corresponding to the actu-
ators limits, and ul|r and uu|r are respectively the lower and
upper relaxed boundaries. Nc � Nr, so that the command
applied to the robot respects the actuators limits, while the
TC can be ensured.

E. The visibility constraints

In the context of visual servoing, the target must remain
always visible. The following constraint allows to guarantee
that the visual cues do not leave the camera field of view.[

Sip(i)−Su
Sl−Sip(i)

]
≤ 0, ∀i ∈ Jk+1,k+NpK (21)

where Sl and Su are the lower and upper image boundaries.

F. The joint limits constraints

Finally, it is also necessary that the arm joints never exceed
their lower and upper boundaries χal and χau, which leads
to the following constraints:[

χa(i)−χau
χal−χa(i)

]
≤ 0, ∀i ∈ Jk+1,k+NpK (22)

IV. RESULTS

This section presents simulation results allowing to eval-
uate the proposed approach and to show its efficiency. To
do so, the results are divided into two parts. In the first
one, the VPC scheme is run in a 2D simulator in order
to highlight the relevance of the image moments over the
point-wise visual features. In the second one, the Gazebo
software is used to simulate the considered framework in a
more realistic context.

All algorithms are implemented using the C++ language
and the optimization problem is solved with the SLSQP
solver from the NLopt package [25]. The matrix bHc is

obtained with Pinocchio [26], a rigid body dynamics library,
which is using a URDF model of the robot. All tests are
performed on an Intel Core i7-10850H and the VPC runs
at a frequency of 5Hz. The solver timeout is set to 0.15s,
Np is fixed to 10 steps with a sampling time3 Ts = 0.4s. The
target is a rectangle centered in (3,0,1.08625) and the initial
mobile base pose is (0,0,0) in F0 as shown on Figure 3a.
The camera and the mobile base have to travel about 2m
to reach the target. Finally, the bounds on the mobile base
linear velocity is equal ±0.1 m/s, while the angular velocities
ones are fixed to ±0.1 rad/s. The minimal and maximal joint
limits are given by: χau = [2.68,1.02,1.50,2.29,2.07] and
χal = [0.07,−1.50,−3.46,−0.32,−2.07].

A. Residual with visual feature vector Sip vs Sm

This first set of simulations aims at showing the advantage
of relying on moment visual features over point ones for a
redundant systems such as a mobile manipulator. Indeed, as
explained in [23], the use of point visual features makes
challenging the regulation of the xc or yc orientation errors.
To compare the two approaches, it is proposed to show the
errors for DOF. To do so, we rely on a 6D cost scoring the
difference between the resulting frame and the reference one.
In this work, the score is expressed as:

RH = log6(H
−1H∗) (23)

where H is the frame obtained with the VPC controller, H∗

the reference one, and log6 is the function mapping the group
SE(3) to its Lie algebra [27]. Actually, RH is a 6D motion
vector corresponding to the velocity that should be applied
during 1s to move from the reference frame - H∗ - to the
frame defined by H.

For this first test, Nc = Np = 10, Nr = 0, QS = I6 and the
TC is not included to obtain results allowing to compare the
choice of the visual features. As it is shown in Figures 2a and
2b, the VPC controller manages to drive the camera in order
to make the visual features converge towards the desired
ones (green crosses in the figure) for both configurations.
However, the trajectory obtained in the image space is sig-
nificantly shorter for the point-wise visual features than for
the image moment ones. For this second case, the visibility
constraint prevents the visual features from leaving the same
field of view. Regarding the final pose accuracy, it can be
seen in Figures 2g and 2h that the use of image moments
allows to obtain a significantly more accurate result. It is
confirmed by the results presented in Figures 2c and 2d,
where the vector RH corresponding to Sm is significantly
smaller than the Sip’s one, showing the interest of using
the moments. After convergence with Sip, ‖RH‖ ≤ 1e−1,
while with Sm, ‖RH‖ ≤ 1.5e−2. The benefit of choosing the
adequate visual features vector is almost a ratio of 10 on the
RH norm. In Figure 2c it can be seen that the difficulty is
coming from ωx. Moreover, it can be seen that the evolution
of image moments (Figure 2f) follows the same trend as

3This sampling time is only used for prediction, the control loop is
running at 5Hz.



RH (Figure 2d), while the one of the points (Figure 2e) is
strongly different (Figure 2c). Thus, it is straightforward to
tune the weighting matrix QS to prioritize any direction when
relying on image moments as visual features.

(a) Points trajectory - Sip (b) Points trajectory - Sm

(c) RH score evolution - Sip (d) RH score evolution - Sm

(e) Sip - S∗ip evolution (f) Sm - S∗m evolution

(g) Final frames - Sip (h) Final frames - Sm

Fig. 2: First test: Comparison of the visual servoing task
execution with Sip on the left and Sm on the right

B. Results with Gazebo

In this section the proposed framework is tested with the
Gazebo simulator. This latter allows to simulate robots in
complex environments and to obtain more realistic scenarios,
close to experimental conditions (see figure 3). The target
is represented by aprilTags [28] which will be detected by
a perception node. Moreover, the TC is included to deal
with the closed-loop stability. Next, the prediction parameters
are setup to Nc = 9 and Nr = 1 to obtain a sufficiently
long predicted trajectory guaranteeing the problem feasi-
bility. Finally, the weighting matrix is chosen as QS =

diag(1,1,1,10,10,1) to prioritize ωx and ωy. The obtained
results are presented in Figures 4 and 54.

(a) Initial pose (b) Final pose

Fig. 3: TIAGo robot and the landmark in Gazebo.

(a) Points trajectory (b) Evolution of Sm

(c) Evolution last predicted
moments

Fig. 4: Second test: Simulation results with Gazebo - part 1

In Figure 4a it can be seen that the task is correctly
achieved. Indeed the VPC controller manages to drive the
camera to make the visual features reach their desired values
(the green crosses) corresponding the camera goal position
(see Figure 3b). This is achieved by vanishing the error
between the image moments and their desired values (see
Figure 4b). In parallel to the positioning task, the controller
has to deal with several constraints. For example, Figure 4c
shows the error between the last predicted image moments
and their desired values. An error close to zero means that
the terminal constraint is respected. As it can be seen in the
figure, the use of a relaxed input constraint allows to respect
such a constraint despite the initial large distance between
the current pose and the desired one. It can be noticed that
the TC is initially and punctually not respected. The solver
being setup with a timeout, the optimization process might
stop and deliver a solution not dealing with the whole set of
constraints. In Figure 4a a similar scenario can be observed
for the field of view constraint. To deal with this issue, this

4A video of the resulting simulation can be found at https://youtu.
be/jjhEfflvCNc.

https://youtu.be/jjhEfflvCNc
https://youtu.be/jjhEfflvCNc


(a) Velocities evolution (b) Joint values evolution

Fig. 5: Second test: Simulation results with Gazebo - part 2

constraint has been setup in a conservative way allowing the
visual features to not leave the camera field of view. Finally,
Figure 5 shows the velocities and joint angle evolution. For
both, their values stay within the given boundaries despite
the use of a relaxed constraint to guarantee the feasibility.

V. CONCLUSION

In this work, a VPC scheme has been designed to control a
mobile manipulator. It relies on image moments to increase
the end-effector position accuracy and ease the tuning of
a weighting matrix to prioritise a given direction. It also
ensures stability thanks to the introduction of a terminal
constraint and to the definition of relaxed input constraints
allowing to reduce the computational burden. The obtained
results are promising, and highlight the interest and validity
of the proposed approach. Several future extensions are con-
sidered: trajectory improvement (e.g., [21]), additional con-
straints dealing with dynamical obstacles, dynamic weighting
of QS, and validation on an experimental testbed.
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