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NONPARAMETRIC ADAPTIVE ESTIMATION FOR INTERACTING

PARTICLE SYSTEMS

F. COMTE(1), V. GENON-CATALOT(1)

Abstract. We consider a stochastic system (XN
i (t), i = 1, . . . , N) of N interacting particles

with constant di�usion coe�cient and linear drift b(t, x, µ) = α(t)x−β(t)
∫
(x−y)µ(dy) depend-

ing on two unknown deterministic functions α(t), β(t). Our concern here is the nonparametric
estimation of these functions from a continuous observation of the process on [0, T ] for �xed
T and large N . We de�ne two collections of projection estimators α̃m(t), γ̃?p(t) respectively of
α(t), γ(t) = α(t) − β(t) where for each m (resp. p), α̃m(t) (resp. γ̃?p(t)) belongs to a �nite

dimensional subspace of L2([0, T ]). We study the L2-risks of these estimators where the risk is
de�ned either by the expectation of an empirical norm or by the expectation of a deterministic
norm. Afterwards, we propose a data-driven choice m̂ (resp. p?) of the value m (resp. p) and
study the risk of the adaptive estimators. The case of β(t) ≡ 0 is also treated separately. The
results are illustrated by numerical experiments on simulated data.

Keywords and phrases: Interacting particle systems, nonparametric inference, projection estima-
tors, adaptive method.

June 16, 2022

1. Introduction

Stochastic systems of N interacting particles have received a lot of attention in the past
decades. First arisen in Statistical Physics for the modelling of granular media (Benedetto
et al., 1997), these models progressively appear in many other �elds of applications such as
Mathematical Biology (Molginer and Edelstein-Keshet, 1999, Baladron et al., 2012), Epidemics
Dynamics (Britton et al., 2020) or Finance (Giesecke et al., 2020). The probabilistic properties of
these models, especially their behaviour as N is large, have been largely studied (see e.g. among
many references Méléard, 1996, Sznitman, 1991). On the contrary, the statistical inference for
interacting particles remained unstudied for many years with the exception of Kasonga (1990)
who studied the maximum likelihood estimation of θ = (α, β) from the observation on the interval

[0, T ] of theN -dimensional system given by: dXN
i (t) = {αXN

i (t)−β[XN
i (t)−XN

N (t)]}dt+dWi(t),

with XN
i (0) = Xi

0, i = 1, . . . , N, and X
N
N (t) = N−1

∑N
j=1X

N
j (t), (Wi, i = 1 . . . , N) are N

independent Brownian motions, Xi
0, i = 1, . . . , N are i.i.d. random variables independent of

(Wi, i = 1 . . . , N). A multivariate version of Kasonga's model where XN
i (t) ∈ Rd is studied

in Chen (2021). The general model can be described as a N -dimensional stochastic di�erential
equation of the form

dXN
i (t) = b(t,XN

i (t), µN (t))dt+ σ(t,XN
i (t))dWi(t)

(1): Université Paris Cité, MAP5, UMR 8145 CNRS, F-75006, FRANCE,
email: fabienne.comte@parisdescartes.fr,
valentine.genon-catalot@mi.parisdescartes.fr.
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2 F. COMTE, V. GENON-CATALOT

where µN (t) = N−1
∑N

j=1 δXN
j (t) is the empirical measure associated with (XN

i (t), i = 1, . . . , N).

The drift function is often modelled as b(t, x, µ)) = V (x)−
∫

Φ(x−y)µ(dy) and Φ represents the
interaction term between particles. In this context, Lu et al. ( 2019) consider the nonparametric
estimation of the interaction function in a deterministic system where V ≡ 0 and σ ≡ 0. Li et
al. (2021) are interested in characterizing the identi�ability of the interaction function. Sharrock
et al. (2021) study a parametric model for the drift and estimation by maximum likelihood. In
Pavliotis and Zanoni (2021), the point of view of martingale estimating equations is developed for
parametric inference based on discrete observations of the system. Della Maestra and Ho�mann
(2022) study the nonparametric estimation of the function b(t, x, µ) by a kernel approach. Be-
lomestny et al. (2022) consider a semiparametric model for the interaction function and estimate
the nonparametric part by a kernel approach.
In this paper, we consider a linear drift b(t, x, µ) = α(t)x− β(t)

∫
(x− y)µ(dy), i.e. (XN

i (t), i =
1, . . . , N) is given by

(1) dXN
i (t) =

{
α(t)XN

i (t)− β(t)[XN
i (t)−XN

N (t)]
}
dt+ dWi(t), XN

i (0) = Xi
0, i = 1, . . . , N,

where α(t), β(t) are deterministic unknown functions and X
N
N (t) is the empirical mean of the

sample, (Wi, i = 1 . . . , N) are N independent Brownian motions, Xi
0, i = 1, . . . , N are i.i.d.

random variables independent of (Wi, i = 1 . . . , N), as in Kasonga (1990). Our concern here is
the nonparametric estimation of the functions (α(t), β(t)) from a continuous observation of the
process the process (XN

i (t), i = 1, . . . , N) on [0, T ] with �xed T and N → +∞. Note that this
model was proposed by Bishwal (2011) as an extension of Kasonga's model. However, in this
paper, nothing is done concerning the estimation of the functions α(t), β(t). If β(t) ≡ 0, the
processes XN

i (t), i = 1, . . . , N are independent. In this context, the nonparametric estimation of
the unknown function α(t) by the method of sieves is considered in Nguyen and Pham (1982).
If β(t) 6≡ 0, then the N processes are no more independent and (XN

i (t), i = 1, . . . , N) constitute
a system of interacting particles. The interest of model (1) lies is the fact that, contrary to more
general models, computations can be done explicitely.
Not surprisingly, two processes play a crucial role, the empirical mean and the empirical variance
of (XN

i (t), i = 1, . . . , N):

(2) X(t) = X
N
N (t) =

1

N

N∑
i=1

XN
i (t),

(3) V (t) = VN (t) =
1

N

N∑
i=1

[XN
i (t)−XN

N (t)]2 =
1

N

N∑
i=1

(XN
i (t))2 − (X

N
N (t))2

We prove that each one follows an autonomous stochastic di�erential equation with small di�u-
sion term and that the two equations are driven by independent Brownian motions. The equation
of X(t) only depends on α(t) and the equation of V (t) only depends on γ(t) = α(t)− β(t). This
is why we concentrate on estimating α(t), γ(t) and this will be done by two separate contrasts.
As N tends to in�nity, both processes X(t), V (t) converge almost surely uniformly on [0, T ] to
a deterministic function (respectively x(t) and v(t)) (Propositions 1 and 2 ). We assume that
EXi(0) 6= 0 and VarXi(0) 6= 0. Under this assumption, we characterize the probability of de-
viation of P(supt∈[0,T ] |(X2(t)/x2(t)) − 1| > δ) and P(supt∈[0,T ] |(V (t)/v(t)) − 1| > δ) (we apply

them for δ = 1/2) (Propositions 3 and 4).
We de�ne two collections of minimum contrast estimators α̃m(t), γ̃?p(t) respectively of α(t), γ(t).

For each m (resp. p), α̃m(t) (resp. γ̃?p(t)) belongs to a �nite dimensional subspace of L2([0, T ]).
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We study the L2-risks of these estimators where the risk is de�ned either by the expectation of
an empirical norm or by the expectation of a deterministic norm (Propositions 7 and 8). For
the estimation of α(t), the empirical norm and the deterministic weighted norm are given for a
function h of L2([0, T ]) by

(4) ‖h‖2X =

∫ T

0
h2(t)X2(t)dt, ‖h‖2x =

∫ T

0
h2(t)x2(t)dt.

For the estimation of γ(t), they are given by

(5) ‖h‖2√
V

=

∫ T

0
h2(t)V (t)dt, ‖h‖2√v =

∫ T

0
h2(t)v(t)dt.

Thanks to Propositions 3 and 4, these norms are equivalent on L2([0, T ]) outside a set of small
probability which is the key tool for bounding the risks of our estimators. Afterwards, we
propose data-driven choices m̂, p? of the valuesm, p and study the risk of the adaptive estimators
(Theorem 1). In order to have a benchmark for comparison, we also brie�y treat the estimation
of α(t) when β(t) ≡ 0 in model (1), that is γ(t) = α(t),∀t ∈ [0, T ].
Section 2 contains our assumptions and the preliminary properties concerning the two processes
X(t), V (t). In Section 3, we build and study our projection estimators. Section 4 concerns
the adaptive estimators. Section 5 deals with the estimation when β(t) ≡ 0. In Section 6,
we illustrate our theory by numerical experiments on simulated data. Section 7 contains some
concluding remarks. Proofs are gathered in Section 8.

2. Assumptions and Preliminary properties.

We set γ(t) = α(t)− β(t) and consider the following assumptions:

[H1] Xi
0, i = 1, . . . , N are i.i.d. random variables such that E(Xi

0) = µ0, E(Xi
0)2 = σ2

0 + µ2
0 with

µ0 6= 0 and σ2
0 6= 0 and Xi(0) has moments of any order.

[H2] The functions α(t), γ(t) : R+ → R are continuous on R+ (and thus belong to L2([0, T ])),
and γ(t) 6≡ 0, α(t) 6≡ γ(t).

With the new parameterization, we have

(6) dXN
i (t) =

{
α(t)X

N
N (t) + γ(t)[XN

i (t)−XN
N (t)]

}
dt+ dWi(t), XN

i (0) = Xi
0, i = 1, . . . , N.

2.1. Study of the empirical mean and empirical variance.

Proposition 1. The empirical mean satis�es dX
N
N (t) = α(t)X

N
N (t)dt+ 1√

N
dBN,1(t), that is

X
N
N (t) = exp (

∫ t

0
α(s)ds) X

N
N (0) +

1√
N
gN (t)

where gN (t) = exp (
∫ t

0 α(s)ds)
∫ t

0 exp (−
∫ s

0 α(u)du)dBN,1(s) and BN,1 is the standard Brownian

motion given by BN,1(t) = (1/
√
N)
∑N

j=1Wj(t).

Let x(t) = µ0 exp (
∫ t

0 α(s)ds). Almost surely, as N tends to in�nity, sup0≤t≤T |X
N
N (t) − x(t)|

tends to 0.

Note that dgN (t) = α(t)gN (t)dt+dBN,1(t), gN (0) = 0, (gN ) has a �xed distribution. It follows

from Proposition 1 that we have the explicit expression of (X
N
N (t))2:

(X
N
N (t))2 = exp (2

∫ t

0
α(s)ds) (X

N
N (0))2 + 2

1√
N
gN (t) exp (

∫ t

0
α(s)ds) X

N
N (0) +

1

N
g2
N (t),
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where the middle term is centred. By Proposition 1, almost surely, as N tends to in�nity,

sup0≤t≤T |(X
N
N (t))2 − x2(t)| tends to 0. Under [H1], we have

E(X
N
N (t))2 = exp (2

∫ t

0
α(s)ds) (

σ2
0

N
+ µ2

0) +
1

N
Eg2

N (t) = x2(t)

(
1 +

λ(t)

N

)
,

with x(t) de�ned in Proposition 1 and

(7) λ(t) :=
1

µ2
0

(
σ2

0 +

∫ t

0
exp (−2

∫ s

0
α(u)du)ds

)
.

Thus, as N tend to in�nity E(X
N
N (t))2 → x2(t).

Proposition 2. The process VN (t) de�ned in (3) satis�es VN (t) > 0 for all t ≥ 0 and

dVN (t) = [2γ(t)VN (t) + (1− 1

N
)]dt+

2√
N

√
VN (t)dBN,2(t),

where BN,2(t) =
∫ t

0

∑N
i=1(Xi(t)−X

N
N (t))dWi(t)√

VN (t)
is a Brownian motion. Setting Γ(t) =

∫ t
0 γ(s)ds, this

yields

VN (t) = e2Γ(t)

(
VN (0) +

∫ t

0
e−2Γ(s)(1− 1

N
)ds+

2√
N

∫ t

0
e−2Γ(s)

√
VN (s)dBN,2(s)

)
.

Let v(t) be de�ned by dv(t) = [2γ(t)v(t) + 1]dt, v(0) = σ2
0. Then,

v(t) = σ2
0e

2Γ(t) + e2Γ(t)

∫ t

0
e−2Γ(s)ds > 0 for all t ≥ 0

and as N tends to in�nity, sup0≤t≤T |VN (t)− v(t)| →a.s. 0.

As a by-product of Proposition 2, we get the useful property E(VN (t)) = (1− 1/N)v(t).

Note that 〈BN,1, BN,2〉 = 0. We stress that in the equation for X
N
N (t), the drift depends on α(t)

only and in the equation of VN (t), the drift depends on γ(t) only. This is the interest of the
change of parametrisation (α(t), β(t)) 7→ (α(t), γ(t)).

2.2. Almost exponential inequalities. For simplicity, let us set X(t) = X
N
N (t) and VN (t) =

V (t) (see (2)-(3)).
For the sequel, we need the following lemma.

Lemma 1. For all r ≥ 1, there exists a constant cr(T ) such that, for all t ≤ T ,

E[|X(t)|r + V r(t)] ≤ cr(T ).

Proposition 3. Assume [H1] . De�ne the set

(8) ON,1 = { sup
t∈[0,T ]

|X
2(t)

x2(t)
− 1| ≤ 1/2}.

There exist positive constants C(T ), c(T ) and for all r ≥ 1, a constant c(r) such that

P(OcN,1) ≤ C(T ) exp (−c(T )N) +
c(r)

N r
.
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Proposition 4. Assume [H1] . De�ne the set

(9) ON,2 = { sup
t∈[0,T ]

|V (t)

v(t)
− 1| ≤ 1/2}.

There exists a constant c(T ) and for all r ≥ 1, a constant c(r, T ) such that

P(OcN,2) ≤ 2 exp (−c(T )N) +
c(r, T )

N r
.

3. Estimation of (α(t), γ(t)).

Recall the notations X(t) = X
N
N (t) and V (t) = VN (t) = 1

N

∑N
i=1[XN

i (t)−XN
N (t)]2 and set for

simplicity Xj = XN
j .

3.1. Estimation contrast. Consider (ϕj , j ≥ 0) and (ψj , j ≥ 0) two orthonormal bases of
L2([0, T ]) and let Sm (resp. Σp) be the subspace generated by (ϕj , 0 ≤ j ≤ m − 1) (resp. by
(ψj , 0 ≤ j ≤ p − 1)). We assume that the functions (ϕj , j ≥ 0), (ψj , j ≥ 0) are continuous on
[0, T ].
Inspired by the log-likelihood of Process (1), for h(t) = (h1(t), h2(t)) element of L2([0, T ]) ×
L2([0, T ]), we consider the contrast

UN (h) =
1

N

∫ T

0

N∑
j=1

[h1(t)X(t) + h2(t)(Xj(t)−X(t)]2dt

− 2

N

N∑
j=1

∫ T

0

N∑
j=1

[h1(t)X(t) + h2(t)(Xj(t)−X(t)]dXj(t).

Developing UN (h) = UN ((h1, h2)) and using that
∑N

j=1(Xj(t)−X(t)) = 0, we obtain

UN ((h1, h2)) = UN,1(h1) + UN,2(h2)

with

UN,1(h1) =

∫ T

0
h2

1(t)X2(t)dt− 2

∫ T

0
h1(t)X(t)dX(t),

UN,2(h2) =

∫ T

0
h2

2(t)V (t)dt− 2

N

∫ T

0
h2(t)

N∑
j=1

(Xj(t)−X(t))dXj(t).

This is why we de�ne the projection estimators of α(t) on Sm and of γ(t)) on Σp by

(10) α̂m = arg min
h1∈Sm

UN,1(h1), γ?p = arg min
h2∈Σp

UN,2(h2).

Recall that we de�ned random and deterministic weighted norms ‖h1‖X , ‖h1‖x in (4) and
‖h2‖√V ‖, ‖h2‖√v‖ in (5), with the associated scalar products. Note that (see (7) for λ(t)):

E(‖h1‖2X) = ‖h1‖2x +
1

N

∫ T

0
h2

1(t)λ(t)x2(t)dt, E(‖h2‖2√V ) =

(
1− 1

N

)
‖h2‖2√v.

Proposition 5. We have

E(UN,1(h1)) = E(‖h1 − α‖2X − ‖α‖2X), E(UN,2(h2)) = E(‖h2 − γ‖2√V − ‖γ‖
2√
V

).
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Proposition 5 shows that the expectations of the contrasts UN,1(h1) and UN,2(h2) are mini-
mum for h1 = α, h2 = γ and explains the de�nition of the estimators.

Proof of Proposition 5. As
∑N

j=1(Xj(t)−X(t)) = 0, we get

UN,1(h1) =

∫ T

0
h2

1(t)X2(t)dt− 2

∫ T

0
h1(t)α(t)X2(t)dt− 2

∫ T

0
h1(t)X(t)

 1

N

N∑
j=1

dWj(t)

 .

and

UN,2(h2) =

∫ T

0
h2

2(t)V (t)dt− 2

∫ T

0
h2(t)γ(t)V (t)dt− 2

∫ T

0
h2(t)

1

N

N∑
j=1

(Xj(t)−X(t))dWj(t).

We have

(11) UN,1(h1) = ‖h1−α‖2X−‖α‖2X−2νN,1(h1), UN,2(h2) = ‖h2−γ‖2√V −‖γ‖
2√
V
−2νN,2(h2),

with

νN,1(h1) =

∫ T

0
h1(t)X(t)

 1

N

N∑
j=1

dWj(t)

 =
1√
N

∫ T

0
h1(t)X(t)dBN,1(t),

νN,2(h2) =

∫ T

0
h2(t)

1

N

N∑
j=1

(Xj(t)−X(t))dWj(t) =
1√
N

∫ T

0
h2(t)

√
V (t)dBN,2(t).

Note that E(νN,i(hi)) = 0 for i = 1, 2 and thus

E(UN,1(h1)) = E(‖h1 − α‖2X − ‖α‖2X), E(UN,2(h2)) = E(‖h2 − γ‖2√V − ‖γ‖
2√
V

).

It is also interesting to note that, as 〈BN,1, BN,2〉 = 0, it holds E(νN,1(h1)νN,2(h2)) = 0. 2

3.2. Risk of the projection estimators on a �xed space. For M a matrix, let Tr(M)
denote the trace of the matrix M and let ‖M‖op denote the operator norm of M that is the
square root of the largest eigenvalue of M tM . If M is symmetric, ‖M‖op = sup{|λi|} where
λi are the eigenvalues of M and so ‖M−1‖op = ‖M‖−1

op . For h1 ∈ L2([0, T ]), we denote

by ‖h1‖ = (
∫ T

0 h2
1(t)dt)1/2 its L2-norm and ‖x‖2,r denotes the Euclidean norm of the vector

x =t(x1, . . . , xr) of Rr.
We now detail the construction and the expression of the estimators (10).
Let us de�ne

Ψ̂m,1 =

(∫ T

0
ϕj(t)ϕk(t)X

2(t)dt

)
0≤j,k≤m−1

and Ψ̂p,2 =

(∫ T

0
ψj(t)ψk(t)V (t)dt

)
0≤j,k≤p−1

and

Ẑm,1 =

(∫ T

0
ϕj(t)X(t)dX(t)

)
0≤j≤m−1

and Ẑp,2 =

(∫ T

0
ψj(t)

1

N

N∑
k=1

(Xk(t)−X(t))dXk(t)

)
0≤j≤p−1

.

Noting that, for u = t(u0, . . . , um−1) ∈ Rm, tuΨ̂m,1u =
∫ T

0

(∑m−1
j=0 ujϕj(t)

)2
X2(t)dt ≥ 0, we

conclude that Ψ̂m,1 is symmetric positive de�nite, as well as Ψ̂p,2. Indeed the bases functions
and X(t) are continuous and non identically zero.
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Set α̂m(t) =
∑m−1

k=0 [α̂(m))]k ϕk(t), γ
?
p(t) =

∑p−1
`=0 [γ?(p)]` ψ`(t). By a standard computation, we

get that the vectors α̂(m) = t([α̂(m))]k, k = 0, . . .m − 1), γ?(p) = t([γ?(p)]`, ` = 0, . . . , p − 1) are

solution of
Ẑm,1 = Ψ̂m,1α̂(m) and Ẑp,2 = Ψ̂p,2γ

?
(p).

Therefore

(12) α̂(m) = Ψ̂−1
m,1Ẑm,1, γ?(p) = Ψ̂−1

p,2Ẑp,2.

We de�ne the symmetric positive de�nite matrices

Ψm,1 =

(∫ T

0
ϕj(t)ϕk(t)x

2(t)dt

)
0≤j,k≤m−1

, Ψp,2 =

(∫ T

0
ψj(t)ψk(t)v(t)dt

)
0≤j,k≤p−1

.

Note that

E
(

Ψ̂m,1

)
= Ψm,1 +

1

N

(∫ T

0
ϕj(t)ϕk(t)λ(t)x2(t)dt

)
0≤j,k≤m−1

and E
(

Ψ̂p,2

)
=

(
1− 1

N

)
Ψp,2,

where λ(t) is de�ned by (7). Lastly, we de�ne

L(Sm) = sup
t∈[0,T ]

m−1∑
j=0

ϕ2
j (t), L(Σp) = sup

t∈[0,T ]

p−1∑
j=0

ψ2
j (t).

These quantities were introduced in Comte and Genon-Catalot (2020a, 2020b) in the framework
of regression and drift estimation for di�usions by projection method. They only depend respec-
tively on the subspace Sm (on the subspace Σp) and not on the bases chosen to de�ne them.

Indeed, L(Sm) = suph1∈Sm,‖h1‖=1 supt∈[0,T ] h
2
1(t), where ‖h1‖2 =

∫ T
0 h2

1(t)dt, and analogously for

L(Σp).
Below, we restrict the possible choices of the dimensions m, p by a condition which ensures
the stability of least-squares estimators (see e.g. Cohen et al. (2013), Comte and Genon-
Catalot (2020a)). For c a numerical constant, that can take any value, we consider dimensions
m, p such that

(13) m, p ≤ N and L(Sm)(‖Ψm,1‖−1
op ∨ 1) ≤ cN

2 logN
, L(Σp)(‖Ψp,2‖−1

op ∨ 1) ≤ cN

2 logN
.

In parallel, de�ne the truncated estimators

(14) α̃m = α̂m1Λm,1 , Λm,1 = {L(Sm)(‖Ψ̂m,1‖−1
op ∨ 1) ≤ cN/ logN}

and

(15) γ̃?p = γ?p1Λp,2 , Λp,2 = {L(Σp)(‖Ψ̂p,2‖−1
op ∨ 1) ≤ cN/ logN}.

It is worth noting that the following holds.

Proposition 6. The mappings m 7→ ‖Ψ−1
m,1‖op, m 7→ ‖Ψ̂−1

m,1‖op, p 7→ ‖Ψ−1
p,2‖op, p 7→ ‖Ψ̂−1

p,2‖op

are increasing.

Now, we can state the risks bounds of the above estimators for �xed m, p.

Proposition 7. Assume that [H1] and [H2] hold. Consider the estimator α̃m(t) of α(t) de�ned
by (14), for m satisfying (13).
(i) For the risk based on the empirical X-norm, we have

(16) E‖α̃m − α‖2X ≤
(

1 +
λ?T
N

)(
inf
h∈Sm

‖h− α‖2x + 2
m

N

)
+

c

N
,
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where λ?T := supt∈[0,T ] λ(t).
(ii) For the risk based on the deterministic x-norm, we have

(17) E‖α̃m − α‖2x ≤ 2

(
1 +

λ?T
N

)(
inf
h∈Sm

‖h− α‖2x + 2
m

N

)
+

c

N
.

Re�ning the proof of the bias term, we get

(18) E‖α̃m − α‖2x ≤
(

1 +
c

log(N)
KN (T )

)
inf
h∈Sm

‖h− α‖2x + 8

(
1 +

λ?T
N

)
m

N
+

c

N

with

KN (T ) := 8T sup
t∈[0,T ]

x2(t)

(
C1(T )

µ4
0

+
(λ?T )2

N

)
and C1(T ) is a constant depending on T .

Proposition 8. Assume that [H1] and [H2] hold. Consider the estimator γ̃?p(t) of γ(t) de�ned
by (15), for p satisfying (13).

(i) For the risk based on the empirical
√
V -norm, we have

(19) E‖γ̃?p − γ‖2√V ≤ (1− 1

N
)

(
inf
h∈Σp

‖h− γ‖2√v +
2p

N

)
+
c′

N
.

(ii) For the risk based on the deterministic
√
v-norm, we have

(20) E‖γ̃?p − γ‖2√v ≤ 2

(
1− 1

N

)(
inf
h∈Σp

‖h− γ‖2√v + 2
p

N

)
+

c

N
.

With a more elaborate proof,

(21) E‖γ̃?p − γ‖2√v ≤
(

1 +
c

log(N)
R(T )

)
inf
h∈Σp

‖h− γ‖2√v + 8

(
1− 1

N

)
p

N
+

c

N

with

R(T ) := 2T sup
t∈[0,T ]

v(t)
C2(T )

σ4
0

and C2(T ) is a constant depending on T .

In the two previous propositions, for the risks based on the deterministic norms, we obtain
two inequalities. The di�erence between (17) and (18) lies in the evaluation of the bias term
where the factor 2 is improved into a factor 1 + o(1).
The exact rates of ‖Ψ−1

m,1‖op and ‖Ψ−1
p,2‖op as functions of m, p are di�cult to compute. However,

we can prove the following result.

Proposition 9. (1) If, for all t ∈ [0, T ], α(t) ≥ 0, then ‖Ψ−1
m,1‖op = ‖Ψm,1‖−1

op ≤ µ−2
0 .

(2) If, for all t ∈ [0, T ], γ(t) ≥ 0, then ‖Ψ−1
p,2‖op = ‖Ψp,2‖−1

op ≤ σ−2
0 .

3.3. Rates of convergence. Rates of convergence can be deduced from risk bounds provided
that functional regularity conditions on α, γ are set. We give results for α only, but the same
type of results holds for γ. Regularity spaces depend on the basis which is used. Below and in
the simulation section, examples are presented.
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3.3.1. Rates on trigonometric spaces. First we consider the collection (STrigm ,m ≥ 0) of subspaces

of L2([0, T ]) where STrigm has odd dimensionm and is generated by the orthonormal trigonometric

basis (denoted by [T]) (ϕj,T ) with ϕ0,T (t) =
√

1/T1[0,T ](t), ϕ2j−1,T (t) =
√

2/T cos(2πjt/T )1[0,T ](t)

and ϕ2j,T (t) =
√

2/T sin(2πjt/T )1[0,T ](t) for j = 1, . . . , (m−1)/2. This basis satis�es
∑m−1

j=0 ϕ2
j,T (t) =

m/T . Therefore L(STrigm ) = m/T .
Assume moreover that, for some c2

0 > 0,

(22) ∀t ∈ [0, T ], x2(t) ≥ c2
0.

This assumption is ful�lled if α(t) ≥ 0, ∀t ∈ [0, T ], with c0 = µ0. Then, it follows from the proof
of Proposition 9 that (22) implies ‖Ψ−1

m ‖op ≤ 1/c2
0. As a consequence, under (22), m satis�es

condition (13) as soon as m ≤ cc2
0TN/ log(N), which is a weak constraint.

Let r be a positive integer, L > 0 and de�ne

W per(r, L) := {g ∈ Cr([0, T ];R) : g(r−1) is absolutely continuous,∫ T

0
g(r)(x)2dx 6 L and g(j)(0) = g(j)(T ), ∀j = 0, . . . , r − 1}.

By Proposition 1.14 of Tsybakov (2009), a function f ∈W per(r, L) admits a development

f =

∞∑
j=0

θj,Tϕj,T such that
∑
j>0

θ2
j,T τ

2
j 6 C(T, L),

where τj = jr for even j, τj = (j − 1)r for odd j, and C(L) := L2(T/π)2r. So, with f =∑m−1
j=0 θj,Tϕj,T ,

‖f − fm‖2 6 K(L, T, r)m−2r.

Thus we obtain the following rate

Corollary 1. Assume that [H1], [H2], (22) hold and that α ∈ W per(r, L). Then choosing

m? = c?N1/(2r+1) gives E(‖α̃m? − α‖2) ≤ C(T, r, L, c2
0)N−2r/(2r+1).

Indeed, m? satis�es m? ≤ cc2
0TN/ log(N) for well chosen c?.

Note that we also use the cosine basis [C] de�ned by ϕ0,T (x) =
√

1/T1[0,T ](t), ϕj,T (t) =√
2/T cos(πjt/T )1[0,T ](t), j = 1, . . . ,m − 1, see Efromovich (1999, p.46). It is clearly an or-

thonormal basis. For a twice di�erentiable function, the projection coe�cients decrease like 1/j2

without border constraints; such constraints are required for higher regularities only, see Efro-
movich (1999, p.32). In practical implementation, it appears that this basis is more convenient
and performant than the complete trigonometric basis.

3.3.2. Rates on Sobolev Laguerre spaces. Consider now a collection of subspaces of L2(R+),
generated by the Laguerre basis [L] de�ned by

`j(t) =
√

2Lj(2t)e
−t1t≥0, j ≥ 0, Lj(t) =

j∑
k=0

(−1)k
(
j

k

)
tk

k!
.

We set SLagm = span{`j , j = 0, . . . ,m−1}. We have ∀t ≥ 0,
∑m−1

j=0 `2j (t) ≤ 2m (see Abramowitz

and Stegun (1964)) and as ϕj(0) =
√

2, L(SLagm ) = 2m.
The basis is orthonormal in L2(R+), but not in L2([0, T ]). However, the bounds (16)-(19) can

be obtained for this basis too as the orthonormality is not used in the proof. Thus we can get rates
on Sobolev Laguerre spaces de�ned by W s(D) = {f ∈ L2(R+),

∑
j≥1 j

scj(f)2 ≤ D < +∞},
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cj(f) =
∫ +∞

0 f(t)`j(t)dt. A function belonging to W s(D) has, roughly speaking, regularity
properties of order s, see Comte and Genon-Catalot (2018).

Therefore, under [H1], [H2], if α ∈ W s(D) and if m� = cN1/(s+1) satis�es constraint (13),

then E(‖α̃m�−α‖2X) ≤ c(T,D)N−s/(s+1), which is an optimal rate for regression type estimation
with Laguerre basis, see Comte and Genon-Catalot (2020a, Theorem 1).

4. Adaptive estimators

We will assume in the following that (see examples of bases in section 3.3):

L(Sm) ≤ c2
ϕm, L(Σp) ≤ c2

ψp.

We set

MN,1 =

{
m ≤ N,L(Sm)‖Ψ−1

m,1‖op ≤
c

2

N

log(N)

}
, M̂N,1 =

{
m ≤ N,L(Sm)‖Ψ̂−1

m,1‖op ≤ c
N

log(N)

}
,

MN,2 =

{
p ≤ N,L(Σp)‖Ψ−1

p,2‖op ≤
c

2

N

log(N)

}
, M̂N,2 =

{
p ≤ N,L(Σp)‖Ψ̂−1

p,2‖op ≤ c
N

log(N)

}
.

Now we de�ne

(23) m̂ = arg min
m∈M̂n,1

{UN,1(α̂m) + pen1(m)} , pen1(m) = κ1
m

N

(24) p? = arg min
p∈M̂p,2

{
UN,2(γ?p) + pen2(p)

}
, pen2(p) = κ2

p

N
.

Note that UN,1(α̂m) = −‖α̂m‖2X and UN,2(γ?p) = −‖γ?p‖2√V .

Theorem 1. Under [H1]-[H2], there exists a numerical κ0 such that for κ1 ≥ κ0, κ2 ≥ κ0,

E
(
‖α̂m̂ − α‖2X

)
≤ C1 inf

m∈MN,1

((
1 +

λ?T
N

)
inf
h∈Sm

‖h− α‖2x + κ1
m

N

)
+

c

N
,

E
(
‖γ?p? − γ‖2√V

)
≤ C2 inf

p∈MN,2

(
(1− 1

N
) inf
h∈Σp

‖h− γ‖2√v + κ2
p

N

)
+
c′

N
,

where C1 and C2 are numerical constants.

Theorem 1 shows that our estimators are adaptive in the sense that their risk automatically
realizes the best compromise between the bias and the variance terms. In practical implementa-
tion, we should not use the value κ0 provided by our proof since it is not the smallest one. The
theoretical determination of the best value κ0 is di�cult. Therefore, it is customary to determine
this value by preliminary simulations.

5. Estimation of α(t) when β(t) ≡ 0

To have a benchmark for comparison, we consider here the simpler case where β(t) ≡ 0 in
model (1), i.e. the model given by N i.i.d. Ornstein-Uhlenbeck processes:

(25) dXi(t) = α(t)Xi(t)dt+ dWi(t), Xi(0) = Xi
0, i = 1, . . . , N.

The problem of nonparametric estimation of α(t) from (25) has been �rst tackled in Nguyen and
Pham (1982) who propose a projection estimator using an increasing sequence of subspaces of
L2([0, T ]) as we do here for the couple (α(t), γ(t)). However, this paper neither gives any concrete
choice of projection bases and nor studies the L2-risk of the projection estimator. Moreover, the
problem of an adaptive choice of the projection dimension is not raised at all. This is why we
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complete this study below. Taking into account our previous statements, we do it as brie�y as
possible to avoid repetitions.

5.1. Direct estimation of α(t). Consider, for h ∈ L2([0, T ]), the contrast given by:

ΛN (h) =
1

N

∫ T

0
h2(t)

N∑
j=1

X2
j (t)dt− 2

N

∫ T

0
h(t)

N∑
j=1

Xj(t)dXj(t).

Set Y (t) := YN (t) = 1
N

∑N
j=1X

2
j (t) = X2(t) + V (t), y(t) = x2(t) + v(t).

Proposition 10. The process Y (t) satis�es: dY (t) = [2α(t)Y (t) + 1]dt + 2√
N

√
Y (t)dBN,3(t),

where dBN,3(t) =
∑N
j=1Xi(t)dWi(t)

(
∑N
j=1X

2
i (t))1/2

is a Brownian motion. This yields

Y (t) = exp (2

∫ t

0
α(s)ds)

[
Y (0) +

∫ t

0
exp (−2

∫ s

0
α(u)du)ds

+
2√
N

∫ t

0
exp (−2

∫ s

0
α(u)du)

√
Y (s)dBN,3(s)

]
.

As N → +∞, Y (t) converges uniformly on [0, T ] to

y(t) = exp (2

∫ t

0
α(s)ds)[σ2

0 + µ2
0 +

∫ t

0
exp (−2

∫ s

0
α(u)du)ds].

We have EY (t) = y(t). As previously, we can prove that the probability of the set

ON = { sup
t∈[0,T ]

|Y (t)

y(t)
− 1| ≤ 1/2}.

satis�es the same inequality as ON,1 and ON,2. Consequently, de�nê̂αm = arg min
h∈Sm

ΛN (h),

̂̂
Ψm =

(∫ T

0
ϕj(t)ϕk(t)Y (t)dt

)
0≤j,k≤m−1

,
̂̂
Zm =

(∫ T

0
ϕj(t)

1

N

N∑
k=1

Xk(t)dXk(t)

)
0≤j≤m−1

and ̂̂αm(t) =
∑m−1

j=0 [̂̂α(m)]jϕj(t), we get that the vector of the coe�cients of ̂̂αm(t) is equal tô̂α(m) = (
̂̂
Ψm)−1 ̂̂Zm. We de�ne analogously the norms ‖h‖√Y and ‖h‖√y and we can prove:

Proposition 11. Assume [H1]-[H2]. Let m satisfy m ≤ N and L(Sm)(‖Ψm‖−1
op ∨ 1) ≤ cN

2 logN

with Ψm = E ̂̂Ψm and c a numerical constant. De�ne the truncated estimator˜̃αm = ̂̂αm1Λm , Λm = {L(Sm)(‖ ̂̂Ψm‖−1
op ∨ 1) ≤ cN/ logN}.

Then we have

E‖˜̃αm − α‖2√Y ≤ inf
h∈Sm

‖h− α‖2√y +
2m

N
+
c′

N
, E‖˜̃αm − α‖2√y ≤ 2 inf

h∈Sm
‖h− α‖2√y + 4

m

N
+

c

N
.

As previously, we can de�ne an adaptive estimator with a data-driven choice of the dimension
m under the assumption that L(Sm) ≤ c2

ϕm. In parallel as above, we set

MN =

{
m ≤ N,L(Sm)‖Ψ−1

m ‖op ≤
c

2

N

log(N)

}
,
̂̂MN =

{
m ≤ N,L(Sm)‖ ̂̂Ψ−1

m ‖op ≤ c
N

log(N)

}
,
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(26) ̂̂m = arg min
m∈̂̂Mn

{
ΛN (̂̂αm) + pen(m)

}
, pen(m) = κ

m

N
.

Theorem 2. Under [H1]-[H2], there exists a numerical κ′0 such that for κ ≥ κ′0,

E
(
‖̂̂α ̂̂m − α‖√Y

)
≤ C inf

m∈MN

(
inf
h∈Sm

‖h− α‖2√y + κ
m

N

)
+

c

N
,

where C is a numerical constant.

Proofs are omitted: they follow the same lines of the proofs of the previous parts and are simpler.

5.2. Estimators of α(t) from Section 3. When α(t) = γ(t) i.e. when β(t) = 0, we also have
at disposal two other estimators of α(t): the �rst estimator of α(t) (denoted below [M1])and the
estimator of γ(t) (below [M3]), which are distinct and di�erent from the estimator of the previous
subsection (below [M2]). These three estimators are implemented in Section 6 and their risks
computed in Table 2. It appears that, with the same basis for both, the estimator of α given
from γ?m? by [M3] is better than α̂m̂ given by [M1]. Here is an interpretation of this phenomenon.

Suppose that we are in a parametric model where α(t) =
∑m−1

j=0 ϕj(t)αj , γ(t) =
∑m−1

j=0 ϕj(t)γj
with �xed and knownm. Then the exact maximum likelihood estimators of α(m) =t(α0, . . . , αm−1))

and γ(m) =t(γ0, . . . , γm−1)) are respectively (see (12)):

α̂(m) = Ψ̂−1
m,1Ẑm,1, γ?(m) = Ψ̂−1

m,2Ẑm,2.

From these exact expressions, a simple computation shows that, as N tends to in�nity,
√
N(α̂(m) − α(m))→L X1 ∼ Nm(0,Ψ−1

m,1)
√
N(γ?(m) − γ(m))→L X2 ∼ N (0,Ψ−1

m,2).

where we recall that

Ψm,1 = µ2
0

(∫ T

0
ϕj(t)ϕk(t) exp (2

∫ t

0
α(s)ds)dt

)
0≤j,k≤m−1

,

Ψm,2 =

(∫ T

0
ϕj(t)ϕk(t)[σ

2
0 exp (2Γ(t) + exp (2Γ(t)

∫ t

0
exp (−2Γ(s))ds)]dt

)
0≤j,k≤p−1

.

Therefore, if µ2
0 ≤ σ2

0 and α(t) = γ(t), Ψm,1 < Ψm,2 (in the sense of inequality between positive

symmetric matrices), thus, Ψ−1
m,1 > Ψ−1

m,2.

Then N‖α̂(·) − α(·)‖2 = N t(α̂(m) − α(m))(α̂(m) − α(m)) →L Z1 = tX1X1 and N‖γ?(·) −
γ(·)‖2 →L Z2 = tX2X2. Setting Y1 = Ψ

1/2
m,1X1, we have Y1 ∼ Nm(0, Idm) and Z1 = tY1Ψ−1

m,1Y1).

Thus, for Y ∼ Nm(0, Idm), it holds E(Z1) = E( tYΨ−1
m,1Y ). Analogously E(Z2) = E( tYΨ−1

m,2Y )

and thus E(Z1) > E(Z2). This means that, for µ2
0 ≤ σ2

0, the estimator γ?(m) is asymptotically

better than α̂(m). This is illustrated in the simulation experiments.

6. Numerical experiments

We consider the four couples of functions (α`, γ`) for ` ∈ {1, . . . , 4}:
(1) α1(t) = 1

2 + 1
4 t, γ1(t) = 1− t,

(2) α2(t) = −1 + t2/2, γ2(t) = 1− t2/2,
(3) α3(t) = cos(1.2πt/2), γ3(t) = sin(1.2πt/2),
(4) α4(t) = exp(−(t− 1)2), γ4(t) = exp(−(t− 3/2)2/2).
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Figure 1. True functions in bold red and beam of 40 estimated α (left) and γ
(right) with bases [T] (top), [C] (middle) and [L] (bottom) for Example 1 and
N = 1000. The MISE for α are 0.079, 0.0053, 0.0072 and the mean of selected
dimensions are 4.62, 3.07, 4.90. The MISE for γ are 0.374, 0.0094, 0.0067 and mean
selected dimensions are 5.0, 5.45, 5.47.

For T = 1, 3, and N = 250, 1000, discrete samples are generated with Euler scheme with step
T/1000, and initial conditions µ0 = 1/2, σ0 = 1 (note that µ0 ≤ σ0, see Section 5.2). We
proceed with 400 repetitions. Three bases are tested: the standard trigonometric basis [T], the
cosine-basis [C] and the Laguerre basis [L], see section 3.3.

The cuto� is replaced by a limitation in the collection of models: maximal dimensions are
less that 11 for [T], 26 for [C] and 7 for [L]. By doing so, all matrices are numerically invertible
and we can check that the maximal dimension is not systematically chosen (otherwise we would
enlarge the collection).

The penalty constants are taken as κ1,[T ] = 2, κ1,[C] = 4 and κ1,[L] = 4 for the estimation of
α, and κ2,[T ] = κ2,[C] = κ2,[L] = 2 for the estimation of γ (κ1 is de�ned in (23), κ2 is de�ned
in (24) and the additional index determines the basis). For each basis [T], [C], [L], the penalty
constants are calibrated from preliminary numerical experiments.

The computed MISE is the mean over the experiments k = 1, . . . , 400 of non-weighted ap-
proximated L2-error, for α:

1

400

400∑
k=1

T

100

100∑
i=1

[
α(

iT

100
)− α̂(k)

m̂ (
iT

100
)

]2

,
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where α̂
(k)
m̂ is the estimator computed for simulation k, and analogously for γ.

Estimation of α Estimation of γ
N = 250 N = 1000 N = 250 N = 1000

T = 1 T = 3 T = 1 T = 3 T = 1 T = 3 T = 1 T = 3
Ex. 1 [T] 5.02(5.6) 10.6(2.3) 1.49(1.4) 7.74(1.4) 3.63(1.0) 39.9(3.7) 2.07(0.4) 37.7(1.7)

[C] 2.34(3.1) 1.62(1.9) 0.61(0.8) 0.66(0.6) 1.01(1.3) 2.60(1.9) 0.32(0.2) 0.86(0.5)

[L] 3.86(3.8) 3.64(3.5) 0.82(0.8) 0.99(0.9) 0.97(0.9) 2.35(1.6) 0.230.2) 0.56(0.4)

Ex. 2 [T] 4.35(3.6) 791(16) 1.98(0.8) 792(8.1) 7.17(3.3) 570(46) 3.32(0.9) 552(14)

[C] 1.92(2.8) 45.3(11) 0.63(0.5) 39.3(4.8) 4.14(4.5) 31.2(19) 1.17(1.1) 10.2(5.3)

[L] 3.212.7) 3.35(3.6) 0.84(0.9) 0.74(0.7) 3.79(3.3) 17.1(12) 0.82(0.7) 4.76(3.7)

Ex. 3 [T] 17.3(6.9) 18.7(12) 7.97(1.7) 6.88(2.4) 2.44(1.0) 6.14(1.3) 1.10(0.3) 4.79(0.5)

[C] 5.74(5.0) 18.5(12) 2.07(1.2) 5.87(2.8) 1.59(1.1) 2.57(1.2) 0.49(0.3) 0.82(0.3)

[L] 7.32(6.3) 22.1(18) 2.71(1.6) 7.68(2.0) 1.34(0.9) 8.63(2.1) 0.35(0.2) 7.53(0.8)

Ex. 4 [T] 6.76(5.5) 3.95(2.1) 2.73(1.1) 2.09(0.8) 2.28(0.9) 0.52(0.4) 1.09(0.3) 0.22(0.1)

[C] 2.72[3.7) 3.11(3.6) 0.68(0.7) 0.81(0.5) 0.94(1.3) 0.87(0.8) 0.26(0.3) 0.30(0.2)

[L] 3.36(4.6) 5.92(4.2) 0.90(0.8) 1.02(1.0) 1.03(0.9) 0.95(0.8) 0.25(0.2) 023(0.2)

Table 1. 100× MISE for estimation of α and γ (with 100 × standard deviation
in parenthesis) in examples 1 to 4 with bases [T], [C] and [L], for N = 250 and
N = 1000, T = 1 and T = 3 and for µ0 = 1/2 and σ0 = 1.

The global results are given in Table 1. As expected, in all cases, the MISE gets smaller when
N increases. Clearly, the trigonometric basis [T] has di�culty for the estimation of non periodic
functions (that is, functions which do not take the same value in 0 and T ), and gives results
which are systematically less good than the two others. This is also illustrated by Figure 1 for
example 1, in which beams of 40 estimators (green) for N=1000 and T = 3 are compared to the
true functions (red): the plots on the �rst line for basis [T] have clearly important side-e�ects,
while the two other bases seem to correct it. This is the reason why we implemented basis [C].
When T increases, the MISE most of the time increases also, which seems to be a natural scale
e�ect, and the MISE for γ is generally smaller than the MISE for α: it is true that the functions
are di�erent, but they are of similar types, so it is likely that γ is easier to estimate than α, see
also Figure 1 and compare left plots (estimation of α) and right plots (estimation of γ). This is
in accordance with the results of section 5.2, which indicate that the estimator of γ has smaller
risk than the estimator of α when µ2

0 ≤ σ2
0. Figures 2 and 3 allow to compare the improvement

when going from N = 250 (Figure 2) to N = 1000 (Figure 3) on the same example 2. Lastly,
Figure 4 is a plot for N = 1000 and T = 3 concerning example 4.

We also experimented the case α ≡ γ or β ≡ 0 described in Section 5. We compare in Table
2 the MISE obtained when estimating α by methods:

• M1 corresponding to the strategy of estimation of α of the general setting,
• M2 corresponding to the speci�c strategy described in section 5, with constant in (26)
chosen as κ[C] = κ[L] = 4,
• M3 corresponding to the strategy of estimation of γ in the general setting.

We took for example 1?, α1(t) = γ1(t) = 1/2 + t/4, for example 2?, α2(t) = γ2(t) = 1 − t2/2,
for example 3?, α3(t) = γ3(t) = cos(1.2πt) and for example 4?, α4(t) = γ4(t) = exp(−(t− 1)2).
In other words, we kept the same examples of funtions α, and changed γ to take it equal to
α, except in example 2. Method M1 is systematically the less good. The two other methods
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N = 250 N = 1000
M1 M2 M3 M1 M2 M3

Ex.1? [C] 1.62(1.2) 0.45(0.4) 0.73(0.7) 0.650.6) 0.15(0.1) 0.22(0.2)

[L] 3.64(3.53) 0.57(0.5) 0.76(0.7) 0.90(0.8) 0.16(0.1) 0.19(0.1)

Ex.2? [C] 21.1(15) 4.50(2.9) 3.74(2.5) 9.35(6.7) 1.69(6.7) 1.24(0.7)

[L] 20.026) 2.10(1.4) 2.19(1.5) 4.14(4.6) 0.540.5) 0.54(0.5)

Ex. 3? [C] 20.0(24) 2.600.9) 2.83(1.3) 5.71(2.8) 0.91(0.3) 0.97(0.4)

[L] 22.5(9) 5.87(1.0) 60.16(1.2) 7.57(2.1) 4.83(0.4) 4.96(0.4)

Ex.4? [C] 3.24(3.6) 0.66(0.4) 0.75(0.6) 0.87(0.5) 0.25(0.1) 0.26(0.2)

[L] 5.31(3.7) 0.74(0.5) 0.85(0.7) 1.09(1.0) 0.30(0.2) 0.27(0.2)

Table 2. When β(t) ≡ 0 (and thus α = γ), 100× MISE for estimation of α
(with 100 × standard deviation in parenthesis) in examples 1 to 4 with bases [C]
and [L], for N = 250 and N = 1000, T = 3 and for µ0 = 1/2 and σ0 = 1. The
three methods are : M1 the method of estimation of α in the complete model,
M3 the method of estimation of γ = α in the complete model and M2 the speci�c
method of section 5.
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Figure 2. True functions in bold red and beam of 40 estimated α (left) and γ
(right) with bases [C] (top) and Laguerre (bottom) for Example 3 with N = 250.
MISE for α: 0.2002, 0.2666 and mean of selected dimensions: 4.35, 6.65, MISE
for γ: 0.0226, 0.0802 and mean of selected dimensions 8.2, 7.0.

give similar results, even if method M2 seems almost all the time better although probably not
signi�cantly.

To conclude this section, we can say that the method works globally well in most contexts.
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Figure 3. True functions in bold red and beam of 40 estimated α (left) and γ
(right) with bases [C] (top) and Laguerre (bottom) for Example 3 with N = 1000.
MISE for α: 0.0622, 0.0827 and mean of selected dimensions: 5.6, 7.0. MISE for
γ: 0.0239, 0.0817 and mean of selected dimensions: 9.97, 7.0.

7. Concluding remarks.

In this paper, we study the nonparametric estimation of the deterministic functions α(t), β(t)
when the observed process is an interacting system of N particles given by (1). The process
is assumed to be continuously observed throughout a time interval [0, T ] with �xed T . The
number N of particles is large. We build estimators of the functions α(t), γ(t) = α(t) − β(t)
by minimizing projection contrasts deduced from likelihoods, using increasing sequences of �nite
dimensional subspaces of L2([0, T ]). Bounds for the L2-risk of the projection estimators are given
based either on an empirical norm or a deterministic norm linked with the problem. The bounds
of the risks allow to discuss rates of convergence. Then, a data-driven choice of the dimension
for the projection space is provided leading to an adaptive result. The case where β(t) ≡ 0 is
brie�y treated.
Implementation of the estimators is done based on simulated data for various examples of fonc-
tions α(t), γ(t) and two di�erent bases of L2([0, T ]). The numerical results show that the adaptive
estimators perform well, the estimation of γ(t) being better than the estimation of α(t).

To go further on the topic, the problem of discrete time observation of the processes, with
small or �xed sampling interval, may be considered. The generalization of our study to in-
clude a di�usion coe�cient sigma(XN

i (t)) in (1) with a known σ(·) is certainly feasible. More
challenging, the study of the estimation of α, β in the general dynamics

dXN
i (t) = {α(t)XN

i (t)−β(t)
1

N

n∑
j=1

φ(XN
i (t)−XN

j (t))}dt+dWi(t), XN
i (0) = Xi

0, i = 1, . . . , N,

with known φ(·), is under study.
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Figure 4. True functions in bold red and beam of 40 estimated α (left) and γ
(right) with bases [C] (top) and Laguerre (bottom) for Example 4 with N = 1000.
MISE for α: 0.0084, 0.0091 and mean of selected dimensions: 3.2, 5.05. MISE for
γ: 0.0031, 0.0022 and mean of selected dimensions: 11.2, 5.8.

8. Proofs

Recall the notations (2)-(3) and Xj = XN
j .

8.1. Proof of Proposition 1. We have:

d(

N∑
j=1

Xj(t)) = [α(t)

N∑
j=1

Xj(t)−β(t)

N∑
j=1

(Xj(t)−X(t))]dt+

N∑
j=1

dWj(t) = α(t)

N∑
j=1

Xj(t)dt+

N∑
j=1

dWj(t).

Therefore, dX(t)) = α(t)X(t)dt + 1
N

∑N
j=1 dWj(t) = α(t)X(t))dt + 1√

N
dBN,1(t). This equation

can be easily solved and yields the solution given in the proposition.
We have:

sup
t≤T
|X(t))−x(t)| ≤ sup

t≤T
exp (

∫ t

0
α(u)du)

(
|X(0)− µ0|+ sup

t≤T

1√
N
|
∫ t

0
exp (−

∫ s

0
α(u)du)dBN,1(s)|

)
Using the Markov and Burkholder-Davis-Gundy (B-D-G) inequalities yields

P

(
sup
t≤T

1√
N

∣∣∣∣∫ t

0
exp (−

∫ s

0
α(u)du)dBN,1(s)

∣∣∣∣ > ε

)
≤ C4

ε4N2

(∫ T

0
exp (−2

∫ s

0
α(u)du)ds

)2

where C4 is the constant of the B-D-G inequality. We conclude that supt≤T | 1√
N
gN (t)| converges

a.s. to 0 and using [H1], this yields the result.2
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8.2. Proof of Proposition 2. We apply Ito's formula to the function F (x, y) = (x − y)2 and
use that 〈dXi, dXi〉t = dt, 〈dX, dX〉t = 1

N dt, 〈dXi, dX〉t = 1
N dt,

d[Xi(t)−X(t)]2 = 2[Xi(t)−X(t)]dXi(t)− 2[Xi(t)−X(t)]dX(t) +
1

2
[2dt+

2

N
dt− 4

N
dt]

Using
∑n

j=1(Xj(t)−X(t)) = 0 and (6) yields

d{
N∑
i=1

[Xi(t)−X(t)]2} = 2

N∑
i=1

[Xi(t)−X(t)]dXi(t) + (N − 1)dt

= 2
N∑
i=1

[Xi(t)−X(t)][α(t)X(t) + γ(t)[Xi(t)−X(t)]dt+ (N − 1)dt+ 2
N∑
i=1

[Xi(t)−X(t)]dWi(t).

Thus, dV (t) = [2γ(t)V (t) + 1− 1
N ]dt+ dMN (t) where

MN (t) =
2

N

∫ t

0

N∑
i=1

[Xi(s)−X(s)]dWi(s) =
2√
N

∫ t

0

√
V (s)dBN,2(s).

By the usual change V (t) = C(t) exp (2
∫ t

0 γ(s)ds), setting Γ(t) =
∫ t

0 γ(s)ds, we can obtain the
expression:

V (t) = exp (2Γ(t))

(
V (0) + (1− 1

N
)

∫ t

0
exp (−2Γ(s))ds

)
+ exp (2Γ(t))

∫ t

0
exp (−2Γ(s))dMN (s)

= exp (2Γ(t))

(
V (0) + (1− 1

N
)

∫ t

0
exp (−2Γ(s))ds

)
+MN (t)

+ 2 exp (2Γ(t))

∫ t

0
γ(s) exp (−2Γ(s)MN (s)ds.

Note that

(27) V (t) = v(t) +AN (t) +BN (t)

where

AN (t) = exp (2Γ(t))

(
1

N

N∑
i=1

[Xi(0)− µ0]2 − σ2
0 − [µ0 −X(0)]2 − 1

N

∫ t

0
exp (−2Γ(s)ds

)
,

BN (t) = MN (t) + 2 exp (2Γ(t))

∫ t

0
γ(s) exp (−2Γ(s)MN (s)ds.

By [H1], AN (t) converges to 0 almost surely uniformly on [0, T ] as N tends to in�nity. To obtain
that V (t) converges to v(t) uniformly almost surely on [0, T ] to 0, it is enough to prove that

(28) sup
s≤T
|MN (s)| →a.s. 0.

For this, we follow Kasonga (1990, p.873).
One of Doob's martingale inequalities states that, for α > 0, β > 0, P(sups≤T (MN (s)−α

2 〈MN 〉s) >
β) ≤ e−αβ . Here 〈MN 〉s = 4

N

∫ s
0 V (u)du. This yields

P(sup
s≤T
|MN (s)| > 2α

N

∫ T

0
V (u)du) + β) ≤ 2e−αβ
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Taking α = Na, β = N−b with 0 < b < a < 1 yields

P(sup
s≤T
|MN (s)| > 2

N1−a

∫ T

0
V (u)du) +N−b) ≤ 2e−N

a−b
.

By (27), we have ∫ T

0
V (t)dt ≤ C(T )

(
sup
t∈[0,T ]

[v(t) +AN (t)] + sup
t∈[0,T ]

|MN (t)|

)
where C(T ) = 1 + 2 supt∈[0,T ] exp (2Γ(t))

∫ T
0 |γ(s)| exp (−2Γ(s)ds. Consequently,

P

((
1− 2C(T )

N1−a

)
sup
s≤T
|MN (s)| > N−b +

2C(T )

N1−a ( sup
t∈[0,T ]

{v(t) +AN (t)}

)

= P

(
sup
s≤T
|MN (s)| > N−b +

2C(T )

N1−a [ sup
t∈[0,T ]

[v(t) +AN (t)] + sup
t∈[0,T ]

|MN (t)|]

)

≤ P

(
sup
s≤T
|MN (s)| > 2

N1−a

∫ T

0
V (u)du+N−b

)
≤ 2e−N

a−b
.

As supt∈[0,T ][v(t) +AN (t)] converges almost surely, by the Borel-Cantelli lemma, we obtain (28).
So the proof of Proposition 2 is complete. 2

8.3. Proof of Lemma 1. We have for r ≥ 1,

E|Xr(t)| ≤ 2r−1

(
exp (r

∫ T

0
α(s)ds)E|Xr(0)|+ 1

N r/2
E|grN (t)|

)
.

By the de�nition of gN ,

E|grN (t)| = Crσ
r(t), where σ2(t) = exp (2

∫ t

0
α(s)ds)

∫ t

0
exp (−2

∫ s

0
α(u)du)ds, Cr = E|Z|r,

for Z a standard Gaussian variable. Next, we have, as the Xi(0)s are i.i.d. and have moments
of any order, using the Rosenthal inequality (see Hall and Heyde, 1980, p.23-24),

E|Xr(0)| ≤ 2r−1(|µ0|r + E|Xr(0)− µ0|r)

. |µ0|r +
1

N r−1
E|Xi(0)− µ0|r +

1

N r/2
(E|Xi(0)− µ0|2)r/2 ≤ cr.

Thus, for all t ∈ [0, T ], E|Xr(t)| ≤ Cr(T ) for some constant Cr(T ).

Note that for all t, V (t) > 0. Analogously, by the Rosenthal inequality, we check that, for all
r ≥ 1, EV r(0) ≤ C where the constant C does not depend on N .
The process (V (t) is solution of a stochastic di�erential equation with drift b(t, v) = 2γ(t)v+1−
N−1 and di�usion coe�cient σ(v) = 2

√
v+N−1/2 satisfying b2(t, v) + σ2(v) ≤ KT (1 + v2) with

KT = sup{2, 8 supt≤T γ
2(t)}. Therefore, for all r ≥ 1, using the equation for V (t), EV 2r(0) ≤ C,

the Cauchy-Schwarz and the BDG inequalities, we standardly obtain, for another constantKr(T ),

EV 2r(t) ≤ Kr(T )

(
1 +

∫ t

0
EV 2r(s)ds

)
.

By the Gronwall lemma, this yields EV 2r(t) ≤ Kr(T )eTKr(T ). The conclusion follows, using

that, for all r ≥ 1, EV r(t) ≤ E1/2V 2r(t). 2
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8.4. Proof of Proposition 3. By Proposition 1, as µ0 6= 0, the process X(t) satis�es

X(t)

x(t)
− 1 = (

X(0)

µ0
− 1) +

1

µ0

√
N
LN (t),

where LN (t) =
∫ t

0 exp (−
∫ s

0 α(u)du)dBN,1(s) is a martingale with deterministic bracket 〈LN 〉t =∫ t
0 exp (−2

∫ s
0 α(u)du)ds := d(t). We get,

P( sup
t∈[0,T ]

|X(t)

x(t)
− 1| > δ) ≤ P(|X(0)

µ0
− 1| > δ/2) + P( sup

t∈[0,T ]
|LN (t)| > δµ0

√
N/2)

The Rosenthal inequality yields, for all r ≥ 1,

P(|X(0)

µ0
− 1| > δ/2) ≤ 22r

(δµ0)2r
E|X(0)− µ0|2r .

1

N2r−1
E|Xi(0)− µ0|2r +

1

N r
(E|Xi(0)− µ0|2)r

.
1

N2r−1
E|Xi(0)− µ0|2r +

σ2r
0

N r

The Bernstein inequality for martingales (see Revuz and Yor (1999), p.153-154) yields

P( sup
t∈[0,T ]

|LN (t)| > δµ0

√
N/2, 〈LN 〉T ≤ d(T )) ≤ 2 exp (−δ

2µ2
0N

8d(T )
).

Now, we have:

P

(
sup
t∈[0,T ]

|X
2(t)

x2(t)
− 1| > δ

)
≤ P

(
sup
t∈[0,T ]

|X(t)

x(t)
− 1|2 > δ/2

)
+ P

(
sup
t∈[0,T ]

|X(t)

x(t)
− 1| > δ/4

)

≤ c(r)

δ2rN r
+ 2

(
exp [− δµ2

0N

16d(T )
] + exp [− δ2µ2

0N

16× 8d(T )
]

)
.

Thus, for some positive constants C(T ), c(T ) depending on µ0, σ
2
0 and T ,

P

(
sup
t∈[0,T ]

|X
2(t)

x2(t)
− 1| > 1/2

)
≤ C(T ) exp (−c(T )N) +

c(r)

N r
. 2

Remark 1. If µ0 = 0, then x(t) ≡ 0, which forbides the ratio; if σ2
0 = 0, then v(0) = 0 and

analogous problem arises. If Xi(0) is Gaussian or sub-Gaussian, we have a pure exponential
bound.

8.5. Proof of Proposition 4. We have

V (t)

v(t)
− 1 =

(V (0)− v(0))

v(0) +
∫ t

0 e
(−2Γ(s))ds

− 1

Nv(0) +
∫ t

0 e
−2Γ(s)ds

∫ t

0
e−2Γ(s)ds

+
2

(v(0) +
∫ t

0 e
−2Γ(s)ds)

√
N

∫ t

0
e−2Γ(s)

√
V (s)dBN,2(s)

Thus,

(29) |V (t)

v(t)
−1| ≤ |V (0)− v(0))|

v(0)
+

1

Nv(0)

∫ t

0
e−2Γ(s)ds+

2

(v(0))
√
N
|
∫ t

0
e−2Γ(s)

√
V (s)dBN,2(s)|

We have V (0)− v(0) = 1
N

∑N
i=1(Xi(0)− µ0)2 − σ2

0 − (X(0)− µ0)2. By the Rosenthal inequality,
for all r ≥ 1,

(30) E|V (0)− EV (0)|2r ≤ C

N r
.
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Set KN (t) =
∫ t

0 exp (−2Γ(s))
√
V (s)dβ′N (s). We have 〈KN 〉t =

∫ t
0 exp (−4Γ(s))V (s)ds. Set

k(T ) =
∫ T

0 exp (−4Γ(s))v(s)ds. For all p ≥ 1,

P(sup
t≤T
|KN (t)| ≥ c

√
N) ≤ P(sup

t≤T
|KN (t)| ≥ c

√
N), 〈KN 〉T ≤ 1 + k(T )) + P(〈KN 〉T > 1 + k(T ))

≤ 2 exp (− c2N

2(1 + k(T )
) + E

(∫ T

0
exp (−4Γ(s))(V (s)− v(s))ds

)2r

.

In what follows, the constant C(T ) may change for one line to another:

E
(∫ T

0
e−4Γ(s)(V (s)− v(s))ds

)2r

≤ C(T )

∫ T

0
E[e−4Γ(s)(V (s)− v(s))]2rds

≤ C(T )

(
|V (0)− v(0)|+ 1

N

∫ T

0
exp (−2Γ(u))du

)2r

+
1

N r

∫ T

0
E
(∫ s

0
exp (−4Γ(u))V (u)du

)r
ds

≤ C(T )E
(
|V (0)− v(0)|2r +

1

N2r
+

1

N r

∫ T

0
E[V (u)]rdu

)
≤ C(T )

(
E|V (0)− v(0)|2r +

1

N2r
+

1

N r

)
,

applying Lemma 1. Thus, using (29)-(30), for all δ, r > 0, there exist constants cδ(T ), C(r, T, δ)
such that

P(sup
t≤T
|V (t)

v(t)
− 1| ≥ δ) ≤ 2 exp (−cδ(T )N) +

C(r, T, δ)

N r
. 2

8.6. Proof of Proposition 6. This proposition is analogous to Proposition 2 of Comte and
Genon-Catalot (2020a). Let t =

∑m−1
j=0 ajϕj , and ~a = t(a0, . . . , am−1), then ‖t‖2 = ‖~a‖2,m = t~a~a

and ‖t‖2x = t~aΨm,1~a = ‖Ψ1/2
m,1~a‖22,m, where Ψ

1/2
m,1 is a symmetric square root of Ψm,1. Thus

sup
t∈Sm,‖t‖x=1

‖t‖2 = sup
~a∈Rm,‖Ψ1/2

m,1~a‖2,m=1

t~a~a.

Set ~b = Ψ
1/2
m,1~a, that is ~a = Ψ

−1/2
m,1

~b. Then

sup
t∈Sm,‖t‖x=1

‖t‖2 = sup
~b∈Rm,‖~b‖2,m=1

t~bΨ−1
m,1
~b = ‖Ψ−1

m,1‖op.

As, for m < m′, Sm is strictly included in Sm′ , the result follows for the �rst mapping and
analogously for the others. 2

8.7. Proof of Proposition 7. We start with some preliminaries. On ON,1 de�ned in equation
(8), the empirical norm ‖.‖X and the ‖ · ‖x-norm are equivalent for elements of L2([0, T ]) as on
ON,1

∀h ∈ L2([0, T ]), (2/3)‖h‖2X ≤ ‖h‖2x ≤ 2‖h‖2X .
We de�ned Λm,1 in equation (14) and let us set

Ωm,1 :=

{∣∣∣∣‖h‖2X‖h‖2x
− 1

∣∣∣∣ ≤ 1

2
, ∀h ∈ Sm

}
.

We note that ON,1 ⊂ Ωm,1. Now, if ~u = t(u0, . . . , um−1) ∈ Rm and h =
∑m−1

j=0 ujϕj , then

(31) ‖h‖2X = t~uΨ̂m,1~u and ‖h‖2x = t~uΨm,1~u = ‖Ψ1/2
m,1~u‖

2
2,m, so that
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sup
h∈Sm,‖h‖x=1

∣∣‖h‖2X − ‖h‖2x∣∣ = sup
~u∈Rm,‖Ψ1/2

m,1~u‖2,m=1

∣∣∣ t~u(Ψ̂m,1 −Ψm,1)~u
∣∣∣

= sup
~z∈Rm,‖~z‖2,m=1

∣∣∣ t~zΨ
−1/2
m,1 (Ψ̂m,1 −Ψm,1)Ψ

−1/2
m,1 ~z

∣∣∣
= ‖Ψ−1/2

m,1 Ψ̂m,1Ψ
−1/2
m,1 − Idm‖op.

Therefore,

Ωm,1 =
{
‖Ψ−1/2

m,1 Ψ̂m,1Ψ
−1/2
m,1 − Idm‖op ≤ 1/2

}
.

Consequently, on ON,1, the eigenvalues of Ψ
−1/2
m,1 Ψ̂m,1Ψ

−1/2
m,1 belong to [1/2, 3/2].

The following lemma, proved in Section 8.8, holds

Lemma 2. We have, for d a positive constant, P(OcN,1) ≤ d/N7. Moreover, under the assump-

tions of Proposition 7, for m satisfying (13), we have, P(Λcm,1) ≤ d/N7.

Now, we prove inequality (16) of Proposition 7.
To study the risk of α̃m, we need to have an adequate expression of the orthogonal projection of
α with respect to 〈., .〉X . We have:

Ψ̂m,1 = (〈ϕj , ϕ`〉X)0≤j,`≤m−1 .

The orthogonal projection πX(m)α of α on Sm with respect to the scalar product 〈., .〉X is charac-

terized by πX(m)α− α ⊥ ϕj , j = 0, . . .m− 1. This yields

(32) πX(m)α =
m−1∑
j=0

ajϕj where a(m) :=

 a0
...

am−1

 = Ψ̂−1
m,1


...

〈α,ϕj〉X
...

 .

The vector Ẑm,1 can be written as

(33) Ẑm,1 =


...

〈α,ϕj〉X
...


0≤j≤m−1

+ Wm,1, Wm,1 :=


...

νN,1(ϕj)
...


0≤j≤m−1

.

Note that

(34) E(Wm,1
tWm,1) =

1

N
EΨ̂m,1 =

1

N
(Ψm,1 +

1

N
Cm)

where

Cm =

(∫ T

0
ϕj(t)ϕk(t)x

2(t)λ(t)dt

)
0≤j,k≤m−1

.

� Proof of inequality (16).
Now, we prove (16). For this, we write ‖α̃m − α‖2X = T1 + T2 + T3, with

(35) T1 := ‖α̂m − α‖2X1Λm,1∩ON,1 , T2 := ‖α̂m − α‖2X1Λm,1∩OcN,1 , T3 := ‖α‖2X1Λcm,1
.

We bound the expectation of the three terms above.

• The last term T3 = ‖α‖2X1Λcm,1
satis�es:

(36) ET3 ≤ E1/2(‖α‖4X)P1/2(Λcm,1).
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We have

E(‖α‖4X) ≤ TE
∫ T

0

[
α2(t)X2(t)

]2
dt ≤ T

∫ T

0
α4(t)EX4(t)dt ≤ c(T ).

Thus, using Lemma 1,

(37) ET3 .
1

N7/2
.

1

N
.

• Study of T1 = ‖α̂m − α‖2X1Λm,1∩ON,1 . We can write:

(38) ‖α̂m − α‖2X = ‖α̂m − πX(m)α‖
2
X + ‖πX(m)α− α‖

2
X = ‖α̂m − πX(m)α‖

2
X + inf

h∈Sm
‖α− h‖2X .

On one hand, we have α̂m(t) =
∑m−1

j=0 [α̂(m)]jϕj(t) with (α̂(m)) = Ψ̂−1
m,1Ẑm,1. On the other hand,

πX(m)α =
∑m−1

j=0 ajϕj where (see (32)) a(m) = Ψ̂−1
m,1 (〈ϕj , α〉X)0≤j≤m−1.

Hence, by (33), α̂(m) − a(m) = Ψ̂−1
m,1Wm,1 and using (31),

‖α̂m − πX(m)α‖
2
X = tWm,1Ψ̂−1

m,1Ψ̂m,1Ψ̂−1
m,1Wm,1 = tWm,1Ψ̂−1

m,1Wm,1.(39)

Now, T1 = (‖α̂m − πX(m)α‖
2
X + infh∈Sm ‖α− h‖2X)1Λm,1∩ON,1 (see (38)).

On ON,1, all the eigenvalues of Ψ
−1/2
m,1 Ψ̂m,1Ψ

−1/2
m,1 belong to [1/2, 3/2] and so all the eigenvalues

of Ψ
1/2
m,1Ψ̂−1

m,1Ψ
1/2
m,1 belong to [2/3, 2]. Thus, we write

tWm,1Ψ̂−1
m,1Wm,1 1ON,1 = tWm,1Ψ

−1/2
m,1 Ψ

1/2
m,1Ψ̂−1

m,1Ψ
1/2
m,1Ψ

−1/2
m,1 Wm,1 1ON,1

≤ 2 tWm,1Ψ−1
m,1Wm,1 1ON,1 .(40)

Therefore

E
(
‖α̂m − πX(m)α‖

2
X1ON,1∩Λm,1

)
≤ 2E

 ∑
0≤j,k≤m−1

[Wm,1]j [Wm,1]k[Ψ
−1
m,1]j,k


=

2

N

∑
0≤j,k≤m−1

[Ψ−1
m,1]j,k([Ψm,1]j,k +

1

N
[Cm]j,k) =

2

N
Tr[Ψ−1

m,1(Ψm,1 +
1

N
Cm)]

=
2m

N
+

2

N2
Tr[Ψ−1

m,1Cm].(41)

by using equality (34).
Now, we bound Tr[Ψ−1

m,1Cm)]. We have

Tr[Ψ−1
m,1Cm)] =

∫ T

0

∑
0≤j,k≤m−1

ϕj(t)[Ψ
−1
m,1]j,kϕk(t)x

2(t)λ(t)dt =

∫ T

0

tϕ(m)(t)Ψ
−1
m,1ϕ(m)(t)x

2(t)λ(t)dt

where tϕ(m)(t) = (ϕ0(t), . . . , ϕm−1(t)). As Ψ−1
m,1 is symmetric positive de�nite, for all t,

tϕ(m)(t)Ψ
−1
m,1ϕ(m)(t) ≥ 0 and thus

0 ≤ tϕ(m)(t)Ψ
−1
m,1ϕ(m)(t)x

2(t)λ(t) ≤ λ?T tϕ(m)(t)Ψ
−1
m,1ϕ(m)(t)x

2(t).

Consequently,
Tr[Ψ−1

m,1Cm)] ≤ λ?TTr[Ψ−1
m,1Ψm,1] = mλ?T .

So we obtain:

(42) E(T1) ≤
(

1 +
λ?T
N

)(
inf
h∈Sm

‖α− h‖2x + 2
m

N

)
,
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using that

E
(

inf
h∈Sm

‖α− h‖2X
)
≤
(

1 +
λ?T
N

)(
inf
h∈Sm

‖α− h‖2x
)
.

• Study of T2 = ‖α̂m − α‖2X1Λm,1∩OcN,1 . We have T2 ≤ (‖α̂m − πX(m)α‖
2
X + ‖α‖2X)1Λm,1∩OcN,1 .

Using (39) yields

(43) T2 ≤ ( tWm,1Ψ̂−1
m,1Wm,1 + ‖α‖2X)1Λm,1∩OcN,1 .

By the de�nition of Λm,1 and the Cauchy-Schwarz inequality, we get

(44) ET2 ≤
(

cN

L(Sm) log(N)
E1/2(( tWm,1Wm,1)2) + E1/2‖α‖4X)

)
P1/2(OcN,1).

We have already seen that E(‖α‖4X) ≤ c(T ). For the term E[( tWm,1Wm,1)2], we prove the
following lemma:

Lemma 3. Let the Assumptions of Proposition 7 hold. With Wm,1 de�ned in (33), we have, for
some constant c(T ), if the ϕjs are bounded: E[( tWm,1Wm,1)2] ≤ c(T )(mL(Sm))/N2. Otherwise,
E[( tWm,1Wm,1)2] ≤ c(T )(mL2(Sm))/N2.

Plugging the result of Lemma 3 in (44) allows to conclude for all m satisfying (13) that
E(T2) ≤ c/N . Joining the bounds for the expectations of T1, T2, T3 gives Inequality (16). 2

� Proof of Inequality (17). We have now the following decomposition: ‖α̃m − α‖2x = T ′1 +
T ′2 + T ′3 with

(45) T ′1 := ‖α̂m − α‖2x1Λm,1∩ON,1 , T ′2 := ‖α̂m − α‖2x1Λm,1∩OcN,1 , T ′3 := ‖α‖2x1Λcm,1
.

We have E(T ′3) ≤ a‖α‖2x/N7.
Next, T ′2 ≤ 2(‖α̂m‖2x + ‖α‖2x)1Λm,1∩OcN,1 . We have

‖α̂m‖2x = tα̂(m)Ψm,1α̂(m) ≤ ‖Ψm,1‖op‖α̂(m)‖22,m ≤ sup
t∈[0,T ]

x2(t) ‖α̂(m)‖22,m.

Moreover, by formula (12),

‖α̂(m)‖22,m = tẐm,1Ψ̂−1
m,1Ψ̂−1

m,1Ẑm,1 ≤ ‖Ψ̂
−1
m,1‖

2
op‖Ẑm,1‖22,m.

Now using (14), on Λm,1,

‖α̂(m)‖22,m ≤
(

cN

log(N)L(Sm)

)2

‖Ẑm,1‖22,m.

By (33),

‖Ẑm,1‖22,m ≤ 2

m−1∑
j=0

〈α,ϕj〉2X + 2 tWm,1Wm,1 ≤ 2

∫ T

0
α2(t)X4(t)dt+ 2 tWm,1Wm,1.

So E(‖Ẑm,1‖42,m) ≤ 8T
∫ T

0 α4(t)E[X8(t)]dt+ 8E[( tWm,1Wm,1)2]. By Lemma 1 and Lemma 3, we

get that E(‖Ẑm,1‖42,m) . 1 as m ∨ L(Sm) ≤ N . As a consequence, E[‖α̂(m)‖42,m] . N4 and

E[T ′2] . N2P1/2(OcN,1) . N−3/2.

For the term T ′1, we simply have E(T ′1) ≤ 2E(T1) by using the de�ntion of ON,1. Joining the
bounds on E(T ′j), for j = 1, 2, 3 gives the result. 2
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� Proof of Inequality (18). We propose a more precise study of T ′1. We have

‖α̂m − α‖2x = ‖α̂m − αxm‖2x + ‖αxm − α‖2x
≤ ‖αxm − α‖2x + 2(‖α̂m − πX(m)α‖

2
x + ‖πX(m)α− α

x
m‖2x)

We get on Ωm,1,

‖α̂m − α‖2x ≤ ‖αxm − α‖2x + 4‖α̂m − πX(m)α‖
2
X + 2‖πX(m)α− α

x
m‖2x.

Let g = α− αxm, then πX(m)g = πX(m)α− α
x
m, and

(46) E(T ′1) ≤ ‖αxm − α‖2x + 4E(‖α̂m − πX(m)α‖
2
X1Λm,1∩ON,1) + 4E(‖πX(m)g‖

2
x1Λm,1∩Ωm,1)

where ‖αxm − α‖2x = infh∈Sm ‖α− h‖2x is the bias term and by (42),

(47) E(‖α̂m − πX(m)α‖
2
X1Λm,1∩Ωm,1) ≤ 2

(
1 +

λ?T
N

)
m

N
.

We have

Lemma 4. Under the Assumptions of Proposition 7,

E(‖πX(m)g‖
2
x1Λm,1∩Ωm,1) ≤ 2cT

log(N)
sup
t∈[0,T ]

x2(t)

(
C1(T )

µ4
0

+
(λ?T )2

N

)
‖α− αxm‖2x.

Applying Lemma 4 to (46) and using (47) yields

E(T ′1) ≤

(
1 +

8cT

log(N)
sup
t∈[0,T ]

x2(t)

(
C1(T )

µ4
0

+
(λ?T )2

N

))
‖αxm − α‖2x + 8

(
1 +

λ?T
N

)
m

N
,

which gives the result in (18) by de�nition of KN (T ). 2

Proof of Lemma 4. Let (ϕ̄j)0≤j≤m−1 an orthonormal basis of Sm w.r.t. 〈., .〉x. We can

write ϕ̄j =
∑m−1

k=0 aj,kϕk, and we set Am = (aj,k)0≤j,k≤m−1. Let Ĝm,1 = (〈ϕ̄j , ϕ̄k〉X)0≤j,k≤m−1,

obviously Ĝm,1 = tAmΨ̂m,1Am,1. Then as Idn = (〈ϕ̄j , ϕ̄k〉)0≤j,k≤m−1 = tAmΨm,1Am,1, we know

that Am is a square root of Ψ−1
m,1. As a consequence,

Ωm,1 = {‖Ψ−1/2
m,1 Ψ̂m,1Ψ

−1/2
m,1 ‖op ≤

1

2
} = {‖Ĝm,1 − Idm‖op ≤ 1/2}.

Next, we write πX(m)g =
∑m−1

k=0 βkϕ̄k, with 〈g − πX(m)g, ϕ̄j〉X = 0 for j = 0, . . . ,m − 1.

Then on Ωm,1, we have ‖Ĝ−1
m,1‖op ≤ 2. Then Ĝm,1β(m) = (〈ϕ̄j , g〉X)0≤j≤m−1, where β(m) =

t(β0, . . . , βm−1). Thus on Ωm,1, we have

‖πX(m)g‖
2
x =

m−1∑
k=0

β2
k = ‖Ĝ−1

m,1(〈ϕ̄j , g〉X)0≤j≤m−1‖22,m ≤ 4

m−1∑
j=0

〈ϕ̄j , g〉2X .

Note that, as
∫ T

0 ϕ̄j(t)g(t)x2(t)dt = 〈g, ϕ̄j〉x = 0,

E(〈ϕ̄j , g〉X) =

∫ T

0
ϕ̄j(t)g(t)E(X2(t))dt =

1

N

∫ T

0
ϕ̄j(t)g(t)x2(t)λ(t)dt.

We have
m−1∑
j=0

ϕ̄2
j (t) = tϕ(m)(t)

tAmAmϕ(m)(t) = tϕ(m)(t)Ψ
−1
m,1ϕ(m)(t) ≤ L(Sm)‖Ψ−1

m,1‖op,
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where ϕ(m)(t) = t(ϕ0(t), . . . , ϕm−1(t)). Therefore, recalling that g = α− αxm, we get
m−1∑
j=0

[E(〈ϕ̄j , g〉X)]2 ≤ T

N2
L(m)‖Ψ−1

m,1‖op

∫ T

0
x4(t)λ2(t)(α(t)− αxm(t))2dt

Thus
m−1∑
j=0

[E(〈ϕ̄j , g〉X)]2 ≤ cT

2N log(N)
sup
t∈[0,T ]

x2(t)λ2(t)‖α− αxm‖2x.

Now

E(‖πX(m)g‖
2
x1Λm,1∩Ωm,1) ≤ 4

m−1∑
j=0

Var(〈ϕ̄j , g〉X) +
2cT

N log(N)
sup
t∈[0,T ]

x2(t)λ2(t)‖α− αxm‖2x.

We have
m−1∑
j=0

Var(〈ϕ̄j , g〉X) =
m−1∑
j=0

E

[(∫ T

0
g(t)ϕ̄j(t)(X

2(t)− E(X2(t)))dt

)2
]

≤ T
m−1∑
j=0

∫ T

0
g2(t)ϕ̄2

j (t)Var(X2(t))dt ≤ TL(Sm)‖Ψ−1
m,1‖op

∫ T

0
g2(t)Var(X2(t))dt

≤ cT

2 log(N)

supt∈[0,T ] x
2(t)C1(T )

µ4
0

‖α− αxm‖2x

as, after some elementary computations Var(X2(t)) ≤ (x4(t)/µ4
0)(C1(T )/N), with

C1(T ) = C + 3

(∫ T

0
e−

∫ s
0 α(u)duds

)2

+ 4(µ2
0 + σ2

0)

∫ T

0
e−

∫ s
0 α(u)duds,

C = 2E(Y 4
1 ) + 4|µ0|E(|Y1|3) + 4µ2

0σ
2
0 and Y1 = X1(0)− µ0. Therefore we get

E(‖πX(m)g‖
2
x1Λm,1∩Ωm,1) ≤ 2cT

log(N)
sup
t∈[0,T ]

x2(t)

(
C1(T )

µ4
0

+
(λ?T )2

N

)
‖α− αxm‖2x.

This ends the proof of Lemma 4. 2

8.8. Proof of Lemmas.
Proof of Lemma 2. On the one hand, P(OcN,1) . N−7 by Proposition 3 with p = 7, and on

the other hand ON,1 ⊂ Ωm,1. Therefore, P(Ωc
m,1) . 1/N7.

By the same proof as the one of Proposition 4 (ii) in Comte and Genon-Catalot (2020a), we
have that:

{‖Ψ̂−1
m,1 −Ψ−1

m,1‖op > α‖Ψ−1
m,1‖op} ⊂ {‖Ψ−1/2

m,1 Ψ̂m,1Ψ
−1/2
m,1 − Idm‖op >

inf{α, 1}
2

}.

Then, we mimick Lemma 5 of the same paper to get that, for m satisfying (13),

P(Λcm,1) ≤ P({‖Ψ̂−1
m,1 −Ψ−1

m,1‖op > ‖Ψ−1
m ‖op})

≤ P({‖Ψ−1/2
m,1 Ψ̂m,1Ψ

−1/2
m,1 − Idm‖op > 1/2}) = P(Ωc

m,1). 2(48)

Proof of Lemma 3. We have

E[ t(Wm,1)Wm,1]2 =
1

N2
E[

m−1∑
j=0

(

∫ T

0
ϕj(t)X(t)dBN,1(t))2]2 ≤ m

N2

m−1∑
j=0

E(

∫ T

0
ϕj(t)X(t)dBN,1(t))4
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Therefore, using the Burholder-Davies-Gundy inequality yields

E[ t(Wm,1)Wm,1]2 .
m

N2

m−1∑
j=0

E
[∫ T

0
ϕ2
j (t)X

2(t)dt

]2

≤ Tm

N2

∫ T

0

m−1∑
j=0

ϕ4
j (t)E(X4(t))dt

We use the fact that the ϕjs are bounded and Lemma 1 to obtain

E[ t(Wm,1)′Wm,1]2 .
m

N2
L(Sm)

Otherwise, we obtain E[ t(Wm,1)Wm,1]2 . (m/N2)L2(Sm). 2

8.9. Proof of Proposition 8. We de�ned Λp,2 in equation (15) and let us set

(49) Ωp,2 :=

{∣∣∣∣∣‖h‖
2√
V

‖h‖2√
v

− 1

∣∣∣∣∣ ≤ 1

2
, ∀h ∈ Σp

}
.

OnON,2 de�ned by (9), the empirical norm ‖.‖√V and the ‖·‖√v-norm are equivalent for elements

of L2([0, T ]). Moreover

(50) Ωp,2 =
{
‖Ψ−1/2

p,2 Ψ̂p,2Ψ
−1/2
p,2 − Idp‖op ≤ 1/2

}
.

The following lemma holds

Lemma 5. We have, for b a positive constant, P(OcN,2) ≤ b/N7. Under the assumptions of

Proposition 8, for p satisfying (13), we have, P(Λcp,2) ≤ b/N7.

To prove Inequality (19), we proceed as in the proof of Inequality (16), using that E(V (t)) =
(1 − 1/N)v(t), which makes things easier. The two inequalities also follow and we use that

Var(V (t)) ≤ (v2(t)/σ4
0)(C2(T )/N) with C2(T ) = E([X1(0)− µ0]4) + 4

∫ T
0 e−4Γ(s)v(s)ds. 2

8.10. Proof of Proposition 9. Let u = t(u0, u1, . . . , um−1) a vector of Rm such that ‖u‖22,m =∑m−1
j=0 u2

j = 1 and set h1(t) =
∑m−1

j=0 ujϕj(t). We have
∫ T

0 h2
1(t)dt = 1 and when α(t) ≥ 0,

tuΨm,1u =

∫ T

0
h2

1(t)x2(t)dt ≥ µ2
0.

Analogously, when γ(t) ≥ 0, v(t) ≥ σ2
0. Then for u = t(u0, u1, . . . , up−1) a vector of Rp such that

‖u‖22,p = 1, tuΨp,2u ≥ σ2
0. 2

8.11. Proof of Theorem 1. The proof is given for the estimation of α only, the γ case being
very similar.

Lemma 6. Under the assumptions of Theorem 1, for all m,m′ ≤ N ,

E

[(
sup

h1∈Bm∨m′
ν2
N,1(h1)− (p1(m) + p1(m′)

)
+

1ON,1

]
≤ 1.6κ

e−m
′

N
,

where ON,1 is de�ned by (8), Bm∨m′ = {h1 ∈ Sm + Sm′ , ‖h1‖x ≤ 1} and p1(m) = κm/N , where
κ is a numerical constant.

Proof of Lemma 6. By the exponential inequality for martingales (see the Bernstein Inequality
for martingales in Revuz and Yor (1999)), we have

P
(∫ T

0
h1(t)X(t)dBN,1(t) ≥ x,

∫ T

0
h2

1(t)X2(t)dt ≤ y
)
≤ exp

(
−x

2

2y

)
.
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In other words, we have

P
(
νN,1(h1) ≥ ε, ‖h1‖2X ≤ η2

)
≤ e−

Nε2

2η2 .

Therefore

P
((
νN,1(h1) ≥

√
3‖h‖x

√
ε
)⋂

ON,1
)
≤ P

(
νN,1(h1) ≥

√
3‖h‖x

√
ε, ‖h1‖2X ≤

3

2
‖h1‖2x

)
≤ e−Nε.

The result follows by aplying the chaining method as in Baraud et al. (2001), sections 6-7,
Proposition 6.1 with s2 = 1. 2

By de�nition of m̂, we have ∀m ∈ M̂N,1, and any αm ∈ Sm,

UN,1(α̂m̂) + pen1(m̂) ≤ UN,1(αm) + pen(m).

Moreover, by (11), it holds

UN,1(α̂m̂)− UN,1(αm) = ‖α̂m̂ − α‖2X − ‖αm − α‖2X − 2νN,1(α̂m̂ − αm).

Consequently, ∀m ∈ M̂N,1, and any αm ∈ Sm,

‖α̂m̂ − α‖2X ≤ ‖αm − α‖2X + pen1(m) + 2νN,1(α̂m̂ − αm)− pen1(m̂)

≤ ‖αm − α‖2X + pen1(m)

+
1

8
‖α̂m̂ − αm‖2x + 8 sup

h1∈Sm+Sm̂,‖h1‖x=1
ν2
N,1(h1)− pen1(m̂)(51)

De�ne

ΞN,1 = {MN,1 ⊂ M̂N,1}.
On ΞN,1, Inequality (51) holds ∀m ∈MN,1, and on ΞN,1 ∩ ON,1, ∀m ∈MN,1,

‖α̂m̂ − α‖2X ≤ ‖αm − α‖2X + pen1(m) +
1

4
‖α̂m̂ − αm‖2X + 8 sup

h1∈Sm+Sm̂,‖h1‖x=1
ν2
N,1(h1)− pen1(m̂)

Thus, on ΞN,1 ∩ ON,1, ∀m ∈MN,1,

1

2
‖α̂m̂ − α‖2X ≤ 3

2
‖αm − α‖2X + pen1(m) + 8

(
sup

h1∈Sm+Sm̂,‖h1‖x=1
ν2
N,1(h1)− (p1(m) + p1(m̂))

)
+8p1(m) + 8p1(m̂)− pen1(m̂).

By Lemma 6, we get∑
m′≤N

E

[(
sup

h1∈Bm∨m′
ν2
N,1(h1)− (p1(m) + p1(m′)

)
+

1ON,1

]
≤ 1.6κ

∑
m′ e

−m′

N
=
C

N
.

For κ1 ≥ 8κ, 8p1(m) + 8p1(m̂) ≤ pen1(m) + pen1(m̂). Thus, �nally, ∀m ∈MN,1, and αm ∈ Sm,
we get for κ1 ≥ 8κ,

E
(
‖α̂m̂ − α‖2X1ΞN,1∩ON,1

)
≤ 3

(
1 +

λ?T
N

)
‖αm − α‖2x + 4pen1(m) +

C

N
.

Now we study ‖α̂m̂−α‖2X1(ΞN,1∩ON,1)c . We have T ′′2 := ‖α̂m̂−α‖2X ≤ ‖α̂m̂−πX(m̂)α‖
2
X +‖α‖2X .

Using (39) yields, as m̂ ∈ M̂N,1,

T ′′2 ≤
cN

L(Sm̂) log(N)
tWm̂,1Wm̂,1 + ‖α‖2X .
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Now, m 7→ tWm,1Wm,1 is increasing with m, and L(Sm̂) ≥ L(S1) ≥ 1/T . Therefore

T ′′2 ≤
cTN

log(N)
tWN,1WN,1 + ‖α‖2X .

By the Cauchy-Schwarz inequality, we get

E(T ′′2 1(ΞN,1∩ON,1)c) ≤
(

cTN

log(N)
E1/2(( tWN,1WN,1)2) + E1/2‖α‖4X)

)
P1/2(ΞN,1 ∩ ON,1)c).

We have seen above that E(‖α‖4X) ≤ c(T ). For the term E[( tWN,1WN,1)2], we apply Lemma 3
to obtain

E[( tWN,1WN,1)2] ≤ c(T )
L2(SN )

N
. N3.

Thus
E(T ′′2 1(ΞN,1∩ON,1)c) . N

5/2P1/2(ΞN,1 ∩ ON,1)c).

By Proposition 3, taking p = 8, we have P(OcN,1) . N−8. Now we use the Lemma:

Lemma 7. It holds that P(ΞcN,1) . N−7.

This implies that E(T ′′2 1(ΞN,1∩ON,1)c) . N
−1. We obtain the �rst inequality of Theorem 1 for

κ1 ≥ 8κ := κ0 and C1 = 4.
We proceed analogously for the second inequality of Theorem 1. 2

Proof of Lemma 7. On ΞcN,1, there exists k ∈MN,1 such that k /∈ M̂N,1.

For this index k, we have L(Sk)‖Ψ−1
k,1‖op ≤ cN/2 log(N) and L(Sk)‖Ψ̂−1

k,1‖op > cN/ log(N). As

c(N/ log(N)) < L(Sk)‖Ψ̂−1
k,1‖op ≤ L(Sk)‖Ψ−1

k,1 − Ψ̂−1
k,1‖op + L(Sk)‖Ψ−1

k ‖op

≤ L(Sk)‖Ψ−1
k,1 − Ψ̂−1

k,1‖op + (c/2)(N/ log(N)),

we get for this index k that L(Sk)‖Ψ̂−1
k,1 −Ψ−1

k,1‖op ≥ cN/(2 log(N)).

Let ∆m = {L(Sm)‖Ψ̂−1
m,1 −Ψ−1

m,1‖op > (c/2)N/ log(N)}, we have, using the de�nition ofMN,1,

P(MN,1 * M̂N,1) ≤
∑

m∈MN,1

P(∆m) ≤
∑

m∈MN,1

P(‖Ψ̂−1
m,1 −Ψ−1

m,1‖op > ‖Ψ−1
m,1‖op).

By formula (48),

P(‖Ψ̂−1
m,1 −Ψ−1

m,1‖op > ‖Ψ−1
m,1‖op) ≤ P(Ωc

m,1) ≤ P(OcN,1) . N−8.

This implies P(MN,1 * M̂N,1) . N−7. 2
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