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The histogram is widely used for visualizing continuous data and calculating empirical probabilities, but it is usually not clear how to choose the number and size of the bins. We propose a new histogram method that optimally deals with the two main tasks of the histogram: detecting features such as mode, increase, spike, gap, outlier and discrete component embedded in the empirical distribution and providing empirical probabilities. We follow Kolmogorov's approach for measuring distance between a histogram distribution function (hdf) and the empirical distribution function (edf), and select a histogram to minimize the distance subject to an upper bound for the number of bins. The idea is that the edf tightly holds all the information in the data and a histogram will serve the main tasks well if the distance between hdf and edf is small. Our comparison study with real-life data demonstrates that the proposed method performs uniformly well in detecting data-features and approximating empirical probabilities. Moreover, the proposed method is appropriate for continuous data with or without discrete component. We provide Rcodes for computing the proposed histogram in the Appendix.

Introduction

The histogram is a classical, simple, widely used diagram for exploring the distribution of univariate, continuous data. In practice, histograms with equal-width bins are common; histograms with equal-area bins are also used. Recently, histograms with bins of variable width and count are proposed in the literature. An equal-width histogram consists of bins each of equal width, and an equal-area histogram consists of bins each containing (as nearly as possible) the same number of data-values. In the case of equal bin-width, popular examples of rules for the number of bins are that proposed by [START_REF] Sturges | The choice of a class interval[END_REF], which is still the default rule in R, [START_REF] Scott | On optimal and data-based histograms[END_REF] and [START_REF] Taylor | Akaike's information criterion and the histogram[END_REF]. Most of these rules are derived by considering the histogram as an estimator of a smooth density underlying the data and choosing the number of bins to minimize an asymptotic risk in estimating the density. In applications, however, these rules are more often used to construct histograms for inspecting data for distribution features. Although, relying on asymptotic risk may lead to inappropriate recommendations for the number of bins when the histogram is used as a dataexploratory device [START_REF] Denby | Variations on the histogram[END_REF]. [START_REF] Denby | Variations on the histogram[END_REF] pointed out the complementary strengths and weaknesses of the equal-width and equal-area histogram approaches, when the histogram is used as a dataexploratory tool. They advocated a compromise of these two approaches and proposed to cut the edf diagonally by parallel lines and select bins corresponding to the cuts. This approach gives bins of variable width and count. They coined the term diagonally-cut histogram. Authors such as Fushing and [START_REF] Roy | Complexity of possibly gapped histogram and analysis of histogram[END_REF] and [START_REF] Li | The essential histogram[END_REF] also focused on the edf and proposed histograms with bins of variable width and count. Fushing and [START_REF] Roy | Complexity of possibly gapped histogram and analysis of histogram[END_REF] aimed to select a serial composition of linear-segments and gaps well approximating the edf with a balance between number-of-bins and error-in-approximation and choosing the bins corresponding to the linear-segments. They assumed that a set of data-values in a bin [a,b] will be from Uniform(a,b) distribution if its decoding error sum of squares is about (ab) 2 /3, but they did not mentioned how to test the assumption in practice. [START_REF] Li | The essential histogram[END_REF] tried to derive a confidence set of hdf such that each hdf in the confidence set estimates the true probabilities of different intervals via areas in an asymptotically optimal way and then selecting one from the confidence set so that the corresponding histogram has the fewest bins. They called it essential histogram. They adopted certain likelihood ratio tests on a judiciously chosen set of intervals and then inverted the family of tests to have the confidence set. Their histogram method ignores the gap (if any) embedded in the edf, while some authors (e.g., Mosteller et al.,1983, p. 4;[START_REF] Roy | Complexity of possibly gapped histogram and analysis of histogram[END_REF] demonstrated that a gap is an important piece of information in exploring the data.

The present paper proposes a new method for constructing a histogram that is motivated by the two main tasks of the histogram (see [START_REF] Li | The essential histogram[END_REF]Freedman et al., Ch. 3, 2007): to give a display of the data that is simple but informative, i.e., having a few bins, but still showing important features of the data such as mode and discrete component, and to provide empirical probabilities of different subintervals with high precision. And the idea: the edf holds all the information in the data but so tightly that it needs to be extracted, and a histogram extracts more information and better serves its main tasks as the distance between hdf and edf becomes smaller. We follow Kolmogorov's approach for measuring the distance, and select bins to reduce the distance subject to an upper bound for the number of bins. To display the discrete component and the gap, if present in the data, we are to operationalize them a priori based on the data.

We temporarily remove the discrete component (if present) of the data and thus get the continuous part of the data. We judiciously choose some real numbers for capturing gaps. We consider the real numbers and the smallest and the largest values in the continuous data-part as the initial set of breakpoints. To obtain the final set of breakpoints, we extend the initial set by adding a few breakpoints one-by-one so as to reduce the Kolmogorov distance between hdf and edf smaller than a preset value subject to a specified upper bound for the number of bins. We construct histogram-bars using the final set of breakpoints and the continuous part of the dataset. Finally, we put vertical arrows to represent relative frequencies of the values constituting the discrete component. As the proposed histogram is largely based on Kolmogorov metric, we call it Kolmogorov histogram, in short KHist. The proposed method is fairly general, as we make no assumption regarding the underlying data generating mechanism. In particular, it is applicable to data from a mixed-type distribution having both continuous and discrete components, and mixedtype distributions are common in real life [START_REF] Unwin | Graphical data analysis with R[END_REF][START_REF] Weld | Mixed-type distribution plot[END_REF]. To note that the proposed method approximates the edf of the continuous part of the data by linear segments and does not put any breakpoint in zones where the edf is close to being linear. With data examples, we show that the proposed histogram serves the two main tasks well as compered to some other methods.

This article is distinct from the earlier attempts in constructing the histogram with bins of variable width and count such as [START_REF] Denby | Variations on the histogram[END_REF]Mallows (2009), Fushing &[START_REF] Roy | Complexity of possibly gapped histogram and analysis of histogram[END_REF] and [START_REF] Li | The essential histogram[END_REF]. [START_REF] Denby | Variations on the histogram[END_REF] diagonally cut the edf into linear segments by parallel lines. Fushing & [START_REF] Roy | Complexity of possibly gapped histogram and analysis of histogram[END_REF] partitioned the edf into linear-parts and gaps based on a criterion of decoding error sum of squares from the perspective of data compression via uniformity. [START_REF] Li | The essential histogram[END_REF] divided the edf into linear segments by inverting a family of multi-scale likelihood ratio tests. While the proposed method partitions the edf into linear segments based on Kolmogorov metric. Moreover, only the proposed method regards mixed-type data having continuous and discrete components. Thus the proposed approach is largely distinct from the above three approaches.

The Kolmogorov Distance in Data Environment

Let x be a univariate dataset of size n and xc and xd be the continuous and the discrete parts of x, respectively. The size of xc is at most n. Here we describe the empirical distribution function (edf), a histogram distribution function (hdf), and the Kolmogorov distance (dK) between these distribution functions.

The edf of x is defined as edf(x)=n( x)/n, n( x) being the number data-values in x that are less than or equal to x. For the dataset {1, 2.4, 5.1, 8.4}, edf( 5 

The Proposed Histogram Method

For the given dataset x={xi,i=1,2,…,n}, let x(1)  x(2)  x(m) be the unique data-values. The edf of x represents all the information in the data and can be converted easily into a histogram with m breakpoints x(1), x(2),…, x(m). The resulting histogram with m breakpoints provides empirical probabilities via areas without any error and thus serves the second task totally, but it is bad for identifying the key features of the data such as mode and gap, as it is much too rough, and thus fails to serve the first task. So the problem is: determine a histogram that approximates the empirical probabilities adequately well and is simple for visualizing the key features of the data. The premise in this paper is that it is generally possible to wisely select a small proportion of the m breakpoints, but still have a histogram that approximates the empirical probabilities with small errors and detects the key features of the data well. This motivates us to propose a new histogram method based on Kolmogorov distance between the edf and a hdf with an upper bound for the number of bins.

The algorithm for the new histogram method consists of the following steps:

Step 1: Identify the discrete component xd (if any) of the dataset x. Consider a data value with frequency dcdpn or more as a member of the set xd, dcdp being the discrete component defining percentage of n. We set dcdp=7.5 as the default value, which considers a data-value x with frequency 0.075n or more as a member of xd.

Step We set dubKd = 0.5/n and dubnbins = 1.25nbinsSturges as the default values, nbinsSturges being the number of bins given by the Sturges rule [START_REF] Sturges | The choice of a class interval[END_REF]. The default value 0.5/n of dubKd is chosen from the fact that for n36, the critical points of Kolmogorov-Smirnov test for goodness of fit is of the form z/n with z decreases as the level of significance  increases [START_REF] Massey | The Kolmogorov-Smirnov Test for goodness of fit[END_REF].

Step 6: Repeat the Step 5 until a set of breakpoints b is obtained satisfying dK(b)  dubKd or length(b)dubnbins+1.

It is the final set of breakpoints for xc.

Step 7: With the final set of breakpoints, construct a (relative frequency) density-based histogram of xc; it is a histogram of total area unity. Add vertical arrows at the values in xd mentioning their relative frequencies (in percentage). It is the final histogram for the whole dataset x. This histogram is optimal with a trade-off between visual-simplicity and error-in-approximating empirical probabilities.

The parameter dubKd of the proposed histogram ranges from 0 to 1. One is set dubKd to 0.1/n or even smaller if the aim is to capture the empirical probabilities with high accuracy; a smaller value of dubKd results more bins waning visual simplicity.

Comparison Study with Data Examples

We consider four datasets that reflect a range of variations on the histogram. For comparison, we include equal bin-width histogram (ewHist), equal bin-area histogram (eaHist), diagonally cut histogram (dHist) proposed by [START_REF] Denby | Variations on the histogram[END_REF] and essential histogram (essHist) proposed by [START_REF] Li | The essential histogram[END_REF]. We compute the ewHist using the built-in R function hist and the dHist using the function dhist collected from the supplementary material of the article of [START_REF] Denby | Variations on the histogram[END_REF]. We compute the essHist using the function essHistogram in the R package essHist, available on CRAN. To note that we adjust the tuning parameters of KHist (the proposed histogram), dHist and essHist so that all the histograms have the same number of bins as that of ewHist given by the R function hist. We believe that it is better to consider the same number of bins (as far as possible) in comparing different histogram approaches.

To compare the histogram methods in approximating empirical probabilities of subintervals (,x], we partition the range (x(1),x(m)) of the dataset x into (n1001) equal-width subintervals by n100 points ui=x(1)+iw, i=0,1,2,…, (n1001), w (x(m)x(1))/(n1001) and summarize the errors ei=hdf(ui,b)edf(ui) using mean and standard deviation of the absolute errors |ei|. Dataset 1: pH data. All the histograms in Figure 1 indicate that the data-distribution is J-shaped and negatively skew. The KHist shows that there is a gap and a pit in the distribution. The ewHist captures only a part of the gap but fails to capture the pit. The eaHist captures the pit but fails to identify the gap. The dHist captures the gap but fails to detect the pit. In sharp contrast, the essHist fails to identify both the gap and the pit. Thus the KHist is the best and the essHist is the worse in detecting important features of the data-distribution. Further, from Table 1 we may conclude that KHist is the best and eaHist is the worse in providing empirical probabilities of subintervals (¸x], x being real numbers. In sum we may conclude that the KHist is the best for pH data. To note that for this dataset, the essHist allows at the most five bins (taking alpha=1). 2016), Data from: River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin, Dryad Repository, (https://doi.org/10.5061/dryad.f74fs) Dataset 2. Duration data. Duration time in minutes for the Geyser dataset of size 299 (Azzalini & Broman, 1990;R package MASS). This dataset is used by [START_REF] Li | The essential histogram[END_REF]. Figure 2 indicates that only the KHist captures the discrete component consisting of the values 2 and 4 with 8% and 18% data values, two modes, a gap and an outlying observation in the data, and thus is the best in identifying the key features in the data-distribution. To explain the discrete points 2 and 4 in the dataset, it is to be noted that some nocturnal duration-times were considered as 2 or 4 minutes, having originally been recorded as 'short' or 'long'. Further, from Table 2 we see that KHist is the best and eaHist is the worst in approximating empirical probabilities for subintervals (¸x], the differences being substantial. For this data, we may conclude that the KHist is the overall best. Dataset 3. Unemployment-rate-2020 data. This is a dataset of size 3192. All the histograms in Figure 3 indicate that the data distribution is bell shaped and unimodal. The KHist shows the mode more precisely as compared to the essHist. From Table 3, we see that essHist is the best, KHist is the second best and ewHist is the third best in approximating empirical probabilities. For this dataset, in sum, we may conclude that KHist and essHist are jointly best. To note that for this dataset, the essHist allows at the most eleven bins (taking alpha=1). 

Discussion

In this article, the aim has been to construct a new histogram that have a few bins, but still showing mode, gap and other key features of the data distribution, and providing empirical probabilities with high accuracy. The search has met with some success. This study proposed a histogram method that selects bins to minimize Kolmogorov distance between histogram and empirical distribution functions with a check on the number of bins. Our comparison study illustrated that only the proposed method is capable in displaying discrete component, spike, mode, gap, pit, increase and outlier embedded in the empirical distribution. And, in providing empirical probabilities, the proposed method is far better than the traditional equal bin-width method and almost equal to the recent essential-histogram method. In summary, the proposed method performs uniformly well, relative to the other methods, in doing both the tasks: detecting data features and providing empirical probabilities. So, the proposed method should be considered worthy on its own merits and not as an alternative to the other methods.

We leave as a research project the extension the proposed histogram method to estimate probability density and probability mass components of a mixed-type population distribution. 

  )= 2/4. Let a total-area-unity histogram of xc, with (relative frequency) densities as the height of the bars, has been constructed using a given ordered-set of breakpoints b. Then the histogram distribution function hdfc(x,b) of xc is defined as the area under the bars in the interval ( ,x]. And the histogram distribution function hdf(x,b) of x is defined as hdfc(x,b) plus total of the relative frequencies of values in ( ,x] xd. To elaborate, let edfc(x,b) be the edf of xc, edfc(2.1,b) be 0.3 and the height of the bar on the bin (2.1,3.2] be 0.1. Then hdfc(2.4,b) is equal to {0.3+0.1(2.42.1)}; it is the value of the relative cumulative frequency at x= 2.4 given by the total-area-unity histogram of xc. To note that hdfc(2.4,b) is equal to the y-value at x=2.4 given by the straight line passing through the points (2.1,edfc(2.1,b)) and (3.2,edfc(3.2,b)). An hdfc(x,b) approximates edfc(x) by piecewise linear segments. Further, let there be two discrete values 1.5 and 2.0 lying in ( ,2.4] ] xd with relative frequencies 0.08 and 0.1, respectively. Then hdf(2.4,b)=hdfc(2.4,b)+0.08+0.1. The Kolmogorov distance dK(F,G) between two theoretical distribution functions F(x) and G(x) is defined as dK(F,G)=sup{|F(x) G(x)|, xR}, R being the set of real numbers. We extend this definition to data environment. For a given histogram distribution function hdf(x,b) of the given dataset x, we consider dK(b)=max{|hdf(x,b) edf(x)|, xx} as the Kolmogorov distance between edf(x) and hdf(x,b).

  2: For the time being, remove xd from x and obtain the continuous component xc= x xd. Step 3: Identify gaps in xc (if any). Consider an interval between two adjacent values x1, x2 in the ordered xc as a gap if |x1x2 |gdmh, h being the common width of the bins given by Sturges (1926) rule for xc and gdm being the gap defining multiplier of h. To capture the gaps, add real numbers y to xc. For example, to capture the gap between x1 and x2, x1< x2, add real numbers x1+gcmh and x2gcmhto xc, gcm being the gap capturing multiplier of h. We set gcm=0.25 as the default value. Step 4: Consider b = {min(xc), max(xc), y} as the initial set of breakpoints. Step 5: Construct a passing histogram of xc using the breakpoints b and obtain the corresponding histogram distribution function hdfc(x,b). Also obtain the empirical distribution function edfc(x) of xc. Calculate the Kolmogorov distance between hdfc(x,b) andedfc(x), dK(b) =max{|hdfc(x,b)edfc(x)|: xxc}. If dK(b)  dubKd or length(b) dubnbins+1, stop and consider the b as the final set of breakpoints; dubKd being the desirable upper bound of the Kolmogorov distance and dubnbins being the desirable upper bound for the number of bins. Else, identify a single data value xxc at which |hdfc(x,b)edfc(x)| attains its maximum. Consider this x as a new breakpoint and thus obtain an improved set of breakpoints b={b,x}.

Figure 1 .

 1 Figure 1. The empirical distribution function (edf) and the five histograms for the pH dataset of size 60; KHist, ewHist, eaHist, dHist and essHist are Kolmogorov histogram, equal width histogram, equal area histogram, diagonally cut histogram and essential histogram, respectively.

Figure 2 .

 2 Figure 2. The empirical distribution function (edf) and the five histograms of the duration dataset of size 299; KHist, ewHist, eaHist, dHist and essHist are as in Figure 1

Figure 3 .

 3 Figure3. Unemployment-rate-2020 dataset. The empirical distribution function (edf) and the five histograms; KHist, ewHist, eaHist, dHist and essHist are as in Figure1

  M[,3] <-cumsum(M[,2]) dcinxv <-which(M[,2]>= n*dcdp/100) ndcs <-length(dcinxv) dcvv <-M[,1][dcinxv] dcfv <-M[,2][dcinxv] dat_ndc <-dat[! dat %in% dcvv] n1=length(dat_ndc) t1 <-nclass.Sturges(dat_ndc) tv1 <-range(udat) h <-(tv1[2]-tv1[1])/t1 diff <-abs(udat[-ludat]-udat[-1]) tv21 <-which(diff >= gdm*h) tv22 <-tv21+1 tv31 <-udat[tv21]+gcm*h; tv32 <-udat[tv22]-gcm*h breaks.gaps <-unique(c(tv31,tv32)) bks <-unique(sort(c(breaks.gaps,range(dat_ndc)))) udat.ext <-unique(sort(c(udat,breaks.gaps))) #ext=extendex unique data values ludat.ext <-length(udat.ext) A=matrix(0,nrow=ludat.ext,ncol=8) A[,1]=udat.ext A[,2] <-sapply(A[,1], f,dat_ndc) A[,3] <-cumsum(A[,2]) t=length(bks)-1 for(i in 1:t){#i=1;j=1 t1 <-which(A[,1]==bks[i]) t2 <-which(A[,1]==bks[i+1]) slope <-(A[t2,3]-A[t1,3])/(bks[i+1]-bks[i]) for(j in 1:ludat.ext){ if(bks[i]<=A[j,1] & A[j,1]<=bks[i+1]){ A[j,4] <-A[t1,3]+slope*(A[j,1]-bks[i]) } } } tv <-which(A[,1] %in% bks) bks.idx =sort(tv) repeat{ A[,5] = abs(A[,4]-A[,3]) MaxAbsError_cf <-max(A[,5]) t <-max(which(A[,5]==MaxAbsError_cf)) bksNew = udat.ext[t] bks = unique(sort(c(bks,bksNew))) bks.idx =unique(sort(c(bks.idx,t))) idx.3 = which(bks == bksNew) tv2=c(idx.3-1,idx.3,idx.3+1) bks.3 <-bks[tv2] for(i in 1:2){ t1 <-which(A[,1]==bks.3[i]) t2 <-which(A[,1]==bks.3[i+1]) slope <-(A[t2,3]-A[t1,3])/(bks.3[i+1]-bks.3[i]) for(j in 1:ludat.ext){ if(bks.3[i]<=A[j,1] & A[j,1]<=bks.3[i+1]){

Table 1 :

 1 Mean and standard deviation of absolute errors in approximating empirical probabilities of subintervals(, x] for the pH dataset of size 60

	Sl. No. Method	No. of	Mean of	Standard deviation
			bins	absolute errors	of absolute errors
	1	KHist	6	0.0144153	0.01650711
	2	ewHist	6	0.01726549	0.02629165
	3	eaHist	6	0.02865438	0.02337923
	4	dHist	6	0.01658409	0.01769767
	5	essHist	5	0.02288205	0.01701354

Table 2 :

 2 Mean and standard deviation of absolute errors in approximating empirical probabilities of subintervals (, x] for the duration-times dataset of size 299 Sl. No. Method No. of bins

	Mean of abs errors	s.d. of abs errors

Table 3 :

 3 Mean and standard deviation of absolute errors in approximating empirical probabilities for subintervals(, x] for the unemployment-rate-2020 dataset of size 3192

	Sl. No. Method	No. of	Mean of absolute	Standard deviation
			bins	errors	of absolute errors
	1	KHist	12	0.00429684	0.00394688
	2	ewHist	12	0.00666956	0.00983799
	3	eaHist	12	0.02050246	0.01490316
	4	dHist	12	0.00457148	0.00521596
	5	essHist	11	0.00257418	0.00390527

Source of Unemployment-rate-2020 data: Economic Research Service, U.S. Department of Agriculture, https://www.ers.usda.gov/data-products/county-level-data-sets/.

Table 4 :

 4 Mean and standard deviation of absolute errors in approximating empirical probabilities for subintervals(, x] for the delays dataset of size 931

	Sl. No. Method	No. of	Mean of absolute	Standard deviation
			bins	errors	of absolute errors
	1	KHist	13	0.004492525	0.005345538
	2	ewHist	13	0.01728035	0.04135553
	3	eaHist	13	0.01790002	0.01088608
	4	dHist	13	0.005233305	0.007919291
	5	essHist	13	0.004093359	0.0048635
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Dataset 4. Delays data. This dataset is considered by [START_REF] Denby | Variations on the histogram[END_REF]. All the histograms in Figure 4 indicate that the data distribution is bimodal with a long tail at the right. All the histograms show the tail well. The essHist displays a false spike near the value 600; the edf indicates this falseness. The ewHist fails to show the increases in the modal regions and thus fails to show the modes precisely. From Table 4, we see that essHist is the best, KHist is the second best in approximating empirical probabilities, but the difference is insignificant. Giving a penalty to essHist for showing a false spike, we may conclude that KHist is the overall best. For this dataset, the essHist allows at the least thirteen bins (taking alpha = 0). dubnbins=nclass.Sturges(dat), plot=TRUE){ #dat is the numeric data vector; dat may include NA terms # n is the total no. of data values # dcdp is the discrete component defining percentage of n # h is the common width of bins for Sturges rule # gdm is the gap defining multiplier of h # gcm is the gap capturing multiplier of h # dubKd is desirable upper bound of Kolmogorov distance # dubnbins is the desirable upper bound of no. of bins dat (bks, counts, density, mids, dcvv, dcfv) names(result) <-c("breaks", "counts", "density", "mids", "discrete_component","discrete_component_frequency")