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NONPARAMETRIC ADAPTIVE ESTIMATION FOR INTERACTING
PARTICLE SYSTEMS

F. COMTE®, V. GENON-CATALOT®

ApsTRACT. We consider a stochastic system (X} (¢),i = 1,...,N) of N interacting particles
with constant diffusion coefficient and linear drift b(¢, z, ) = a(t)z —B(t) [(z —y)p(dy) depend-
ing on two unknown deterministic functions a(t), 3(t). Our concern here is the nonparametric
estimation of these functions from a continuous observation of the process on [0,77] for fixed
T and large N. We define two collections of projection estimators & (t),7, (t) respectively of
a(t),y(t) = a(t) — B(t) where for each m (resp. p), am(t) (resp. 7,(t)) belongs to a finite
dimensional subspace of 12([0,7]). We study the L>-risks of these estimators where the risk is
defined either by the expectation of an empirical norm or by the expectation of a deterministic
norm. Afterwards, we propose a data-driven choice m (resp. p*) of the value m (resp. p) and
study the risk of the adaptive estimators. The case of 3(t) = 0 is also treated separately. The
results are illustrated by numerical experiments on simulated data.

Keywords and phrases: Interacting particle systems, nonparametric inference, projection estima-
tors, adaptive method.

June 16, 2022

1. INTRODUCTION

Stochastic systems of N interacting particles have received a lot of attention in the past
decades. First arisen in Statistical Physics for the modelling of granular media (Benedetto
et al., 1997), these models progressively appear in many other fields of applications such as
Mathematical Biology (Molginer and Edelstein-Keshet, 1999, Baladron et al., 2012), Epidemics
Dynamics (Britton et al., 2020) or Finance (Giesecke et al., 2020). The probabilistic properties of
these models, especially their behaviour as NV is large, have been largely studied (see e.g. among
many references Méléard, 1996, Sznitman, 1991). On the contrary, the statistical inference for
interacting particles remained unstudied for many years with the exception of Kasonga (1990)
who studied the maximum likelihood estimation of = («, 3) from the observation on the interval

[0, T of the N-dimensional system given by: dXN (t) = {a XN (£)—B[XN (t)— X n ()] dt+dWi(¢),
with X(0) = X§,i = 1,...,N, and Xn(t) = NN XN@), (Wii = 1...,N) are N
independent Brownian motions, X§,7 = 1,..., N are i.4.d. random variables independent of
(W;,i = 1...,N). A multivariate version of Kasonga’s model where XV (t) € R? is studied

in Chen (2021). The general model can be described as a N-dimensional stochastic differential
equation of the form

dX ¥ (t) = b(t, X (), v (1)) dt + o (t, X[ (t))dWi(t)
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where puy(t) = N1 Z;V:1 5X]N (t) is the empirical measure associated with (XN(@t),i=1,...,N).

The drift function is often modelled as b(t, z, 1)) = V(z) — [ ®(z — y)pu(dy) and ® represents the
interaction term between particles. In this context, Lu et al. ( 2019) consider the nonparametric
estimation of the interaction function in a deterministic system where V =0 and ¢ = 0. Li et
al. (2021) are interested in characterizing the identifiability of the interaction function. Sharrock
et al. (2021) study a parametric model for the drift and estimation by maximum likelihood. In
Pavliotis and Zanoni (2021), the point of view of martingale estimating equations is developed for
parametric inference based on discrete observations of the system. Della Maestra and Hoffmann
(2022) study the nonparametric estimation of the function b(¢,x, 1) by a kernel approach. Be-
lomestny et al. (2022) consider a semiparametric model for the interaction function and estimate
the nonparametric part by a kernel approach.

In this paper, we consider a linear drift b(t,z, u) = a(t)x — B(t) [(z — y)u(dy), i.e. (XN (t),i=
1,...,N) is given by

(1) ax2(0) = {a®)XY @) - BOIXN (1) - Xn 0] bt +aWie), XY (0) = Xjyi=1,..., N,

where «a(t), 5(t) are deterministic unknown functions and Y]]:;[(t) is the empirical mean of the
sample, (W;,i = 1...,N) are N independent Brownian motions, X§,i = 1,..., N are i.i.d.
random variables independent of (W;,i = 1...,N), as in Kasonga (1990). Our concern here is
the nonparametric estimation of the functions («(t), 5(t)) from a continuous observation of the
process the process (XN (¢),i = 1,...,N) on [0,7] with fixed T and N — +oo. Note that this
model was proposed by Bishwal (2011) as an extension of Kasonga’s model. However, in this
paper, nothing is done concerning the estimation of the functions «(t), 5(t). If 5(t) = 0, the
processes XZ.N (t),i=1,...,N are independent. In this context, the nonparametric estimation of
the unknown function «(t) by the method of sieves is considered in Nguyen and Pham (1982).
If 3(t) # 0, then the N processes are no more independent and (X;¥(t),i = 1,..., N) constitute
a system of interacting particles. The interest of model (1) lies is the fact that, contrary to more
general models, computations can be done explicitely.

Not surprisingly, two processes play a crucial role, the empirical mean and the empirical variance
of (XN(t),i=1,...,N):

N
@) X() = XN =+ X0,
=1
Ry N ~Neyz - L - N2 N )2
(3) V() = V() = SO0 - XN = 5 SN ) - (X))
i=1 =1

We prove that each one follows an autonomous stochastic differential equation with small diffu-
sion term and that the two equations are driven by independent Brownian motions. The equation
of X (t) only depends on «(t) and the equation of V() only depends on (t) = a(t) — 5(t). This
is why we concentrate on estimating «(t),~y(t) and this will be done by two separate contrasts.
As N tends to infinity, both processes X (t), V (t) converge almost surely uniformly on [0,7] to
a deterministic function (respectively z(t) and v(¢)) (Propositions 1 and 2 ). We assume that
EX;(0) # 0 and VarX;(0) # 0. Under this assumption, we characterize the probability of de-
viation of P(supye oz [(X2(8)/2(t)) — 1] > 6) and P(supyeio.z) [(V(8)/0(8) — 1] > 6) (we apply
them for § = 1/2) (Propositions 3 and 4).

We define two collections of minimum contrast estimators &, (t), 7, (t) respectively of a(t), v(t).
For each m (resp. p), am(t) (vesp. 7, (t)) belongs to a finite dimensional subspace of L2([0,T7).
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We study the L2-risks of these estimators where the risk is defined either by the expectation of
an empirical norm or by the expectation of a deterministic norm (Propositions 7 and 8). For
the estimation of a(t), the empirical norm and the deterministic weighted norm are given for a
function h of L2([0, T]) by

T T
(4) Il = [ wExwde e = [ iR
0 0
For the estimation of v(t), they are given by
T T
(5) iy = [ v, 2= [ i@

Thanks to Propositions 3 and 4, these norms are equivalent on L?([0,T]) outside a set of small
probability which is the key tool for bounding the risks of our estimators. Afterwards, we
propose data-driven choices m, p* of the values m, p and study the risk of the adaptive estimators
(Theorem 1). In order to have a benchmark for comparison, we also briefly treat the estimation
of a(t) when §(t) = 0 in model (1), that is y(t) = «(t),Vt € [0, T].

Section 2 contains our assumptions and the preliminary properties concerning the two processes
X(t),V(t). In Section 3, we build and study our projection estimators. Section 4 concerns
the adaptive estimators. Section 5 deals with the estimation when B(t) = 0. In Section 6,
we illustrate our theory by numerical experiments on simulated data. Section 7 contains some
concluding remarks. Proofs are gathered in Section 8.

2. ASSUMPTIONS AND PRELIMINARY PROPERTIES.
We set v(t) = a(t) — B(t) and consider the following assumptions:
[H1] X¢,i =1,..., N are i.i.d. random variables such that E(X{) = uo, E(X})? = 03 + p with

po # 0 and o2 # 0 and X;(0) has moments of any order.
[H2] The functions a(t),y(t) : R¥ — R are continuous on R* (and thus belong to L2([0,7])),

and (1) # 0, a(t) # 7(b).
With the new parameterization, we have
6) ax (1) = {a®Xn () + vOXN @) - Xn(0)] pde+dWi(), XN (0) = Xpi=1,...,N.
2.1. Study of the empirical mean and empirical variance.
Proposition 1. The empirical mean satisfies dyx(t) = a(t)yx(t)dt + ﬁdBN,l(t), that is

fN

ﬂ@wm/<w mw%mw

where gn(t) = exp (fg a(s)ds) fg exp (— [y e(u)du)dBy1(s) and By, is the standard Brownian
motion given by By 1(t) = (1/V/N) Z]: ( )

Let x(t) = poexp fo s)ds). Almost surely, as N tends to infinity, supg<;<r ]Y%(t) — x(t)|
tends to 0.

Note that dgn (t) = a(t)gn(t)dt+dBn(t),gn(0) =0, (gn) has a fixed distribution. It follows

from Proposition 1 that we have the explicit expression of (X N ()2

CNOP = (@ [ als)ds) (N0 +2—oxexp ([ alshds) XNO)+ Lk (1)
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where the middle term is centred. By Proposition 1, almost surely, as N tends to infinity,
supo<i<r |(X N (£))2 — 22(1)] tends to 0. Under [H1|, we have

t 0_2
E(Xn (1) = oxp (2 / a(s)ds) (50 +up) + %ng = 22(t) (1 + A}V’f)) ,

with z(t) defined in Proposition 1 and

(7 A(E) = /j% <ag + /D Cexp (—2 /0 sa(u)du)ds) |

Thus, as N tend to infinity E(Yx(t))z — 22(t).
)

Proposition 2. The process Vy(t

() = [27(t)VN(t)+(1—]ir)]dt+\/QN«/VN(t)dBN,Q(t)

defined in (3) satisfies Vn(t) > 0 for all t > 0 and

where By a(t) = [/ St (t)vfév)u))dwo

is a Brownian motion. Setting T'(t fO ~v(s)ds, this
yields

t
Vn(t) =eT® (VN(O)+ / e 21— ds+— / ~206)\/Vn(s)dBy o (s )
0
Let v(t) be defined by dv(t) = [2y(t)v(t) + 1]dt,v(0) = 03. Then,
o(t) = o2 +e2“>/ ds >0 for allt >0

and as N tends to infinity, supg<;<r |[Vn(t) — v(t)| —a.s. 0.

As a by-product of Proposition 2, we get the useful property E(Vy(t)) = (1 — 1/N)v(t).
Note that (By1, By,2) = 0. We stress that in the equation for Y]]:][(t), the drift depends on «a(t)

only and in the equation of Vy(t), the drift depends on ~(t) only. This is the interest of the
change of parametrisation («(t), 8(t)) — (a(t),~(1)).

2.2. Almost exponential inequalities. For simplicity, let us set X (t) = Y]]g(t) and Vy(t) =

V(t) (see (2)-(3)).

For the sequel, we need the following lemma.
Lemma 1. For all r > 1, there exists a constant ¢, (T) such that, for all t < T,
E[X@)]" +V"(#)] < e (T).
Proposition 3. Assume [H1] . Define the set

®) Ovs = { su 5D <y,
tefo,1] * 2(t)

There exist positive constants C(T),c(T) and for all v > 1, a constant c(r) such that

P(O51) < C(T) exp (—¢(T)N) + e(r).
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Proposition 4. Assume [H1] . Define the set

) O = { sup LD
t€[0,T v(t)

1] <1/2).

There exists a constant c(T') and for all v > 1, a constant c¢(r,T') such that

c(r, T)
N"

P(O2) < 2exp (—c(T)N) +

3. ESTIMATION OF («(t),(t)).

Recall the notations X (£) = X n(£) and V() = Vi (£) = £ SN [XN () — X n(1)]2 and set for
simplicity X; = XN

3.1. Estimation contrast. Consider (¢;,j > 0) and (¢;,j > 0) two orthonormal bases of
L%([0,7]) and let Sy, (resp. ¥,) be the subspace generated by (¢;,0 < j < m — 1) (resp. by
(14,0 < j < p—1)). We assume that the functions (¢;,j > 0), (¢j,7 > 0) are continuous on
[0,T7].

Inspired by the log-likelihood of Process (1), for h(t) = (hi(t), ha(t)) element of L2([0,T]) x
IL2([0,T]), we consider the contrast

Z I Zm )+ ha()(X,(6) ~ X)X, 1)

Developing Uy (h) = Un((h1, h2)) and using that ijl(Xj(t) — X (t)) = 0, we obtain

Un((h1,h2)) = Uni(h1) + Unz2(he)
with

T
Una(hi) = /0 B2 () X2(t)di — 2 / (DX (1)dX (1),

T N
Una(hy) = /0 h2(t)V dt—/ ha(t) ) (X; £))dX;(1).
7j=1

This is why we define the projection estimators of a(t) on Sy, and of y(t)) on X, by
(10) Q= arg h?éiglm Un,(h1), v, = arg hlgleigp Un,2(h2).

Recall that we defined random and deterministic weighted norms ||h;|x, | h1]z in (4) and
[hall /w71l lhell 5l in (5), with the associated scalar products. Note that (see (7) for A(t)):

1T 1
2\ _ 2, 1 2 2 2 \_ (1 + 2
BB = ImlE + 5 [ BONO 0 Bl = (1- 5 ) el
Proposition 5. We have
E(Un1(h)) = E(|h = allx = llalk), E(Unz(ha)) = E(llhs =125 = 712 5)-
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Proposition 5 shows that the expectations of the contrasts Uy 1(h1) and Uy 2(h2) are mini-
mum for h; = «a, hs = vy and explains the definition of the estimators.

Proof of Proposition 5. As Z] 1(X;5(t) — X(t)) =0, we get

N
Una(hn) = /0 CR0X (0t 2 /0 " () X2 () — 2 /0 i %Z
and

T ) T T 1
Una(hs) = /0 ROV (B)dt — 2 /0 ha ()3 (D) V (1)t — 2 /0 a(t) 5 D2 (X (1) — X(0)aw; (1),

j=1
We have
(11) Una(h) = [l —alk = llelk —2vni(h),  Una(h2) = llhe =225 = 1112 5 — 20 .2(ha),
with

T N
mat) = [ x4 awn | = [ m@xwisyo,
j=1

T 1 N 1 T
UN2(h2) = /0 hg(t)ﬁ Z(Xj(t) — X())dW;(t) = \/N/o ha(t)\/V (t)dBn2(t)

j=1
Note that E(vn;(hi)) = 0 for i = 1,2 and thus

E(Un1(h1)) = E(|hn = ok = lalX),  E(Una(h)) =E([h2 =25 — 17125)-
It is also interesting to note that, as (Bn 1, Bn2) = 0, it holds E(vn 1(h1)vn2(h2)) = 0. O

3.2. Risk of the projection estimators on a fixed space. For M a matrix, let Tr(M)
denote the trace of the matrix M and let ||M]|op denote the operator norm of M that is the
square root of the largest eigenvalue of M ‘M. If M is symmetric, |M|op = sup{|\;|} where
Ai are the eigenvalues of M and so ||M ™!, = [[M]5, . For hy € L2([0,T]), we denote

by |[h1]] = fo R3(t)dt)'/? its L2-norm and |z||2, denotes the Euclidean norm of the vector
x =Y(z1,...,2,) of R"

We now detaﬂ the construction and the expression of the estimators (10).

Let us define

N T N T
T ( / wj<t>sak<t>x2<t>dt) and T = ( / %-(t)wk(t)vu)dt)
0 0<5,k<m—1 0 0<4,k<p—1

and

~ T 7 ! 1 3
Zor = ( /O %(t)x(t)dX(t)>0<j<m_l and Z, 9 = ( /O bt > (Xk(t) _X(t))ka(t)>o<j<p 1.

k=1

~ 2
Noting that, for u = Yug,...,um—1) € R™, u¥,, ju = fOT (Z;n:_ol ujgpj(t)) X2(t)ydt > 0, we

conclude that {I\Im,l is symmetric positive definite, as well as ¥, 5. Indeed the bases functions
and X (t) are continuous and non identically zero.
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Set @m(t) = Y4 [@m)lk 2r (D), 75 (¢
get that the vectors Q) :t([a(m))] E=0,...m—1), 7(*p) = t([y(*p)]g,é =0,...,p—1) are
solution of

*(t) = ZIE’;& h(*p)]g 1e(t). By a standard computation, we

Therefore
(12) Gy = Vi Zints Ay = Vp3Zpo.

We define the symmetric positive definite matrices

. < /OT s (D) or(t)22(0) dt) o Uy = < /OT ¢j(t)wk(t)u(t)dt> .

Note that
- 1
and E (xyp,z) - <1 - N) Uy,

E (@ml) = Uy + — </OT it t)a:?(t)dt)

m—1 p—1
L(S;,) = sup 05(t), L(X,) = sup 1/’2@)
te[0,7] ];0 ! g te[o,T}jgo ’

These quantities were introduced in Comte and Genon-Catalot (2020a, 2020b) in the framework
of regression and drift estimation for diffusions by projection method. They only depend respec-
tively on the subspace Sy, (on the subspace ¥,) and not on the bases chosen to define them.

Indeed, L(Sy) = supy, cg,,. || ||=1 SUPte[o,7] h3(t), where ||h1||? = fo h?(t)dt, and analogously for
L(%,).

Below, we restrict the possible choices of the dimensions m,p by a condition which ensures
the stability of least-squares estimators (see e.g. Cohen et al. (2013), Comte and Genon-
Catalot (2020a)). For ¢ a numerical constant, that can take any value, we consider dimensions
m, p such that

cN cN
13 <N d LS ([[Tmallstvl) < ——, (|| 2l
( ) m7p — an ( )(H 71H0p ) — 210gN ( ) H pQHOp ) 210gN

In parallel, define the truncated estimators

(14) Ay = am1Am,1, Ami1 = {L(S,,AL)(||\TJm,1||gp1 V1) <cN/log N}
and
(15) =10 Ap2 = {L(S)([Tpallo V1) < cN/log N},

It is worth noting that the following holds.

Proposition 6. The mappings m H\IJ;&HOP, m ‘|\I’7_r:1||op> D H\I/;éHOp, D H\Il;éHOp
are increasing.

Now, we can state the risks bounds of the above estimators for fixed m, p.

Proposition 7. Assume that [H1] and [H2] hold. Consider the estimator cu,(t) of a(t) defined

by (14), for m satisfying (13).
(1) For the risk based on the empirical X -norm, we have

~ Pyt . m c
(16) Elam — ol < (”z@) (hle%fm\yh—ayy;+zN) + =,
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where N} := supyeqo, ) A(t).
(ii) For the risk based on the deterministic x-norm, we have

*

A m c
1 Elld, — o2 <21+ 2L inf ||h—al?+2— )+ —.
(1) a2 <2 (1457 ((int n-al2+25 ) + 5
Refining the proof of the bias term, we get
¢ A\ m ¢
1 E||&m — |2 < (14 ———Kn(T) ) inf ||h—al? 1+ —+ =
1) Bl - al < (14 oK) int h-alf 8 (145 ) T

with

*\2
Kn(T) := 8T sup z*(t) <Cl(;r) + (A7) >
te[0,T] Ho N

and C1(T) is a constant depending on T .

Proposition 8. Assume that [H1]| and [H2] hold. Consider the estimator 7, (t) of ¥(t) defined

by (15), for p satisfying (13).
(i) For the risk based on the empirical 'V -norm, we have

~ 1 . 2p d
1 ElF —v?o < (1 — — flh—92+ = )+ —.
(19) 15 =l < = ) (nf 1=+ 37) +

(ii) For the risk based on the deterministic \/v-norm, we have

(20) Ellf, -5 <2 (1 - ]1V> (hienzfp lh =25+ 2};) - %
With a more elaborate proof,
(21) M%—ﬂ%é(HkngﬁggiM—ﬂ%+8@—$>ﬁ+;
with
R(T) :=2T sup v(t)%;r)
te[0,7) 0o

and Co(T) is a constant depending on T .

In the two previous propositions, for the risks based on the deterministic norms, we obtain
two inequalities. The difference between (17) and (18) lies in the evaluation of the bias term
where the factor 2 is improved into a factor 1+ o(1).

The exact rates of H\I';,:IHOP and [|W 3llop as functions of m, p are difficult to compute. However,
we can prove the following result.

Proposition 9. (1) If, for all t € [0,T], a(t) >0, then | lop = [¥malloy < 1>
(2) If, for all t € 0,T], 4(t) > 0, then |V, 3[lop = [ ¥polley < 05>

3.3. Rates of convergence. Rates of convergence can be deduced from risk bounds provided
that functional regularity conditions on «, v are set. We give results for « only, but the same
type of results holds for v. Regularity spaces depend on the basis which is used. Below and in
the simulation section, examples are presented.
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3.3.1. Rates on trigonometric spaces. First we consider the collection (ngig, m > 0) of subspaces

of L2([0, T)) where S, has odd dimension m and is generated by the orthonormal trigonometric
basis (denoted by [T]) (¢;,r) with o1 (t) = \/1/7Tl[07ﬂ (1), p2i—1,7(t) = \/2/7Tcos(27rjt/T)1[07T] (t)
and @7 (t) = \/Z/;Tsin(Qﬁjt/T)l[(]’T] (t)forj =1,...,(m—1)/2. This basis satisfies Z?:()l goiT(t) =
m/T. Therefore L(SH™) =m/T.

Assume moreover that, for some ¢ > 0,

(22) vt € [0,T], 2%(t) > c2.

This assumption is fulfilled if a(t) > 0, V¢ € [0, T], with ¢9 = po. Then, it follows from the proof
of Proposition 9 that (22) implies | ¥;,}||op < 1/c3. As a consequence, under (22), m satisfies
condition (13) as soon as m < ¢cgT'N/log(N), which is a weak constraint.

Let r be a positive integer, L > 0 and define

WP (r L) = {geC([0,T];R): g(’"*l) is absolutely continuous,
T
/ 9" (2)%dz < L and g (0) = ¢V(T), ¥j = 0,...,r — 1}.
0

By Proposition 1.14 of Tsybakov (2009), a function f € WP (r, L) admits a development

o0
f= Zﬁjjgoj;p such that Z 9]2-7T7'j2 < C(T,L),
J=0 Jj=0
where 7; = j” for even j, 7; = (j — 1)" for odd j, and C(L) := L*(T/7)*". So, with f =
ST 05,
Hf - fm||2 < K(LvTvr)m_Qr'
Thus we obtain the following rate

Corollary 1. Assume that [H1], [H2], (22) hold and that « € WP (r,L). Then choosing
m* = c* NV gives E(||@m — al|?) < C(T,r, L, cZ)N—2/Cr+1),

Indeed, m* satisfies m* < ¢cc3T'N/log(N) for well chosen c*.

Note that we also use the cosine basis [C]| defined by @or(z) = /1/T191(t), @jr(t) =
V2/T cos(mjt/T) Lo q(t), j = 1,...,m — 1, see Efromovich (1999, p.46). It is clearly an or-
thonormal basis. For a twice differentiable function, the projection coefficients decrease like 1/;2
without border constraints; such constraints are required for higher regularities only, see Efro-
movich (1999, p.32). In practical implementation, it appears that this basis is more convenient
and performant than the complete trigonometric basis.

3.3.2. Rates on Sobolev Laguerre spaces. Consider now a collection of subspaces of L2(R1),
generated by the Laguerre basis [L| defined by

i ok
_ , —t . . k(I\?T
() = V2L;(2t)e 10, § >0, Lj(t) = kZ_O<—1) <k>k'
We set S5 = span{l;,j = 0,...,m—1}. We have V¢ > 0, Z;-":_Ol 3(t) < 2m (see Abramowitz
and Stegun (1964)) and as ©;(0) = v/2, L(Si™) = 2m.
The basis is orthonormal in L2(R™), but not in L2([0, T]). However, the bounds (16)-(19) can

be obtained for this basis too as the orthonormality is not used in the proof. Thus we can get rates
on Sobolev Laguerre spaces defined by W#(D) = {f € L?(R*), Zjle“;cj(f)2 < D < +oo},
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ci(f) = 0+°° f(t)¢;(t)dt. A function belonging to W*(D) has, roughly speaking, regularity
properties of order s, see Comte and Genon-Catalot (2018).

Therefore, under [H1], [H2], if @ € W#(D) and if m® = e¢NY(+1) satisfies constraint (13),
then E(||ame —al|%) < (T, D)N=/(+1) which is an optimal rate for regression type estimation

with Laguerre basis, see Comte and Genon-Catalot (2020a, Theorem 1).
4. ADAPTIVE ESTIMATORS
We will assume in the following that (see examples of bases in section 3.3):
L(Sy) < c?pm, L(%,) < Cip.

We set

¢ N
— < N,L(S, ‘1}_1 op =5
M {m_ LS llop < 505

} M = {m < N L(SmIFk flop < ¢

)

log(

N

N —~ ~ N
=p < N,L(Zp)|¥; 3llop < :
b Fva = {p < N LT lon < o105}

¢
= <N, LE) T Mop < =
MN72 {p =" ( p)H p,QHOP — 210g(7\7)

Now we define

(23) M =arg min {Uni(@m)+peny(m)}, peny(m) = k1o
meMy 1 N
(24) p* =arg min {Una(7,) +peny(p)}, peny(p) = Hz%
peMp,2
Note that Un,1(Gm) = —[|amll% and Un2(75) = =112

Theorem 1. Under [H1]-[H2], there exists a numerical ko such that for k1 > Ko, K2 > Ko,

Py m c
~ 2\ < . T . . 2
E (|lam — alx) < Cq mel/r\l/[f <<1—|—N) hlerklgmeh alz + k1 > +

W N)TN
1 P c

E( p 2v>< inf ((1——) inf ||h—~|? P
o =7llyw) < G2 ol (= 5p) im0 =allis + gy )+ 5

where C1 and Ca are numerical constanis.

Theorem 1 shows that our estimators are adaptive in the sense that their risk automatically
realizes the best compromise between the bias and the variance terms. In practical implementa-
tion, we should not use the value k¢ provided by our proof since it is not the smallest one. The
theoretical determination of the best value kg is difficult. Therefore, it is customary to determine
this value by preliminary simulations.

5. ESTIMATION OF «a(t) WHEN ((t) =0

To have a benchmark for comparison, we consider here the simpler case where 5(t) = 0 in
model (1), i.e. the model given by N i.i.d. Ornstein-Uhlenbeck processes:

(25) dX;(t) = a(t) X;(t)dt + dWi(t), X;(0) =X, i=1,...,N.

The problem of nonparametric estimation of «(t) from (25) has been first tackled in Nguyen and
Pham (1982) who propose a projection estimator using an increasing sequence of subspaces of
IL2([0,T1]) as we do here for the couple (a(t),(t)). However, this paper neither gives any concrete
choice of projection bases and nor studies the L2-risk of the projection estimator. Moreover, the
problem of an adaptive choice of the projection dimension is not raised at all. This is why we
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complete this study below. Taking into account our previous statements, we do it as briefly as
possible to avoid repetitions.

5.1. Direct estimation of a(t). Consider, for h € L2([0,T]), the contrast given by:

1 T N 9 T N
_ N/ W03 X0t - = [ h) S XX
0 = 0 o

Set Y(t) :=Yn(t) = % Zle X3(t) = X2(t) + V (1), y(t) = 2*(t) + v(t).

Proposition 10. The process Y (t) satisfies: dY (t) = [2a(t)Y (t) + 1)dt + %\/Y(t)dBMg(t)
Sl Xi(8)dWi(t)

where dBy 3(t) = (ZN XZ(t)1/?

15 a Brownian motion. This yields

Y(t) = exp(2 /Ota(s)ds) {Y(O) —|—/texp( 2/08a(u)du)ds
/ exp ( / a(u)du)/Y (s)dBy 3(s)

As N — +o0, Y (t) converges uniformly on [0,T] to

y(t) = exp (2/0 a(s)ds)[og + pl +/0 exp (—2 /OS a(u)du)ds].

We have EY () = y(t). As previously, we can prove that the probability of the set

t

o YO
On =1z Iy ~H=1/2

satisfies the same inequality as Oy, and Oy 2. Consequently, define

G = arg muin Aw(h),

z T T N
Ty = ( /0 %(t)w(t)Y(t)ﬁ)OSMSm_l, m = ( /0 wj(t);]; Xk(t)ka(t)>

and ém(t Z [ﬁ(m)]' j(t), we get that the vector of the coefficients of 5m( t) is equal to

Am)y = (Ym)~ 1Z We define analogously the norms ||h[| 5 and ||A[|, 5 and we can prove:

N

0<j<m—1

o~
~

Proposition 11. Assume [H1]-[H2]. Let m satisfy m < N and L(Sp)(|[¥pnlloy V1) < 210gN

with ¥, = E\/I\/m and ¢ a numerical constant. Define the truncated estimator

Gm = amlan, Apn = {L(Su)([Tnlof V1) < ¢N/log N}
Then we have
Elam — oo < it lh— ol L2l RE —alP. <2 Jnf lh—al? gy
VY = vyl N TN m VY VY N N’

As previously, we can define an adaptive estimator with a data-driven choice of the dimension
m under the assumption that L(S,,) < cim. In parallel as above, we set

¢ N

My = {m < N LSO o <

_ ~-1 N
>} My = {m <N, L(Sm)l[ ¥y, flop < ‘bg(N)}’
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(26) M = arg min {AN(am) + pen(m)} , pen(m)= K
méﬁn N

Theorem 2. Under [H1]-[H2]|, there exists a numerical k{, such that for k > k),

= . . 2 m C
2 (185 ~allyy) <€ it <hlensfm Ik~ “”ﬂ“zv) N

where C' is a numerical constant.

Proofs are omitted: they follow the same lines of the proofs of the previous parts and are simpler.

5.2. Estimators of a(t) from Section 3. When «(t) = (¢) i.e. when 3(t) = 0, we also have
at disposal two other estimators of a(t): the first estimator of a(t) (denoted below [M1])and the
estimator of v(t) (below [M3]), which are distinct and different from the estimator of the previous
subsection (below [M2]). These three estimators are implemented in Section 6 and their risks
computed in Table 2. It appears that, with the same basis for both, the estimator of a given
from ~},« by [M3] is better than @ given by [M1]|. Here is an interpretation of this phenomenon.

Suppose that we are in a parametric model where «(t) = Z;”:_Ol w;(t)ay, y(t) = Z;”:_Ol ©;(t)v;
with fixed and known m. Then the exact maximum likelihood estimators of a(,,y ='(, . . ., tn—1))
and () ='(70, - - -, Ym—1)) are respectively (see (12)):

~ -1 7% -1 7%
Am) = V1 Zm1s  Vom) = Yo 2Zm,2-
From these exact expressions, a simple computation shows that, as N tends to infinity,

\/]V(@(m) — Q) = X1~ Nm (0, ‘I’;:l) \/N(V(* Yim)) o Xo ~ N(0, \I/;r:z).

m)
where we recall that

Wy = 4 ( / " Ot exp (2 / t a(s)ds)dt) ,

0<j,k<m—1

T t
U2 = </O ©;()ek(t)[0f exp (20 (t) + exp (2F(t)/0 eXP(—2T(8))d8)]dt>

0<y,k<p—1
Therefore, if 3 < 02 and «a(t) = y(t), \IfmJ < Wyy,2 (in the sense of inequality between positive
symmetric matrices), thus, ¥_ 11 > W

Then NHa() — ()H2 =N (a(m) — a(m))(a(m) — a(m)) —C Z1 = tX1X1 and NH")/*( ) —

YOI? =2 Zo = oXo. Setting Yy = UL/2Xy, we have Y; ~ Nju(0,1d,,) and Z; = Y10, 1 V7).
Thus, for Y ~ N,,(0,1d,,), it holds E(Z;) = E( tY\Il;ilY). Analogously E(Z2) = E( tY\Ilm’QY)
and thus E(Z;) > E(Z3). This means that, for 3 < o2, the estimator 'y(*m) is asymptotically
better than @,,). This is illustrated in the simulation experiments.

6. NUMERICAL EXPERIMENTS

We consider the four couples of functions (ay, ) for £ € {1,...,4}:

(1) ar(t) = 5+ 3t, m(t) =1 -,

(2) az(t) = —1+t2/2, yo(t) =1 —2/2,

(3) as(t) = os(l 27t/2), v3(t) = sin(1.27t/2),

(4) cnlt) = exp(— (¢ — 1), 7a(t) = exp( (¢ - 8/2)%/2).
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FI1GURE 1. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases [T] (top), [C] (middle) and |L] (bottom) for Example 1 and
N = 1000. The MISE for « are 0.079,0.0053,0.0072 and the mean of selected
dimensions are 4.62, 3.07,4.90. The MISE for v are 0.374,0.0094, 0.0067 and mean
selected dimensions are 5.0, 5.45,5.47.

For T'= 1,3, and N = 250, 1000, discrete samples are generated with Euler scheme with step
T/1000, and initial conditions py = 1/2,00 = 1 (note that py < op, see Section 5.2). We
proceed with 400 repetitions. Three bases are tested: the standard trigonometric basis [T|, the
cosine-basis [C| and the Laguerre basis [L|, see section 3.3.

The cutoff is replaced by a limitation in the collection of models: maximal dimensions are
less that 11 for [T], 26 for [C] and 7 for [L]. By doing so, all matrices are numerically invertible
and we can check that the maximal dimension is not systematically chosen (otherwise we would
enlarge the collection).

The penalty constants are taken as ry 7] = 2, ryc] = 4 and £y ) = 4 for the estimation of
o, and Ky 7] = kg |o] = Kg[r) = 2 for the estimation of v (1 is defined in (23), k2 is defined
in (24) and the additional index determines the basis). For each basis [T, [C], [L], the penalty
constants are calibrated from preliminary numerical experiments.

The computed MISE is the mean over the experiments £k = 1,...,400 of non-weighted ap-
proximated L2-error, for o

A (k) iT 12
*(150) ~ % (1g9)| -
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(k)

where . is the estimator computed for simulation k, and analogously for +.
Estimation of « Estimation of
N =250 N = 1000 N =250 N = 1000

T=1 T=3 T=1 T=3 T=1 T=3 T=1 T=3

Ex. 1 [T][5.0256 10.603 14934 7.7414) |3-6310) 39957 20704 37707
L] | 386338 36435 0.8205 0.9909) |0.9700) 23516 02309 0.56(.4)
Ex. 2 [T] 4.3536) 791(16) 1.98(0.8) 79281 | 7-17(3.3) 5706 3.32(0.9) 992(14)
[C] | 1.92¢28) 45.311) 0.63(05) 39.3us) | 41405 B81209) 11701 10.2(53
Ex. 3 |T]| 1739 18702 79707 688024 |244(10) 61403 L1003 4790z
IC] | 5.745.0) 185012y 2.07(19) 5.87as) | 15911y 2.57(19) 04903 0.8203)
L] | 73263 22.10s 27106 7-68(20) | 13409 8631 0.3502 7-5300s)
Ex. 4 [T]|6.76(55 39501 27301 2.090s) | 2:28(09) 052004 1.0903 0.22(.)
[C] | 27237y 311136 0.6807 081z |0.9413 0.870s 02603 0.3002)
L] | 3.36(06) 59242 09008 1.020.0) | 1.0309 0.9508 02502 02302

TABLE 1. 100x MISE for estimation of o and v (with 100 x standard deviation
in parenthesis) in examples 1 to 4 with bases |T|, |C| and [L]|, for N = 250 and
N =1000, T =1 and T = 3 and for up =1/2 and o9 = 1.

The global results are given in Table 1. As expected, in all cases, the MISE gets smaller when
N increases. Clearly, the trigonometric basis [T] has difficulty for the estimation of non periodic
functions (that is, functions which do not take the same value in 0 and T'), and gives results
which are systematically less good than the two others. This is also illustrated by Figure 1 for
example 1, in which beams of 40 estimators (green) for N=1000 and 7" = 3 are compared to the
true functions (red): the plots on the first line for basis [T] have clearly important side-effects,
while the two other bases seem to correct it. This is the reason why we implemented basis [C].
When T increases, the MISE most of the time increases also, which seems to be a natural scale
effect, and the MISE for v is generally smaller than the MISE for a: it is true that the functions
are different, but they are of similar types, so it is likely that ~ is easier to estimate than «, see
also Figure 1 and compare left plots (estimation of «) and right plots (estimation of «). This is
in accordance with the results of section 5.2, which indicate that the estimator of v has smaller
risk than the estimator of o when p3 < o3. Figures 2 and 3 allow to compare the improvement
when going from N = 250 (Figure 2) to N = 1000 (Figure 3) on the same example 2. Lastly,
Figure 4 is a plot for N = 1000 and T = 3 concerning example 4.

We also experimented the case @ = v or § = 0 described in Section 5. We compare in Table
2 the MISE obtained when estimating a by methods:

e M1 corresponding to the strategy of estimation of a of the general setting,
e M2 corresponding to the specific strategy described in section 5, with constant in (26)
chosen as k(o) = k) = 4,

e M3 corresponding to the strategy of estimation of v in the general setting.
We took for example 1*, aq(t) = y1(t) = 1/2 + t/4, for example 2%, as(t) = 1o(t) = 1 — t2/2,
for example 3*, az(t) = 73(t) = cos(1.2t) and for example 4*, ay(t) = 74(t) = exp(—(t — 1)2).
In other words, we kept the same examples of funtions «, and changed ~ to take it equal to
a, except in example 2. Method M1 is systematically the less good. The two other methods
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N =250 N = 1000
M1 M2 M3 M1 M2 M3
Ex.* [C]| 16215 04504 07307 | 06505 01501 02209
L] | 3.64355 057005 0.7607) | 0-900s 0.16(01) 0.19(.1)
Ex2" [C]| 20115 45000 3.742s) | 93567 16967 12407
L] | 20.095 21004 21905 |414ue 05405 0.540s
Ex. 3¢ [C]|20.0(24) 26009) 283013 |5.7l@as 09113 0.97(04
[L] | 225 58700 60.1600) | 7.5721) 4.83(0.4) 4.96(0.4)
Ex4* [C] | 32435 0.6604) 0.75(06) | 08705 02501 02609
[L] | 53137y 0.74¢5 0.85(0.7) [ 1.090) 0.3002 0272

TABLE 2. When £(t) = 0 (and thus a = ), 100x MISE for estimation of «
(with 100 x standard deviation in parenthesis) in examples 1 to 4 with bases [C]
and |L], for N = 250 and N = 1000, 7' = 3 and for ug = 1/2 and o9 = 1. The
three methods are : M1 the method of estimation of « in the complete model,
M3 the method of estimation of v = « in the complete model and M2 the specific
method of section 5.

FIGURE 2. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases [C] (top) and Laguerre (bottom) for Example 3 with N = 250.
MISE for a: 0.2002,0.2666 and mean of selected dimensions: 4.35,6.65, MISE
for v: 0.0226,0.0802 and mean of selected dimensions 8.2, 7.0.

give similar results, even if method M2 seems almost all the time better although probably not
significantly.
To conclude this section, we can say that the method works globally well in most contexts.
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_‘i \ \/
it |
N\ “\/\

FIGURE 3. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases |C| (top) and Laguerre (bottom) for Example 3 with N = 1000.
MISE for a: 0.0622,0.0827 and mean of selected dimensions: 5.6,7.0. MISE for
~: 0.0239,0.0817 and mean of selected dimensions: 9.97,7.0.

7. CONCLUDING REMARKS.

In this paper, we study the nonparametric estimation of the deterministic functions «/(t), 3(t)
when the observed process is an interacting system of N particles given by (1). The process
is assumed to be continuously observed throughout a time interval [0,7] with fixed T. The
number N of particles is large. We build estimators of the functions «(t),v(t) = «a(t) — B(t)
by minimizing projection contrasts deduced from likelihoods, using increasing sequences of finite
dimensional subspaces of L2([0, T). Bounds for the L?-risk of the projection estimators are given
based either on an empirical norm or a deterministic norm linked with the problem. The bounds
of the risks allow to discuss rates of convergence. Then, a data-driven choice of the dimension
for the projection space is provided leading to an adaptive result. The case where 5(t) = 0 is
briefly treated.

Implementation of the estimators is done based on simulated data for various examples of fonc-
tions a(t), y(t) and two different bases of L2([0, T]). The numerical results show that the adaptive
estimators perform well, the estimation of (¢) being better than the estimation of «(t).

To go further on the topic, the problem of discrete time observation of the processes, with
small or fixed sampling interval, may be considered. The generalization of our study to in-
clude a diffusion coefficient sigma (X7 (t)) in (1) with a known o(-) is certainly feasible. More
challenging, the study of the estimation of «, 8 in the general dynamics

dX;(t) = {O‘(t)XiN(t)_ﬁ@);[znj¢(XiN(t)_ng'v<t))}dt+dwi(t)7 XM(0)=X5i=1,....N,
j=1

with known ¢(+), is under study.
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FIGURE 4. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases |C| (top) and Laguerre (bottom) for Example 4 with N = 1000.
MISE for a: 0.0084,0.0091 and mean of selected dimensions: 3.2,5.05. MISE for
~: 0.0031,0.0022 and mean of selected dimensions: 11.2,5.8.

8. PROOFsS

Recall the notations (2)-(3) and X; = X]N.

8.1. Proof of Proposition 1. We have:
N N

N N
Ay X (1)) = a(t) Y X,(0)-B(0) Y (X (0= X ()lde+ dW; (1) = a)

Jj=1 Jj=1 Jj=1

N
X;(t)dt+Yy  dWj(t).
j=1

-

<
Il
—

Therefore, dX (t)) = a(t) X (t)dt + + ZjV: LAW;(t) = a(t) X (t))dt + ﬁdBN,l(t). This equation

can be easily solved and yields the solution given in the proposition.
We have:

sup | X (1)) ~a(0)] < supesp (| a(u)du) (\X(O)—uowfgglN\ |- | Sa<u>du>dBN,1<s>\>

t<T t<T

Using the Markov and Burkholder-Davis-Gundy (B-D-G) inequalities yields

P L ) < & </T (2/8()d)d>2
sup —— 13 ex — alu)au)as
thT) N — etN? 0 P 0

where Cy is the constant of the B-D-G inequality. We conclude that sup,<p \\/iﬁ gn (t)| converges
a.s. to 0 and using [H1|, this yields the result.O

[ewi= [ atiauisy o
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8.2. Proof of Proposition 2. We apply Ito’s formula to the function F(z,y) = (z — y)? and
use that (dX;,dX;); = dt, (dX,dX), = +dt, (dX;,dX); = +dt,

d[X5(8) — X(8)]2 = 2[X0() — X (O)]dXs() — 2[Xi(t) — X (O] dX (8) + é[th + %dt - %dt]

Using > 7 (X;(t) — X(t)) = 0 and (6) yields

N N
A0 [Xi(t) — X))} =2 [Xi(t) — X()]dXi(t) + (N — 1)dt
i=1 i=1
N
=2 [Xi(t) = X®)][a®) X (t) + v(B)[X(t) — X ()]t + (N — 1)dt + 22 £)]dW;(t).
i=1
Thus, dV () = [2v(t)V(t) + 1 — %]dt + dMy(t) where

9 [t
_N/oizl[X"( X (s))dWis /FdBNz

By the usual change V' (t) = C(t) exp (2 fg v(s)ds), setting T'(¢ fo v(s)ds, we can obtain the
expression:

V(t) = exp(2I'(t)) <V(0) +(1- ]1[)/0 exp (—2F(s))d5> + exp (QF(t))/O exp (—2I(s))dMp(s)
= exp (2['(t)) <V(0) +(1- ]1[)/0 exp (—2F(s))d5> + My (t)

+ 2exp(2I’(t))/O v(s) exp (—2I'(s) My (s)ds.

Note that
(27) V(t) =v(t) + An(t) + Bn(1)
where
N t
An(t) = exp(2I'(t <;f Z — 0 — [uo — X(0)]? — Jb/o exp (—2F(s)ds> ,

By(t) = MN(t)+2exp(2F(t))/O ~v(s)exp (—2T'(s) My (s)ds.

By [H1], An(t) converges to 0 almost surely uniformly on [0,7] as N tends to infinity. To obtain
that V(t) converges to v(¢) uniformly almost surely on [0, 7] to 0, it is enough to prove that

(28) sup |[Mn ()| —a.s. 0.
s<T

For this, we follow Kasonga (1990, p.873).
One of Doob’s martingale inequalities states that, for a > 0,8 > 0, P(sups<p(Mn(s)—5(Mn)s) >
B) < e 8. Here (My)s = v J5 V(u)du. This yields

2
P(sup [ My (s)] > -2 / V(u)du) + B) < 265
s<T N 0
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Taking o = N% 8= N~ with 0 < b < a < 1 yields

T
/ V(w)du) + N7) < 2¢" N7,
0

P(sup |Mpy(s)| >
(sup M (5)| > 37

By (27), we have

T
/O V(t)dt < C(T) ( sup [v(t) + An(t)] + sup !MN(t)!>

t€[0,T] t€[0,T]

where C(T') = 1 + 2sup,cp g exp (2I'(¢ fo |7(s)| exp (—2T'(s)ds. Consequently,

P ((1 - 20 Y sup () > 0+ 2553( sup {ult) + AN<t>}>

Ni-a t€[0,7)

2C(T
_p <sup ()] > N7+ 2D s fofe) + A ()] + sup |MN<t>|]>
s<T t€[0,T] te[0,T]

2 T o
< P (Sup ‘MN(S)‘ > m / V(u)du + N_b) < 2€_N b.
s<T 0

As supyepo[v(t) + An(t)] converges almost surely, by the Borel-Cantelli lemma, we obtain (28).
So the proof of Proposition 2 is complete. O

8.3. Proof of Lemma 1. We have for r > 1,

T
BX(0) <2 (e (r [ a0+ 1Bl 0)).

By the definition of gy,

E|gh(t)| = Cro"(t), where 02(25) = exp (2/0 a(s)ds)/o exp (—2 /08 a(u)du)ds, C, = E|Z|",

for Z a standard Gaussian variable. Next, we have, as the X;(0)s are i.i.d. and have moments
of any order, using the Rosenthal inequality (see Hall and Heyde, 1980, p.23-24),

E[X"(0) < 2T’1(Iuo\T+EIX’"() pol")
T E[Xi(0) — po|" +

< r 2yr/2
S ol + 5 B0 ol <

Thus, for all t € [0,T], E|X"(t)| < C,(T) for some constant C,(T).

Note that for all ¢, V(¢) > 0. Analogously, by the Rosenthal inequality, we check that, for all
r > 1, EV"(0) < C where the constant C' does not depend on N.
The process (V (t) is solution of a stochastic differential equation with drift b(¢,v) = 2v(t)v+1—
N~' and diffusion coefficient o(v) = 2vvT N~1/2 satisfying b(t,v) + 0?(v) < Kp(1 4 v?) with
K1 = sup{2, 8 sup,«772(t)}. Therefore, for all » > 1, using the equation for V (¢), EV?"(0) < C,
the Cauchy-Schwarz and the BDG inequalities, we standardly obtain, for another constant K,.(T),

EV#(t) < K.(T) (1 - /0 t IEVQ’"(s)ds> .

By the Gronwall lemma, this yields EV?"(¢t) < K,.(T)eT%5(T). The conclusion follows, using
that, for all » > 1, EV"(t) < EV/2V?"(¢). O
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8.4. Proof of Proposition 3. By Proposition 1, as pg # 0, the process X (t) satisfies

X(t) X(0) 1

1= — 1)+ Ln(t),

) TG T w0
where Ly (t fo exp (— [y a(u)du)dBy 1 (s) is a martingale with deterministic bracket (L)t =
fo exp ( 2[0 w)du)ds := d(t). We get,

t X(0
P(sup 2D _1y55) < (2D )5 5/2) + B sup [Ln(0)] > 650V /2)
tefo,r] £(t) Ho t€(0.7]

The Rosenthal inequality yields, for all r > 1,

PIXD 1155 < 2 RIX(0) ol S i EIX0) — ol (BIX:(0) — ol
Lo — (5M0)2T ~ NQT 1 N7
27"
< st BIX0) — ol + 90
The Bernstein inequality for martingales (see Revuz and Yor (1999), p.153-154) yields
2 9
N
P( sup |Ln(t)] > S0V N /2, (L) < d(T)) < 2exp (— 2107,
t€[0,7] 8d(T)

Now, we have:

]P’( sup \X;(t) -1 > 5) S]P’( sup \X(tt) — 12> 5/2) +IF’< sup ]X?) -1 > 5/4)

tefo,r] T2(1) tefo,] (1) tefo,r] (1)
c(r) N N
2 ——— .
= gt < P Toam! T P - 15 sam).
Thus, for some positive constants C(T), ¢(T) depending on pg, 03 and T,

o(r)
N

P ( sup 1220 _ g5 1/2) < C(T) exp (—(T)N) +

tejo,r] T2(t)

Remark 1. If g = 0, then x(t) = 0, which forbides the ratio; if 03 = 0, then v(0) = 0 and
analogous problem arises. If X;(0) is Gaussian or sub-Gaussian, we have a pure exponential
bound.

8.5. Proof of Proposition 4. We have
t
Vi) (VO -u(0) 1 E/GQHQM

v(t) v(0) + [{ e26Nds  No(0) + [Le206)ds

Le) /v s)dBn o

o2
+f 6_2F )ds \F/
Thus,

V) VO e 1 [ e
() M T 1 '*Nvm>A S OV '/‘ VV(s)dBrals

We have V(0) —v(0) = + Zil(Xi(O) —wo)? — 03 — (X(O) - HO) . By the Rosenthal inequality,
forall r > 1,

C

(30) E|V(0) —EV(0)]*" < 1
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Set KN = fo exp (—2I'(s))\/V (s)dBy(s). We have (Kn); = fot exp (—4T'(s))V (s)ds. Set
k(T) = fo exp (—4T'(s )) (s)ds. For all p > 1,

]P’(ilg [Kn(t)] > eVN) < P(fg |Kn(t)] > eVN), (Kn)r <1+ k(T)) + P(Kn)7r > 14 k(T))

2r
< 2exp(—

AN T
W) +E (/0 exp (—4I'(s))(V(s) — v(s))ds)

In what follows, the constant C'(7') may change for one line to another:

(T)
E ( /0 ' e e (v ( ) ]E[e—4F<S>(V(s) —v(s))]*"ds

2r

< o(T) (\V( ) — (o>|+;[/0 exp (—20(u ))du) +]\1[7"/OTE(/Osexp(—élf(u))V(u)du)rds
< C(T)E (yV(O) _(0)[2r + ler + L /OTIE[V(U)]Tdu>

NT‘

<) (EVO) - vOF + 55+ 7).

applying Lemma 1. Thus, using (29)-(30), for all §,r > 0, there exist constants ¢s(7"),C(r,T',0)
such that Vo)
t
P(sup|

t<T U( )

C(r,T,0)
NT '

—1]>9) <2exp(—cs(T)N) + O

8.6. Proof of Proposition 6. This proposition is analogous to Proposition 2 of Comte and
Genon-Catalot (2020a). Let ¢t = ZTBl ajp;, and @ = Yag,...,am—1), then ||t||? = ||d@|l2m = @a

and [|t||2 = @V, 13 = H\Ill/2 *HQm, where ¥ /1 is a symmetric square root of W,, 1. Thus
sup  |t]|? = sup ‘@a.
teSm,||t]|==1 GER™, H\I/1/2 @2.m=1

Set b = 1/2a that is @ = 7;11/25 Then
s = s BT = U5 o
LESm,||t]lz=1 beER™,||bl|2,m=1

As, for m < m/, S, is strictly included in S,,/, the result follows for the first mapping and
analogously for the others. O

8.7. Proof of Proposition 7. We start with some preliminaries. On Oy, defined in equation
(8), the empirical norm ||.|[x and the || - ||;-norm are equivalent for elements of I.?([0,77]) as on

On.1
vh e L2((0,T]), (2/3)|[hl% < [InlZ < 2|n)%-
We defined A, ;1 in equation (14) and let us set
1% ’ }
Q1 = { -1 thESm :
17213
We note that On 1 C Q1. Now, if 4= (ug,...,un-1) € R™ and h = E 20 ujgoj, then

(31) Ih% = @006 and A2 = W, 0 = |V53G]3,,, so that
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sup [[Inl% = 2] = swp | (Tt — W)
RESm,||h||la=1 GER™, (|1 6|2, m=1

20, P (Ut = U)W, %2

m,1

= sup
ZER™,||Z]|2,m=1

= 0 P19, — Tdulop-
Therefore,
Ot = {102 T 0, {7 — T o < 1/2}

Consequently, on Op 1, the eigenvalues of W 1/2\I'm71\1';£1/ belong to [1/2,3/2].
The following lemma, proved in Section 8.8, holds

Lemma 2. We have, for d a positive constant, P(Oy ;) < d/N7. Moreover, under the assump-
tions of Proposition 7, for m satisfying (13), we have, P(A7, 1) < d/N7.

Now, we prove inequality (16) of Proposition 7.
To study the risk of a,,, we need to have an adequate expression of the orthogonal projection of
a with respect to (.,.)x. We have:

\Pm,l = (<90j, @K)X)o§j7g§m_1 .
The orthogonal projection 71'()7(”)0( of @ on S, with respect to the scalar product (.,.) x is charac-

terized by w()fn)a —a L yj,j=0,...m—1. This yields

m—1 ao :
(32) 7T(X o= ajp;  where agy) = : :\IJ;L%1 (o, 0 x

am—1

The vector Z,;, 1 can be written as

(33) Zm,l = | (v, 9j)x + W1, Woi:=|vNalej)
0<j<m—1 : 0<j<m—1
Note that
1 -~ 1 1
(34) E(Wn1 Wi 1) = NE‘I’m,l = N(‘I’m,l + Ncm)
where

Cn=( [ e orc)

¢ Proof of inequality (16).
Now, we prove (16). For this, we write ||ay, — |3 = T1 + T2 + T3, with

0<j,k<m—1

(35) T = Ham - aH_ZX]‘Am,lmoNJ? 13 = Ham - O‘H%{l/\m,lﬁoﬁ\u7 T3 = HO‘HgflAﬁ%l
We bound the expectation of the three terms above.
e The last term T3 = ”a”%(l/\fn , satisfies:

(36) ET; < BY2(||al|%)B2 (45,

m,l)'
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We have
T 9 T
E(||lel%) < TIE/ [®(t) X2(t)] dth/ AOEXY(t)dt < ¢(T).
0 0

Thus, using Lemma 1,

1 1
< <
(37) ET S +775 S -
e Study of T1 = [|am — a5 14, 1n0n,- We can write:
(38)  lam — alk = @m — imalk + 75, — alk = [@m — imalik + ot lo = All%

On one hand, we have am(t) = S am];¢; () with (8,m) = U4 Z,, 1. On the other hand,
=0 L¥(m)liPj (m) m,14m,
w()fn)a = Z;n:_ol ajp; where (see (32)) agn) = ‘IJ;JI (<90J"O‘>X)0§j§m—1'
Hence, by (33), Q@) — a(m) = \I/;jlme and using (31),
(39) |G~ wleli = W W U g O Wony = Wi U Wi
Now, Ty = ([@m — 75, all% +infacs, lla — A 1a,snox, (se€ (38))
On Op,1, all the eigenvalues of \I/;Lll/Z\flml\I/;bll/Q
of \11717,{721(1\17:;1\111/2 belong to [2/3,2]. Thus, we write

belong to [1/2,3/2] and so all the eigenvalues

m,1
W a U Wt loy, = W@ P00 L 080 P W, 10,
(40) < 2 Wm,lqj;z%lme 1(91\7,1'
Therefore
E (lam - mfaldloxanm ) S2E | 30 Wl Wl ¥5 )ik
0<j,k<m—1
2 . 1 2 1
=N > s (Wl + ~ Cmlin) = TP (Vi1 + 7 Com)]
0<j,k<m—1
2m 2 _
(41) = S+ 3z Tl¥,,Cnl

by using equality (34).
Now, we bound Tr[\IJ;:lCm)]. We have

g T
el / 2. Ol OA e = / ") ()W 1 0y (D)2 () A(H)dt
where pn)(f) = (¢0(t),-som-1(t))- As \Ij;zh is symmetric positive definite, for all t,
W) ()L @y (£) = 0 and thus

0 < (m) (D10 m) T2 OAWE) < N o) ()W, o (m) (D)2 ().
Consequently,
Tr[¥;, L Cp)] < M Te[W,1 Uy 1] = AT
So we obtain:
X m

A
42 E(T) < (1+2L) ( inf [la—hl2+2
(12) 1)< (1450 ((inf lla = nlE 425 )
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using that
A*
i —h|% ) < ST (i —hl?).
B (,inf fla =l ) < (1+5F ) ((inf o 12
e Study of Th = ||ay, — O‘H%flf\m,lﬁ@?v,l' We have Ty < (||am — W()fn)aH%( + ||a||%<)1/\m,1ﬁ0?\,,1'
Using (39) yields
(43) Ty < ("W 1 U Wt + [|o][3) 14,0005,
By the definition of A, and the Cauchy-Schwarz inequality, we get

cN
44 ET < ( —ra——rrn EY2 (W1 Win1)?) + EV2 )l %) ) PY2(O% 1)
(44) 2 < (g tog g B2V )) + B2l ) ) B2(05,)

We have already seen that E(||a||%) < ¢(T). For the term E[( 'W,,1W,,1)?], we prove the
following lemma:

Lemma 3. Let the Assumptions of Proposition 7 hold. With Wy, 1 defined in (33), we have, for
some constant c(T), if the @;s are bounded: E[( "W, 1W,y, 1)2] < ¢(T)(mL(Sy))/N2. Otherwise,
B[( "W, 1 Wi 1)?] < o(T)(mL?(Sp)) /N?.

Plugging the result of Lemma 3 in (44) allows to conclude for all m satisfying (13) that
E(T3) < ¢/N. Joining the bounds for the expectations of 71,75, T3 gives Inequality (16). O

¢ Proof of Inequality (17). We have now the following decomposition: ||&, — a2 = T} +
T} + T} with

45)  T{:=lam — alZlaninoxs: T3 = [Gm = allZla,anos 15 = llallzlag,

We have E(T3) < alla||2/N7.
Next, T4 < 2(||@m||? + HaH2)1Am N0, - We have

N,1’

[@mllZ = Gn) Um1Gmy < [Pt llopll@am)13m < Sup T 2(t) N3
tefo

Moreover, by formula (12),

1@y 13m = Zn O 0 Zy < |0 Z

ml”op”
Now using (14), on Ap, 1,

<N 2
donlin < (— Y 12l
|WWhm_Q%Wﬂwm)umﬂmz
y (33),

T
||Zm 1H2m <2 Z (p] X + 2 Wm 1Wp1 < 2/ a2(t)X4(t)dt +2 thJWm’l.
Jj=0 0

&nEwéﬁJnim)5;&rﬁfa4@ﬂﬂxﬂundt+8EKfwmmwmmgﬂ.ByLmnmalandLmnma3,we
get that ]E(||2m1|\‘21m) SlasmV L(Sy) < N. As a consequence, E[Ha(m)H%’m] < N* and
E[T/] < N2P1/2(0 ) < N~ 3/2

For the term 77, we simply have E(77) < 2E(T}) by using the defintion of Oy ;. Joining the
bounds on E(77}), for j = 1,2,3 gives the result. O
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¢ Proof of Inequality (18). We propose a more precise study of 7. We have
[am — ol = llam = apll? + llog, — ol
~ X X
< llof, = allz + 201@m = 7oz + 17 o — ar12)
We get on Q. 1,

~ ~ X X
[Gm — ol < llof, — allf + 41Gm — 75, 0lk + 2[7G,a — of 17

Let ¢ = o — o, then W()fn)g = ﬂ()fn)a —ar, and
(46) E(T}) < |log, — a3 +4E([|@m — 7 allX 1anin0w,) + 4B 750915140 1000.)
where |af, — a? = infjes,, ||o — h||? is the bias term and by (42),
~ A
(a7) Bl  wfyalida,ona) <2 (145 ) 7
We have
Lemma 4. Under the Assumptions of Proposition 7,
2cT Ci(T)  (\%)?
E(||7 19121, 1n0,, 1) < e sUp x2t< + L a—a 2.
o1 ama00) < oy s 220) (= + 5 ) la = il

Applying Lemma 4 to (46) and using (47) yields

8¢T CUT) (M%) ) AL\ m
E(T}) < {1+ —— sup x2t< + £ ok —alf+8(1+ L) —,

which gives the result in (18) by definition of K (7). O

Proof of Lemma 4. Let (¢j)o<j<m—1 an orthonormal basis of S, w.rt. (.,.).. We can

write P = Zk o @j, k@ka and we set A4, = (aj k)0<j k<m—1- Let Gml = (<95j795k>X)0§j,k§m—17
obviously Gm 1=t \I/m 1Am,1. Then as Id,, = ((¢j, @k))o<jk<m—1 = AmTm1Am 1, we know
that A, is a square root of \I/m . As a consequence,

Ot = (02T 1 UL o < & 5} = 1Gin1 — Tdullop < 1/2}.

Next, we write W()fn)g = zz:ol Br@r, with ig - ﬂ(m)g,@j>x =0forj =0,...,m— 1.
Then on Qm@, we have ”G;r:lHOp < 2. Then GmJﬁ(m) = ((@j,g>X)0§j§m—17 where B(W) =
“Bo,- .. Bm—1). Thus on Q, 1, we have

m—1
17yl = Z B =G (85, 9)x )osjcm113.m <4 (25, 9%

7=0
T 1 (T
E((pj,9)x) = [ @i(H)g®)E(X*(t))dt = N/o () g(t)z*(t)A(t)dt.

G5(t) = "O(m)(t) "AmAm@ny(t) = “o(m) (¥ 0(m) (1) < L(Sm) 1V llops
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where @) (t) = (@o(t), ..., m-1(t)). Therefore, recalling that g = o — oy, we get

,_.

m—

T
X Bl < < Iy [ 0N O ot (0)
Thus
S B < —L sup 2200 — o 2.
= 7 ~ 2N log(N) ejo,1) e
Now
E(|n, g1 ) 245" Var((r g + —2L sup 22N — a2
ﬂ-(m)g 2 Am,1NQn,1) = par Pi9) X NlOg(N) te[OE"] milz:
We have
m—1 m—1 T 2
A . —_— A . 2 —_
> var((3p00 = 3-8 ( | st - a <>>>dt) ]
m—1 .1 T
<7y / (OGO Var(X2(£)dt < TL(S) [V lop / () Var(X2(8))d
j=0 "0
T swpepn WD),
2log(N) I "

as, after some elementary computations Var(X2(t)) < (z*(t)/ug)(C1(T)/N), with
2

T T
4 (T) =C+3 (/ e~ Jo a(u)dud8> + 4('“3 + 03)/ e Jo a(u)duds’
0 0

C = 2E(Y{) + 4|uoE(JY1|?) + 4pdod and Vi = X1(0) — po. Therefore we get

2cT (T ) ()\*)
E(17 91318 106201) < sup z(t < — a3
(g2 0m0) < foncey s 220 (S o — o,

This ends the proof of Lemma 4. O

8.8. Proof of Lemmas.

Proof of Lemma 2. On the one hand, P(O%,,) < N~7 by Proposition 3 with p = 7, and on
the other hand On1 C Q1. Therefore, P(Qf, ) <1/N7.
By the same proof as the one of Proposfmon 4 (ii) in Comte and Genon-Catalot (2020a), we
have that:
g1 1/2 1/2 inf{a, 1}
U9 = Woillop > all ¥ lop} € {19, 1 Win 1 W, 47 = T lop > —5—}

Then, we mimick Lemma 5 of the same paper to get that, for m satisfying (13),

P(AS L) < PHITL = 90 lop > 19, lop))
(48) < P({|v,{*T mnr”? Idullop > 1/2}) = P(Q5, ;). D
Proof of Lemma 3. We have
1 m—1 T m m—
BL (W)W, 2 = B ([ 00X (0B 1) FZ ([ X0 0)

=0
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Therefore, using the Burholder-Davies-Gundy inequality yields
T T m—1

m—1
B W)l 5 5 B ) w§<t>x2<t>dti <3 [, T e
j= J=
We use the fact that the ¢;s are bounded and Lemma 1 to obtain
E[ (Win,1) Win,1)* S 5L (Swm)
Otherwise, we obtain E[ (W, 1)W,,1]2 < (m/N?)L?(Sy,). O
8.9. Proof of Proposition 8. We defined A, 5 in equation (15) and let us set

151 &
(49) Q= - Vh €y,

15112
On Op 2 defined by (9), the empirical norm ||.|| 57 and the [|-|| z-norm are equivalent for elements
of L2([0, T]). Moreover

—1

(50) Oz = {I190,5°0,29, 5 ~ 14, lop < 1/2}.
The following lemma holds

Lemma 5. We have, for b a positive constant, ]P’((’)]CV,Q) < b/N7. Under the assumptions of
Proposition 8, for p satisfying (13), we have, P(A] ) < b/N7.

To prove Inequality (19), we proceed as in the proof of Inequality (16), using that E(V(¢)) =
(1 — 1/N)v(t), which makes things easier. The two inequalities also follow and we use that

Var(V (1) < (v3(t)/od)(Ca(T)/N) with Co(T) = E([X1(0) — po]*) +4 [ e~ Oy(s)ds. O

8.10. Proof of Proposition 9. Let u =%ug,u1,...,un_1) a vector of R™ such that HuH%m =
Z;”:_Ol ui =1 and set hy(t) = pyyia o wjp;(t). We have fo h3(t)dt = 1 and when a(t) > 0,

v, 1u :/ Ri(t)x2(t)dt > pd.
0

Analogously, when y(t) > 0, v(t) > o2. Then for u =%ug,u1,...,up_1) a vector of RP such that
[ul3, =1, uW,u > od. ©

8.11. Proof of Theorem 1. The proof is given for the estimation of « only, the v case being
very similar.

Lemma 6. Under the assumptions of Theorem 1, for all m,m’ < N,

E

e
< sup V]Qv’l(hl) — (p1(m) +p1(m/)> 1@N’1] < 1.6/<,T,
Jr

h1€B

mvm/

where On 1 is defined by (8), Bpym' = {h1 € Sy + S, |P1lle < 1} and p1(m) = km/N, where
K 15 a numerical constant.

Proof of Lemma 6. By the exponential inequality for martingales (see the Bernstein Inequality
for martingales in Revuz and Yor (1999)), we have

P (/OT h1(t)X (t)dBy1(t) > =, /OT hE(t)X2(t)dt < y) < exp (—Z) :
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In other words, we have
2 2 e
P(uni(h) >e, [mlk <n?)<e 7.

Therefore
3 _
P (o) = V3IAIVE) (Oni) < P (valtn) = VBIALVE il < Slm]2) < e

The result follows by aplying the chaining method as in Baraud et al. (2001), sections 6-7,
Proposition 6.1 with s2 = 1. O
By definition of m, we have Vm € My 1, and any o, € Sp,

Un (@) + peng(m) < Uni(om) + pen(m).
Moreover, by (11), it holds
Una(@) — Uni(m) = 5 — al% — lam — al% — 20x1 (@ — am).
Consequently, Vm € /T/I\NJ, and any oy, € Sy,

6 —all% < llam — ol + peny (m) + 2081 (@7 — am) — pen, ()

< o — alX + peny(m)
1, .. .
(51) +ollam — amlz +38 sup V1 (h1) — peny (i)

h1E€Sm+Ssm,||hi]e=1
Define
Envi={Mn1C M\N,l}-
On Zn,1, Inequality (51) holds Vm € My 1, and on ZEx1 N On,1, Vm € My 1,
|@m — al% < Ham—Oé||§<+pen1(m)+i|lam—amll?x+8 sup Vi1 () — peny ()
h1E€Sm+Sa,l|hi]la=1
Thus, on Ex1 N On,1, YMm € My,

1. 3 A
“llam —allkx < Sllom — allk + peny(m) + 8 sup v 1(h1) — (pr(m) + p1 (i)
2 2 h1€Sm+Smlh1[la=1

+8p1(m) + 8p1(m) — pen, (m).

By Lemma 6, we get

Y E

m/<N

e C
( sup v, (h1) — (p1(m) +P1(m/)> 10N,1] < 1'6’€ZWLN TN
+

h1€B,

mvm/

For k1 > 8k, 8p1(m) + 8p1(m) < pen;(m) + pen;(m). Thus, finally, Vm € My, and o, € Spy,
we get for k1 > 8k,

. AL C
B (18 — ol 1zgsn0n,) < 3 {1+ 5 ) o = al? + dpemy (m) + .
Now we study ||aﬁ_a“%(1(51v,1ﬁ(’)zv,1)°' We have Ty := ||ag —al% < H@,ﬁ—w()%)aﬂg(—l-ﬂaﬂﬁ(.
Using (39) yields, as m € Mp 1,
cN

T// < - tW’\ W’\ 2 .
2 S L.(S7) log(V) maWa 1+ [l %
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Now, m + "W, 1W,, 1 is increasing with m, and L(Sz) > L(S1) > 1/T. Therefore

TN
T// < ¢ t 2 .
2 = log(N) WNJWNJ + HaHX
By the Cauchy-Schwarz inequality, we get
¢I'N - c
E(T5 1=y n0n 1)) < (WEW(( Wi Wa1)?) + El/QHOéHf%)) P'/2(EN,1 0 ON1)O).

We have seen above that E(||a||%) < ¢(T). For the term E[( Wy 1Wy 1)?], we apply Lemma 3
to obtain ,

B Wn W) < o1 S

Thus
]E(TQH]'(ENJQONJ)C) S N5/2]P>1/2(EN,1 N ONJ)C)’

By Proposition 3, taking p = 8, we have P(O% ;) < N~8. Now we use the Lemma:
Lemma 7. [t holds that P(Z% ) S N~.

This implies that E(Ty'1(=y ,noy.,)e) S N~1. We obtain the first inequality of Theorem 1 for
K1 > 8k := Ko and C7 = 4.
We proceed analogously for the second inequality of Theorem 1. O

Proof of Lemma 7. On E?V,l’ there exists k € My ; such that k ¢ /(/I\N,l.
For this index &, we have L(Sk)[| ¥ }[lop < ¢N/21og(N) and L(Sy) [ ¥} 1[lop > <N/ log(N). As
¢(N/log(N)) < L(Sk) %5 llop < LISk ¥t — Urtllop + L(Sk) 125 [lop
< LSt = T llop + (¢/2)(N/ log(N)),
we get for this index & that L(Sk)|[ Uy} — Ui }llop > cN/(2log(N)).
Let A, = {L(Sm)H(I\’;n}1 — ‘If;lhﬂop > (¢/2)N/log(N)}, we have, using the definition of My,

PMy1 € Mya) < Y PAR) < Y POITLYL — 0k lop > 1954

mGMNJ mGMN,l

op)-

By formula (48),
P([ Ty = Yot llop > 197,01 lop) < P(25,1) S P(OF,) S N5
This implies P(My 1 &€ My1) S N7, O
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