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SPECTRAL SUBSPACES OF SPECTRA OF ABELIAN

LATTICE-ORDERED GROUPS IN SIZE ALEPH ONE

MIROSLAV PLOŠČICA AND FRIEDRICH WEHRUNG

Abstract. It is well known that the lattice Idc G of all principal ℓ-ideals of
any Abelian ℓ-group G is a completely normal distributive 0-lattice, and that
not every completely normal distributive 0-lattice is a homomorphic image
of some Idc G, via a counterexample of cardinality ℵ2. We prove that every
completely normal distributive 0-lattice with at most ℵ1 elements is a ho-
momorphic image of some Idc G. By Stone duality, this means that every
completely normal generalized spectral space, with at most ℵ1 compact open
sets, is homeomorphic to a spectral subspace of the ℓ-spectrum of some Abelian
ℓ-group.

1. Introduction

A subset I, in a lattice-ordered group (in short ℓ-group) G, is an ℓ-ideal if it is
an order-convex normal subgroup closed under the lattice operations. If I 6= G, we
say in addition that I is prime if x ∧ y ∈ I implies that {x, y} ∩ I 6= ∅, whenever
x, y ∈ G. In case G is Abelian, the ℓ-spectrum of G is defined as the set SpecG
of all prime ℓ-ideals of G, endowed with the topology whose closed subsets are the
{P ∈ SpecG | X ⊆ P} for X ⊆ G (often called the hull-kernel topology). Denote
by G the class of all Abelian ℓ-groups.

The problem of the description of ℓ-spectra of all Abelian ℓ-groups (say the
ℓ-spectrum problem) is stated, in the language of MV-algebras, in Mundici [10,
Problem 2]. Now under Stone duality (cf. Grätzer [6, § II.5], Johnstone [8,
§ II.3], Rump and Yang [12] for the case without top element, and Wehrung [17,
§ 2.2] for a summary), for any G ∈ G, SpecG corresponds to the lattice IdcG

of all principal ℓ-ideals of G; that is, IdcG = {〈a〉 | a ∈ G+} where each 〈a〉
def
=

{x ∈ G | (∃n ∈ N)(|x| ≤ na)}. This enables us to restate the ℓ-spectrum problem

as the description problem of the class Idc G
def
= {D | (∃G ∈ G)(D ∼= Idc G)}. All

such lattices are clearly distributive with smallest element (usually denoted by 0).
They are also completely normal (cf. Bigard, Keimel, and Wolfenstein [3, Ch. 10]),
that is, they satisfy the statement

(∀a, b)(∃x, y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0) .

Delzell and Madden observed in [4, Theorem 2], via a counterexample of cardi-
nality ℵ1, that those properties are not sufficient to characterize Idc G. On the
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2 M. PLOŠČICA AND F. WEHRUNG

other hand, the second author proved in [14] that every countable completely nor-
mal distributive 0-lattice belongs to Idc G. The categorical concept of condensate,
initiated in the second author’s work [5] with Pierre Gillibert, together with the
main result of [15], enabled the second author to prove in [16] that Idc G is not
the class of models of any class of L∞λ sentences of lattice theory, for any infinite
cardinal λ. Using further tools from infinitary logic, the second author extended
those results in [19] by proving that Idc G is not the complement of a projective
class over L∞∞, thus verifying in particular that the additional property of all
lattices IdcG coined by the first author in his proof of [11, Theorem 2.1] is still not
sufficient to characterize Idc G.

As observed in the above-cited references, all those results extend to the class of
all (lattice) homomorphic images of lattices IdcG. On the other hand, not every
homomorphic image of a lattice of the form Idc G belongs to Idc G (cf. Wehrung
[14, Example 10.6]). Recast in terms of spectra, via Stone duality, this means that
not every spectral subspace of an ℓ-spectrum is an ℓ-spectrum.

Moreover, not every completely normal bounded distributive lattice is a homo-
morphic image of some Idc G: a counterexample of cardinality ℵ2 is constructed in
Wehrung [15].

In this paper we complete the picture above, by establishing that every com-
pletely normal distributive 0-lattice D, with at most ℵ1 elements, is a homomorphic
image of Idc G for some Abelian ℓ-group G. This also strengthens the first author’s
result, obtained in [11], that D is Cevian. In fact, we verify the slightly more
general statement that G may be taken a vector lattice over any given countable
totally ordered division ring k (cf. Theorem 7.4), modulo the obvious change in the
definition of an ℓ-ideal (i.e., ℓ-ideals need to be closed under scalar multiplication
by elements of k; see Wehrung [17, § 2.3] for more detail). Due to the results of
[17, § 9], the countability assumption on k cannot be dispensed with.

Our argument will roughly follow the one from Wehrung [14], with the “Main
Extension Lemma” [14, Lemma 4.2] strengthened from finite lattices to certain
infinite lattices, and streamlined via the introduction of consonance kernels (cf.
Definition 3.1), as Lemma 4.4. The proof of the “closure step” [14, Lemma 7.2]
fails in that more general context, so we get only “homomorphic image” as opposed
to “isomorphic copy”, of Idc G. This will also require a few known additional prop-
erties of finite distributive lattices and their homomorphisms, via Birkhoff duality
(see in particular Lemma 2.4). Our final argument, given a completely normal
distributive 0-lattice L, will start by expressing L as a directed union of an as-

cending ω1-sequence ~L = (Lξ | ξ < ω1) of countable completely normal distributive
0-lattices, and then, with the help of Lemma 4.4, iteratively lift all subdiagrams
(Lξ | ξ < α), with α < ω1, with respect to the functor Idc. That part of our argu-
ment turns out to be valid not only for the chain ω1 but for any tree in which every
element has countable height (cf. Theorem 7.3).

2. Basic concepts

2.1. Sets, posets, lattices. For any set X , PowX denotes the powerset algebra
of X . By “countable” we will mean “at most countable”. For an element a in a

partially ordered set (from now on poset) P , we set P ↓ a
def
= {p ∈ P | p ≤ a} (or ↓a

if P is understood). A subset A of P is a lower subset of P if P ↓ a ∈ A whenever
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a ∈ A. A poset P with bottom element is a tree if P ↓ a is well-ordered under the
induced order whenever a ∈ P .

For a subset P in a poset Q and for x ∈ Q, xP (resp., xP ) denotes the least
y ∈ P such that x ≤ y (resp., the largest y ∈ P such that y ≤ x) if it exists. We
say that P is relatively complete in Q if xP and xP both exist for all x ∈ P . If P is
a subalgebra of a Boolean algebra Q, it suffices to verify that xP exists whenever
x ∈ Q (resp., xP exists whenever x ∈ Q).

Relative completeness has been used in a description of projective Boolean alge-
bras. For the proof of the following (easy) assertion see Heindorf and Shapiro [7,
Lemma 1.2.7].

Lemma 2.1. Let A, A′ be subalgebras of a Boolean algebra B with A′ finitely
generated over A. If A is relatively complete in B, then so is A′.

For posets P and Q with respective top elements ⊤P and ⊤Q, a map f : P → Q
is top-faithful if f−1 {⊤Q} = {⊤P }. For any poset P , P⊔∞ denotes the poset
obtained by adding an extra element, usually denoted by ∞, atop of P . For any
map f : P → Q, we denote by f⊔∞ : P⊔∞ → Q⊔∞ the unique extension of f
sending ∞ to ∞. Such maps are exactly the top-faithful maps from P⊔∞ to Q⊔∞.

We denote by JiL (resp., MiL) the set of all join-irreducible (resp., meet-ir-
reducible) elements in a lattice L, endowed with the induced ordering. For any
join-irreducible element p in a finite distributive lattice D, we denote by p∗ the
unique lower cover of p in D, and by p† the largest element of D not above p;
so p∗ = p ∧ p†. The assignment p 7→ p† defines an order-isomorphism from JiD
onto MiD.

As in Wehrung [14, 17], two elements a and b in a 0-lattice (i.e., lattice with
a bottom element) D are consonant if there exist u, v ∈ D such that a ≤ u ∨ b,
b ≤ a∨ v, and u∧ v = 0. A subset X of D is consonant if any pair of elements in X
is consonant. The lattice D is completely normal if it is consonant within itself.

We denote by JiL (resp., MiL) the set of all join-irreducible (resp., meet-irre-
ducible) elements in a lattice L, endowed with the induced partial ordering. The
assignment D 7→ JiD is part of Birkhoff duality between finite distributive lattices,
with 0, 1-lattice homomorphisms, and finite posets, with isotone maps (cf. Grätzer
[6, § II.1.3]). The Birkhoff dual of a 0, 1-lattice homomorphism ϕ : D → E is the

map JiE → JiD, q 7→ qϕ
def
= min {x ∈ D | q ≤ ϕ(x)}.

For any distributive 0-lattice D, we denote by BR(D) the generalized Boolean
algebraR-generated by D in the sense of Grätzer [6, § II.4] (aka the Boolean envelope
ofD). Equivalently, BR(D) is the universal generalized Boolean algebra ofD. Up to
isomorphism, BR(D) is the unique generalized Boolean algebra generated by D as a
0-sublattice. The assignment D 7→ BR(D) canonically extends to a functor, which
turns 0-lattice embeddings to embeddings of generalized Boolean algebras. For a
0-sublattice D of a distributive lattice E with 0, we will thus identify BR(D) with

its canonical image in BR(E). If D is a finite distributive lattice and P
def
= JiD,

then the assingment x 7→ P ↓ x defines an isomorphism from D onto the lattice
DownP of all lower subsets of P . Since the universal Boolean algebra of DownP
is the powerset lattice of P , with each {p} = (↓p) \ (↓p)∗, it follows that the atoms
of BR(D) are exactly the p ∧ ¬p∗ for p ∈ JiD.

Lemma 2.2. The following statements hold, for any distributive 0-lattice D:
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(1) For all a1, a2, b1, b2 ∈ D, a1 ∧ ¬b1 ≤ a2 ∧ ¬b2 within BR(D) iff a1 ≤ a2 ∨ b1
and a1 ∧ b2 ≤ b1 within D.

(2) If D is finite, then a∧¬b =
∨

{p ∧ ¬p∗ | p ∈ JiD , p ≤ a , p � b} within BR(D),
whenever a, b ∈ D.

Lemma 2.3. Let D and L be distributive 0-lattices with D finite, let ϕ : D → L
be a 0-lattice homomorphism, let a, b ∈ D, and let c ∈ L. Then ϕ(a) ≤ ϕ(b) ∨ c iff
ϕ(p) ≤ ϕ(p∗) ∨ c whenever p ∈ JiD with p ≤ a and p � b.

Proof. ϕ(a) ≤ ϕ(b) ∨ c iff BR(ϕ)(a ∧ ¬b) ≤ c, iff BR(ϕ)(p ∧ ¬p∗) ≤ c whenever p ∈
JiD such that p ≤ a and p � b (we apply Lemma 2.2(2)). Now BR(ϕ)(p∧¬p∗) ≤ c
iff ϕ(p) ≤ ϕ(p∗) ∨ c. �

For any elements x and y in a lattice E let x →E y denote the largest z ∈ E, if
it exists, such that x ∧ z ≤ y (it is also called the pseudocomplement of x relative
to y); so →E is the Heyting implication on E. If →E is defined on every pair of
elements then we say that E is a generalized Heyting algebra. If, in addition, E has
a bottom element, then we say that E is a Heyting algebra. Every Heyting algebra
is a bounded distributive lattice, and every finite distributive lattice is a Heyting
algebra1 .

Dually, we denote by xrE y the least z ∈ E, if it exists, such that x ≤ y ∨ z. It
is the dual pseudocomplement of x relative to y.

A lattice homomorphism ϕ : D → E is closed if whenever a0, a1 ∈ D and b ∈ E,
if ϕ(a0) ≤ ϕ(a1) ∨ b, then there exists x ∈ D such that a0 ≤ a1 ∨ x and ϕ(x) ≤ b.
If ϕ is an inclusion map we will say that D is a closed sublattice of E.

The following folklore lemma, whose easy proof we leave to the reader as an
exercise, enables to read, on the Birkhoff dual, whether a given homomorphism,
between finite distributive lattices, is a homomorphism of Heyting algebras or a
closed homomorphism, respectively.

Lemma 2.4. The following statements hold, for any finite distributive lattices D
and E and any 0, 1-lattice homomorphism ϕ : D → E:

(1) ϕ is a homomorphism of Heyting algebras iff for all p ∈ JiD and all q ∈ JiE,
if p ≤ qϕ, then there exists x ∈ JiE such that x ≤ q and xϕ = p.

(2) ϕ is closed iff for all p ∈ JiD and all q ∈ JiE, if qϕ ≤ p, then there exists
x ∈ JiE such that q ≤ x and xϕ = p.

2.2. The lattices Bool(F,Ω), Op(F,Ω), and Op−(F,Ω). For more detail on this
subsection we refer the reader to Wehrung [14, 17]. For a right vector space E over
a totally ordered division ring k, a map f : E → k is an affine functional if f − f(0)
is a linear functional. Note that the affine functionals on E form a left vector space
over k.

For functions f and g with common domain Ω and values in a poset T , we set

[[f ≤ g]]
def
= {x ∈ Ω | f(x) ≤ g(x)}; and similarly for [[f < g]], [[f = g]], [[f 6= g]], and

so on. Throughout this paper, f and g will always be restrictions, to a convex
set Ω, of continuous affine functionals on a topological vector space E over a to-
tally ordered division ring k. For a set F of maps from Ω to k, we will denote

1Strictly speaking we should set the Heyting implication → apart from the lattice signature,
thus for example stating that “every finite distributive lattice expands to a unique Heyting alge-
bra”. The shorter formulation, which we shall keep for the sake of simplicity, reflects a standard
abuse of terminology that should not create any confusion here.
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by Bool(F,Ω) the Boolean subalgebra of the powerset of Ω generated by all sub-
sets [[f > 0]] and [[f < 0]] for f ∈ F. As in [17], we will also denote by Op−(F,Ω)
the sublattice of Bool(F,Ω) generated by all [[f > 0]] and [[f < 0]] where f ∈ F, and

then set Op(F,Ω)
def
= Op−(F,Ω) ∪ {Ω}. Evidently, Bool(F,Ω) is generated, as a

Boolean algebra, by its 0-sublattice Op(F,Ω); so Bool(F,Ω) = BR
(

Op(F,Ω)
)

.
For any set I and any totally ordered division ring k, we will occasionally identify

every element a = (ai | i ∈ I) ∈ k(I) with the corresponding (continuous) linear
functional

∑

i∈I aiδi (where δi denotes the ith projection), thus justifying such

notations as Bool(k(I), k(I)) and Op(k(I), k(I)); observe that in those notations, the
first (resp., second) occurrence of k(I) is endowed with its structure of left (resp.,
right) vector space over k. Moreover, in its second occurrence, k(I) is endowed with
the coarsest topology making all canonical projections δi continuous.

Denote by Fℓ(I, k) the free left2 k-vector lattice on a set I. As observed in
Baker [1], Bernau [2], Madden [9, Ch. III] (see also Wehrung [17, page 13] for a

summary), Fℓ(I, k) canonically embeds into kk
(I)

. We sum up a few related facts.

Lemma 2.5 (Folklore).

(1) Fℓ(I, k) is isomorphic to the sublattice of kk
(I)

generated by all linear functionals
∑

i∈I aiδi associated to elements a ∈ k(I), via the assignment i 7→ δi.
(2) The assignment 〈x〉 7→ [[x 6= 0]] defines an isomorphism from the lattice Idc Fℓ(I, k),

of all principal ℓ-ideals of the left k-vector lattice Fℓ(I, k), onto Op−(k(I), k(I)).

3. Consonance kernels

In this section we introduce a tool, the consonance kernels, expressing the con-
sonance of the image a lattice homomorphism via its behavior on join-irreducible
elements.

Definition 3.1. Let D and L be distributive lattices, with D finite and L with

a zero element, and let f : D → L be a join-homomorphism. Set P
def
= JiD. A

consonance kernel for f is a family (ep | p ∈ P ) of elements of L such that

f(p) = f(p∗) ∨ ep , whenever p ∈ P ; (3.1)

ep ∧ eq = 0 , whenever p, q ∈ P are incomparable . (3.2)

We then set x ⊘~e y
def
=

∨

{ep | p ∈ (P ↓ x) \ (P ↓ y)}, whenever x, y ∈ D.

Lemma 3.2. In the context of Definition 3.1, f(x) = f(x∧ y)∨ (x ⊘~e y) whenever
x, y ∈ D. Moreover, f is a lattice homomorphism.

Proof. Setting c
def
= f(x∧y)∨ (x ⊘~e y), it is obvious that c ≤ f(x). In order to prove

that f(x) ≤ c, it suffices to prove that f(p) ≤ c whenever p ∈ P ↓ x. By way of
contradiction, let p be a minimal element of P ↓x with f(p) � c. Since p ≤ y implies
f(p) ≤ f(x∧ y) ≤ c, we get p ∈ (P ↓x) \ (P ↓ y), so f(p) = f(p∗)∨ ep. Since ep ≤ c,
we get f(p∗) � c. The case p∗ = 0 is impossible, because f(0) ≤ f(x ∧ y) ≤ c.
Since f is a join-homomorphism, we get f(p∗) =

∨

{f(q) | q ∈ P ↓ p∗}. By the
minimality assumption on p, we get f(q) ≤ c for every q ∈ P ↓ p∗, hence f(p∗) ≤ c,
a contradiction.

2“Right” and “left” appear to have been unfortunately mixed up at various places in [17],
particularly on pages 12 and 13. Since this is mostly a matter of choosing sides, that paper’s
results are unaffected. We nonetheless attempt to fix this here.
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Now let x, y ∈ D. By the result of the paragraph above, f(x) = f(x∧y)∨(x ⊘~ey)
and f(y) = f(x ∧ y) ∨ (y ⊘~e x). Due to (3.2), (x ⊘~e y) ∧ (y ⊘~e x) = 0; whence
f(x) ∧ f(y) = f(x ∧ y). �

Lemma 3.3. Let D and L be distributive lattices, with D finite and L with a zero
element. Then a lattice homomorphism f : D → L has a consonance kernel iff the
range of f is consonant in L.

Proof. Suppose first that the range of f is consonant in L. Since D is finite, there
exists a finite 0-sublattice K of L, containing f [D], such that the range of f is

consonant in K. Setting ep
def
= f(p)rK f(p∗) for each p ∈ JiD, Condition (3.1) is

obviously satisfied. Let p, q ∈ JiD be incomparable. From p ∧ q ≤ p∗ we get

ep = f(p)rK f(p∗) ≤ f(p)rK f(p ∧ q) = f(p)rK (f(p) ∧ f(q)) = f(p)rK f(q) ,

and, similarly, eq ≤ f(q)rK f(p). Since f(p) and f(q) are consonant within K, we
get (f(p)rK f(q)) ∧ (f(q)rK f(p)) = 0; whence ep ∧ eq = 0.

Let, conversely, (ep | p ∈ JiD) be a consonance kernel for f and set P
def
= JiD.

Let x, y ∈ D, set u
def
= x ⊘~e y and v

def
= y ⊘~e x. It follows from Lemma 3.2 that

f(x) ≤ f(y) ∨ u and f(y) ≤ f(x) ∨ v. Moreover, for all p ∈ (P ↓ x) \ (P ↓ y) and
q ∈ (P ↓ y) \ (P ↓ x), p and q are incomparable, thus ep ∧ eq = 0; whence u∧ v = 0.
Therefore, the pair (u, v) witnesses the consonance of f(x) and f(y) in L. �

4. An extension lemma for infinite distributive lattices

This section’s main result, Lemma 4.4, states conditions under which a homo-
morphism f : D → L of distributive lattices can be extended to a homomorphism
f : E → L in case E is generated over D by two disjoint elements a and b. One
of its main improvements, over the original [14, Lemma 4.2] it stems from, is the
possibility of D be infinite.

Definition 4.1. A 0, 1-sublattice D of a bounded distributive lattice E is a semi-
Heyting sublattice if for all x, y ∈ D, x →D y and x →E y both exist and are
equal.

In particular, every semi-Heyting sublattice of E is a Heyting algebra (E itself
may not be a Heyting algebra).

Notation 4.2. Let D be a finite 0, 1-sublattice of a bounded distributive lattice E
and let f : D → L be a 0-lattice homomorphism. We set

f~e(a)
def
=

∨

{ep | p ∈ JiD , p ≤ p∗ ∨ a}

for every consonance kernel ~e of f and every a ∈ E.

The following lemma arises from Wehrung [17, Remark 4.6]. We include a proof
for convenience.

Lemma 4.3. Let D be a finite semi-Heyting sublattice of a bounded distributive
lattice E, let f : D → L be a 0-lattice homomorphism, and let a, b ∈ E such that
a∧b = 0. Then any join-irreducible elements p and q in D such that p ≤ p∗∨a and
q ≤ q∗ ∨ b are incomparable. In particular, f~e(a) ∧ f~e(b) = 0 for any consonance
kernel ~e for f .
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Proof. Suppose otherwise, say p ≤ q; thus p† ≤ q†. From a ∧ b = 0 we get
p∧b ≤ (p∗∨a)∧b = p∗∧b ≤ p∗, thus, by assumption, b ≤ p →E p∗ = p →D p∗ = p†.
Since p† ≤ q†, we get b ≤ q†, so q ≤ q∗ ∨ b ≤ q†, a contradiction. �

We are now reaching this section’s main goal. In the next proof we use the
following well known extension criterion. Let D and L be distributive lattices
and X a generating subset of D. Then a map f : X → L can be extended to a
(necessarily unique) homomorphism g : D → L if and only if

m
∧

i=1

xi ≤
n
∨

j=1

yj =⇒
m
∧

i=1

f(xi) ≤
n
∨

j=1

f(yj) (4.1)

for all m,n > 0 and all x1, . . . , xm, y1, . . . , yn ∈ X .

Lemma 4.4 (Main Extension Lemma). Let D be a semi-Heyting sublattice of a

bounded distributive lattice E and let a, b ∈ E. Setting B
def
= BR(D), we assume

the following:

(1) E is generated, as a lattice, by D ∪ {a, b}.
(2) a ∧ b = 0.
(3) All elements aB, bB, (a ∨ b)B, a

B, and bB are defined.
(4) (a ∨ b)B = aB ∨ bB.

Then

cB ∈ D whenever c ∈ {a, b, a ∨ b} . (4.2)

Further, for every 0-lattice homomorphism f : D → L and all α, β ∈ L, the following
conditions are equivalent.

(i) (α, β) = (g(a), g(b)) for some lattice homomorphism g : E → L extending f ;
(ii) α ≤ f(aB), β ≤ f(bB), α ∧ β = 0, BR(f)

(

aB
)

≤ α, and BR(f)
(

bB
)

≤ β.

Moreover, for any finite semi-Heyting sublattice D′ of D such that {aB, bB} ⊆

BR(D′) and
{

aB, bB
}

⊆ D′, and any consonance kernel ~e of f ′ def
= f↾D′ , (f ′

~e(a), f
′
~e(b))

is a pair satisfying (ii).

Note. By the same token as the one used in the proof of Lemma 2.3, the condition
that BR(f)(aB) ≤ α is equivalent to saying that for all x, y ∈ D, x ≤ y ∨ a ⇒
f(x) ≤ f(y) ∨ α. By Lemma 2.3, if D is finite, then it suffices to restrict ourselves
to the case where x = p ∈ JiD and y = p∗. Note that BR(f)(aB) is an element
of BR(L), usually not in L, so it cannot be taken as the lowest possible value of α
a priori.

Proof. We start by proving (4.2). By (3), there is an expression of the form cB =
∧

i<n(¬ui ∨ vi) (within B) where n < ω and all ui, vi ∈ D. For each i < n,
c ≤ ¬ui ∨ vi within BR(E), thus ui ∧ c ≤ vi, and thus, since D is a semi-Heyting

sublattice of E, c ≤ ui →E vi = ui →D vi; whence, setting w
def
=

∧

i<n(ui →D vi),
we get c ≤ w. For each i < n, w ≤ ui →D vi with w ∈ D, thus ui ∧ w ≤ vi, so
w ≤ ¬ui ∨ vi within B, and so w ≤ cB. Since w ∈ D, it follows that w = cB = cD.

Now it is obvious that for every lattice homomorphism g : E → L extend-

ing f , the pair (α, β)
def
= (g(a), g(b)) satisfies α ≤ f(aB), β ≤ f(bB), α ∧ β = 0,

BR(f)
(

aB
)

≤ α, and BR(f)
(

bB
)

≤ β. Let, conversely, (α, β) be such a pair.
We need to show the implication (4.1) for xi, yj ∈ D∪{a, b}. Since f is a lattice

homomorphism, we can assume that exactly one xi and exactly one yj belong to D.
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Since a∧b = 0, the inequality x∧a ≤ y∨b is equivalent to x∧a ≤ y. So, (4.1) boils
down to the equality α ∧ β = 0 (which is assumed) and the following implications:

x ≤ y ∨ a ⇒ f(x) ≤ f(y) ∨ α ; (4.3)

x ≤ y ∨ b ⇒ f(x) ≤ f(y) ∨ β ; (4.4)

x ≤ y ∨ a ∨ b ⇒ f(x) ≤ f(y) ∨ α ∨ β ; (4.5)

x ∧ a ≤ y ⇒ f(x) ∧ α ≤ f(y) ; (4.6)

x ∧ b ≤ y ⇒ f(x) ∧ β ≤ f(y) . (4.7)

The implications (4.3) and (4.4) follow from BR(f)
(

aB
)

≤ α and BR(f)
(

bB
)

≤ β.
Owing to Condition (4), the implication (4.5) follows from the inequalities

BR(f)
(

(a ∨ b)B
)

= BR(f)
(

aB ∨ bB
)

= BR(f)(aB) ∨ BR(f)(bB) ≤ α ∨ β .

Suppose that x ∧ a ≤ y. Since D is a semi-Heyting sublattice of E, it follows
that a ≤ x →E y = x →D y, thus, using (4.2), aD = aB ≤ x →D y. It follows
that α ≤ f(aB) ≤ f(x →D y), thus f(x) ∧ α ≤ f(x) ∧ f(x →D y) ≤ f(y). The
implication (4.6) follows. The proof of (4.7) is similar.

For the remainder of the proof, let D′ be a finite semi-Heyting sublattice of D
such that {aB, bB} ⊆ BR(D′) and

{

aB, bB
}

⊆ D′ (cf. Figure 4.1), and let ~e be a

consonance kernel of f ′ def
= f↾D′ . Set (α, β)

def
= (f ′

~e(a), f
′
~e(b)).

BR(L) BR(E)

B = BR(D) L E

BR(D′) D

D′

BR(f)

g

f

Figure 4.1. Illustrating the proof of Lemma 4.4

For every p ∈ JiD′, p ≤ p∗ ∨ a (within E) implies that p ≤ p∗ ∨ aB (within D′),
thus, since p ∈ JiD′, we get p ≤ aB, whence ep ≤ f(p) ≤ f(aB). This proves that
α ≤ f(aB). Similarly, β ≤ f(bB). Further, the equation α ∧ β = 0 follows from
Lemma 4.3.

Let c ∈ {a, b} and let x, y ∈ D such that x ≤ y ∨ c, we need to prove that
f(x) ≤ f(y) ∨ f ′

~e(c). From x ∧ ¬y ≤ c (within BR(E)) it follows that x ∧ ¬y ≤ cB

(within BR(D)). Set X
def
= {p ∈ JiD′ | p ∧ ¬p∗ ≤ cB} = {p ∈ JiD′ | p ≤ p∗ ∨ c}.

By (3) and since BR(D′) is a finite Boolean algebra with atoms p∧¬p∗ for p ∈ JiD′,

cB =
∨

{p ∧ ¬p∗ | p ∈ X} within B . (4.8)

By the definition of X ,

f(p) = f(p∗) ∨ ep ≤ f(p∗) ∨ f ′
~e(c) whenever p ∈ X ,
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so f(p) ∧ ¬f(p∗) ≤ f ′
~e(c) within BR(L), whenever p ∈ X ; whence, using (4.8),

BR(f)(cB) =
∨

{f(p) ∧ ¬f(p∗) | p ∈ X} ≤ f ′
~e(c) within BR(L) . (4.9)

Using (4.9), we get

f(x) ∧ ¬f(y) = BR(f)(x ∧ ¬y) ≤ BR(f)(cB) ≤ f ′
~e(c) ,

so f(x) ≤ f(y) ∨ f ′
~e(c). �

5. Adjunctions between lattices Bool(F, k(I))

Throughout this section k will be a totally ordered division ring. In this section
we shall state a few properties of Boolean algebras of the form Bool(F,Ω), mostly
related to relative completeness between such algebras.

The following observation is contained in the proof of Wehrung [14, Lemma 6.6].

Lemma 5.1. Let Ω be a convex subset in a right vector space E over k and

let F∪{a} be a set of affine functionals on E. Set A+ def
= [[a > 0]] and A− def

= [[a < 0]].
Then for every U ∈ Bool(F,Ω), if U ⊆ A+ ∪ A−, then there are U+, U− ∈
Bool(F,Ω) such that U = U+ ∪ U− whereas U+ ⊆ A+ and U− ⊆ A−.

Proof. Since U is the union of finitely many cells, each of which being the in-
tersection of finitely many sets of the form either [[±f > 0]] or [[±f ≥ 0]] where
f ∈ F, it suffices to consider the case where U is such a cell. If U meets both A+

and A−, pick x ∈ U ∩ A+ and y ∈ U ∩ A−; so a(x) > 0 and a(y) < 0. Then

λ
def
= (a(y)−a(x))−1a(y) belongs to the open interval ]0, 1[ and a(xλ+y(1−λ)) = 0,

that is, xλ + y(1 − λ) /∈ A+ ∪ A−. On the other hand, since U is convex,
xλ + y(1 − λ) ∈ U ; a contradiction since U ⊆ A+ ∪ A−. Therefore, U is disjoint
either from A+ or from A−, thus it is contained either in A+ or in A−. �

Corollary 5.2. In the context of Lemma 5.2, (A+ ∪ A−)Bool(F,Ω) exists iff both

(A+)Bool(F,Ω) and (A−)Bool(F,Ω) exist, and then

(A+ ∪ A−)Bool(F,Ω) = (A+)Bool(F,Ω) ∪ (A−)Bool(F,Ω) .

In what follows we will identify every element f ∈ k(I) with the associated linear
functional on k(I), that is, x 7→

∑

i∈I fixi. Moreover, whenever I ⊆ J we will

identify k(I) with the subset of k(J) consisting of all vectors with support contained
in I.

Notation 5.3. For I ⊆ J , we define mappings

εI,J : Powk(I) → Powk(J) ,

ρ∨J,I , ρ
∧
J,I : Powk(J) → Pow k(I) ,

by

εI,J(X) =
{

y ∈ k(J) | y↾I ∈ X
}

,

ρ∧J,I(Y ) =
{

x ∈ k(I) | (∀y ∈ k(J))(y↾I = x ⇒ y ∈ Y )
}

,

ρ∨J,I(Y ) = {y↾I | y ∈ Y } .

The following statements are immediate consequences of the definitions:
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• εI,J is an embedding of Boolean algebras, ρ∧J,I is a meet-homomorphism,

and ρ∨J,I is a join-homomorphism. Moreover, ρ∧J,I and ρ∨J,I are right and
left adjoint to εI,J , respectively.

• ρ∧J,I and ρ∨J,I are conjugate, that is, k(I) \ ρ∧J,I(Y ) = ρ∨J,I

(

k(J) \ Y
)

when-

ever Y ⊆ k(J).

Lemma 5.4. Let I and J be sets with I ⊆ J . The following statements hold:

(1) εI,Jρ
∧
J,I(Z) = εI,Jρ

∧
J,I(Z) = Z for every Z ∈ Bool(k(I), k(J)).

(2) εI,J [Bool(k(I), k(I))] = Bool(k(I), k(J)) ⊆ Bool(k(J), k(J)).
(3) ρ∧J,I [Bool(k

(J), k(J))] = ρ∨J,I [Bool(k
(J), k(J))] = Bool(k(I), k(I)).

Proof. Ad (1) and (2) are both trivial. In order to prove (3), it suffices, since ρ∧J,I
and ρ∨J,I are conjugate, to establish the result for ρ∨J,I . For everyX ∈ Bool(k(I), k(I)),

X = ρ∨J,IεI,J(X) with εI,J(X) ∈ Bool(k(J), k(J)), thus X ∈ ρ∨J,I [Bool(k
(J), k(J))];

whence ρ∨J,I [Bool(k
(J), k(J))] contains Bool(k(I), k(I)).

Let us establish the converse containment. Since ρ∨J,I is a (∨, 0)-homomorphism,

it suffices to prove that ρ∨J,I(Y ) ∈ Bool(k(I), k(I)) whenever Y is a set of the form
⋂

i<m[[ai ≥ 0]] ∩
⋂

j<n[[bj > 0]] where m,n < ω and all ai, bj ∈ k(J).

Set a′i
def
= ai↾I and a′′i

def
= ai↾J\I , for all i < m, and define similarly b′j and b′′j

for j < n. An element x ∈ k(I) belongs to ρ∨J,I(Y ) iff there exists z ∈ k(J\I)

such that each a′i(x) + a′′i (z) ≥ 0 and each b′j(x) + b′′j (z) > 0. The set V of all

(m+n)-tuples of elements of k of the form (a′′0 (z), . . . , a
′′
m−1(z), b

′′
0(z), . . . , b

′′
n−1(z))

is a vector subspace of km+n. Hence, an element x ∈ k(I) belongs to ρ∨J,I(Y ) iff

there exists u ∈ V such that a′i(x) + ui ≥ 0 whenever i < m and b′j(x) + um+j > 0

whenever j < n. Since membership in V , of any (m+n)-tuple of elements of k, can
be expressed by a finite set of linear equations, the statement that a given x ∈ k(I)

belongs to ρ∨J,I(Y ) can be expressed by a sentence, over the first-order language

L
def
= {<, 0,−,+} ∪ {·λ | λ ∈ k} of ordered Abelian groups augmented with right

scalar multiplications by elements of k, in (a′0(x), . . . , a
′
m−1(x), b

′
0(x), . . . , b

′
n−1(x)).

Now every L-sentence is equivalent, over all nonzero totally ordered right k-vector
spaces, to a quantifier-free L-sentence (cf. van den Dries [13, Corollary I.7.8]).
Therefore, ρ∨J,I(Y ) belongs to Bool(F, k(I)) for a finite set F of linear combinations

of the a′i and the b′j. �

Proposition 5.5. Let I and J be sets with I ⊆ J and let D be a finite subset
of k(J). Then Bool(k(I) ∪D, k(J)) is relatively complete in Bool(k(J), k(J)).

Proof. We first prove that Bool(k(I), k(J)) is relatively complete in Bool(k(J), k(J)).
Let Y ∈ Bool(k(J), k(J)). By Lemma 5.4, εI,Jρ

∨
J,I(Y ), εI,Jρ

∧
J,I(Y ) ∈ Bool(k(I), k(J)).

Further, Y ⊆ Z ∈ Bool(k(I), k(J)) implies εI,Jρ
∨
J,I(Y ) ⊆ εI,Jρ

∨
J,I(Z) = Z. Thus,

Y Bool(k(I),k(J)) = εI,Jρ
∨
J,I(Y ) and similarly, YBool(k(I),k(J)) = εI,Jρ

∧
J,I(Y ).

Since Bool(k(I) ∪D, k(J)) is finitely generated over Bool(k(I), k(J)) (via the ad-
ditional generators [[d > 0]] and [[d < 0]] for d ∈ D), the desired conclusion follows
from Lemma 2.1. �
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6. Extending a top-faithful map

In Lemmas 6.1 and 6.2 we fix a totally ordered division ring k. The following
lemma takes care of the “domain step” required in the proof of Theorem 7.4.

Lemma 6.1. Let I and J be sets, let L be a completely normal distributive 0-
lattice, let D be a finite subset of k(J), and let e ∈ k(J). Then every top-faithful
0-lattice homomorphism f : Op(k(I) ∪ D, k(J)) → L⊔∞ extends to a top-faithful
lattice homomorphism g : Op(k(I) ∪D ∪ {e} , k(J)) → L⊔∞ (cf. Figure 6.1).

L⊔∞

Op(k(I) ∪D, k(J)) Op(k(I) ∪D ∪ {e} , k(J)))

f

⊆

g

Figure 6.1. A commutative triangle for Lemma 6.1

Proof. Set E
def
= D ∪ {e}, D

def
= Op(k(I) ∪ D, k(J)), E

def
= Op(k(I) ∪ E, k(J)), B

def
=

BR(D) = Bool(k(I) ∪ D, k(J)), and C
def
= Bool(k(I) ∪ E, k(J)). By Proposition 5.5,

B is relatively complete in C. In particular, setting a
def
= [[e > 0]] and b

def
= [[e < 0]],

the elements aB, bB, aB, bB, and (a ∨ b)B are all defined. By Corollary 5.2,
(a ∨ b)B = aB ∨ bB. Let D′ be a finite subset of k(I) ∪ D such that aB, bB, aB,

and bB all belong to B′ def
= Bool(D′, k(J)). By Wehrung [14, Lemma 5.4] (see also

Wehrung [17, Lemma 4.1] for the more general form of that statement), D is a

Heyting subalgebra of E and D′ def
= Op(D′, k(J)) is a Heyting subalgebra of D.

Since L is completely normal and f [D′] is finite, it follows from Lemma 3.3 that

f ′ def
= f↾D′ has a consonance kernel (eP | P ∈ JiD′). By Lemma 4.4, f extends

to a unique lattice homomorphism g : D → L such that g(x) = f ′
~e(x) whenever

x ∈ {a, b}. For any P ∈ JiD′ such that P ⊆ P∗ ∪ x, 0 /∈ P∗ ∪ x, thus 0 /∈ P , that
is, P is not the top element of Op(k(I), k(J)). Since f is top-faithful, it follows that
eP ≤ f(P ) < ∞; whence f ′

~e(x) < ∞. It follows that g is top-faithful. �

The “surjectivity step” is much easily taken care of:

Lemma 6.2. Let I and J be sets with I ⊂ J and J\I infinite, let L be a distributive
0-lattice, let D be a finite subset of k(J), and let c ∈ L. Then every for every top-
faithful 0-lattice homomorphism f : Op(k(I) ∪ D, k(J)) → L⊔∞, there are e ∈ k(J)

and a top-faithful lattice homomorphism g : Op(k(I) ∪D ∪ {e} , k(J)) → L⊔∞ such
that g(e) = c.

Proof. Since D is finite and J \ I is infinite, there exists j ∈ J \ I not in the support

of any element of D. Take e
def
= δj , the jth canonical projection k(J) ։ k. By the

argument of Wehrung [14, Lemma 8.3], Op(k(I)∪D∪{δj} , k(J)) is the (internal) free
amalgamated sum of Op(k(I) ∪ D, k(J)) and

{

∅, [[δj > 0]], [[δj < 0]], [[δj 6= 0]], k(J)
}

within the category of bounded distributive lattices. Hence f extends to a unique
lattice homomorphism g : Op(k(I) ∪D ∪ {δj} , k(J)) → L such that g([[δj > 0]]) = c
and g([[δj < 0]]) = 0. Since c < ∞ and f is top-faithful, it follows that g is also
top-faithful. �
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7. Representing trees of countable lattices

In this section we will reach the paper’s main goal, Theorem 7.4, which states that
every completely normal distributive 0-lattice is a homomorphic image of some Idc F
for some k-vector lattice F . In order to reach that result we will in fact prove (cf.
Theorem 7.3) the apparently stronger statement that every diagram of countable
completely normal distributive 0-lattices, indexed by a tree in which every element
has countable height, can be represented in that fashion.

Towards that goal, our main technical tool is the following “one-step extension”
theorem, which relies on the results of Section 6, together with the observation
that for F ⊆ k(I), Op(F, k(I)) = Op−(F, k(I)) ⊔ {∞} (where ∞ denotes here the
full space k(I); so the top-faithful maps Op(F, k(I)) → L⊔∞ are exactly the g⊔∞

where g : Op−(F, k(I)) → L).

Theorem 7.1. Let k be a countable totally ordered division ring, let I and J be
countable sets with I ⊂ J and J \ I infinite, let K and L be distributive 0-lattices
with L countable completely normal, let ϕ : K → L be a 0-lattice homomorphism,
and let f : Op−(k(I), k(I)) → K be a 0-lattice homomorphism. Then there exists a
surjective lattice homomorphism g : Op−(k(J), k(J)) ։ L such that g ◦ εI,J = ϕ ◦ f .

The settings for Theorem 7.1 can be read on Figure 7.1. Its proof can be followed
on Figure 7.2.

K L

Op−(k(I), k(I)) Op−(k(J), k(J))

ϕ

f

εI,J

g

Figure 7.1. A commutative diagram for Theorem 7.1

K L

Op−(k(I), k(I)) Op−(k(I) ∪Dn, k(J)) Op−(k(I) ∪Dn+1, k(J))

ϕ

f

εI,J

gn

⊆

gn+1

Figure 7.2. Illustrating the proof of Theorem 7.1

Proof. An iterative application of Lemmas 6.1 and 6.2, similar to the proof of
Wehrung [14, Theorem 9.1] but easier since we do not need any analogue of the
“closure step” [14, Lemma 7.1]. Let k(J) = {vn | n < ω} and L = {cn | n < ω}.

Given an extension gn : Op−(k(I) ∪Dn, k(J)) → L of g0
def
= ϕ ◦ f , where Dn ⊂ k(J)

is finite, we extend the top-faithful extension g⊔∞
n : Op(k(I) ∪ Dn, k(J)) → L⊔∞

of gn to a top-faithful lattice homomorphism g⊔∞
n+1 : Op(k(I) ∪Dn+1, k(J)) → L⊔∞,

with Dn ⊆ Dn+1, v⌊n/2⌋ ∈ Dn+1 if n is even (via Lemma 6.1), and c⌊n/2⌋ ∈ rng gn+1

if n is odd (via Lemma 6.2). The common extension g of all gn is as required. �

By virtue of Lemma 2.5, Theorem 7.1 can be recast in terms of ℓ-ideal lattices
of free vector lattices over k, as follows.



SPECTRAL SUBSPACES 13

Theorem 7.2. Let k be a countable totally ordered division ring, let I and J
be countable sets with I ⊂ J and J \ I infinite, let K and L be distributive 0-
lattices with L countable completely normal, let ϕ : K → L be a 0-lattice homo-
morphism, and let f : Idc Fℓ(I, k) → K be a 0-lattice homomorphism. Denote by
ηI,J : Idc Fℓ(I, k) →֒ Idc Fℓ(J, k) the canonical embedding. Then there exists a sur-
jective lattice homomorphism g : Idc Fℓ(J, k) ։ L such that g ◦ ηI,J = ϕ ◦ f .

By using the functoriality of the assignment I 7→ Idc Fℓ(I, k), Theorem 7.2 can
further be extended to diagrams indexed by trees, as follows.

Theorem 7.3. Let k be a countable totally ordered division ring, let T be a tree

in which every element has countable height, and let ~L
def
= (Ls, ϕs,t | s ≤ t in T ) be

a commutative T -indexed diagram of distributive 0-lattices such that Lt is countable
completely normal whenever t ∈ T \ {⊥}. Let I⊥ ⊆ {⊥} × ω and set

It
def
= (T ↓ t) × ω whenever t ∈ T \ {⊥}. Set ~I

def
= (Is, ηIs,It | s ≤ t in T ). Then

every 0-lattice homomorphism χ⊥ : Idc Fℓ(I⊥, k) → L⊥ extends to a natural trans-

formation ~χ : Idc Fℓ(~I, k)
.

→ ~L such that χt is a surjective lattice homomorphism
whenever t ∈ T \ {⊥}.

Proof. The proof can be partly followed on Figure 7.3. By Zorn’s Lemma, there

Ls L<t Lt

Idc Fℓ(Is, k) Idc Fℓ(I<t, k) Idc Fℓ(It, k)

ϕs,<t

lim
−→

ϕs,t

ϕ<t,t

χs

ηIs,I<t

lim
−→

ηIs,It

χ<t

ηI<t,It

χt

Figure 7.3. Illustrating the proof of Theorem 7.3

exists a maximal lower subset T ′ of T , containing {⊥}, on which the conclusion
of Theorem 7.3 holds. Suppose, by way of contradiction, that T ′ 6= T and let t
be a minimal element of T \ T ′; so T ′ ∪ {t} is also a lower subset of T . Since the

height of t is countable, so are the lattice L<t
def
= lim

−→s<t
Ls (with transition maps

ϕs,s′ where s ≤ s′ < t and limiting maps ϕs,<t : Ls → L<t for s < t) and the set

I<t
def
=

⋃

{Is | s < t}. The universal property of the colimit ensures the existence
of unique 0-lattice homomorphisms

ηI<t,It : Idc Fℓ(I<t, k) = lim
−→
s<t

Idc Fℓ(Is, k) → Idc Fℓ(It, k)

and ϕ<t,t : L<t → Lt, such that ηI<t,It ◦ ηIs,I<t
= ηIs,It and ϕ<t,t ◦ ϕs,<t = ϕs,t

whenever s < t. Further, the natural transformation (χs | s < t) induces a unique
0-lattice homomorphism

χ<t : Idc Fℓ(I<t, k) → L<t

such that χ<t ◦ ηIs,I<t
= ϕs,<t ◦ χs whenever s < t. By Theorem 7.2, there exists

a surjective lattice homomorphism χt : Idc Fℓ(It, k) ։ Lt such that χt ◦ ηI<t,It =
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ϕ<t,t ◦ χ<t. Therefore, for each s < t,

χt ◦ηIs,It = χt ◦ηI<t,It ◦ηIs,I<t
= ϕ<t,t ◦χ<t ◦ηIs,I<t

= ϕ<t,t ◦ϕs,<t ◦χs = ϕs,t ◦χs .

This shows that our conclusion holds at T ′ ∪ {t}, in contradiction with the maxi-
mality assumption on T ′. �

This leads us to the following positive solution of the problem stated at the end
of Wehrung [18].

Theorem 7.4. Let k be a countable totally ordered division ring. Then every
completely normal distributive 0-lattice L with at most ℵ1 elements is a surjective
homomorphic image of Idc F for some vector lattice F over k.

Proof. Write L as the directed union of an ascending ω1-sequence ~L = (Lξ | ξ < ω1)
of countable completely normal distributive 0-lattices, with L0 = {0}. Theorem 7.3,
applied to the well-ordered chain ω1, yields an ω1-indexed commutative diagram
~F = (Fξ, fξ,η | ξ ≤ η < ω1) of k-vector lattices together with a natural transforma-

tion ~χ : Idc ~F
.

→ ~L all of whose components are surjective lattice homomorphisms.

Letting F
def
= lim

−→
~F , the universal property of the colimit yields a surjective homo-

morphism from Idc F onto L. �

Due to Wehrung [17, Corollary 9.5], Theorem 7.4 cannot be generalized to un-
countable totally ordered division rings k. On the other hand, setting k as any
countable Archimedean totally ordered field (for example the rationals), Idc F is
identical to the ℓ-ideal lattice of the underlying ℓ-group of F . Hence,

Corollary 7.5. Every completely normal distributive 0-lattice L with at most ℵ1

elements is a surjective homomorphic image of Idc F for some Abelian ℓ-group F .

By applying Stone duality for distributive 0-lattices, we obtain the following
formulation in terms of spectra.

Corollary 7.6. Every completely normal generalized spectral space with at most ℵ1

compact open sets embeds, as a spectral subspace, into the ℓ-spectrum of an Abelian
ℓ-group.

Corollary 7.5 also strengthens Ploščica [11, Theorem 3.2], which states that
every completely normal distributive 0-lattice of cardinality at most ℵ1 is Cevian;
that is, it carries a binary operation (x, y) 7→ x r y such that x ≤ y ∨ (x r y),
(xr y) ∧ (y r x) = 0, and xr z ≤ (xr y) ∨ (y r z) for all x, y, z. Indeed, Idc G is
Cevian for any Abelian ℓ-group G, and any homomorphic image of a Cevian lattice
is Cevian (cf. Wehrung [15, § 5]).

Problem. Let D be a completely normal distributive 0-lattice such that for all
a, b ∈ D there exists a sequence (cn | n < ω) from D such that for all x ∈ D,
a ≤ b ∨ x iff there exists n < ω such that cn ≤ x (in [14] we say that D has
countably based differences). If cardD = ℵ1, does D ∼= IdcG for some Abelian
ℓ-group G?

The cases where cardD ≤ ℵ0 and cardD ≥ ℵ2 are settled in Wehrung [14, 15], in
the positive and the negative, respectively (the counterexample constructed in [15]
is not even Cevian, thus it is not a homomorphic image of any IdcG). A Cevian
counterexample (of size continuum plus) is constructed in Ploščica [11].
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Email address: miroslav.ploscica@upjs.sk

URL: https://ploscica.science.upjs.sk
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