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Abstract

Technologies for 3D data acquisition and 3D printing have enormously developed in the past few
years, and, consequently, the demand for 3D virtual twins of the original scanned objects has in-
creased. In this context, feature-aware denoising, hole filling and context-aware completion are three
essential (but far from trivial) tasks. In this work, they are integrated within a geometric frame-
work and realized through a unified variational model aiming at recovering triangulated surfaces
from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex op-
timization problem incorporates two regularisation terms: a discrete approximation of the Willmore
energy forcing local sphericity and suited for the recovery of rounded features, and an approx-
imation of the `0 pseudo-norm penalty favoring sparsity in the normal variation. The proposed
numerical method solving the model is parameterization-free, avoids expensive implicit volume-based
computations and based on the efficient use of the Alternating Direction Method of Multipliers.
Experiments show how the proposed framework can provide a robust and elegant solution suited
for accurate restorations even in the presence of severe random noise and large damaged areas.

Keywords: Variational surface restoration, Willmore energy, sparse non-convex optimization, Surface
denoising, Surface inpainting, Context-aware mesh completion
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1 Introduction

In spite of the remarkable progresses achieved in
the fields of 3D scanning and 3D printing tech-
nologies, the available digitizing techniques often
produce defective data samples corrupted by ran-
dom noise and often subject to a local lack of data.
Typically, this is mainly due to occlusions, surface
reflection, scanner placement constraints, etc. In
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the context of digital restoration of cultural her-
itage art-works, for instance, the scanned object
itself (e.g., the archaeological findings) may be in-
complete and damaged due to the fact that some
of its (missing) parts have been ruined over time
due to wear and tear. In these cases, to facilitate
the downstream processing of its digital content,
the object shape needs to be denoised and re-
paired. Generally speaking, desirable properties of
a surface repair toolkit shall include:

• Feature-aware denoising: remove undesirable
noise or spurious information from the data,
while preserving original features, including
edges, creases and corners, with special care
on the robustness for defective and incomplete
point sets.

• Smooth hole filling/Inpainting: inpainting is the
process of recovering a missing or damaged
region in the surface by filling it in a plausi-
ble way using available information. The result
of a surface-inpainting operation depends on
specific application considered. In digital cul-
tural heritage restoration, for instance, surface
inpainting is understood as the recovering of
the holes in the data or the removal of the
scratches/cracks possibly present in the scanned
objects. In prototype manufacturing, the goal
is shifted towards a waterproof virtual recon-
struction, so that the related operation is rather
interpreted as a smooth hole filling. Either case,
all damaged areas should be filled in a seam-
less way that is minimally distinguishable from
their surrounding regions.

• Context-aware completion: when a priori knowl-
edge on the missing/damaged parts of the
scanned model is known, it is desirable that
the completion of the damaged areas occurs by
pasting known data - such as template patches -
automatically or semi-automatically under user
guidance. This allows, for example, to repair a
damaged part of an artifact by filling the region
of interest with a patch taken from a valid/un-
damaged region of the model itself or even from
other 3D geometric models.

An example of the three geometric tasks
processed by the proposed geometric variational
framework is illustrated in Fig.1. The original
noisy and incomplete scanned angel mesh (see
Fig.1(left)) is denoised while keeping all the holes,

see Fig.1(center, first row). Then the inpaint-
ing tool filled the holes smoothly, as shown in
Fig.1(center, second row) driven by the inpainting
mask illustrated on the left. The large damaged
region on the head is recovered by replacing a hair
curl patch selected from a different, undamaged,
mesh, see the recovered mesh in Fig.1(center,
third row). Finally, the completion of the dam-
aged part together with hole filling is performed
and illustrated in Fig.1(right).

We propose a unified approach for these chal-
lenging geometric tasks by defining a variational
problem encoding a priori knowledge of the par-
ticular problem (i.e. the mask operators) directly
in the cost functional.

Here, it is assumed that a corrupted surface
S embedded into R3, and possibly characterized
by the presence of a damaged (incomplete) region
SD ⊂ S, is represented by a triangulated mesh
M0 = (V0, T0) with V0 ∈ RnV ×3 being the set of
nV vertices, and T0 ∈ RnT×3 being the set of nT
triangle faces, sharing nE edges.

The aforementioned three geometry process-
ing tasks are addressed by means of the following
unified variational formulation

V ∗ ∈ arg min
V
J (V ; ME), (1)

J (V ; ME) := λχS\SDF(V ; V0) +

+R1(V ; ME) + R2(V ; M c
E),

where χS\SD : S → {0, 1} denotes the charac-
teristic function of the subset S \ SD, while the
binary mask operators ME ∈ {0, 1}nE and M c

E =
1nE −ME , characterize the specific surface geom-
etry considered. As a result of the discretization
on the triangulated mesh, the role of the char-
acteristic function is played by a mask operator
MV ∈ {0, 1}nV whose zero values identify the
region SD.

The set of vertices V ∗ solution of the un-
constrained optimization problem (1) defines a
restored triangulated surface M∗ = (V ∗, T ∗)
which provides a solution of the three surface ge-
ometry tasks, depending on the particular setup
considered.

In case of surface completion, the region identi-
fied by SD is replaced by a given template patch P
with boundary bP . In this case, the only compat-
ibility assumptions required is that the boundary
of SD in M0, named b0, and bP have the same
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number of vertices. If this is not the case, a
suitable subdivision process can be preliminarily
applied. The template patch P can be identified
on the object itself as well as on other objects,
thus allowing a mesh editing process.

The proposed approach does not need any
global or even local 2D parameterization, nor any
sophisticated octree data structures to efficiently
solve implicit volumetric computations [1, 2]. The
data are explicitly treated as connected samples
of a surface embedded in R3.

The functional J (V ; ME) in (1) is char-
acterized by the presence of the sum of two
regularization terms: the sparsity-promoting term
R1(V ; ME) and the sphericity-inducing penalty
R2(V ; M c

E). Furthermore, a fidelity term
F(V ; V0), weighted by the scalar parameter λ ≥ 0
is used to control the trade-off between fidelity to
the observations and regularity in the solution V ∗

of (1).
The regularizer R1 favours solutions with

piece-wise constant normal map and sharp discon-
tinuities. Such regularizer can be designed in a
way to penalize a measure of the ”roughness” or
bumpiness (curvature) of a mesh, or, equivalently,
to promote sparsity on this measure. A natural
bumpiness measure for a surface is the normal de-
viation measuring the normal variation between
adjacent triangles. The ideal sparse-recovery term
one would like to consider is the non-convex, non-
continuous `0 pseudo-norm, but its combinatorial
nature makes the minimization of (1) an NP-hard
problem. We then rather consider as regularizer
R1(V ; ME) a sparsity-promoting parametrized
non-convex term, whose form provides an effective
control on the sparsity of the normal deviation
magnitudes being more accurate than the `1 norm,
while mitigating the strong effect and the numer-
ical difficulties of `0 pseudo-norm. Numerical ex-
periments will show its efficiency in handling high
levels of noise, producing good-shaped triangles,
and faithfully recovering straight and smoothly
curved edges.

As far as the R2 regularization term is con-
cerned, we choose it so as to encode a geometric
energy, aimed to force local sphericity in corre-
spondence of rounded regions. We considered here
the Willmore energy, which has to be preferred
over standard approaches based on mean curva-
ture flow due to its scale invariance nature. Such

energy is a quantitative measure of how much a
given surface deviates from a round sphere and it
is defined by the following curvature functional

Ew(S) =
1

2

∫
S

(h2 − k)dA, (2)

where dA is the area element, and h and k are the
mean and Gaussian rigidities, respectively. The
Willmore energy Ew(S) is non-negative, and van-
ishes if and only if S is a sphere [3]. For compact
and closed surfaces, and surfaces whose boundary
is fixed up to first order, i.e. positions and nor-
mals are prescribed, finding the minima of (2) is
equivalent to minimize the Willmore bending en-
ergy Eh(S) = 1

2

∫
S
h2dA since the two functionals

differ only by a constant (the Euler characteris-
tic of the surface S),[4]. In this paper we present
a discrete Willmore energy, which, in contrast
to traditional approaches, follows an edge-based
discrete formulation.

Compared to the earlier version of this work
[5] which focused only on surface denoising, this
work further integrates the Willmore energy term
in (1) to promote fairness and extends the model
usability to more tasks.

From an algorithmic point of view, we solve the
(non-convex) problem (1) by means of an Alter-
nating Direction Method of Multipliers (ADMM)
scheme. This allows us to split the minimization
problem into three more tractable sub-problems.
Closed-form solutions for two of these prob-
lems can be found, while for the third, non-
convex, one different optimization solvers can
be used. For this substep, we compare stan-
dard gradient descent, with heavy ball and Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) schemes,
endowed with suitable backtracking strategy ap-
plied to guarantee the convergence to stationary
points of the sub-problem considered.

Numerical experiments will demonstrate the
effectiveness of the proposed method for the solu-
tion of several exemplar mesh denoising, inpaint-
ing and completion problems.

The rest of the paper is organized as follows.
In Section 2, we review the main mathematical
approaches related to the three geometry tasks
considered. In Section 3 the proposed geomet-
ric variational model is presented; details on its
numerical optimization by means of the ADMM-
based scheme are described in Section 4. In Section
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5 we briefly discuss the details on how each of
the three task can be realized by solving the op-
timization problem (1). Experimental results and
comparisons are given in Section 6. We draw the
conclusion in Section 7.

2 Related works

Standard numerical approaches solving the mesh
denoising problem can be, essentially, divided into
three classes. The first class inherits PDE-based
techniques from analogous problems arising in
image processing and addresses the task by us-
ing linear/nonlinear diffusion equations, see, e.g.,
[6, 7], with particular care to preserve local cur-
vature features [8]. Recently, also thanks to their
considerable impact in the image processing field,
two further major approaches have started to be
investigated: data-driven and optimization-based
methods. Approaches belonging to the former
class aim to learn the relationship between noisy
geometry and the ground-truth geometry from
a training dataset, see, e.g., [9]. Optimization-
based mesh denoising methods formulate the mesh
restoration problem as a minimization problem
where a denoised mesh best fitting to the input
mesh while satisfying a prior knowledge of the
ground-truth geometry and noise distribution is
sought. These approaches grew their popularity
more and more also thanks to rapid development
of studies on sparsity-inducing penalties. Among
them, penalty terms aimed at approximating the
`0 pseudo-norm have been directly applied for
denoising mesh vertices in [10] and noisy point
clouds in [11]. However, the strong geometric
bias favoured by the use of the `0 pseudo-norm
can produce spurious overshoots and fold-backs,
hence these methods may become computation-
ally inefficient, even under small amounts of noise.
Alternatively, an `1 penalty can be used. This is
very frequent in recent sparse image/signal pro-
cessing problems as well as in the mesh processing
community, see, e.g., [12], where `1-sparsity was
adopted to denoise point sets in a two-phase
minimization strategy. As it is well-known, the
`1 norm tends to underestimate high-amplitude
values, thus struggling in the recovery under high-
level noise and presenting undesired staircase and
shrinkage artifacts.

In this work, we focus on an optimization-
based approach for mesh denoising, and exploit a

non-convex penalty approximating the `0 pseudo-
norm so as to induce sparsity without artifacts and
promoting fairness.

As far as the hole filling or repairing prob-
lem is concerned, standard approaches range from
fourth-order surface diffusion PDE methods [13],
to volumetric approaches mainly based on signed
distance functions to implicitly represent the sur-
face [14, 15]. Other popular non-polygonal meth-
ods rely on Radial Basis Functions implicit inter-
polations [16], and Moving Least Squares [17]. A
commonly-adopted fairness prior is ‖∆V ‖22, pro-
posed for smooth hole filling with the so-called
least squares meshes, see [18].

Our penalty function also favors smoothness.
However, unlike least squares meshes, we adopt
a nonlinear curvature measure - the Willmore
energy - which leads to a more rounded shape
filling.

When some a priori knowledge on the missing
part is available, we can do more than simply fill
the hole as we can complete/repair the hole geom-
etry with a context-aware template patch, with a
minimally distinguishable transition zone. Many
efforts have been devoted to the automatic selec-
tion of the template patch in the object itself,
under a best-matching assumption in a context-
sensitive manner [1, 2], or by similarity between
synthesizing geometry features [19].

Our completion proposal is rather based on the
assumption that the patch to be pasted has been
pre-selected and placed at the desired position by
the user.

3 Variational Recovery Model

Solving the variational problem (1) on surfaces
requires the definition of the discrete manifold rep-
resenting the underlying object of interest as well
as the discrete approximation of the first-order
differential operators involved.

We thus assume M := (V, T ) to be a tri-
angulated surface (mesh) of arbitrary topology
approximating a 2-manifold S embedded in R3,
with V = {vi}nVi=1 ∈ RnV ×3 being the set of ver-
tices, and T ∈ NnT×3 the set of face triangles,
T = {τi}nTi=1. Implicitly, we further denote by E ⊆
V × V ∈ NnE×2 , E = {ej}nEj=1 the set of edges.
We denote the first disk, i.e. the triangle neigh-
bors of a vertex vi, by D(vi) = {τm | vi ∈ τm}.
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Figure 1 Applications of the proposed surface geometry framework: incomplete and noisy surface inputM0 (left); denoised
surfaceM∗ (center, first row), inpainting mask MV and inpainting resultM∗ (center, second row), context-aware comple-
tion of the curly hair detail without inpainting (center, third row); context-aware completion result M∗ with preliminary
inpainting (right). The SD region is represented in blue in the masks.

Figure 2 Examples of ME mask for three different
meshes: blue colors represent values 1, while red colors
represent 0 values.

Let N : RnV ×3 → RnT×3 be the mapping comput-
ing the piecewise-constant normal field over the
triangles of the mesh, where the m-th element is
the outward unit normal at face τm = (vi, vj , vk),
defined as

Nm(V ) :=

(
(vj − vi)× (vk − vi)
‖(vj − vi)× (vk − vi)‖2

)T
∈ R3 ,

m = 1, . . . , nT . (3)

Notice that the normal vector’s sign depends on
the orientation of the face. The desire for con-
sistently oriented normals is that adjacent faces
have consistent orientation. Under this discrete
setting, the scalar functions x, y, z : Ω ⊂ R2 → R
defined on S are sampled over the vertices vi =

(xi, yi, zi) ∈ V of the meshM, and are understood
as piecewise linear functions.

We now introduce the discretization of the gra-
dient operator on a 3D mesh. Since the normal
field is piecewise-constant over the mesh triangles,
the gradient operator vanishes to zero everywhere
but the mesh edges along which it is constant.
Therefore, the gradient operator discretization is
represented by a sparse matrix D ∈ RnE×nT
defined by

Dij =

 li if τj
⋂
τk = ei , k > j,

−li if τj
⋂
τk = ei , k < j,

0 otherwise ,
(4)

where li = ‖ei‖2, i = 1, . . . , nE is the length of
i-th edge.

The matrix D can be decomposed as D = LD̄,
with L = diag{l1, l2, . . . , lnE} being the diagonal
matrix of edge lengths, whose values may be up-
dated during the iteration scheme considered, and
D̄ ∈ RnE×nT an edge-length independent sparse
matrix.

Key ingredients of the proposed formulation
(1) are the two operator masks MV and ME . The
role of the mask ME is to adapt the recovery
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(a) (b) (c) (d) (e)

Figure 3 Effect of the mask ME on the denoising task: original noisy mesh (a); setting ME = 0nE (b); using a space-
variant ME mask (c)-(d); setting ME = 1nE (e). The perturbed sharp sphere on the left panel has been corrupted according
to (32) with γ = 0.15.

according to the surface morphology, while MV se-
lects the region to be preserved in the inpainting
and completion tasks.

ME is a sharp detection mask represented by a
binary vector ME ∈ {0, 1}nE which has 1s in cor-
respondence with sharp edges. Recalling that the
dihedral angle associated to the edge ei is the an-
gle between normals to the adjacent triangle faces
τ` and τs which share ei, we classify ei as a sharp
edge if the dihedral angle θ`s ∈ [0, 360) is greater
than a given threshold th. In formulas

(ME)i =

{
1 if (θ`s > th)
0 otherwise .

(5)

Given ME , its complementary mask is the vec-
tor M c

E = 1nE −ME . Fig.2 shows ME for three
different surface meshes, where we empirically set
th = 30, which typically produces good results.

The influence of the choice of the mask ME

in realizing the denoising task is shown in Fig.3.
The perturbed sharp sphere is illustrated in Fig.3
on the left panel, and the denoised meshes on the
right panel, obtained by applying the proposed
method under the choice ME = 0nE , ME = 1nE ,
in Fig.3(b) and Fig.3(e), respectively. The space-
variant mask ME obtained with th = 30, and
illustrated in Fig.3(c) is applied to obtain the
denoised mesh in Fig.3(d).

Stemming from the consideration by which a
general scanned surface is characterized by sharp
as well as rounded features, we specify the form
of problem (1) to determine solutions V ∗ which
are close to the given data V0 according to the
observation model,

V ∗ ∈ arg min
V ∈RnV ×3

J (V ; ME , λ, a)

J (V ; ME , λ, a) :=
λ

2

nV∑
i=1

((MV )i(Vi − (V0)i))
2

+

+

nE∑
j=1

{
(ME)jφ

(∥∥∥(DN (V ))j

∥∥∥
2

; a
)

+

+(M c
E)j‖(DN (V ))j‖22

}
, (6)

where ‖·‖2 denotes the Frobenius norm. The func-
tional in (6) involves three terms designed to meet
three different and competing requirements that
arise quite naturally from the intuitive concept of
surface recovery: (1) fidelity to the known data;
(2) a parametric (defined in terms of the param-
eter a ∈ R+) discontinuity-preserving smoothing
favoring piece-wise constant normals; (3) smooth
connection between parts and inside unknown re-
gions. The functional is composed by the sum
of smooth convex (quadratic) terms and a non-
smooth non-convex regularization term, thus the
functional J in (6) is bounded from below by
zero, non-smooth and can be convex or non-convex
depending on the values of ME and a.

3.1 Sparsity-inducing penalty

We aim at constructing a parameterized sparsity-
promoting regularizer characterized by a tunable
degree of non-convexity a ∈ R+ inducing spar-
sity on the vector of components ‖(DN )i‖2, i =
1, . . . , nE , which represent the normal variation
between adjacent triangles sharing the i-th edge.

A substantial amount of recent works has stud-
ied the class of sparsity-promoting parametrized
non-convex regularizers, given their provable the-
oretical properties and practical performances [20,
21]. We consider here one of the most effective rep-
resentative of this class, i.e. the Minimax Concave
(MC) penalty φ(·; a) : [ 0,+∞) → R, intro-
duced in [22] and used previously in [23] applied to



Springer Nature 2021 LATEX template

7

‖(DN )i‖2 in the context of mesh editing, defined
by:

φ(t; a) =

{
−a

2
t2 +

√
2a t for t ∈

[
0,
√

2/a
)
,

1 for t ∈
[√

2/a,+∞
)

(7)
which, for any value of the parameter a, satisfies
the following assumptions:

• φ(t; a) ∈ C0(R) ∩ C2(R \ {0})
• φ′ (t; a) ≥ 0 ,

φ′′(t; a) ≤ 0, ∀ t ∈ [0,∞) \ {
√

2/a}
• φ(0; a) = 0, inf

t
φ′′(t; a) = −a.

We denoted by φ′(t; a) and φ′′(t; a) the first-order
and second-order derivatives of φ with respect to
the variable t, respectively.

The parameter a allows to tune the de-
gree of non-convexity, such that φ(· ; a) mimics
the asymptotically constant behaviour of the `0
pseudo-norm for a → ∞, while behaves as an `1
regularization term, for values a approaching to
zero. For values of a in between, the MC penalty
function in (7) is a sparsity-inducing penalty
which preserves sharp features in normal varia-
tions better than `0-pseudo-norm regularizer, and
more accurate than `1 regularizer which tends to
produce shrinkage effects.

This motivated us to use it in the construction
of the regularizer R1(V ; ME).

3.2 Edge-based discretization of the
Willmore energy

Numerical approximations of the Willmore energy
in digital geometry processing and geometric mod-
eling are mainly based either on finite element
discretization and numerical quadrature [24, 25],
or on discrete differential geometry approaches ab
initio. Discrete isometric bending models, derived
from an axiomatic treatment of discrete Laplace
operators [26], the discrete conformal vertex-based
energy well-defined for simplicial surfaces using
circumcircles of their faces [3, 27], and the integer
linear programming approach [28] all fall into the
latter class.

Here, we consider an alternative edge-based
discrete approximation of the Willmore energy
(2) for open triangulated surfaces M represented
by polygonal meshes. This energy is a sum over

contributions from individual edges

E(M) =
1

2

nE∑
j=1

‖ej‖2‖(DN )j‖2, (8)

where (DN )j measures how the surface “curves”
near ej . To derive the continuum limit of (8) in the
limit of vanishing triangle size, we assume that S
is a 2-dimensional manifold of arbitrary topology
embedded in R3 and parameterized by (X,Ω) with
Ω ⊂ R2, an open reference domain, and define

X : Ω→ S; ξ 7→ X(ξ),

the corresponding coordinate map (that is, the
parametrization of S at a given point). We denote
the local coordinates in Ω as (ξ1, ξ2). For a given
point x ∈ X(Ω) ⊂ S, the tangent space TxS at x

is spanned by
{
r1 := ∂X(x)

∂ξ1
, r2 := ∂X(x)

∂ξ2

}
, the in-

duced metric is given by gij = ri · rj , its inverse

is denoted by gij , so that gikgkj = δji , or in ma-
trix notation [gij ] = [gij ]

−1, and its determinant
is defined as

det(g) ≡ |g| = 1

2
εikεjlgijgkl =

1

2
(gijgkl − gikgjl).

The second fundamental form II : TxS×TxS → R
is the symmetric bilinear form represented by the
coefficients Lij = −ri · ∂jn, 1 ≤ i, j ≤ 2.

When the grid size of the triangulation M
is sent to 0, the energy (8) approximates the
Willmore energy as stated by the following Prop.1.

Proposition 1 Let S ⊂ R3 be a 2-dimensional mani-
fold,M an underlying flat triangulated approximation
of S. Let Mj be regular flat triangulated surfaces

Mj ⊂ R3 with size(Mj) → 0 and Mj → S for
j → ∞. Then, the discrete energy (8) approximates
the Willmore energy of S, i.e.

lim
j→∞

E(Mj) =
1

2

∫
S

(h2 − k)dS. (9)

Proof Let us first consider the integrand of (2) in the
continuum, with h = κ1 +κ2 = tr(Lik) being the mean

curvature and k = 1
2κ1κ2 = det(Lik) the Gaussian

curvature where κ1, κ2 represent the principal curva-
tures. The second fundamental form with components
Lij relates with the linear map Lki with respect to
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the basis of TxS, according to the matrix equation:
[gij ][Lij ] = [Lij ], and we denote Lij =

∑
k gikL

k
j ,

1 ≤ i, j ≤ 2. Following notations in [29], we use the
identity

gijgkl = gikgjl + εilεmng
mjgnk

in the integrand of (2) as

h2 − 2k = (Lii)
2 + εilεmnL

m
l L

n
i

= (gikLik)2 + εilεmn(gmjLjl)(g
nkLki)

= gijgklLikLjl.
(10)

Substituting in (10) the Weingarten equations ∂in =
Lki rk and Lki , i = 1, 2, we have

gijgklLikLjl = LjkL
k
j g
kjgjk

= LjkrjL
k
j rkg

kj

= ∂kn · ∂jn gkj
(11)

which is the gradient of the normal vector field.
Therefore, replacing (10)-(11) in (2), we get∫

S
∂kn · ∂jn gkj dS. (12)

For sufficiently fine, non-degenerate tessellations
Mj approximating S, we consider a partition of
the undeformed surface S into the disjoint union of
diamond-shaped tiles, T̄ , associated to each mesh
edge e. Following Meyer et al.[30], one can use the
barycenter of each triangle to define these regions or,
alternatively, the circumcenters. Over such a diamond
partition, the integral (12) is defined as the sum over
all the diamond tiles, which reads∫

S
∂kn · ∂jn gkj dS =

nE∑
i=1

∫
(T̄ )i

|∂in|2 dT̄ . (13)

If the triangles do not degenerate, we can approxi-
mate the area of the diamond related to the edge ei
in Mj by ‖ei‖2, i.e. dT̄ ≈ ‖ei‖2, which implies that

|∂in|2 dT̄ ≈ ‖(DN )i‖2‖ei‖2. �

The result of the limiting process depends on
the triangulations considered. In particular, we
assume the triangulations of S consist of almost
equilateral triangles. For our purposes, the dis-
crete Willmore energy will be used based on the
observation that (2) is invariant under rigid mo-
tions and uniform scaling of the surface, which
implies that E(S) itself is a conformal invariant of
the surface S, see [3].

Remark 1 Even if the introduced discrete formulation
is very simple when compared with the ones intro-
duced in [3, 31], it practically produces good results. In
order to validate the effective applicability of the pro-
posed discrete Willmore energy, we evaluated E(M)

in (8) on a uniformly tessellated sphere, for decreasing
average edge-size h = {0.1208, 0.0308, 0.0076}. The
achieved energy values E(Mh1

) = 0.1182, E(Mh2
) =

0.0075, E(Mh3
) = 0.00047, tend to zero, as theoreti-

cally expected from (2).

4 Numerical solution of the
optimization problem

In this section, we illustrate the ADMM-based it-
erative algorithm used to compute the numerical
solution of (6).

In order to define the ADMM iteration on tri-
angular mesh surfaces, we first consider a matrix
variable N ∈ RnT×3 with row components defined
as in (3), and resort to the variable splitting tech-
nique by defining t ∈ RnE×3 as t := DN , where
D is defined in (4). The optimization problem (6)
can be thus reformulated as

{V ∗, N∗, t∗} ∈

arg min
V,N,t

{
λ

2

nV∑
i=1

((MV )i(Vi − (V0)i))
2

+

+

nE∑
j=1

[
(ME)jφ (‖tj‖2; a) + (M c

E)j‖tj‖22
] }

,

s.t. t = DN, N = N (V ) . (14)

We define the augmented Lagrangian func-
tional associated to problem (14) as

L(V,N, t, ρ1, ρ2; λ, β1, β2, a) :=

λ

2

nV∑
i=1

((MV )i(Vi − (V0)i))
2

+ (15)

+

nE∑
j=1

[
(ME)jφ

(
‖tj‖2 ; a

)
+ (M c

E)j‖tj‖22−

−
〈
ρ1j , tj − (DN)j

〉
+
β1

2
‖tj − (DN)j‖22

]
+

+

nT∑
m=1

[
−〈ρ2m , Nm −Nm(V )〉+

β2

2
‖Nm −Nm(V )‖22

]
,

where β1, β2 > 0 are scalar penalty parame-
ters, and ρ1 ∈ RnE×3, ρ2 ∈ RnT×3 represent
the matrices of Lagrange multipliers associated
to the constraints. We now consider the following
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saddle-point problem:

Find (V ∗, N∗, t∗, ρ∗1, ρ
∗
2) ∈ RnV ×3×

× RnT×3× RnE×3× RnE×3× RnT×3

s.t. L(V ∗, N∗, t∗, ρ1, ρ2) ≤
≤ L (V ∗, N∗, t∗, ρ∗1, ρ

∗
2) ≤ L (V,N, t, ρ∗1, ρ

∗
2),

∀(V,N, t, ρ1, ρ2) ∈ RnV ×3×
× RnT×3× RnE×3× RnE×3× RnT×3. (16)

An ADMM-based iterative scheme can now be
applied to approximate the solution of the saddle-
point problem (15)–(16). Initializing to zeros both

the dual variables ρ
(0)
1 , ρ

(0)
2 and setting N

(0)
m =

Nm(V (0)) , m = 1, . . . , nT , the k-th iteration of
the proposed alternating iterative scheme reads:

t(k+1) = arg min
t∈RnE×3

L(V (k), N (k), t; ρ
(k)
1 , ρ

(k)
2 ) ,

(17)

N (k+1) = arg min
N∈RnT×3,
‖Nτ‖=1

L(V (k), N, t(k+1); ρ
(k)
1 , ρ

(k)
2 ) ,

(18)

V (k+1) = arg min
V ∈RnV ×3

L(V,N (k+1), t(k+1); ρ
(k)
1 , ρ

(k)
2 ) ,

(19)

ρ
(k+1)
1 = ρ

(k)
1 − β1

(
t(k+1) −DN (k+1)

)
, (20)

ρ
(k+1)
2 = ρ

(k)
2 − β2

(
N (k+1) −N

(
V (k+1)

))
.

(21)

The updates of Lagrangian multipliers ρ1 and
ρ2 have closed form. In the following we show
in detail how to solve the three minimization
sub-problems (17),(18) and (19) for the primal
variables t, N and V , respectively.

Sub-problem for t.
The minimization sub-problem for t in (17) can

be explicitly rewritten as:

t(k+1) = arg min
t∈RnE×3

nE∑
j=1

[
(ME)jφ

(
‖tj‖2 ; a

)
+

+(M c
E)j‖tj‖22 −

〈
ρ1j , tj − (DN)j

〉
+

+
β1

2
‖tj − (DN)j‖22

]
, (22)

where we omitted the constant terms in (15).
Due to the separability property of φ(·; a), prob-
lem (22) is equivalent to nE independent, three-
dimensional problems for each tj , j = 1, . . . , nE in
the form

t
(k+1)
j = arg min

tj∈R3

{
φ
(
‖tj‖2 ; a

)
+
α

2
‖tj − r(k+1)

j ‖22
}
,

(23)
where

r
(k+1)
j :=

1

β1 + 2(M c
E)j

(
β1

(
DN (k)

)
j

+
(
ρ

(k)
1

)
j

)

and α =
β1+2(Mc

E)j
(ME)j

. where we conventionally set
x
0 = 0.

Necessary and sufficient conditions for strong
convexity of the cost functions in (23) are demon-
strated in [32]. In particular, problems (23) are
strongly convex if and only if the following condi-
tion holds:

β1 + 2(M c
E)j

(ME)j
> a,∀j = 1, . . . , nE =⇒

=⇒ β1 = εmax
j
{(ME)ja− 2(M c

E)j} , for ε > 1.

(24)

We noticed that the sub-problem is always convex
when tj has associated (ME)j = 0, as it eliminates
φ(·; a) from the sub-problem.

Whenever (24) holds, the unique minimizers of
(23) can be obtained in closed form as

t
(k+1)
j = min(max(ν − ζ/‖rj‖2, 0), 1) rj ,

where ν =
α

α− a
and ζ =

√
2a

α− a
.

We remark that the condition on β1 in (15)
only ensures the convexity conditions (24) of
t-subproblem (23), but does not guarantee conver-
gence of the overall ADMM scheme.

Sub-problem for N . The minimization sub-
problem (18) for N can be reformulated as:

N (k+1) = arg min
N∈RnT×3,
‖Nτ‖=1

{
β1

2
‖t(k+1) −DN‖22+

+
〈
ρ

(k)
1 , DN

〉
−
〈
ρ

(k)
2 , N

〉
+
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+
β2

2

∥∥∥N −N (V (k)
)∥∥∥2

2

}
.

The first optimality conditions lead to the fol-
lowing three linear systems, one for each spatial
coordinate of N ∈ RnT×3(

DTD +
β2

β1
I

)
N = (25)

β2

β1
N
(
V (k)

)
+
ρ

(k)
2

β1
+DT

(
t(k+1) − 1

β1
ρ

(k)
1

)
.

Since β1, β2 > 0, the linear system coefficient
matrix is sparse, symmetric, positive definite and
identical for all three coordinate vectors. The sys-
tems can thus be solved efficiently by applying,
e.g., a unique Cholesky decomposition. At each
iteration, the edge lengths diagonal matrix L in
D = LD̄, defined in (4), needs to be updated as
the vertices V move to their updated position.
For large meshes, an iterative solver warm-started
with the solution of the last ADMM iteration, is
rather preferred. A normalization is finally applied
as N represents a normal field.

The reconstructed normal map N∗ obtained
by solving (14) via the proposed ADMM, satisfies
the orientation consistency, as proved in [5], thus
reducing the foldovers issue. This property is not
trivially satisfied by most of the two-stage mesh
denoising algorithms (normal smoothing and ver-
tex update). They present the normal orientation
ambiguity problem in the vertex updating stage,
which provokes ambiguous shifts of the vertex po-
sition due to direction inconsistency of the normal
vectors [33, 34]. In [35], this issue is solved by an
orientation-aware vertex updating scheme.

Sub-problem for V . Omitting the constant
terms in (15), the sub-problem for V reads

V (k+1) = arg min
V ∈RnV ×3

JV (V ) (26)

JV (V ) :=
λ

2

nV∑
i=1

((MV )i(Vi − (V0)i))
2

+

+

nT∑
m=1

[〈
ρ

(k)
2m
,Nm(V )

〉
+

+
β2

2

∥∥∥N (k+1)
m −Nm(V )

∥∥∥2

2

]
.

The functional JV (V ) is proper, smooth, non-
convex and bounded from below by zero. A
minimum can be obtained applying the gradient
descent (GD) algorithm with backtracking satis-
fying the Armijo condition or using the BFGS
algorithm. In order to balance between the slow
convergence properties of GD and the high compu-
tational costs required to compute the operators
involved in the BFGS method, we also consid-
ered a heavy-ball type rule, following [36], and its
extension with backtracking (covering also non-
smooth problems) given in [37]. In particular, the
heavy-ball method is a multi-step extension of gra-

dient descent, which, starting from V
(0)

= V (k),
iterates over V as follows

V
(j+1)

= V
(j) − αj ∇J(V

(j)
) + δj(V

(j) − V (j−1)
),

j = 1, 2, . . . (27)

where αj > 0 is a step-size parameter and 0 ≤
δj < 1. Note that for δj = 0, (27) reduces to the
gradient descent method. In [37], convergence of
the scheme above to stationary points is proved
in the context of non-convex cost functions as the
one in (26), with an extension also to non-smooth
scenarios.

All the numerical optimization methods here
considered rely on a easily computable formula for
the gradient of the functional JV in (26), which is
derived in the following.

Proposition 2 Let
sτm := ‖(vj − vi)× (vk − vi)‖2/2 be the area of the
triangle τm = (vi, vj , vk) with updated vertices in V ,
and Nm(V ) = ((vj − vi)× (vk − vi))/(2sτm). For all
triangles m = 1, . . . , nT ,

∇viJV (V ) = λ(MV )i(vi − v0
i )+

+
∑

τm∈D(vi)

1

2sτm

[(
ρ

(k)
2m
− β2N

(k+1)
m

)
−

−
〈
ρ

(k)
2m
− β2N

(k+1)
m ,Nm(V )

〉
Nm(V )

]
× (vk − vj).

(28)

Proof The gradient of JV (V ) in (26) w.r.t vertex vi ∈
V , i = 1, . . . , nV is non-zero only over the triangles
sharing vi which are contained in the first disk D(vi).
Therefore the sum in (26) is reduced to

∇viJV (V ) = λ(MV )i(vi − v0
i )+
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∑
τm∈D(vi)

τm=(vi,vj ,vk)

∇vi


〈
z

q
, (vj − vi)× (vk − vi)

〉
︸ ︷︷ ︸

gi

 ,

where z = ρ
(k)
2m
−β2N

(k+1)
m , q = ‖(vj−vi)×(vk−vi)‖2,

and the third term in (26) reduces to the scalar prod-

uct gi since both N
(k+1)
m and Nm(V ) have unitary

norm. In order to compute ∇vi(gi), we resort on the
following two properties, which hold for every constant
vectors w, u ∈ R3 and can be easily proved:

1. ∇vi
(
〈w, (vj −vi)× (vk−vi)〉

)
= w× (vk − vj) ;

2.

∇vi
(〈

w

‖(vj − vi)× (vk − vi)‖2
, u

〉)
=

− 〈w, u〉 (vj − vi)× (vk − vi)× (vk − vj)
‖(vj − vi)× (vk − vi)‖32

.

(29)

To evaluate the product rule derivative, we apply
property 1, with w = z/‖(vj − vi) × (vk − vi)‖2 for
the left-side term constant, while property 2 is applied
with w = z and u = (vj − vi) × (vk − vi) for a right-
side term kept constant. Combining the results leads
to the explicit formula for ∇vigi:

∇vigi(V ) =

(
ρ

(k)
2m
− β2N

(k+1)
m

)
× (vk − vj)

‖(vj − vi)× (vk − vi)‖2

−

〈
ρ

(k)
2m
− β2N

(k+1)
m , (vj − vi)× (vk − vi)

〉
[
(vj − vi)× (vk − vi)× (vk − vj)

]
‖(vj − vi)× (vk − vi)‖32

,

(30)

which reduces to (28). �

In Figure 4 (first and second rows) we re-
port the graphs showing both the energy decay
and the gradient norm decay for the three differ-
ent algorithms used, i.e. GD (with and without
backtracking), BFGS and heavy-ball with back-
tracking. The plots are related to the meshes
twelve (first column) and block (second column) as
representative of the entire set of meshes analyzed
in the experimental section.

We remark that the use of Armijo-type back-
tracking rule is justified by the difficult expression
(28), which makes the accurate estimation of the
Lipschitz constant LJV of∇JV (V ) quite challeng-
ing. In the proposed strategy, a (typically) initially

large step-size α0 is then reduced depending on
whether the following inequality is verified:

JV (V
(j+1)

) ≤ JV (V
(j)

)− c1 α ‖∇JV (V
(j)

)‖22
(31)

with c1 ∈ (0, 1) and where V
(j)

denotes the j-th
update of V given by (27).

From the convergence plots we notice that
upon a manual selection of a sufficiently small
constant step-size α the convergence of plain GD
without backtracking is as good as the one of the
heavy-ball algorithm combined with backtracking.
However, the former choice is problem-dependent,
hence a backtracking strategy automatically ad-
justing the value of α to an appropriate size is
preferred.

The graphs in Figure 4 (third row) show the ro-

bustness to the initialization V
(0)

, and show that
both GD and heavy-ball with backtracking are
consistent, regardless of the chosen initialization.
However, the natural and most efficient choice for

V
(0)

is a warm start given by the matrix V (k) ob-
tained as a solution of the problem (26) in the
previous ADMM iteration.

The rigorous analysis of the convergence prop-
erties of our proposed three block ADMM scheme
following, e.g., [38] is not easy to derive. However,
we will provide some evidence of the numerical
convergence in Section 6.

5 A practical use of the
geometry repair framework

In the following we provide some details for the
practical use of the geometric framework intro-
duced above in view of its application to the three
different tasks we are interested in.

Feature-aware mesh denoising. The goal of a
surface denoising algorithm is to remove undesir-
able noise or spurious information on a 3D mesh,
while preserving original features, including edges,
creases and corners. The restored surface is a 3D
mesh that represents as faithfully as possible a
piecewise smooth surface, where edges appear as
discontinuities in the normal field. To achieve this
goal, the natural choice is to set in (6) MV = 1nV
and defineME as in (5), so as to distinguish salient
edges from smooth regions. In case of severe noise,
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Figure 4 First and second rows: plots of the energy JV
(first row) and gradient norm (second row) decay for sub-
problem (26) with GD (with and without backtracking),
heavy-ball update with backtracking and BFGS . Third
row: energy decay for GD with backtracking and heavy-ball
with backtracking, for three different initializations V (0).
First column mesh twelve and second column mesh block

corrupted by noise level γ = 0.2.

Figure 5 Empirical convergence of ADMM algorithm for
some reconstructed meshes.

the estimate of the mask ME may be affected by
false edge detections. In such case, we suggest to
recompute the edge mask ME along the ADMM
iterations.

Smooth hole filling/inpainting. In contrast to
techniques for image inpainting, which make use of
the given spatial structure of the data (the regular
grid of an image), surfaces lack a natural under-
lying spatial domain, which brings an additional
degree of freedom in the setting of problem. At the

same time, vertices’ positions encode both func-
tion values and the domain of the function to be
reconstructed. The initial mesh, M0 = (V0, T0)
thus has to be set as the original (possibly noisy)
incomplete mesh with trivially enclosed and la-
beled disconnected holes - region SD - marked as
zeros in MV . On the other hand, the mask ME

can still be defined as in (5), by additionally forc-
ing zero values on the edges in SD. The proposed
geometric repair algorithm then performs simulta-
neously denoising, outside the holes, and smooth
filling in the internal part of the holes, through the
regularizer R2.

Context-aware completion. In some applica-
tions smooth filling of holes is not sufficient: this
is the case in archaeology and in general cultural
heritage applications where the main goal is the
reconstruction of a digital twin of a cultural her-
itage object. Some parts of the original 3D model
can be damaged or missing but can be completed
by means of characteristic parts taken from the
object under consideration or from others. Given
the original incomplete meshM0 with a region of
interest bounded by a curve b0 and characterized
by vertices V̄ ⊂ V0 and triangles T̄ ⊂ T0, together
with a template patch P = (VP , TP), bounded by
a curve bP , we build a repaired mesh M∗ by re-
placing (V̄ , T̄ ) by (VP , TP) and blending the two
parts through the proposed variational model.

Note that, in case the region of interest onM0

that has to be completed is a hole, then trivially
(V̄ , T̄ ) are empty sets.

We assume that the template patch P is prop-
erly aligned in the correct position and that both
polygonals b0 and bP are approximants of ori-
ented, closed, simple curves in R3 with the same
same number of vertices. The correct positioning
can thus be performed either automatically (by
rigid body transformation algorithms) or through
user interaction.

A narrow band around b0, named strip(b0),
containing at least 2-disk of triangle neighbors ad-
jacent to b0, plays the role of SD. Hence MV is
the characteristic function of M0 \ strip(b0), i.e.
is zeros only on strip(b0).

The operator mask ME has values one for each
sharp edge in both M0 \ strip(b0) and P. Ac-
cording to the user desiderata, the blending can
be performed in three different ways: edges in
strip(b0) all zeros in ME to force a smooth joint
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with the template; edges in strip(b0) all ones, to
keep a sharp connection; edges in strip(b0) defined
by the spatially adaptive ME in (5) to main-
tain geometric continuity G0/G1 over the blended
region.

The vertices V ∗ of the completed surface M∗
are obtained by minimizing (6), properly initial-
ized with V (0) = (V0 \ V̄ )∪ VP , while maintaining
the connectivity defined by T ∗ = (T0 \ T̄ ) ∪ TP .
The connectivity T ∗ is automatically achieved as
we imposed b0 ≡ bP .

We refer the reader to Fig. 1 for visual repre-
sentation of the three different tasks performed.
Moreover, Section 6 offers additional insights.

6 Numerical Examples

We validate the proposed geometric framework
both qualitatively and quantitatively on a variety
of benchmark triangulated surfaces characterized
by different sharpness and smoothness features
and on some real datasets.

At the aim of a quantitive validation, meshes
M0 = (V0, T0) have been synthetically corrupted.
The noisy vertices in V0 correspond to underlying
noise-free vertices VGT by the following additive
degradation model

V0 = VGT + η d , (32)

where the product η d accounts for the noise
perturbations. Namely, η ∈ RnV is assumed to
be at each vertex independently and identically
distributed as a zero-mean Gaussian random vari-
able, i.e. ηi ∼ Gauss(0, σ2), i = 1, . . . , nV , with
known variance σ2, and d ∈ RnV ×3 is a vector
field of noise directions with elements di ∈ R3, i =
1, . . . , nV , which can be either random directions
or the normals to the vertices. The perturbations
are thus characterized by a noise level γ ∈ R+ de-
fined by σ = γl̄, with l̄ representing the average
edge length.

Quantitative evaluation is done in terms of
the following error metrics, which measure the
discrepancy of the computed V ∗, N∗ w.r.t. the
noise-free mesh VGT , NGT :

• Mean squared angular error (MSAE)

MSAE = E[∠(NGT , N
∗)2] , (33)

• L2 vertex to vertex error (EV )

EV =
‖V ∗ − VGT ‖F

nV
. (34)

For all the tests, the iterations of the ADMM
algorithm are stopped as soon as either of the two
following conditions is fulfilled:

k > 200 ,
∥∥V (k+1) − V (k)

∥∥
2
/
∥∥V (k)

∥∥
2
< 10−6.

(35)
Fig. 5 shows the energy decay curve versus

the number of iterations for some of the meshes
reported in this section. We observe that for
all meshes considered the energy converges to
a stationary value. This represents an empiri-
cal validation on the numerical convergence of
the proposed ADMM-based minimization scheme.
Having performed a comparative analysis between
inner solvers in Section 4, we used the GD al-
gorithm with backtracking for solving the sub-
problem for V , with warm start strategy allowing
us to restrict to a few number (three in our ex-
periments) of GD iterations while achieving good
relative accuracy.

With respect to the comparisons showed with
competing approaches for mesh repairing, we re-
mark that most of them are based on hierarchical
data structures and combined with various heuris-
tic algorithms. On the contrary, the results pre-
sented in the following are directly derived from
the solution of the proposed unified mathemati-
cal optimization problem and do not require any
heuristic post-processing procedures.

All the meshes are rendered in flat shading
model and visualized using ParaView software.

Example 1: feature-aware denoising. To
evaluate the performance of the proposed
method for mesh denoising, we compared the
results with other state-of-the-art variational
methods for mesh denoising, namely the meth-
ods introduced in [10, 33, 34, 39], which have
been kindly provided by authors of [39] at
https://github.com/bldeng/GuidedDenoising,
and a learning-based approach, presented in [9].
For each method, we show their best results
achieved by tuning the corresponding set of
parameters.

Fig. 6 shows the denoised meshes colored by
their mean curvature scalar map, with fixed range,
together with zoomed details on mesh edges. From
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[34]

[33]

[10]

[39]

[9]

Figure 6 Examples of denoising: results of noisy-free input meshes (first row) corrupted by noise levels γ =
{0.15, 0.3, 0.3, 0.2, 0.2}, from left to right.
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a visual inspection we notice remarkable overlaps
in the denoised meshes obtained from the other
compared methods, and severe perturbations of
the triangle shapes in the reconstructed meshes.
To further demonstrate how robust our approach
is w.r.t. to increasing noise perturbation, in Fig.
7 we reported qualitative and quantitative results
for noise levels γ = {0.2, 0.2, 0.3, 0.4, 0.5, 0.6} -
from top to bottom. In the last row the mesh has
been corrupted by arbitrary perturbations on the
noise directions (di) in (32). Below each recovered
surface, we report the quantitative evaluations
according to the two error metrics (MSAE ×
102, EV × 106). Both quantitatively and qualita-
tively the results confirm the effectiveness of the
proposed variational model in preserving sharp
features while smoothly recovering rounded parts.
Finally, we can comment on the efficiency of
our algorithm which computational time is, on
average, one order less than the `2 − `0 denois-
ing method [11] which is the slowest, while it is
comparable to the other compared methods.

To improve the estimation of mask ME for se-
vere noise, we dynamically updated the edge mask
ME every three ADMM iterations.

Example 2: hole filling/inpainting. We ap-
plied our geometric framework for the recovery of
various meshes M0 which exhibit holes or dam-
aged parts. Fig.2 illustrates the basic workflow
for the inpainting task on angel mesh which takes
as input the original eventually noisy mesh M0

(Fig.2, left) and the inpainting mask MV , which
can be of arbitrary topology, in the figure the holes
to be filled are marked as 0 in MV and blue col-
ored. The recovery of angel mesh using smooth
hole filling is illustrated in Fig.2(second row).

Fig.8 (first row), shows the challenging Igea
mesh which presents a deep groove on the left
side of the mouth and a shallower one on the
right cheek. Our geometric framework was able
to inpaint the shallower hole perfectly, while the
deep one was filled in a satisfactory, even if not
complete, way. This is justified by the differ-
ent contribution of Willmore vs sparsity-inducing
penalties. The latter acts more strongly with re-
spect to the former, especially for high levels of
noise. Hence, adding suitable weights to the two
penalties could overcame to this disparity.

The data set minerva shown in Fig.8 (second
row, first column) presents a few holes caused by

the scanner acquisition, in the head and under the
nose. Moreover, a vertical strip has been intention-
ally added to the inpainting region SD in order
to remove the groove provoked by the gluing of
the two parts of the minerva’s face. This dataset
has been provided by ENEA, Bologna, Italy, and
acquired by a VIVID laser scanner. The dataset
presents inherent noise due to the optical acquisi-
tion system. The result of repairing the damaged
geometry and filling surface holes is illustrated in
Fig.8(c).

In Fig.8 (third row) the inpainting frame-
work has been applied to repair a shard from
neolitic pottery received by the CEPAM labora-
tory (CNRS France), obtained by fusion of more
fragments. The inpainting region, shown in Fig.8
(third row, second column) has been intentionally
imposed to eliminate obvious fractures between
joined fragments.

Example 3: context-aware completion. We
finally applied context-aware completion as an
editing tool for seamless object fusion. Comple-
tion results for the meshes lion, screwdriver, and
igea are illustrated in Fig.9-10. The templates P
smoothly complete the original surfaces.

A critical aspect in context-aware completion
is the continuity imposed in the joint region, which
we denoted by strip(b0). Conditions for geomet-
ric continuity between parametric surfaces are well
assessed, while for meshes a rigorous treatment on
this topic is still missing. In our framework, ac-
cording to the user’s desiderata, the template P
can be joined to M0, both smoothly, by setting
ME(strip(b0)) ≡ 0, in a sharp manner by setting
ME(strip(b0)) ≡ 1, or in a blended fashion by sim-
ply using the ME mask of one of the two meshes
(or even a combination of them). Therefore, im-
posing different continuity conditions for strip(b0)
means to define in a different way the mask ME

in correspondence to the strip(b0).
A typical example is shown in Fig.11(left

panel) where a synthetically created hole on the
fandisk mesh M0 is filled with a similar corner
patch - template P cyan colored. In the right
panel, we report details onto the completion area
M0 ∪ P (a), output M∗ for ME(strip(b0)) ≡
0 (b), M∗ for ME(strip(b0)) ≡ 1 (c), M∗ for
ME(strip(b0)) estimated from dihedral angles (d).
Note that the initial boundary bP was larger than
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γ = 0.2 (0.62;3.84) (2.11;8.96) (0.79;4.24) (1.37;5.53) (1.02;4.92)

γ = 0.2 (0.93;130) (2.40;170) (1.52;160) (2.99;210) (3.70;230)

γ = 0.3 (2.15;6.42) (3.05;7.15) (2.19;6.37) (4.82;14) (2.25;6.56)

γ = 0.4 (3.98;51.3) (13.56;72.6) (10.55;54.3) (7.97;93.7) (9.79;62.4)

γ = 0.5 (2.85;41.7) (9.84;74.4) (6.18;43.4) (10.7;71) (8.33;69.2)

γ = 0.6 (3.17;88.0) (10.6;144) (11.8;150) (5.93;180) (6.45;143)

γ = 0.2 (2.5;5.9) (4.51;6.33) (6.16;6.87) (4.2;6.53) (5.34;6.56)

input V 0 ours [34] [33] [10] [39]
Figure 7 Examples of denoising: comparison of our denoising framework with related works on meshes synthetically
corrupted by noise levels γ. Reported metrics: (MSAE × 10−2; EV × 10−6)
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(a) (b) (c)

Figure 8 Examples of surface inpainting: (a) original
damaged object; (b) inpainting mask MV ; (c) inpainted
surface.

b0 and slightly shifted. Nevertheless, the feature-
adaptive regularization perfectly respects the con-
tinuity of strip(b0), as illustrated in Fig.11(d),
while a smooth mask - Fig.11(b) - destroys the
sharp edges, and a non-smooth joint - Fig.11(c) -
creates artefact features.

7 Conclusions

We presented a novel geometric framework for
denoising, inpainting and context-based comple-
tion for the recovery of damaged and incom-
plete scanned data. In contrast to volumetric
approaches which use complex data structures and
sophisticated procedures, we formulate the solu-
tion of the three tasks in terms of a single varia-
tional problem which is parameterization-free and
normal consistent. The proposed approach is in-
tended to repair damaged and incomplete meshes
resulting from range scanning as well as for all
modeling operations aiming at replacing damaged
or missing parts of the surface. Future investiga-
tions will focus on the study of the theoretical
convergence of the proposed numerical algorithm,
which minimizes a functional that is spatially
variant and characterized by a convex-non-convex
structure: it varies spatially from being convex

(due to the presence of the Willmore energy) to
non-convex (MC penalty) according to the mask
operator ME . Nevertheless, the algorithm demon-
strates empirical convergence and very satisfying
practical performance. The encouraging results
can further be extended to the completion of miss-
ing part of objects and template patches with
boundaries of different topology in order to vali-
date the process on more realistic cases. Finally, a
future direction will be to couple the proposed ap-
proach with image inpainting models favoring the
completion of texture-like regions.
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