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NONPARAMETRIC ADAPTIVE ESTIMATION FOR INTERACTING
PARTICLE SYSTEMS

FABIENNE COMTE, VALENTINE GENON-CATALOT,
UNIVERSITE PARIS CITE, MAP5, UMR 8145 CNRS, F-75006, FRANCE

ABsTRACT. We consider a stochastic system of N interacting particles with constant diffusion
coefficient and drift linear in space, time-depending on two unknown deterministic functions.
Our concern here is the nonparametric estimation of these functions from a continuous obser-
vation of the process on [0, 7] for fixed T" and large N. We define two collections of projection
estimators belonging to finite-dimensional subspaces of L2([0,T]). We study the L2-risks of
these estimators, where the risk is defined either by the expectation of an empirical norm or
by the expectation of a deterministic norm. Afterwards, we propose a data-driven choice of
the dimensions and study the risk of the adaptive estimators. The results are illustrated by
numerical experiments on simulated data.

Keywords and phrases: adaptive method, interacting particle systems, nonparametric inference,
projection estimators
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1. INTRODUCTION

Stochastic systems of N interacting particles have received a lot of attention in the past
decades. First arisen in Statistical Physics for the modelling of granular media (Benedetto
et al., 1997), these models progressively appear in many other fields of applications such as
Mathematical Biology (Molginer and Edelstein-Keshet, 1999, Baladron et al., 2012), Epidemics
Dynamics (Britton et al., 2020) or Finance (Giesecke et al., 2020). The probabilistic properties of
these models, especially their behaviour as N is large, have been largely studied (see e.g. among
many references Méléard, 1996, Sznitman, 1991). On the contrary, the statistical inference for
interacting particles remained unstudied for many years with the exception of Kasonga (1990)
who studied the maximum likelihood estimation of € = («, 3) from the observation on the interval

[0, T] of the N-dimensional system given by: dX (t) = {a XN (t)—B[ XN (t) —Y%(t)]}dt—i—dWi(t),
with XN(0) = X§,i = 1,...,N, and Xn(t) = NUON XN@), (Wii = 1...,N) are N
independent Brownian motions, X§,7i = 1,..., N are i.i.d. random variables independent of

(Wi, i =1...,N). A multivariate version of Kasonga’s model is studied in Chen (2021). The
general model can be described as a N-dimensional stochastic differential equation of the form

dXY (1) = b(t, X{(8), uv (1)dt + o (8, X (2))dW; (1)

where py(t) = N1 Z;VZI dx Ny is the empirical measure associated with (XN(t),i=1,...,N).
J

The drift function is often modelled as b(t, z, pu) = V(t,z) — [ (¢, — y)u(dy) and ® represents

the interaction term between particles. In this context, Lu et al. ( 2019) consider the nonpara-

metric estimation of the interaction function in a deterministic system where V =0 and ¢ = 0.

Li et al. (2021) are interested in characterizing the identifiability of the interaction function.
1
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Sharrock et al. (2021) study a parametric model for the drift and estimation by maximum like-
lihood. In Pavliotis and Zanoni (2022), the point of view of martingale estimating equations is
developed for parametric inference based on discrete observations of the system. Della Maestra
and Hoffmann (2022) study the nonparametric estimation of the function b(¢,z, u) by a kernel
approach. Belomestny et al. (2023) consider a semiparametric model for the interaction function
and estimate the nonparametric part by a kernel approach.

In this paper, we consider a linear drift b(¢, z, u) = a(t)x — B(t) [(z — y)u(dy), i.e. (XN (t),i=
1,...,N) is given by

ax (1) = {a@XN () = BOIXN (1) — Xn(®)] f de +dWi(t), XN(0) = Xb,i=1,...,N, (1)

where «a(t), 5(t) are deterministic unknown functions and Y]]:],(t) is the empirical mean of the
sample, (W;,i = 1...,N) are N independent Brownian motions, X, = 1,..., N are i.i.d.
random variables independent of (W;,i =1...,N), as in Kasonga (1990). Our concern here is
the nonparametric estimation of the functions («(t), 5(¢)) from a continuous observation of the
process the process (XN (¢),i = 1,...,N) on [0,7] with fixed T and N — +oo. Note that this
model was proposed by Bishwal (2011) as an extension of Kasonga’s model. However, in this
paper, nothing is done concerning the estimation of the functions a(t), 5(t). If g(t) = 0, the
processes XiN (t),i=1,...,N are independent. In this context, the nonparametric estimation of
the unknown function «(t) by the method of sieves is considered in Nguyen and Pham (1982).
If 3(t) # 0, then the N processes are no more independent and (X7 (¢),i =1,..., N) constitute
a system of interacting particles. The interest of model (1) lies is the fact that, contrary to more
general models, computations can be done explicitely.

Not surprisingly, two processes play a crucial role, the empirical mean and the empirical variance
of (XN(t),i=1,...,N):

N
X(0) = XN (0 = 5 X0 (2
1 N <N 12 1 & N2 V2
V() = Vi) = 1 SN0 - KNP = 1 SN (0)? - (XN 0) 3
i=1 =1

We prove that each one follows an autonomous stochastic differential equation with small diffu-
sion term and that the two equations are driven by independent Brownian motions. The equation
of X (t) only depends on «(t) and the equation of V (¢) only depends on v(t) = a(t) — 5(t). This
is why we concentrate on estimating «(t),~y(t) and this will be done by two separate contrasts.
As N tends to infinity, both processes X (t), V (t) converge almost surely uniformly on [0,7] to
a deterministic function, respectively z(¢) and v(t) (Propositions 1 and 2). We assume that
EX;(0) # 0 and VarX;(0) # 0. Under this assumption, we characterize the probability of de-
viation of P(supycpo.r) [(X2(8)/2(t)) — 1] > 6) and P(supyeior) [(V(8)/0(t) — 1] > ) (we apply
them for § = 1/2), see Propositions 3 and 4.

We define two collections of minimum contrast estimators &, (t), 7, (t) respectively of a(t), v(t).
For each m (vesp. p), am(t) (vesp. 7,(t)) belongs to a m-dimensional (resp. p-dimensional)
subspace of L2([0, T]). We study the LL2-risks of these estimators where the risk is defined either
by the expectation of an empirical norm or by the expectation of a deterministic norm (Propo-
sitions 8 and 9). For the estimation of «(t), the empirical norm and the deterministic weighted
norm are given for a function h of 1L2([0, 7)) by

T T
2 2 2 2 2 $2 )
1% = /0 R(OX2()dt, |2 = /0 B2 (1) (1) dt (1)
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For the estimation of (¢), they are given by

T T
b2y = [ ravod ns= [ rovod (5)

Thanks to Propositions 3 and 4, these norms are equivalent on L?([0, T]) outside a set of small
probability which is the key tool for bounding the risks of our estimators. Afterwards, we
propose data-driven choices m, p* of the values m, p and study the risk of the adaptive estimators
(Theorem 1). In order to have a benchmark for comparison, we also briefly treat the estimation
of a(t) when £(t) =0 in model (1), that is y(t) = «(t),Vt € [0,T].
Section 2 contains our assumptions and the preliminary properties concerning the two processes
X(t),V(t). In Section 3, we build and study our projection estimators. Section 4 concerns
the adaptive estimators. Section 5 deals with the estimation when 5(t) = 0. In Section 6,
we illustrate our theory by numerical experiments on simulated data. Section 7 contains some
concluding remarks. Proofs are gathered in Section 8.

Obviously, the problem of discrete time observation of the processes, with small sampling
interval, is worth being studied, see Amorino et al. (2022) for the parametric setting. In Appendix
9, we give a sketch of the discrete observation case and of the type of result which can be expected.

2. ASSUMPTIONS AND PRELIMINARY PROPERTIES.

We set (t) = a(t) — B(t) and consider the following assumptions:

[H1] X{,i=1,...,N are i.i.d. random variables such that E(X}) = o, E(X})? = 0 + p? with
po # 0 and 02 # 0 and X;(0) has moments of any order.
[H2] The functions «(t),v(t) : R* — R are continuous on R* (and thus belong to L2([0,T])),

and 7(t) # 0, a(t) # y(1).
With the new parameterization, we have
dXN (1) = {a(t)yx(t) AN @) - Y%(t)]} dt +dWi(t), XN(0)=Xii=1,....,N. (6)
We first need studying the empirical mean and the empirical variance.

Proposition 1. The empirical mean satisfies dyx(t) = a(t)yx(t)dt + ﬁdBN,l(t); that is

XN (1) = exp /0 a(s)ds) TN(0) + jﬁgw)

where gn(t) = exp (fg a(s)ds) fg exp (— [y e(u)du)dBn1(s) and By, is the standard Brownian
motion given by By1(t) = (1/V/N) Z;VZI W;(t).

Let x(t) = poexp (fot a(s)ds). Almost surely, as N tends to infinity, supg<;<p ]Y%(t) — x(t)|
tends to 0.

Note that dgn (t) = a(t)gn(t)dt+dBn(t), gn(0) = 0, (gn) has a fixed distribution. It follows

from Proposition 1 that we have the explicit expression of (Y%(t))Q:

(NP = e (2 [ al)is) (VO + 2o ([ als)ds) TN + ok
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where the middle term is centred. By Proposition 1, almost surely, as N tends to infinity,
SUPg<t<T |(Y%(t))2 — 2%(t)| tends to 0. Under [H1], we have (recall definition (2))

t 0.2
BOC(0) = EXNOF = e (2 [ a(ds) (F+d)+ 320 =0 (147) . @

with x(t) defined in Proposition 1 and

AE) = :(2) <ag + /O exp (2 /0 Sa(u)du)ds) | (8)

Thus, as N tend to infinity E(X2(t)) — 22(¢).
Proposition 2. The process Vi (t) defined in (3) satisfies Vy(t) > 0 for allt > 0 and

1 2
dVn(t) = [2y(OVN(t)+ (1= 5)ldt + ﬁ\/VN(t)dBNz(t)
N
where By o(t) = ft Tt (Xils );X(N)(S))dwi( %) is a Brownian motion. Setting T'(t fo v(s)ds, this
N (s

yields

Vi (t) = e'® (vN(o) + / t e (1 — s+ / “2) Vi (s)dBy2(s )
0
Let v(t) be defined by dv(t) = [2v(t)v(t) + 1]dt,v(0) = o2. Then,

o(t) = o2 —|—€2Ft)/ Vds >0 for allt >0

and as N tends to infinity, supg<;<p |[VN(t) — v(t)] —a.s. 0.
As a by-product of Proposition 2, we get the useful property (recall defintion (3)):

E(V(t)) =E(Vn(t)) = (1 =1/N)u(t). (9)
Note that the quadratic variation of By 1 and By 2 is equal to zero. We stress that in the equa-
tion for Y%(t), the drift depends on «(t) only and in the equation of Vy(t), the drift depends

on 7y(t) only. This is the interest of the change of parametrisation («a(t), 5(t)) — (a(t),~(t)).
For the sequel, we need the following lemma.
Lemma 1. For all r > 1, there exists a constant co(r,T) such that, for all t < T,
E[IX @] + V' (1)] < co(r, T).

To compare the empirical norms and the deterministic weighted norms (4)-(5), we need the
following propositions.

Proposition 3. Assume [H1] . Define the set

On1={ sup \Xz(t)
tejo,r] T2(t)

— 1 < 1/2}. (10)

There ezist a positive constant c1(T) and for all v > 1, a constant co(r) such that

P(Of1) < dexp (~en(T)N) + A7)
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Proposition 4. Assume [H1] . Define the set
V(t
On2 ={ sup ]L)—H <1/2}. (11)
te[0,7] v(t)
There exists a constant c3(T) and for all r > 1, a constant c4(r,T) such that
64(7’, T)
N

P(Oy2) < 2exp (—c3(T)N) +

3. ESTIMATION OF («(t),(t)).
Recall that T is fixed and set for simplicity X; = X JN :

3.1. Estimation contrast. Consider (¢;,j > 0) and (¢;,j > 0) two orthonormal bases of
L%([0,7]) and let Sy, (resp. ¥,) be the subspace generated by (¢;,0 < j < m — 1) (resp. by
(15,0 < j < p—1)). We assume that the functions (¢;,5 > 0), (¢;,j > 0) are continuous on
[0, 7.

Inspired by the log-likelihood of Process (1), for h(t) = (hi(t), ha(t)) element of L2([0,T]) x
IL2([0,T]), we consider the contrast

1 T
Un() = 5 [ I OX O + ) (X,(0) - X(O)
j=1

N T N

530 [ S @X )+ ha()(X () = X)), 1)

j=170 =1
Developing Uy (h) = Un((h1, h2)) and using that Z;V:l(Xj(t) — X (t)) = 0, we obtain
Un((h1,h2)) = Un(h1) + Un2(ho)
with

T
Unalhi) = / B2 () X2(t)di — 2 / (DX (1)dX (1),
N
_ 2 =
Una(ha) = /0 h2(6)V (t)dt /hg ; £))dX;(t).

This is why we define the projection estimators of a(t) on Sy, and of v(¢) on X, by
Q= arg min Uy 1(hy), 7, = arg min Uy (h2). (12)
S, ho€3p

1 m

Recall that we defined random and deterministic weighted norms |hi|x,||h1]]z in (4) and
[h2ll /w71l lh2ll 5l in (5), with the associated scalar products. Note that (see (8) for A(?)):

1 /7 1
2\ _ 2, L 2 2 2 v (1 L 2
Bl = Iml2+ [ mtoxo i Ele) = (1- 5 ) Il
Proposition 5. We have
E(Uxa (b)) = E(lhn — al% — lal%),  EUx (1)) = B(lhs — 2125 — 1120,

Proposition 5 shows that the expectations of the contrasts Uy 1(h1) and Uy 2(hg) are minimum
for hy = a, ho = v and explains the definition of the estimators.
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3.2. Risk of the projection estimators on a fixed space. For M a matrix, let Tr(M)
denote the trace of the matrix M and let ||M]|op denote the operator norm of M that is the
square root of the largest eigenvalue of M ‘M. If M is symmetric, |[M|op = sup{|\;|} where
Ai are the eigenvalues of M and so |[M ™Yo, = M|} . For hy € L2([0,T]), we denote

by ||k = fo h3(t)dt)'/? its L2-norm and |z||2, denotes the Euclidean norm of the vector
x =Yz1,...,2,) of R".

We now detail the construction and the expression of the estimators (12).

Let us define

~ T R T
By = ( / (pj(t)cpk(t)XQ(t)dt> and B = ( / wj(t)wk(t)V(t)dt>
0 0<j,k<m—1 0 0<7,k<p—1

and
Tt = < /0 gpj(t)X(t)dX(t))O 1 and Z,9 = ( / b;(t) %Z (Xp(t (t))ka(t)>
<j<m— k=1

Noting that, for u = f(ug, ..., um_1) € R™, tulflmvlu = fOT (Z Lujip;(t ) X2(t)dt > 0, we

0<j<p—1

conclude that \T/m,l is symmetric positive definite, as well as \T/ . Indeed the bases functions
and X (t) are continuous and non identically zero.

Set Qi (t) = ;":_01[/\( Wk er(t), v(t) = 2272 [ ]g Ye(t). By a standard computation, we
get that the vectors () = ([a(m))]mk =0,...m— 1), o) = t([’Y&,)]&E =0,...,p— 1) are

solution of R R R
\I/mJ&(m) = Zm,l and \I/p’g’yz(p) = Zp 2.

)

Therefore L

Bm) = Vi Zas ) = CpaZpe. (13)
We define the symmetric positive definite matrices

v = ([ ' eiD)2% 00 o s (/ ' ivione) .

Note that using (7) and (9), we have
~ 1
and E (xy,ﬂ) - <1 - N) Uy,

E(\ffml): mi+ — </OT<p] )Z(t)dt>

where A(t) is defined by (8). Lastly, we define

0<j,k<m—1

p—1
L(Sp) = sup Y ¥ Sp) = sup ¥ F(t).
te[0,T] JZO ! g t€[0,T jz:% !

These quantities are classical in model selection, see Massart (2007). They only depend respec-
tively on the subspace Sy, (on the subspace ;) and not on the bases chosen to define them.
Indeed, L(Sy) = supy, g, || |=1 SUPte[o,7] h3(t), where ||h1||? = fo h3(t)dt, and analogously for
L(%,).

Below, we restrict the possible choices of the dimensions m, p by a condition which ensures the sta-
bility of least-squares estimators (see e.g. Cohen et al. (2013), Comte and Genon-Catalot (2020a,
b)). For ¢ a numerical constant, that can take any value, we consider dimensions m, p such that

cN cN
—, L(X3,)(||¥ 1 . (14
210gN7 ( p)(” p72HOp \/ ) 210gN ( )

m,p<N and L(ST,L)(H\IfmJng1 V1)<
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The necessity of this constraint is fully detailed in the references mentioned above. The problem
is the following one: we do not know if [[W,, o) (vesp. [[Wp 2[5, ) is bounded independently of
m (resp. p). If it is not the case, we can not handle the risk of the estimator.

However, we can prove the following result.

Proposition 6. (1) If, for all t € [0,T], a(t) > 0, then ||‘I’;:1”op = [¥pillop < 1o 2.
(2) 1If, for all t € [0,T), 4(t) > 0, then ¥, 3]lop = [|¥p2lls) < 05>

In this case, the constraint (14) is very weak.
But, in general, the cutoff (14) is needed. In parallel, we define the truncated estimators

G = Gmla At = {L(Sm) ([Tl V 1) < cN/log N} (15)

m,19
and R

= A2 = (L) ([ Epally) V1) < N/log N}, (16)
It is worth noting that the following holds.

Proposition 7. The mappings m = (|9, llop, m = W21 lop, p = ¥ 5]lops P = [, 5]lop
are increasing.

Now, we can state the risk bounds of the above estimators for fixed m, p.

Proposition 8. Assume that [H1] and [H2] hold. Consider the estimator cu,(t) of a(t) defined
by (15), for m satisfying (14).
(1) For the risk based on the empirical X-norm, we have

_ AT) ) m c
—_all?2 < A —_ all? = —_
Bl - ol < (1425 ((inf h-al2 425 ) + 5 (17)

where X in defined by (8).

(ii) For the risk based on the deterministic x-norm, we have

- AT) . m c
—al? < =) —a?4+2—= )+ —.
Ellam, — allz <2 <1 + N > <hle%f;n lh —allz + 2N) + N (18)
Refining the proof of the bias term, we get
~ ¢ . AMT)\m ¢
Eldy, —a|? < [1+ ——Kn(T f — al)? 14+ ——= ) =+ — 1
= all < (14 ot D) Jint -l s (14272 Be a9

with

e w2 (CUT) DY
KN(T)._the[oPT] (t)( . + N )

and C1(T) is a constant depending on T
In (17), (18), (19), the quantity c is a generic constant, which depends on T.

Proposition 9. Assume that [H1] and [H2] hold. Consider the estimator 5, (t) of v(t) defined
by (16), for p satisfying (14).
(1) For the risk based on the empirical 'V -norm, we have

R g A I
EIF; —lp < (- 5) (#&f Ih=lys + N) N (20)
P

(ii) For the risk based on the deterministic \/v-norm, we have

— 1 i P c
I - % <2 (1= ) (nf Ih =5 + 25 ) + & 21)
P
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With a more elaborate proof,
B[ — )2 < (14 ——R(T)) inf [h—Alr+8(1- =)L+ (22)
P v = log(N) hes, Vv N)JN N
with o
T
R(T) :=2T sup ’U(t)#
te[0,7] %0

and Cy(T) is a constant depending on T
In (20), (21), (22), the quantity c is a generic constant, which depends on T.

In the two previous propositions, for the risks based on the deterministic norms, we obtain

two inequalities. The difference between (18) and (19) (resp. between (21) and (22)) lies in the
evaluation of the bias term where the factor 2 is improved into a factor 1 + o(1).
We comment here the dependence on T' of the bounds (17) and (21). The main term in the
right-hand-side of (21) is independent of T. The same holds in (17) if « is lower bounded by a
positive constant. Indeed then A(T") is upper bounded independently of 7. On the contrary, the
constants ¢ corresponding to residual terms depend on T' through moments of X (¢), V(¢), which
can have exponential order in 7.

3.3. Rates of convergence. Rates of convergence can be deduced from risk bounds provided
that functional regularity conditions on «, 7 are set. We give results for a only, but the same
type of results holds for . Regularity spaces depend on the basis which is used. Below and in
the simulation section, examples are presented.

3.3.1. Rates on tmgonometmc spaces. First we consider the collection (Sng m > 0) of subspaces
of L2([0, T]) where SIT9 has odd dimension m and is generated by the orthonormal trigonometric
basis (denoted by [T]) (;r) with wor(t) = /1/T1j7)(t), p2;-1.7(t) = \/2/T cos 27Tjt/T 0,7 (t)
and o, 7(t) = \/2/7Tsin(27rjt/T)1[07T] (t)forj =1,...,(m—1)/2. This basis satisfies ZJ 0 ¥ 2o(t) =
m/T. Therefore L(Sp"9) = m/T.
Assume moreover that, for some ¢ > 0,

vt € [0,T], 2%(t) > c2. (23)

This assumption is fulfilled if a(t) > 0, V¢ € [0, T, with ¢9 = pop. Then, it follows from the proof
of Proposition 6 that (23) implies || U, !op < 1/ci. As a consequence, under (23), m satisfies
condition (14) as soon as m < ¢cc3T'N/log(N), which is a weak constraint.

Let r be a positive integer, L > 0 and define

WP (r,L) = {g€C"([0,T];R): g~V is absolutely continuous,
T
/ ¢ (z)?dx < L and ¢V (0) = ¢VN(T),Vj =0,...,r —1}.
0
By Proposition 1.14 of Tsybakov (2009), a function f € W2 (r, L) admits a development

f= ZGJT%T such that Y 607,77 < C(T, L),
7=0 7=0

where 7; = j" for even j, 7; = (j — 1)" for odd j, and C(T,L) := L2(T/7r)2r_ So, with
f Zm 19] TY;5,T
If = fmll> < K(L, T, r)ym=%".
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Thus we obtain the following rate

Corollary 1. Assume that [H1], [H2], (23) hold and that « € WE*(r,L). Then choosing
m* = NV gives B(|| G — al|?) < O(T,r, L, 3)N—2/Cr+1),

Indeed, m* satisfies m* < ¢cc3T'N/log(N) for well chosen c*.

Note that we also use the cosine basis [C] defined by @or(z) = /1/T19 1 (1), @jr(t) =
V2/T cos(mjt/T)Liom(t), 5 = 1,...,m — 1, see Efromovich (1999, p.46). It is clearly an or-
thonormal basis. For a twice differentiable function, the projection coefficients decrease like 1/;2
without border constraints; such constraints are required for higher regularities only, see Efro-
movich (1999, p.32). In practical implementation, it appears that this basis is more convenient
and performant than the complete trigonometric basis.

3.3.2. Rates on Sobolev Laguerre spaces. Consider now a collection of subspaces of L2(R1),
generated by the Laguerre basis [L] defined by

J N\ Lk
- , I\t
4O =IO e, 20, 1,0 = D1t ()
We set S5 = span{l;,j = 0,...,m—1}. We have V¢ > 0, Z;-':Ol 3(t) < 2m (see Abramowitz
and Stegun (1964)) and as ©;(0) = /2, L(Si™) = 2m.
The basis is orthonormal in L2(R*), but not in L2([0, T]). However, the bounds (17)-(20) can

be obtained for this basis too as the orthonormality is not used in the proof. Thus we can get rates
on Sobolev Laguerre spaces defined by W#(D) = {f € L?(R"), E:jleScj(f)2 < D < o0},
ci(f) = 0+°o f(t)¢;(t)dt. A function belonging to W*(D) has, roughly speaking, regularity
properties of order s, see Comte and Genon-Catalot (2018).

Therefore, under [H1], [H2], if & € W*(D) and if m® = ¢NY+D satisfies constraint (14),
then E([|ame —al|%) < (T, D)N—/(+1) which is an optimal rate for regression type estimation
with Laguerre basis, see Comte and Genon-Catalot (2020a, Theorem 1).

4. ADAPTIVE ESTIMATORS

We will assume in the following that (see examples of bases in section 3.3):

L(Sy) < C?Dm, L(%,) < c?pp.

We set
_ ¢ N - =~ N
My = {m < N,L(Sm)H\Ilthop < 2Tog(N) } s Mg = {m < N,L(Sm)H‘I’thop < clog(N)}’
¢ N —~ ~ N
=3p <N, LEE) Y, lop < = =P <N, L(Z) IV, Slop < e—x ¢ -
Mz ={p < N L Hlon < 51500 b+ Fova = {p < N LEIT o < o1 |
Now we define
. : N m
m =arg min {Un1(@pm)+ pen;(m)}, pen;(m)= Kig; (24)
meMan 1
. p
p*=arg min {Un2(7;) +peny(p)},  peny(p) = ko (25)
PEMyp 2

Note that Un1(ap,) = —||&m||§( and Un2(v,) = —H’y;H?ﬁ
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To explain the choice of m and p*, we recall that the penalisation method mimicks the squared
bias/variance compromise of the risk. On the one hand, the bias is equal to

7y = allf = inf fla—hl% = ol — 75l
ESm

and is, up to a constant, —||7r()fn)aH§(: it is estimated by —||am|% = Un1(@m). On the other
hand, the variance term is proportional to m/N, which is our penalty term.

Theorem 1. Under [H1]|-[H2]|, there exists a numerical constant ko such that for k1 > ko,
K2 2 Ko,

~ ) AT)N . m c
E (||an — of/%) < f 1+ 552 f ||h—al? )+ =
(o7 — allx) < €1 meMx 1 (( TN )ﬁéﬁqm Ih = allz +“1N> TN

1 p c
E( * 2)<C inf  ((1— =) inf [|h—~|? L
where C1 and Cy are numerical constants.
The quantity c 1s a generic constant, which depends on T.

Theorem 1 shows that our estimators are adaptive in the sense that their risk automatically
realizes the best compromise between the bias and the variance terms.

The theory asserts the existence of a numerical constant kg, ensuring the risk bound. One
problem for practical implementation is to find an adequate value for kg in the penalty. Therefore,
it is customary to determine this value by preliminary simulations; to avoid overfitting, the
preliminary examples are different from the ones presented.

5. ESTIMATION OF «(t) WHEN 3(t) =0

To have a benchmark for comparison, we consider here the simpler case where 5(t) = 0 in
model (1), i.e. the model given by N i.i.d. Ornstein-Uhlenbeck processes:

dX;(t) = a(t) X;(t)dt + dW;(t), X;(0)=X{, i=1,...,N. (26)

The problem of nonparametric estimation of «(t) from (26) has been first tackled in Nguyen and
Pham (1982) who propose a projection estimator using an increasing sequence of subspaces of
IL2([0,TY]) as we do here for the couple (a(t),(t)). However, this paper neither gives any concrete
choice of projection bases and nor studies the L2-risk of the projection estimator. Moreover, the
problem of an adaptive choice of the projection dimension is not raised at all. This is why we
complete this study below. Taking into account our previous statements, we do it as briefly as
possible to avoid repetitions.

5.1. Direct estimation of «(t). Consider, for h € L2([0,T]), the contrast given by:
1 (T, N ) 9 T N
An(h) = — Y X2 (t)dt — " X (0)dX;(1).
~N(h) N/o h=(t) ~ ](t)dt N/o h(t) p j(t)d ](t)

Set Y (t) :==Yn(t) = % ijzl X3(t) = X2(t) + V(t), y(t) = 2*(t) + v(t).
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Proposition 10. The process Y (t) satisfies: dY (t) = [2a(t)Y (t) + 1)dt + \/LN\/Y(t)dBMg(t)
oL Xi(8)dWi(t)
ZN Xz ()72

V() = exp(Q/Otoz(s)ds)[ (0)+/texp( 2/Osa(u)du)ds
/eXP / a(u)du)\/Y (s)dBy 3(s)

As N — 400, Y(t) converges uniformly on [0,T] to

t t s
y(t) = exp (2/ a(s)ds)[op + pd —i—/ exp (—2/ a(u)du)ds].
0 0 0
We have EY (t) = y(t). As previously, we can prove that the probability of the set

¥ (t)
Oy ={sup |—=—1|<1/2}.
N {t€[07T] | y(t) | / }

where dBy 3(t) = is a Brownian motion. This yields

satisfies the same inequality as On,1 and Oy 2. Consequently, define

G = arg min Ay(h),

2 T T 1 &
= </o (pj(twk(t)y(t)dt) o<ip<m—1 - </0 (pj(wN;;Xk(t)ka(t))

and am(t) = Z;riol [5(m)]jcpj(t), we get that the vector of the coefficients of 5m(t) is equal to

N

0<j<m—1

~
~

Am) = (W) "' Z,,. We define analogously the norms |l sy and [[A]| 5 and we can prove:

Proposition 11. Assume [H1]|-[H2]. Let m satisfy m < N and L(S )(||\Ilm\|op1 V1) < 210];7]\,

with V,, = E\Tlm and ¢ a numerical constant. Define the truncated estimator

Ay, =

2N

mla,,, Ay = {L(S )(H\Ilm||1\/1)<cN/logN}.

Then we have

2m c o~ 9 . 9 m
N N EHO‘m_O‘H\/gjg2h1€%fm||h_0‘”\/g+4ﬁ+ﬁa

(c is a generic constant, which depends on T).

E||am—a||f< 1nf Hh—a||f+

As previously, we can define an adaptive estimator with a data-driven choice of the dimension
m under the assumption that L(S,,) < cim. In parallel as above, we set

N = 2-1 N
My {m < N, L(S) 195 fop < 2 Toa (V) } , My {m < N, L(Sm) ¥, [lop < “Toa(™) },

m = arg min {AN(a\m) + pen(m)} , pen(m) = m%. (27)
mEM\N
Theorem 2. Under [H1]|-[H2|, there ezists a numerical k{, such that for k > ki,
A~ 2 . 2 E £
(1 -olty) <0, (g -oltye )+
where C' is a numerical constant and ¢ is a generic constant, which depends on T'.

Proofs are omitted: they follow the same lines as the proofs of the previous parts and are simpler.
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5.2. Estimators of «(t) from Section 3. When «(t) = ~(t) i.e. when §(t) = 0, we also
have at disposal two other estimators of «(t): the first estimator of a(t) (denoted below [M1])
and the estimator of v(t) (below [M3]), which are distinct and different from the estimator of
the previous subsection (below [M2]). These three estimators are implemented in Section 6 and
their risks computed in Table 2. It appears that, with the same basis for both, the estimator
of a given from 7y . by [M3| is better than &z given by [M1]. Here is an interpretation of this
phenomenon.

Suppose that we are in a parametric model where «a(t) = Z;-n:_ol ;i(t)ay, y(t) = Z;”:_Ol ©;(t)v;
with fixed and known m. Then the exact maximum likelihood estimators of a ;) =g, ..., Q1)
and Y(;m) ='(70, - - -, Ym—1) are respectively (see (13)):

~ ~ ~ ~

a(m) = ‘I’;:lzm,la 7(*m) = ‘I’nﬁzbzmﬂ-
From these exact expressions, a simple computation shows that, as N tends to infinity,

VN (@) = 0m) =2 Ko~ N0, W0) - VN (i) = m) =22 Ko ~ N0, 03,05).

m,1 m)

where we recall that

Vs =i ([ oaeo @ [ awa) ,

0<j,k<m—1

T t
U2 = </O w;()ek(t)[of exp (20(t) + exp (21“(75)/0 eXp(—QF(S))dS)]dt>

0<j,k<p—1
Therefore, if 3 < o2 and a(t) = y(t), Y1 < U,y 2 (in the sense of inequality between positive
symmetric matrices), thus, \I/;;l > \I’;:Q

Then NHa() — a()||2 =N t(a(m) — a(m))(&(m) — Oé(m)> —L Z1 = tX1X1 and NH’}/*()
VOI? =2 Zo = oXa. Setting Yy = U}/ Xy, we have Y; ~ Ny (0,1dy) and Zy = 1,0,
Thus, for Y ~ Np(0,1dy,), it holds E(Z)) = E(YW, " Y). Analogously E(Z;) = E(tY\IJmQY)
and thus E(Z1) > E(Z2). This means that, for u2 < o3, the estimator 'yZ‘m) is agsymptotically
better than @,,). This is illustrated in the simulation experiments.

6. NUMERICAL EXPERIMENTS

6.1. Description of experiments. We consider the four couples of functions (ay,~y) for ¢ €

{L,... 4k

(1) ai(t) =g+ it, n(t) =1-t,
(2) az(t) = —1+t2/2, yo(t) =1 —t2/2,
(3) as(t) = cos(1.27t), v3(t) = sin(1.27t),
(4) au(t) = exp(—(t — 1)*), 1(t) = exp(—(t - 3/2)*/2).
We also experiment the case a = or § = 0. We take four examples
(1%) o (t) = 1/2 4 t/4(= au(t)),
(24) a3(t) =1—12/2(= (t)),
(3*) aj(t) = cos(1l.27t) = as(t)
(4%) aj(t) = exp(—(t — 1)*) = au(t).

For T' = 1,3, and N = 250,1000, discrete samples are generated with Fuler scheme with
step 7/1000, and initial conditions pyp = 1/2,00 = 1 (note that ug < o9, see Section 5.2).
We proceed with 400 repetitions. Note that in Belomestny and Schoenmakers (2018), a nice
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FI1GURE 1. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases [T] (top), [C] (middle) and |L] (bottom) for Example 1 and
N = 1000. The MISE for « are 0.079,0.0053,0.0072 and the mean of selected
dimensions are 4.62, 3.07,4.90. The MISE for v are 0.374,0.0094, 0.0067 and mean
selected dimensions are 5.0, 5.45,5.47.

simulation algorithm with reduced complexity, is proposed, especially in the case of linearly
growing coefficients, but not depending on ¢.

For the strategy of Section 4, three bases are tested: the standard trigonometric basis [T], the
cosine-basis [C| and the Laguerre basis |L|, see section 3.3.

The cutoff is replaced by a limitation in the collection of models: maximal dimensions are
less that 11 for [T], 26 for [C] and 7 for [L]. By doing so, all matrices are numerically invertible
and we can check that the maximal dimension is not systematically chosen (otherwise we would
enlarge the collection).

For each basis [T], [C], [L], the penalty constants are calibrated from preliminary numerical
experiments and taken as ki) = 2, K1) = 4 and k) = 4 for the estimation of «, and
Ko,[T] = Ka,jc] = Ka,r] = 2 for the estimation of v (x1 is defined in (24), k2 is defined in (25) and
the additional index determines the basis).

For the case where a(t) = v(t) (8(t) = 0), we implement the three possible estimators:

e Estimator of a(t) given by @z (t) (method M1, described in Section 4)

(
e Estimator of a(t) given by a=(t) (method M2, described in Section 5)
e Estimator of a(t)(= v(t)) given by 7;.(t) (method M3, described in Section 4).
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For method M2, we only experiment the two bases [C], [L] with penalty constants k(o) = k(7] = 4
(see (27)).
The computed MISE is the mean over the experiments £ = 1,...,400 of non-weighted ap-
proximated L2-error, for o
400 100

) T
400 Z 100 Z [ 100 (100) ’
(k)

where a7 is the estimator computed for simulation &, and analogously for v and for the esti-
mators in the case a = ..

TABLE 1. 100x MISE for estimation of o and v (with 100 x standard deviation
in parenthesis) in Examples 1 to 4 with bases |T|, |[C| and |L|, for N = 250 and
N =1000, T =1 and T = 3 and for up =1/2 and o9 = 1.

Estimation of « Estimation of
N =250 N = 1000 N =250 N = 1000
T=1 T=3 T=1 T=3 | T=1 T=3 T=1 T=3

Ex. 1 [T] | 50205 10603 L4914 7.7404) |3-6310) 39957 20704 37707
[C] | 2.3431) 1.6201.9) 0.61(0s 0.6606) | 1.011.3 2.6010) 0.3202 0.860s5)
[L] | 3.86(3.8 36435 08208 0.9900) |0.9709 23516 0232 0.560.4

)

)

(
(
(
Ex. 2 [T] 4.3536) 79116y 1.98(0.8) 79281 | 7-17(3.3) 5706 3.32(0.9) 992(14)
[C] 1.92005) 45.3(11) 0.63(05) 393us) | 41445 312199 1.17(11) 10.2(53)
(L] 32157 3.3536) 0.8400.9) 0.74007) [3-793.3) 171y 0.82¢7 4.76(3.7
Ex. 3 [T] 17.3(6.9) y 79717 68824y | 244(10) 6.14(13) 1.1000.3) 4.790.5)
[C] 5.74(5.0) 18.5(12) 2.07(12) 58728y | 1.99(1.1) 2.57(12) 0.490.3) 0.82(03)
(L] 73263 22131g 2.7l T7.682.0) | 1.340.9) 8.632.1) 0.3500.2) 7-53(0.8)
) (
)
)

18715

Ex. 4 [T]| 67655 3.9521) 27311 20908 | 22809 05204 L0903 0-22(1)
[C] | 27237 31136 0.6807 0.81(0s) |0.9403 0.870s 02603 0.300
[L] | 3.36(46) 5.92u2) 09008 1.0200) | 10309 09505 0.2509 02302

6.2. Results. Table 1 shows the MISEs for the estimation of «,~ in Examples 1 to 4 for the
three bases. As expected, in all cases, the MISE gets smaller when N increases. Clearly, the
trigonometric basis [T] has difficulty for the estimation of non periodic functions (that is, func-
tions which do not take the same value in 0 and T'), and gives results which are systematically
less good than the two others. This is also illustrated by Figure 1 for Example 1, in which beams
of 40 estimators (green) for N=1000 and T' = 3 are compared to the true functions (red): the
plots on the first line for basis [T| have clearly important side-effects, while the two other bases
seem to correct it. This is the reason why we implemented basis [C]. When T increases, the
MISE most of the time increases also, which seems to be a natural scale effect, and the MISE
for v is generally smaller than the MISE for «: it is true that the functions are different, but
they are of similar types, so it is likely that ~ is easier to estimate than «, see also Figure 1
and compare left plots (estimation of ) and right plots (estimation of ). This is in accordance
with the results of Section 5.2, which indicate that the estimator of 4 has smaller risk than the
estimator of a when ,u < 0'2 Figures 2 and 3 allow to compare the improvement when going
from N = 250 (Figure 2) to N = 1000 (Figure 3) on the same Example 2. Lastly, Figure 4 is a
plot for N = 1000 and T" = 3 concerning Example 4.



TABLE 2. When £(t) = 0 (and thus a = ), 100x MISE for estimation of «
(with 100 x standard deviation in parenthesis) in Examples 1* to 4* with bases
[C] and |L], for N = 250 and N = 1000, 7' = 3 and for pup = 1/2 and o9 = 1. The
M1 the method of estimation of « in the complete model,
M3 the method of estimation of v = « in the complete model and M2 the specific

three methods are :

INTERACTING PARTICLE SYSTEMS

method of section 5.

N =250 N = 1000
M1 M2 M3 M1 M2 M3
EX.]_* [C] 162(12) 04:5(04) 073(07) 06506) 015(01) 0. 22(0 2)
[L] | 364353 05705 0.760.7 | 09005 0.1601 0.19¢.1)
EX.Q* [C] 211(15) 450(29) 374(25) 935(67) 169(67) 1 24(0 7)
[L] | 20.056) 21004 219045 |4.1446 05405 0.5405
L] | 2254 58710 601604 | 75701 4830s 4960y
Ex4" [C]] 32436 0.6604) 0.750¢) | 08705 02501 02602
[L] | 53137 0.74¢5 0.85(0.7) | 1.090) 0.3002) 0.27(.2)
2
1
0
-1
-2
0 1 2 3
2
1
0
-1
2
0 1 2 3

FIGURE 2. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases |C] (top) and Laguerre (bottom) for Example 3 with N = 250.
MISE for a: 0.2002,0.2666 and mean of selected dimensions:

for v: 0.0226,0.0802 and mean of selected dimensions 8.2, 7.0.

4.35,6.65, MISE

15

Table 2 gives the MISEs obtained when estimating a of Examples 1* to 4* by methods M1,

M2, M3.

Method M1 is systematically the less good. The two other methods give similar results, even
if method M2 seems almost all the time better although probably not significantly.
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To conclude this section, we can say that the method works globally well in most contexts.

_i \/ \/
]
N\ “\/\,

FIGURE 3. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases |C] (top) and Laguerre (bottom) for Example 3 with N = 1000.
MISE for a: 0.0622,0.0827 and mean of selected dimensions: 5.6,7.0. MISE for
~: 0.0239,0.0817 and mean of selected dimensions: 9.97,7.0.

7. CONCLUDING REMARKS.

In this paper, we study the nonparametric estimation of the deterministic functions «(t), 5(t)
when the observed process is an interacting system of N particles given by (1). The process
is assumed to be continuously observed throughout a time interval [0,7] with fixed T. The
number N of particles is large. We build estimators of the functions «(t),v(t) = «a(t) — B(t)
by minimizing projection contrasts deduced from likelihoods, using increasing sequences of finite
dimensional subspaces of ([0, T]). Bounds for the L?-risk of the projection estimators are given
based either on an empirical norm or a deterministic norm linked with the problem. The bounds
of the risks allow to discuss rates of convergence. Then, a data-driven choice of the dimension
for the projection space is provided leading to an adaptive result. The case where 3(t) = 0 is
briefly treated.

Implementation of the estimators is done based on simulated data for various examples of fonc-
tions a(t),y(t) and two different bases of L2([0, T]). The numerical results show that the adaptive
estimators perform well, the estimation of v(¢) being better than the estimation of «(t).

The problem of discrete time observation is shortly discussed in the Appendix 9, and could
be completed.

The generalization of our study to include a diffusion coefficient (X (¢)) in (1) with a known
o(+) is certainly feasible. More challenging, the study of the estimation of «, 3 in the general
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15 15
1
1
0.5
0.5
0
-0.5 0
0 1 2 3 0 1 2 3
15 15
1
1
0.5
0.5
0
-0.5 0
0 1 2 3 0 1 2 3

FIGURE 4. True functions in bold red and beam of 40 estimated « (left) and ~
(right) with bases |C| (top) and Laguerre (bottom) for Example 4 with N = 1000.
MISE for a: 0.0084,0.0091 and mean of selected dimensions: 3.2,5.05. MISE for
~: 0.0031,0.0022 and mean of selected dimensions: 11.2,5.8.

dynamics

H(XN () =X (1) }dt+dWi(t), XY (0)=X§i=1,...,N,
1

1
N 4

J

dX¥ (1) = {a(t)g(X;¥ (1) -B(t)

n

with known g(+), ¢(-), would be interesting.
Another natural but difficult generalisation would be to consider the estimation of matrix
functions A(t) and B(t), when X}V (t) € R? and satisfies

dXN(t) = {A)XN (1) - B(t)% i(XiN(t) — XN ()} dt +dwi(t), XN(0)=X}i=1,...,N,

for A(t) and B(t) d x d matrices of unknown functions.

8. PROOFS

Recall the notations (2)-(3) and X; = X]N.

8.1. Proof of Proposition 1. We have:
N N N

N N
d(d_ X;(t) = [a(t) Z X;(6)=B(t) Y (X; (=X (0)]dt+)_dW(t) = a(t) Y X;(t)dt+)_ dW; (D).

Jj=1 Jj=1 Jj=1 Jj=1 J=1

Therefore, dX (t)) = a(t)X (t)dt + + Z;VZI dW;(t) = a(t) X (t))dt + TlﬁdBNyl(t). This equation
can be easily solved and yields the solution given in the proposition.
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We have:
t 1 t S
sup X (1))~ (t) < supesp /0 () du) (|X(0)—Mo|+§1§1¥\/ﬁ| /0 exp (— /0 a(u)du)dBN,1<s>|)

Using the Markov and Burkholder-Davis-Gundy (B-D-G) inequalities yields

P (f;l?\/lﬁ > 5> < é_fﬁ </OT exp(—2/08a(u)du)ds>

where Cy is the constant of the B-D-G inequality. We conclude that sup,<p \\/iﬁ gn (t)| converges
a.s. to 0 and using [H1|, this yields the result.O

2

[ewi= [ atiauizy o

8.2. Proof of Proposition 2. We apply Ito’s formula to the function F(z,y) = (z — y)? and
use that (dX;,dX;), = dt, (dX,dX), = %dt, (dX;,dX); = xdt,

d[Xi(t) — X ()] = 2[X:(t) — X (0)]dX;(t) — 2[X;(t) — X (£)]dX () + %[th + %dt - %dt]
Using Y0 (X(t) — X(t)) = 0 and (6) yields

N N
A0 [Xi(t) — X))} =2 [Xi(t) — X()]dXi(t) + (N — 1)dt
=1 =1
N N
=2 [Xi(t) — X(t)][a(t) X (t) +~v()[X:(t) — X (t)]dt + (N — 1)dt + 2 Z[Xi(t) — X(t)]dW;(t).
i=1 =1

Thus, dV (t) = [2v(t)V (t) + 1 — &]dt + dMy(t) where

t N t
My (#) = % /0 S [Xi(s) — X (s)]dWi(s) = \/% /0 VV(5)dBya(s).
=1

By the usual change V' (t) = C(t) exp (2 fg ~v(s)ds), setting I'(t) = fg ~(s)ds, we can obtain the
expression:

V(t) = exp(2I'(t)) <V(0) +(1- ]if)/o exp (—2F(s))d3> + exp (2F(t))/0 exp (—2I(s))dMp(s)
= exp (2['(t)) <V(O) +(1- ]if)/o exp (—2F(s))d5> + My (1)

+ Qexp(QF(t))/O v(s)exp (—2I'(s)) Mn(s)ds.

Note that

where

1 & 1t
An(t) = exp(20(t)) <N Z[Xi(O) — po)? — o — [1o — X (0))* — N/o exp (—QF(S)d8> :

By(t) = MN(t)+2eXp(2F(t))/0 ~v(s)exp (—2T'(s) My (s)ds.
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By [H1], An(t) converges to 0 almost surely uniformly on [0, 7] as N tends to infinity. To obtain
that V(t) converges to v(t) uniformly almost surely on [0,7] to 0, it is enough to prove that

sup [ My (s)| —a.s. 0. (29)
s<T

For this, we follow Kasonga (1990, p.873).
One of Doob’s martingale inequalities states that, for a > 0,8 > 0, P(sups<p(Mn(s)—5(Mn)s) >
B) < e P, Here (My)s =  J5 V(u)du. This yields

2
P(sup [My(s)| > a/ V(u)du) 4 B) < 2e~°
s<T N Jo

Taking « = N%, = N"" with 0 < b < a < 1 yields

P M
(jggl N> J=a

T
/ V(u)du) + N7 < 2e N
0

By (28), we have

T
/0 V(t)dt < C(T) ( sup [v(t) + An(8)] + sup rMN<t>|>

te[0,T] t€[0,T)]

where C(T') = 1 + 2sup;¢jo 7y exp (2I'( fo |7(s)| exp (—2I'(s)ds. Consequently,

te[0,7

P ((1 - ) s ()] > N 2552% sup {o(t) + AN<t>}>

20(T
=P (sup | My (s)| > N7b 4 Ni-a (_a)[ sup [v(t) + An(t)] + sup |MN(t)H>
s<T t€[0,T t€[0,T

2 (7 o
<P (sup |Mn(s)| > Ni-a / V(u)du + N_b> <2e N
s<T 0

As supye(o 71[v(t) + An (t)] converges almost surely, by the Borel-Cantelli lemma, we obtain (29).
So the proof of Proposition 2 is complete. O

8.3. Proof of Lemma 1. We have for r > 1,

T
E|X7(8)] < 27! (exp o [ al)dsEx )]+
0
By the definition of gy,

E|gh(t)| = Cro"(t), where 0?(t) = exp (2/0 a(s)ds)/o exp (—2 /08 a(u)du)ds, C, =E|Z]|",

for Z a standard Gaussian variable. Next, we have, as the X;(0)s are i.i.d. and have moments
of any order, using the Rosenthal inequality (see Hall and Heyde, 1980, p.23-24),

EIXT(0)] < 2" (lno|" +EIX"(0) — puo]")
1
S i:U’Oir N™— 1E|X( ) :U’Oir NT/Q
Thus, for all t € [0, 7], E|X"(t)| < co(r,T)/2 for some constant co(r,T).

Sl

(E[Xi(0) = pol*)"* < c;.
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Note that for all ¢, V(¢) > 0. Analogously, by the Rosenthal inequality, we check that, for all
r > 1, EV"(0) < C where the constant C' does not depend on N.
The process (V(¢) is solution of a stochastic differential equation with drift b(¢,v) = 2y(t)v+1—
N1 and diffusion coefficient o(v) = 2v/vTN~1/2 satisfying b?(t,v) + 02(v) < Kp(1 + v?) with
K7 = sup{2, 8 sup;«172(t)}. Therefore, for all r > 1, using the equation for V(¢), EV?"(0) < C,
the Cauchy-Schwarz and the BDG inequalities, we standardly obtain, for another constant K,.(T),

t
EV?(t) < K,.(T) <1 + / IEVQT(S)ds> :
0
By the Gronwall lemma, this yields EV? (t) < K, (T)e" (7). The conclusion follows, using
that, for all 7 > 1, EV"(t) < EY2V?"(t) < ¢o(r,T)/2. O
8.4. Proof of Proposition 3. By Proposition 1, as pg # 0, the process X (¢) satisfies
X(t) X(0) 1

20 - 1)+ Ly (t),
w0 TG U
where Ly (t fo exp (— [, a(u)du)dBy,1(s) is a martingale with deterministic bracket (Ly)t =
Jyexp ( 2f0 u)du)ds := d(t). We get,
X(0)

t
P(sup 2D 1156 < (D 1y > 5/2) + B( sup [Ln(t)] > bu0VN/2)
tejo,r] (1) Ho t€[0,7]

The Rosenthal inequality yields, for all » > 1,

X(0) 2% 2 2 2
P(|l—= —1 0/2) < ———E|X " E|X " E|X "
(IM0 |>/)_(5H)Qr|(0) \NNQTll()MOI NT(I()MOI)
2r
S et BIX(0) — ol + 52
The Bernstein inequality for martingales (see Revuz and Yor (1999), p.153-154) yields
*ugN
P( sup |Ly(t)| > duoV'N/2, (Ly)r < d(T)) < 2exp (— ).
t€[0,T] 8d(T>

Now, we have:

X2(t) X() X(t)
P| sup —1>0) <P|[ sup —1*>6/2| +P| sup |—=—-1|>6/4
(te[O,T] | z2(t) | ) (te[O,T} | (1) | / t€[0,7) | z(t) >/

e(r) SpEN 82 uZN
+2 (exp [~ 2]+ exp [_16><80d(T)]> :

Thus, for positive constants ¢1(T') also depending on pg, 03, and ca(r),

X2() ca(r)

P( sup | —1>1/2| <4dexp(—a1(T)N) + . O
(te[O,T] z%(t) NT

Remark 1. If g = 0, then x(t) = 0, which forbides the ratio; if 0 = 0, then v(0) = 0 and

analogous problem arises. If X;(0) is Gaussian or sub-Gaussian, we have a pure exponential

bound.
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8.5. Proof of Proposition 4. We have

V() 1 = (V(0) —v(0)) 1 /t ot
v(t) v(0) + [7 (2P ds  Nw(0) + [i e=2M®)ds Jo
2 ! €—2F(s) S <
+(v(0) +Jy GQF(S)ds)\/N/O V'V (s)dBy(s)
Thus,
V(t) ‘V(O) — ’U(O))| 1

t ) t
— 1 < + / PR OF P — / e 6 /V(s)dB s)| (30
| u(t) v(0) Nv(0) J, (v(O))\/N’ ; VV(s)dBna(s)| (30)
We have V(0) —v(0) = + Zi]il(Xi(O) — po)? — 02 — (X(0) — po)?. By the Rosenthal inequality,
for all > 1,
E|V(0) — EV(0)]*" < NQ (31)

Set Kn(t) = [oexp(—2L(s))\/V(s)dBy(s). We have (Ky); = [ exp(—4T(s))V(s)ds. Set
E(T) = fOT exp (—4I'(s))v(s)ds. For all p > 1,
<

P(sup | Kn(t)] 2 cV/N) B(sup [ Ky ()] = cVN) (En)r < 1+ K(T)) + P(En)r > 1+ K(T))

C2 T 2r
< zexp<_2(1+]Z(T)>+E(/o exp(—4F(s))(V(s)—v(s))ds)

In what follows, the constant C'(T') may change for one line to another:
T 2r T
E ( / e~ (1 () — v(s))ds) < () / E[e=4T) (V(s) — v(s))|>"ds
0 0

2r

< () <|V(0) —(0)] + jif/oT exp (—2F(u))du> + Ni /OTE </O exp (—4P(u))V(u)du>Tds

T
< C(T)E <|V(O) —v(0)|*" + NIQ,, + ;/0 E[V(u)]%u)

< o(T) (Ervm) 0O + g + ;) ,

applying Lemma 1. Thus, using (30)-(31), for all §,r > 0, there exist constants ¢s(7T"),C(r,T,0)
such that
V(t)
P(sup | 0 — 1] > ) < 2exp (—es (T)N) +
<1 (t)

The result follows by taking o = 1/2. O

C(r,T,0)
NT '

8.6. Proof of Proposition 5. As Eévzl(Xj(t) — X(t)) =0, we get

N
Una(ht) = /OT h3(t)X2(t)dt — Q/OT ha(t)a(t) X2 (t)dt — 2/0T hi(t)X () (;;dwj(to :
and
T T T N
Ualte) = [ 1OV =2 [ ra@r@ved—2 [ ha) 5 350 = X))

0 =
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We have

Uni(h) = [ —allk = llellk —2vni(h),  Una(he) = lhe =725 = 175 — 208 2(ha), (32)
with

T 1 N
una(hn) = /0 mOX 0 | 5 Wi | = o / hi(6)X (£)d By (1),
=1

T 1 N 1 T
vn2(h2) = /0 hg(t)ﬁ Z(Xj(t) — X(t))dW;(t) = \/N/o ha(t)\/V (t)dBn2(t)

j=1
Note that E(vn;(hi)) = 0 for i = 1,2 and thus

E(Un1(h)) = E(|h —alk = llal%),  E(Unz(h)) = E([h2 =25 = 71%5)-
It is also interesting to note that, as (Bn,1, Bn2) = 0, it holds E(vn 1 (h1)vn2(h2)) = 0. O

8.7. Proof of Proposition 6. Let u =4ug,u1,...,un—1) a vector of R™ such that ||uH§m =
> o ui =1 and set hy(t) = Z;ﬁ:_ol u;jp;(t). We have fo h3(t)dt = 1 and when «(t) > 0,

tu\IfmJu:/ Ri(t)z2(t)dt > pd.
0

Analogously, when ~(t) > 0, v(t) > o2. Then for u =%ug,u1,...,up—1) a vector of RP such that
HuH%p =1, w¥,ou>0l O

8.8. Proof of Proposition 7. This proposition is analogous to Proposition 2 of Comte and
Genon-Catalot (2020a). Let t = Zm:ol ajp;, and @ = Yag,...,am—1), then ||t||? = ||d@|l2m = @a
and [|t||2 = @V,,1d = H\Ill/2 al|3 .m» Where \11717{21 is a symmetric square root of W,, 1. Thus

sup  |t]? = sup ‘@a.
t€Sm,|tl|o=1 GeR™,|| W,/ 4 @)l 2,m=1

T 1 25 —1/27
Set b= WY/2d, that is @ = ¥,,'{’b. Then
. 2 _ -1 T _ —1
sup  [[t)F= " sup B ub= [V, |op.
tESm, ||t .=1 beR™,||b]|2,m=1

As, for m < m/, Sy, is strictly included in S,,/, the result follows for the first mapping and
analogously for the others. O

8.9. Proof of Proposition 8. We start with some preliminaries. On Oy, defined in equation
(10), the empirical norm ||.||x and the || - ||-norm are equivalent for elements of L2([0, T]) as on

On.1
vh e L2((0,T]), (2/3)lIhl% < [InlZ < 2|n]%-
We defined A, ;1 in equation (15) and let us set

2
= { i - 1’ < e Sa).

We note that On 1 C Q1. Now, if U= (ug,...,un-1) € R™ and h = E " ujgoj, then

IR} = @006 and A2 = W0 = |V53G]3,,, so that (33)
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sup [[Inl% = 2] = swp | (Tt — W)
RESm,||h||la=1 GER™, (|1 6|2, m=1

20, P (Ut = U)W, %2

m,1

= sup
ZER™,||Z]|2,m=1

= T 0 7 T fop.
Therefore,
— {”xp V2, W Td o < 1/2}.
Consequently, on On 1, the eigenvalues of \Il;l,l/z\llml \I’;nll/Q belong to [1/2,3/2].
The following lemma, proved in Section 8.10, holds
Lemma 2. We have, for d a positive constant, P(Of 1) < d/N7. Moreover, under the assump-
tions of Proposition 8, for m satisfying (14), we have, P(A7, 1) < d/N7.

Now, we prove inequality (17) of Proposition 8.
To study the risk of a,,, we need to have an adequate expression of the orthogonal projection of
a with respect to (.,.)x. We have:
U1 = (<‘Pj7 @E>X>0§j7g§m71 .
The orthogonal projection 7T(Xm)Oé of @ on S, with respect to the scalar product (.,.) x is charac-

terized by W()fn)oe —a L yj,j=0,...m—1. This yields

m—1 ag :
7T(Xm)Oé = ajpj  where a(y) = : = \IJ;JI (o, o) x | - (34)
J=0 am—1 :
The vector ZmJ can be written as
Zma = | (o, 05)x + W1, W= | vaai(e;) : (35)
0<j<m—1 : 0<j<m—1
Note that ) . )
E(W,1 ”Wm,l) = NIE\IJm,l = N(‘I’m’l + ﬁCm) (36)
where
T
C,, = </ gpj(t)wk(t)xQ(t))\(t)dt>
0 0<j,k<m—1

¢ Proof of inequality (17).
Now, we prove (17). For this, we write ||ay, — |3 = T1 + T2 + T3, with

Ty = |G — al X 1aminon, T2 = [8m — ok 1a,nog . Ts o= llalilag, - (37)
We bound the expectation of the three terms above.
o The last term T3 = |lo[|5 1ac | satisfies:

ET; < EV2(|of|3)B" (A7, 1)- (38)



24 F. COMTE, V. GENON-CATALOT
We have
T 9 T
E(Jald) < TIE/ [02(0)X2(1))* dt < T/ DAWEXA (1)t < o(T).
0 0

Thus, using Lemma 1,

1 _ 1
< — <
ET3 < <o S 3 (39)

o Study of Ty = [|[@m — @[5 14, ,n0N,- We can write:

|@m = allx = llam = Gmalk + Ingme = ollk = [|@m = mfmelk + inf fla =A% (40)

On one hand, we have a,,(t) = Z;-n:_ol (Al (t) with (Q(p)) = @,;}IZm,l. On the other hand,
W(Xm)a = z;-n:_ol ajp; where (see (34)) a(n) = \If;:l (@5, )X o< j<m-1-
Hence, by (35), @) — a(n) = ¥,';Wpn1 and using (33),

[am _W()fn)aHg(' = Wm,l‘f%}l‘imﬂ‘f%}lwml = mel‘fl%}lwml- (41)
Now, Ty = (|@m — 7%, al% + infacs, lla — b3 )1a, oy, (see (10))
On Op 1, all the eigenvalues of \11;111/2(1\/,,11\1/;11/2 belong to [1/2,3/2] and so all the eigenvalues

of \11717{21 \f/;nll\llﬂzl belong to [2/3,2]. Thus, we write
Wona W Wi Loy, = Wona 0, 2050 L0 Bwl oW, 1o,
S 2 Wm)l\P;L%IWYrMI 101\7,1' (42)

Therefore

E (Ilam — oyl lomnnm ) S2E{ D Wty Wona k[ ¥74 L

0<j,k<m—1
2 . 1 2 . 1
=N ~ ; 1[‘1’m,1]j,k([‘1’m,1]j,k + 7 [Cmlip) = 5 Trl¥0, 1 (T + 57Cm)]
S)HRSMm—
2m 2 _
= % e EiCnl )

by using equality (36).
Now, we bound Tr[\Il;flCm)] We have

T T
GG = [ O e 0N = [ O o D22 OM
0 0<jk<m—1 0

where () (1) = (po(t), ..., om-1(t)). As \Il;il is symmetric positive definite, for all ¢,

D) () Ul 0(my () > 0 and thus

0 < 0m) (W 0(m) (DT> (OAE) < MT) oy ()85 ) (82 ().
Consequently,
Tr[ !

m,1

Cpn)] < MD)Tx[¥,' Wy 1] = mA(T).

B < (1422 ) (g o iz + 2% ). (44)

So we obtain:
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A(T) . 2
- < (1427 - ,
E <h1€nf I hHX> (1 N ) <h1€nSf IEe? h||x>

o Study of Th = ||ay, — a”X]‘Am,lmO?\]J' We have Ty < (||am — Tr()fn)aﬂg( + ||a||%()1Am,lmO?\],1'
Using (41) yields

using that

Ty < ("W 1 W, Wo 1 + [|el|3) 1A, 005, - (45)
By the definition of A,, 1 and the Cauchy-Schwarz inequality, we get
cN
ETy < | — o~ B2 (Wit Win1)?) + EY2|a)l%) ) PY2(O0% 1) 4
2 < (g gy B )) + B2l ) ) B2(05,) (46)

We have already seen that E(||a|%) < ¢(T). For the term E[( ™W,,1W,,1)?], we prove the
following lemma:

Lemma 3. Let the Assumptions of Proposition 8 hold. With Wy, 1 defined in (35), we have, for
some constant c(T), if the @;s are bounded: E[( *W,, 1 W, 1)?] < ¢(T)(mL(Sy,))/N?. Otherwise,
E[( "Wy, 1 Wi 1)?] < o(T)(mL?(Sp))/N?.

Plugging the result of Lemma 3 in (46) allows to conclude for all m satisfying (14) that
E(T3) < ¢/N. Joining the bounds for the expectations of 71,75, T3 gives Inequality (17). O
¢ Proof of Inequality (18). We have now the following decomposition: ||&, — a2 = T} +
Ty + Ty with
T) = am — 021 asroms T = @m — alfla,nos,, Thi=lof2lye . (47)

We have E(T3) < al|a||2/N7.
Next, T4 < 2(||@m||? + HozH?ﬂ)lAm 1N0% - We have

mS sup .%'2(t> ”a(m)

)

[l = Gy Ym1Gmy < [P llopll@on

Moreover, by formula (13),

Ha(m)H%,m - tZ\m,li\l;jl\Ij Zm 1< H\Il Z ,

mlHopH

Now using (15), on Ay, 1,

N SN
—~ ) < ¢

By (35),
T
1 Zin1 |13, < 2 Z a, o)V % +2 W, W, 1 < 2/ A2 XA ) dt + 2 "W, 1 W, 1.
0

So IE(HZm,1||27m) < 8T fo A OE[XE(t)]dt + 8E[( W, 1 W, 1)?]. By Lemma 1 and Lemma 3, we
get that ]E(||2m1|\‘21m) SlasmV L(Sy) < N. As a consequence, E[Ha(m)”%’m] < N* and

E[T/] < N2P1/2<O >< N~ 3/2

For the term 77, we simply have E(77) < 2E(T}) by using the defintion of Oy ;. Joining the
bounds on E(77}), for j = 1,2, 3 gives the result. O
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¢ Proof of Inequality (19). We propose a more precise study of 7. We have
[am — ol = llam = apll + llo, — ol
~ X X
< llof, = allz + 2(18m = 7iallz + 175 o — ar12)
We get on Q. 1,

~ ~ X X
[Gm — all? < llof, — allf + 4l1Gm — 75 allk + 2lmGa — of |2

Let ¢ = o — o, then 7r()fn)g = ﬂ'()fn)a — afn, and
E(TY) < llag, — a2 + 4E([|am — 7 allX 1a,,,00x1) + 4B 750 9112 10,1000.1) (48)
where ||a%, — a||? = infjeg,, ||a — h|)? is the bias term and by (44),
. AT)\ m
(G — iyl La nn) <2 (14 250) 5 (19)

We have

Lemma 4. Under the Assumptions of Proposition 8,

2T Cu(T)  (XN(T))?
E(lX 4lI21 < 2 VTS
(o100 < oy sup 20) (S + CEE o

Applying Lemma 4 to (48) and using (49) yields

, N TC\ YY) N O T)Y m
E(Tns( T RGeS ))Ham s (1420 %

which gives the result in (19) by definition of Ky (7). O

Proof of Lemma 4. Let ($j)o<j<m—1 an orthonormal basis of S, w.rt. (.,.),. We can

write @; = Zk 01 @k P and we set A, = (ajk)o<jh<m—1- Let Gml = (@5, Pk) X )0<j k<m—1
obviously Gm 1=t \Ilm 1Am,1. Then as Id,, = (¢, @k))o<jk<m—1 = AmUm1Am 1, we know
that A,, is a square root of \I/m . As a consequence,

Ot = (02T 1 UL o < & 5} = {1Gn1 = Tdullop < 1/2}.

Next, we write W()fn)g - ZZL_ol Bk, with /<\g — ﬂ(m)g,@j>x =0for j =0,...,m— L
Then on QmJ, we have ”G;n}lHOP < 2. Then Gm,lﬁ(m) = (((ﬁj,g>x)0§j§m,1, where ﬂ(m) =
“Bo,- - Bm—1). Thus on Q, 1, we have

m—1 m—1
In0gllz =D B = 1G (25, 9)x)o<jcm—1ll3m <4 (8 9)%
k=0

J=0

Note that, as fOT @i(t)g(t)z*(t)dt = (g,@;)s = 0,

T 1 T
E((¢j,9)x) = @j(t)g(t)E(XQ(t))dtzN/o i ()g(t)z*(E)A(H)dt.

We have

G5(t) = "O(m)(t) "AmAm@ny(t) = “o(m) (¥ 0(m) (1) < L(Sm) 1V llops
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where @) (t) = (@o(t), ..., m-1(t)). Therefore, recalling that g = o — oy, we get

,_.

m—

T
(190 < Llm) WY o [ a0 alt) = o, 0) P

Q

Thus

3
L

I
E(@;, 9)x)]? < ————— sup z2()A2(t)]a — o2, |
(35 9 < gxiogy b 2 ON @l i

<.
I
o

Now

[asy

m—

_ 2¢T .
E([7 oy 913 A 10020) < 4> Var((@;,9)x) + sup 22 ()N (t)]la — o, |3

Nlog(N) ¢epo,1]

T 2
( | stesoeeo - E(X?(t)))dt) ]

/ C (022 (O Var (X2(0)dt < TL(Sn) [0
0

We have

IA
N

T
o [ P OVar(X (o)
0
(T supgejoq) 2> (t)C1(T)
2log(N) 1T e
as, after some elementary computations Var(X2(t)) < (x4(t)/ud)(C1(T)/N), with

T 2 T
4 (T) =C+3 (/ e I a(u)duds> + 4(:“/(2) + 0’3)/ e Jo a(u)duds’
0 0

C = 2E(Y{Y) + 4| uo|E(|Y1[?) + 4pdod and Y1 = X1(0) — po. Therefore we get

2cT Ci(T) | (\T))?
E([|75 o gl3 LA 10602m1) < sup (¢ ( + a— a2,
(7 Gmygl Q1) o (V) oub, (t) i ~ ) I

This ends the proof of Lemma 4. O

8.10. Proof of Lemmas.

Proof of Lemma 2. On the one hand, P(O%,) < N~7 by Proposition 3 with p = 7, and on
the other hand On1 C Q1. Therefore, P(Qy, ) <1/N".
By the same proof as the one of Proposmon 4 (ii) in Comte and Genon-Catalot (2020a), we

have that:
~_ inf{a, 1
50 = 0k lop > a4 lop} © (105 2T 0, {2 = T > 202,
’ 2

Then, we mimick Lemma 5 of the same paper to get that, for m satisfying (14),

P(AS,,) < PUIULYL — Ut llop > 195 lop})
< P({|v,{*T mﬂr”? Idullop > 1/2}) = P(Q5, ;). D (50)
Proof of Lemma 3. We have
1 m—1 T m m—
B (W)W, 2 = B ([ 00X (0B 1) FZ ([ X0 0)

=0
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Therefore, using the Burholder-Davies-Gundy inequality yields

m m—1 T 2 Tm T m—1
B W)Wl 5 33 3B [ 00| <35 [F elmocopar
j=0 j=0
We use the fact that the ;s are bounded and Lemma 1 to obtain
E[ t<Wm,l)Wm li S WL(S )
Otherwise, we obtain E[ (W, 1)W,,1]2 < (m/N?)L?(Sy,). O
8.11. Proof of Proposition 9. We defined A, in equation (16) and let us set

IR ]1?
Qp’g = { \/7

v

-1
TR,

On Oy defined by (11), the empirical norm |.||, 57 and the || - || znorm are equivalent for

elements of IL2([0, T]). Moreover

1/23; —1/2
Qo = {10,537 0,00, 5% — 1, op < 1/2} (52)

< ;,Vhezp}. (51)

The following lemma holds

Lemma 5. We have, for b a positive constant, P(Of,) < b/N7. Under the assumptions of
Proposition 9, for p satisfying (14), we have, P(A7 5) < b/N7.

To prove Inequality (20), we proceed as in the proof of Inequality (17), using that E(V(¢)) =
(1 = 1/N)v(t), which makes things easier. The two inequalities also follow and we use that

Var(V(t)) < (v2(t)/0§)(C2(T)/N) with Co(T) = E([X1(0) — )+ 4fT Ay (s)ds. O

8.12. Proof of Theorem 1. The proof is given for the estimation of a only, the v case being
very similar.

Lemma 6. Under the assumptions of Theorem 1, for all m,m’ < N,

e~
E < sup V?V,l(hl)—(pl(m)—kpl(m/)) 1@N’1] < 1.6/&7,
Jr

h1€B

mvm/

where On 1 is defined by (10), Byym = {h1 € Sy + Sy, |hi]lz < 1} and p1(m) = km/N, where
K 18 a numerical constant.

Proof of Lemma 6. By the exponential inequality for martingales (see the Bernstein Inequality
for martingales in Revuz and Yor (1999)), we have

P ( /0 (X (B (1) > 1, /0 X2 ()t < y> < exp (-i) |

In other words, we have

__ Ne
P(vni(h) >e, |hal}k <n?) <e 7.
Therefore

P ((vwatn) = V3R VE) (Oni) < P (valln) = VBIALVE il < GlIm]2) < e

The result follows by applying the chaining method as in Baraud et al. (2001), sections 6-7,
Proposition 6.1 with s> = 1. O
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By definition of m, we have Vm € /(/I\N,l, and any ay, € Sm,
Un (@) + peng(m) < Uni(om) + pen(m).
Moreover, by (32), it holds
Uni(@n) - Una(am) = 8 — al% = llam — all% — 2031 @ — aum).
Consequently, Vm € M\NJ, and any oy, € Sy,
@z —allkx < llam — all% + peny (m) + 2vx1 (@ — ) — peny ()
< lam — allx + peny (m)
1, . ~
+llam — aml? +8 sup Vi1 (h1) — pen () (53)
h165m+5ﬁ“||h1H93:1
Define
Eni={Mn1 CMna}.
On En,1, Inequality (53) holds Vm € My 1, and on Ex1 N On 1, Vi € My 1,
~ 1, ~
am — ok < Ham—a!@ﬁpenl(m)ﬂLZHam—OémH_2><+8 sup Vi1 (h1) — peny ()
hlESm+S7?L7||h1Hz:]-
Thus, on EN,l N ON,l, VYm € MN,l;
3 ~
lam —alk < illam—all?erpenl(m) +8 sup Vi (h1) = (pr(m) + p1(i))
h1€Sm+Sﬁ“”h1”I:1
+8p1(m) + 8p1(m) — pen; (m).
By Lemma 6, we get

Y E

m/<N

/

e
1@N71] <repzm O

h1€B, N N

mvm/

< sup vy (h1) — (p1(m) +P1(m,)>

+

For k1 > 8k, 8p1(m) + 8p1(m) < peny(m) + peny(m). Thus, finally, Vm € My 1, and oy, € Spy,
we get for k1 > 8k,

A AT C
E (16 - alitzgsnon,) < 3 (14 257 ) am = all + tpen(m) +
Now we study [|m — |3 1(zy 110y )e- We have Ty = [|az — ok < H&m—ﬂ()f%)aﬂg( + [l %-
Using (41) yields, as m € Mp 1,
cN
T// < - tW’\ W~ 2 .
2 = L(Sfﬁ) log(N) m,1 YVm,1 + HaHX
Now, m + ‘"W, 1W,, 1 is increasing with m, and L(Sz) > L(S1) > 1/T. Therefore
" «I'N 2
< Wy 1 W .
2 = log(N) NAWN1 + HO[HX
By the Cauchy-Schwarz inequality, we get

(I'N - c
E(T3 Lz 1n0n1)¢) < (bg(N)El/z(( W1 Wn1)?) + El/QHaH%()> P'/2(Ex1 N ON1)°).
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We have seen above that E(||a||%) < ¢(T). For the term E[( Wy Wy 1)?], we apply Lemma 3
to obtain
E[( "Wn1Wy,1)%] < c(T)LQEVSN) <N
Thus
E(Ty 1=y ,non)e) S NO2PY2(EN 1 N On1)°).

By Proposition 3, taking r = 8, we have P(Of ;) < N8 Now we use the Lemma:
Lemma 7. It holds that P(E ;) < N7,

< N~!'. We obtain the first inequality of Theorem 1 for

~

This implies that E(Ty'1(=y ,noy.,)e)
K1 > 8k := Ko and C7 = 4.
We proceed analogously for the second inequality of Theorem 1. O

Proof of Lemma 7. On E?V,l’ there exists k € My such that k ¢ /(/I\N,l.
For this index &, we have L(Sy)[| ¥} [lop < ¢N/21og(N) and L(Sy) ¥, 1[lop > <N/ log(N). As
¢(N/log(N)) < L(Si)I¥;1llop < LS Wiy = Yictllop + LIS lop
< LSV = Ytllop + (¢/2)(N/ log(N)),
we get for this index & that L(Sy)[|[ ¥} — ¥ illep > ¢N/(2log(N)).
Let A, = {L(Sm)]]\flr_nll — \Il;:lHop > (¢/2)N/log(N)}, we have, using the definition of My 1,

PMyg EMy) < Y BAw) < D PO, — Ut llop > 197, lop)-

mEMN,l mEMNJ

By formula (50),
P([ Ty = Yot llop > 197,01 llop) < P(25,4) S P(OF,) S N5
This implies P(MNJ SZ .//\/\l]\u) < N-7. O
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9. APPENDIX: SKETCH OF THE DISCRETE CASE.

Assume that instead of observing continuous paths, we have at hand only discrete observations
(X (pA))1<p<n with nA = T and A small. Results of Section 2 still hold, and in particular Lemma
1 and Propositions 3 and 4.
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Moreover, looking at the formula in Proposition 3, we have for any s,t¢ € [0, 7], that

X0 - X0 = e ([ t atwdu) exp ([ atwdu)| X0+ < lon(®) - ()

with . .
gn(t) = exp (/ a(u)du> / e~ Jo AwdugBy | (s).
0

0
This implies that Vs, ¢ € [0,T], Vp > 1

E(1X(0) - X)) < C7) [jt- s+ (54

Let us consider only the case of the estimation of function «. The reference norms of the
problem are

Ihilka =AD hI(PA)X2(pA), lZa =AD hi(pA)z*(pA),
p=1 p=1

and fulfill
A n
Ellml%al = [1mZa + 5 2P (pAADA)2* (pA).
p=1
The discrete contrast is defined, for hy € S,, by

n—1
Uxi(h) =Bk a — 2> ha(pA)X (pA)[X((p+1)A) — X (pA].
p=1
The estimator becomes
Q. A = i hi).
Om,a = arg min Un,a(h1)

The vector of coefficients of @, A, are denoted by @) A and are such that

~

~ —-1 =
Am),a = Vo AZmA,
with

~

U = [ A 0i(pA)er(pA) X3 (pA) ,
p=1 0<j,k<m—1
and

Zma = | Y @i(pA)X(pA)[X((p+1)A) — X (pA)]
p=1 0<j<m—1
Clearly, the stability condition

N

L(Sw) (1%5ialon V1) < 53055 (55)

leads to the truncated estimator

~ ~ "N i C*N
QA = avalfA\m,A7Am’A = {L(Sm) (”\Ijm}AHop V 1) < log(N) } .

The following extension of e.g. Inequality (18) of Proposition 8 holds.




INTERACTING PARTICLE SYSTEMS 33

Proposition 12. Under [H1], [H2] and o with continuous bounded derivative on [0,T], for m
satisfying condition (55), and A < 1/N

~ AT) . m e(T)
2 2
E [|&ma —alxa] < <1 N > (hle%fm [h —allza +4 n) TN (56)

The discrete norms may be replaced by integral ones, at possible price of additional assump-
tions.

Sketch of proof of Proposition 12. Most decompositions, linear algebra and several computations
remain valid with quantities indexed by A. The main change is w.r.t. the decomposition of

Zma =0, 0)x8);+ Wima +Rna, Rpa=(Ryales));,
[(Wi,alj = vn,a(e;) with

vn.a(p;) Z ;i (PA)X (pA)(Br,i((p+ 1)A) = By (pA))

and

(p+1)A
Ryale) =3 [ / ()X (1) — a(pA)X (pA)]du| ¢;(pA) X (pA).

p=1

1 1
~7 \I’m,A + Ncm,A)a

Note that we still have
1 ~
VT a] = 1o

E(Wm,A Wm,A) - N
and [Craljne =AY 0 1 0 (PA)er(pA)2* (PA)N(PA).
oy . . _ ~ 2
The additional terms in the bound will come from the study of 77 A = Ham,A—O‘HX,AIKm,AmON,l'
Then inserting 7r( A the orthogonal projection of o w.r.t. the empirical discrete scalar
product, we get
~ 2 ~ X 2 X 2
[Gma —allxa = [ma - 7T(m),A@HX,A + HW(m),Aa —afxa
~ X 2 - 2
— Nama = iy a0la + inf o= bl a.

~

As 7r( )AL = Z’j";ol aj,ap; where agm) o = V!5 ({95, ) X,A)g<j<m—1 W€ 8et Q(m) A= A(m) A =
\Ij7_n A(Wm,A + (Rm,a(pj))j. We compute

~ 2 =1 so1
[Qm,a — W(m),AaHX,A <2 Wi AV AW A +2 Rip AV AR, A

and
[@ma = 7y stk alon, <4Wu AU LWy A +4 R A, R A
Now
_ 1 _
E( Wm,A‘I’m}AWm,A) = N + ﬁﬂ(‘l’mlACm A)
< m_ mXT)
- N N2

On the other hand, for o/ bounded and using (54), we get

_ 1
E( R a¥ylaRmaloy o, ) < LI WA lopT2A(A + 1),
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Using that L(Sm)||\lf;%A||0p < ¢N/log(N), we obtain a term of order O(1/N) for A < 1/N.

AT) ) 9 m e(T)
< - — .
B0 < (14200 (it o a2 1% ) + 5

The other elements of the proof can also be extended and explain Inequality (56). O




