Nonparametric adaptive estimation for interacting particle systems
Fabienne Comte, Valentine Genon-Catalot

To cite this version:
Fabienne Comte, Valentine Genon-Catalot. Nonparametric adaptive estimation for interacting particle systems. 2022. hal-03696877v2

HAL Id: hal-03696877
https://hal.science/hal-03696877v2
Preprint submitted on 9 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NONPARAMETRIC ADAPTIVE ESTIMATION FOR INTERACTING
PARTICLE SYSTEMS

FABIENNE COMTE, VALENTINE GENON-CATALOT,
UNIVERSITÉ PARIS CITÉ, MAP5, UMR 8145 CNRS, F-75006, FRANCE

Abstract. We consider a stochastic system of \(N \) interacting particles with constant diffusion coefficient and drift linear in space, time-depending on two unknown deterministic functions. Our concern here is the nonparametric estimation of these functions from a continuous observation of the process on \([0, T]\) for fixed \(T \) and large \(N \). We define two collections of projection estimators belonging to finite-dimensional subspaces of \(L^2([0, T]) \). We study the \(L^2 \)-risks of these estimators, where the risk is defined either by the expectation of an empirical norm or by the expectation of a deterministic norm. Afterwards, we propose a data-driven choice of the dimensions and study the risk of the adaptive estimators. The results are illustrated by numerical experiments on simulated data.

Keywords and phrases: adaptive method, interacting particle systems, nonparametric inference, projection estimators

May 9, 2023

1. Introduction

Stochastic systems of \(N \) interacting particles have received a lot of attention in the past decades. First arisen in Statistical Physics for the modelling of granular media (Benedetto et al., 1997), these models progressively appear in many other fields of applications such as Mathematical Biology (Molginer and Edelstein-Keshet, 1999, Baladron et al., 2012), Epidemics Dynamics (Britton et al., 2020) or Finance (Giesecke et al., 2020). The probabilistic properties of these models, especially their behaviour as \(N \) is large, have been largely studied (see e.g. among many references Méléard, 1996, Sznitman, 1991). On the contrary, the statistical inference for interacting particles remained unstudied for many years with the exception of Kasonga (1990) who studied the maximum likelihood estimation of \(\theta = (\alpha, \beta) \) from the observation on the interval \([0, T]\) of the \(N \)-dimensional system given by: \(dX^N_i(t) = \{\alpha X^N_i(t) - \beta (X^N_i(t) - \overline{X}^N_N(t))\} dt + dW_i(t) \), with \(X^N_i(0) = X^0_i, i = 1, \ldots, N \), and \(\overline{X}^N_N(t) = N^{-1} \sum_{j=1}^N X^N_j(t) \), \((W_i, i = 1, \ldots, N) \) are \(N \) independent Brownian motions, \(X^0_i, i = 1, \ldots, N \) are i.i.d. random variables independent of \((W_i, i = 1, \ldots, N) \). A multivariate version of Kasonga’s model is studied in Chen (2021). The general model can be described as a \(N \)-dimensional stochastic differential equation of the form

\[dX^N_i(t) = b(t, X^N_i(t), \mu_N(t)) dt + \sigma(t, X^N_i(t)) dW_i(t) \]

where \(\mu_N(t) = N^{-1} \sum_{j=1}^N \delta_{X^N_j(t)} \) is the empirical measure associated with \((X^N_i(t), i = 1, \ldots, N) \). The drift function is often modelled as \(b(t, x, \mu) = V(t, x) - \int \Phi(t, x - y) \mu(dy) \) and \(\Phi \) represents the interaction term between particles. In this context, Lu et al. (2019) consider the nonparametric estimation of the interaction function in a deterministic system where \(V = 0 \) and \(\sigma = 0 \). Li et al. (2021) are interested in characterizing the identifiability of the interaction function.
Sharrock et al. (2021) study a parametric model for the drift and estimation by maximum likelihood. In Pavliotis and Zanoni (2022), the point of view of martingale estimating equations is developed for parametric inference based on discrete observations of the system. Della Maestra and Hoffmann (2022) study the nonparametric estimation of the function $b(t, x, \mu)$ by a kernel approach. Belomestny et al. (2023) consider a semiparametric model for the interaction function and estimate the nonparametric part by a kernel approach.

In this paper, we consider a linear drift $b(t, x, \mu) = \alpha(t)x - \beta(t)\int (x - y)\mu(dy)$, i.e. $(X_i^N(t), i = 1, \ldots, N)$ is given by

$$dX_i^N(t) = \left\{ \alpha(t)X_i^N(t) - \beta(t)[X_i^N(t) - \overline{X}_N(t)] \right\} dt + dW_i(t), \quad X_i^N(0) = X_{i0}, \quad i = 1, \ldots, N, \quad (1)$$

where $\alpha(t), \beta(t)$ are deterministic unknown functions and $\overline{X}_N(t)$ is the empirical mean of the sample, $(W_i, i = 1, \ldots, N)$ are N independent Brownian motions, $X_{i0}, i = 1, \ldots, N$ are i.i.d. random variables independent of $(W_i, i = 1, \ldots, N)$, as in Kasonga (1990). Our concern here is the nonparametric estimation of the functions $(\alpha(t), \beta(t))$ from a continuous observation of the process the process $(X_i^N(t), i = 1, \ldots, N)$ on $[0, T]$ with fixed T and $N \to +\infty$. Note that this model was proposed by Bishwal (2011) as an extension of Kasonga’s model. However, in this paper, nothing is done concerning the estimation of the functions $\alpha(t), \beta(t)$. If $\beta(t) \equiv 0$, the processes $X_i^N(t), i = 1, \ldots, N$ are independent. In this context, the nonparametric estimation of the unknown function $\alpha(t)$ by the method of sieves is considered in Nguyen and Pham (1982). If $\beta(t) \neq 0$, then the N processes are no more independent and $(X_i^N(t), i = 1, \ldots, N)$ constitute a system of interacting particles. The interest of model (1) lies is the fact that, contrary to more general models, computations can be done explicitly.

Not surprisingly, two processes play a crucial role, the empirical mean and the empirical variance of $(X_i^N(t), i = 1, \ldots, N)$:

$$X(t) = \overline{X}_N(t) = \frac{1}{N} \sum_{i=1}^{N} X_i^N(t), \quad (2)$$

$$V(t) = V_N(t) = \frac{1}{N} \sum_{i=1}^{N} (X_i^N(t) - \overline{X}_N(t))^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i^N(t))^2 - (\overline{X}_N(t))^2 \quad (3)$$

We prove that each one follows an autonomous stochastic differential equation with small diffusion term and that the two equations are driven by independent Brownian motions. The equation of $X(t)$ only depends on $\alpha(t)$ and the equation of $V(t)$ only depends on $\gamma(t) = \alpha(t) - \beta(t)$. This is why we concentrate on estimating $\alpha(t), \gamma(t)$ and this will be done by two separate contrasts. As N tends to infinity, both processes $X(t), V(t)$ converge almost surely uniformly on $[0, T]$ to a deterministic function, respectively $x(t)$ and $v(t)$ (Propositions 1 and 2). We assume that $\mathbb{E}X_i(0) \neq 0$ and $\text{Var}X_i(0) \neq 0$. Under this assumption, we characterize the probability of deviation of $\mathbb{P}(\sup_{t \in [0, T]} |X^2(t)/x^2(t) - 1| > \delta)$ and $\mathbb{P}(\sup_{t \in [0, T]} |V(t)/v(t) - 1| > \delta)$ (we apply them for $\delta = 1/2$), see Propositions 3 and 4.

We define two collections of minimum contrast estimators $\tilde{\alpha}_m(t), \tilde{\gamma}_m^*(t)$ respectively of $\alpha(t), \gamma(t)$. For each m (resp. p), $\tilde{\alpha}_m(t)$ (resp. $\tilde{\gamma}_m^*(t)$) belongs to a m-dimensional (resp. p-dimensional) subspace of $L^2([0, T])$. We study the L^2-risks of these estimators where the risk is defined either by the expectation of an empirical norm or by the expectation of a deterministic norm (Propositions 8 and 9). For the estimation of $\alpha(t)$, the empirical norm and the deterministic weighted norm are given for a function h of $L^2([0, T])$ by

$$\|h\|_X^2 = \int_0^T h^2(t)X^2(t)dt, \quad \|h\|_Z^2 = \int_0^T h^2(t)x^2(t)dt. \quad (4)$$
For the estimation of $\gamma(t)$, they are given by
\[
\|h\|^2_{\mathcal{V}} = \int_0^T h^2(t)V(t)dt, \quad \|h\|^2_{\mathcal{V}} = \int_0^T h^2(t)v(t)dt.
\] (5)

Thanks to Propositions 3 and 4, these norms are equivalent on $L^2([0, T])$ outside a set of small probability which is the key tool for bounding the risks of our estimators. Afterwards, we propose data-driven choices \tilde{m}, p^* of the values m, p and study the risk of the adaptive estimators (Theorem 1). In order to have a benchmark for comparison, we also briefly treat the estimation of $\alpha(t)$ when $\beta(t) \equiv 0$ in model (1), that is $\gamma(t) = \alpha(t), \forall t \in [0, T]$.

Section 2 contains our assumptions and the preliminary properties concerning the two processes $X(t), V(t)$. In Section 3, we build and study our projection estimators. Section 4 concerns the adaptive estimators. Section 5 deals with the estimation when $\beta(t) \equiv 0$. In Section 6, we illustrate our theory by numerical experiments on simulated data. Section 7 contains some concluding remarks. Proofs are gathered in Section 8.

Obviously, the problem of discrete time observation of the processes, with small sampling interval, is worth being studied, see Amorino et al. (2022) for the parametric setting. In Appendix 9, we give a sketch of the discrete observation case and of the type of result which can be expected.

2. Assumptions and Preliminary properties.

We set $\gamma(t) = \alpha(t) - \beta(t)$ and consider the following assumptions:

[H1] $X_0^i, i = 1, \ldots, N$ are i.i.d. random variables such that $E(X_0^i) = \mu_0, E(X_0^i)^2 = \sigma_0^2 + \mu_0^2$ with $\mu_0 \neq 0$ and $\sigma_0^2 \neq 0$ and $X_i(0)$ has moments of any order.

[H2] The functions $\alpha(t), \gamma(t) : \mathbb{R}^+ \to \mathbb{R}$ are continuous on \mathbb{R}^+ (and thus belong to $L^2([0, T])$), and $\gamma(t) \neq 0, \alpha(t) \neq \gamma(t)$.

With the new parameterization, we have
\[
dX_i^N(t) = \left\{ \alpha(t)\overline{X}_N(t) + \gamma(t)[X_i^N(t) - \overline{X}_N(t)] \right\} dt + dW_i(t), \quad X_i^N(0) = X_0^i, i = 1, \ldots, N. \tag{6}
\]

We first need studying the empirical mean and the empirical variance.

Proposition 1. The empirical mean satisfies $d\overline{X}_N(t) = \alpha(t)\overline{X}_N(t)dt + \frac{1}{\sqrt{N}}dB_{N,1}(t)$, that is
\[
\overline{X}_N(t) = \exp \left(\int_0^t \alpha(s)ds \right) \overline{X}_N(0) + \frac{1}{\sqrt{N}}g_N(t)
\]
where $g_N(t) = \exp \left(\int_0^t \alpha(s)ds \right) \int_0^t \exp \left(-\int_0^s \alpha(u)du \right) dB_{N,1}(s)$ and $B_{N,1}$ is the standard Brownian motion given by $B_{N,1}(t) = (1/\sqrt{N}) \sum_{j=1}^N W_j(t)$.

Let $x(t) = \mu_0 \exp \left(\int_0^t \alpha(s)ds \right)$. Almost surely, as N tends to infinity, $\sup_{0 \leq t \leq T} |\overline{X}_N(t) - x(t)|$ tends to 0.

Note that $dg_N(t) = \alpha(t)g_N(t)dt + dB_{N,1}(t), g_N(0) = 0, (g_N)$ has a fixed distribution. It follows from Proposition 1 that we have the explicit expression of $(\overline{X}_N(t))^2$:
\[
(\overline{X}_N(t))^2 = \exp \left(2\int_0^t \alpha(s)ds \right) (\overline{X}_N(0))^2 + 2\frac{1}{\sqrt{N}}g_N(t) \exp \left(\int_0^t \alpha(s)ds \right) \overline{X}_N(0) + \frac{1}{N}g_N^2(t),
\]
where the middle term is centred. By Proposition 1, almost surely, as N tends to infinity,\[\sup_{0 \leq t \leq T} |(X_N^N(t))^2 - x^2(t)| \rightarrow 0.\] Under [H1], we have (recall definition (2))

\[\mathbb{E}(X^2(t)) = \mathbb{E}(X_N^N(t))^2 = \exp(2 \int_0^t \alpha(s)ds) \left(\frac{\sigma_0^2}{N} + \mu_0^2 \right) + \frac{1}{N} \mathbb{E}g_N^2(t) = x^2(t) \left(1 + \frac{\lambda(t)}{N} \right), \quad (7)\]

with $x(t)$ defined in Proposition 1 and

\[\lambda(t) := \frac{1}{\mu_0^2} \left(\sigma_0^2 + \int_0^t \exp(-2 \int_0^s \alpha(u)du)ds \right). \quad (8)\]

Thus, as N tends to infinity $\mathbb{E}(X^2(t)) \rightarrow x^2(t)$.

Proposition 2. The process $V_N(t)$ defined in (3) satisfies $V_N(t) > 0$ for all $t \geq 0$ and

\[dV_N(t) = \left[2\gamma(t)V_N(t) + (1 - \frac{1}{N}) \right] dt + \frac{2}{N} \sqrt{V_N(t)} dB_{N,2}(t),\]

where $B_{N,2}(t) = \int_0^t \frac{\sum_{i=1}^N (X_i(s) - X_N^N(s))dW_i(s)}{\sqrt{V_N(s)}}$ is a Brownian motion. Setting $\Gamma(t) = \int_0^t \gamma(s)ds$, this yields

\[V_N(t) = e^{2\Gamma(t)} \left(V_N(0) + \int_0^t e^{-2\Gamma(s)}(1 - \frac{1}{N})ds \right) + \frac{2}{N} \int_0^t e^{-2\Gamma(s)} \sqrt{V_N(s)} dB_{N,2}(s). \]

Let $v(t)$ be defined by $dv(t) = [2\gamma(t)v(t) + 1]dt$, $v(0) = \sigma_0^2$. Then,

\[v(t) = \sigma_0^2 e^{2\Gamma(t)} + e^{2\Gamma(t)} \int_0^t e^{-2\Gamma(s)}ds > 0 \quad \text{for all } t \geq 0\]

and as N tends to infinity, $\sup_{0 \leq t \leq T} |V_N(t) - v(t)| \rightarrow_{a.s.} 0$.

As a by-product of Proposition 2, we get the useful property (recall definition (3)):

\[\mathbb{E}(V(t)) = \mathbb{E}(V_N(t)) = (1 - 1/N)v(t). \quad (9)\]

Note that the quadratic variation of $B_{N,1}$ and $B_{N,2}$ is equal to zero. We stress that in the equation for $X_N^N(t)$, the drift depends on $\alpha(t)$ only and in the equation of $V_N(t)$, the drift depends on $\gamma(t)$ only. This is the interest of the change of parametrisation $(\alpha(t), \beta(t)) \mapsto (\alpha(t), \gamma(t))$.

For the sequel, we need the following lemma.

Lemma 1. For all $r \geq 1$, there exists a constant $c_0(r, T)$ such that, for all $t \leq T$,

\[\mathbb{E}[|X(t)|^r + V^r(t)] \leq c_0(r, T). \]

To compare the empirical norms and the deterministic weighted norms (4)-(5), we need the following propositions.

Proposition 3. Assume [H1]. Define the set

\[\mathcal{O}_{N,1} = \{ \sup_{t \in [0,T]} \left| \frac{X^2_N(t)}{x^2(t)} - 1 \right| \leq 1/2 \}. \quad (10)\]

There exist a positive constant $c_1(T)$ and for all $r \geq 1$, a constant $c_2(r)$ such that

\[\mathbb{P}(\mathcal{O}_{N,1}^c) \leq 4 \exp(-c_1(T)N) + \frac{c_2(r)}{N^r}. \]
Proposition 4. Assume [H1]. Define the set
\[\mathcal{O}_{N,2} = \{ \sup_{t \in [0,T]} |V(t) - 1| \leq 1/2 \}. \] (11)

There exists a constant \(c_3(T) \) and for all \(r \geq 1 \), a constant \(c_4(r, T) \) such that
\[\mathbb{P}(\mathcal{O}_{N,2}^c) \leq 2 \exp(-c_3(T)N) + \frac{c_4(r, T)}{N^r}. \]

3. Estimation of \((\alpha(t), \gamma(t))\).

Recall that \(T \) is fixed and set for simplicity \(X_j = X_j^N \).

3.1. Estimation contrast. Consider \((\varphi_j, j \geq 0)\) and \((\psi_j, j \geq 0)\) two orthonormal bases of \(L^2([0, T]) \) and let \(S_m \) (resp. \(\Sigma_p \)) be the subspace generated by \((\varphi_j, 0 \leq j \leq m - 1)\) (resp. by \((\psi_j, 0 \leq j \leq p - 1)\)). We assume that the functions \((\varphi_j, j \geq 0)\), \((\psi_j, j \geq 0)\) are continuous on \([0, T]\). Inspired by the log-likelihood of Process (1), for \(h(t) = (h_1(t), h_2(t)) \) element of \(L^2([0, T]) \times L^2([0, T]) \), we consider the contrast
\[U_N(h) = \frac{1}{N} \int_0^T \sum_{j=1}^N [h_1(t)X(t) + h_2(t)(X_j(t) - X(t))]^2 dt \]
\[\quad - \frac{2}{N} \sum_{j=1}^N \int_0^T \sum_{j=1}^N [h_1(t)X(t) + h_2(t)(X_j(t) - X(t))]dX_j(t). \]

Developing \(U_N(h) = U_N((h_1, h_2)) \) and using that \(\sum_{j=1}^N (X_j(t) - X(t)) = 0 \), we obtain
\[U_N((h_1, h_2)) = U_{N,1}(h_1) + U_{N,2}(h_2) \]
with
\[U_{N,1}(h_1) = \int_0^T h_1^2(t)X^2(t)dt - 2 \int_0^T h_1(t)X(t)dX(t), \]
\[U_{N,2}(h_2) = \int_0^T h_2^2(t)V(t)dt - \frac{2}{N} \int_0^T h_2(t)\sum_{j=1}^N (X_j(t) - X(t))dX_j(t). \]

This is why we define the projection estimators of \(\alpha(t) \) on \(S_m \) and of \(\gamma(t) \) on \(\Sigma_p \) by
\[\hat{\alpha}_m = \arg \min_{h_1 \in S_m} U_{N,1}(h_1), \quad \gamma^*_p = \arg \min_{h_2 \in \Sigma_p} U_{N,2}(h_2). \] (12)

Recall that we defined random and deterministic weighted norms \(\|h_1\|_X, \|h_1\|_x \) in (4) and \(\|h_2\|_{\sqrt{\Psi}}, \|h_2\|_{\sqrt{\Psi}} \) in (5), with the associated scalar products. Note that (see (8) for \(\lambda(t) \)):
\[\mathbb{E}(\|h_1\|_X^2) = \|h_1\|_x^2 + \frac{1}{N} \int_0^T h_1^2(t)\lambda(t)x^2(t)dt, \quad \mathbb{E}(\|h_2\|_{\sqrt{\Psi}}^2) = \left(1 - \frac{1}{N} \right) \|h_2\|_{\sqrt{\Psi}}^2. \]

Proposition 5. We have
\[\mathbb{E}(U_{N,1}(h_1)) = \mathbb{E}(\|h_1 - \alpha\|_X^2 - \|\alpha\|_X^2), \quad \mathbb{E}(U_{N,2}(h_2)) = \mathbb{E}(\|h_2 - \gamma\|_{\sqrt{\Psi}}^2 - \|\gamma\|_{\sqrt{\Psi}}^2). \]

Proposition 5 shows that the expectations of the contrasts \(U_{N,1}(h_1) \) and \(U_{N,2}(h_2) \) are minimum for \(h_1 = \alpha, h_2 = \gamma \) and explains the definition of the estimators.
3.2. Risk of the projection estimators on a fixed space. For M a matrix, let $\text{Tr}(M)$ denote the trace of the matrix M and let $\|M\|_{\text{op}}$ denote the operator norm of M that is the square root of the largest eigenvalue of $M^\ast M$. If M is symmetric, $\|M\|_{\text{op}} = \sup\{|\lambda_i|\}$ where λ_i are the eigenvalues of M and so $\|M^{-1}\|_{\text{op}} = \|M\|_{\text{op}}^{-1}$. For $h_1 \in L^2([0,T])$, we denote by $\|h_1\| = (\int_0^T h_1^2(t) dt)^{1/2}$ its L^2-norm and $\|x\|_{2,r}$ denotes the Euclidean norm of the vector $x=(x_1,\ldots,x_r)$ of \mathbb{R}^r.

We now detail the construction and the expression of the estimators (12).

Let us define

$$\hat{\Psi}_{m,1} = \left(\int_0^T \varphi_j(t) \varphi_k(t) X^2(t) dt \right)_{0 \leq j, k \leq m-1} \quad \text{and} \quad \hat{\Psi}_{p,2} = \left(\int_0^T \psi_j(t) \psi_k(t) V(t) dt \right)_{0 \leq j, k \leq p-1}$$

and

$$\hat{Z}_{m,1} = \left(\int_0^T \varphi_j(t) X(t) dX(t) \right)_{0 \leq j \leq m-1} \quad \text{and} \quad \hat{Z}_{p,2} = \left(\int_0^T \psi_j(t) \frac{1}{N} \sum_{k=1}^N (X_k(t) - X(t)) dX_k(t) \right)_{0 \leq j \leq p-1}.$$

Noting that, for $u = (u_0, \ldots, u_{m-1}) \in \mathbb{R}^m$, $\hat{\Psi}_{m,1} u = \int_0^T \left(\sum_{j=0}^{m-1} u_j \varphi_j(t) \right) X^2(t) dt \geq 0$, we conclude that $\hat{\Psi}_{m,1}$ is symmetric positive definite, as well as $\hat{\Psi}_{p,2}$. Indeed the bases functions and $X(t)$ are continuous and non identically zero.

Set $\hat{\alpha}_m(t) = \sum_{k=0}^{m-1} [\hat{\alpha}(m)]_k \varphi_k(t)$, $\gamma^*_p(t) = \sum_{\ell=0}^{p-1} [\gamma^*_p]_{\ell} \psi_\ell(t)$. By a standard computation, we get that the vectors $\hat{\alpha}(m) = \hat{\gamma}(\hat{\alpha}(m))$, $k=0, \ldots, m-1$, $\gamma^*_p = \hat{\gamma}(\gamma^*_p)$, $\ell = 0, \ldots, p-1$ are solution of

$$\Psi_{m,1} \hat{\alpha}(m) = \hat{Z}_{m,1} \quad \text{and} \quad \Psi_{p,2} \gamma^*_p = \hat{Z}_{p,2}.$$

Therefore

$$\hat{\alpha}(m) = \hat{\alpha}^{-1}_{m,1} \hat{Z}_{m,1}, \quad \gamma^*_p = \hat{\gamma}^{-1}_{p,2} \hat{Z}_{p,2}. \quad (13)$$

We define the symmetric positive definite matrices

$$\Psi_{m,1} = \left(\int_0^T \varphi_j(t) \varphi_k(t) x^2(t) dt \right)_{0 \leq j, k \leq m-1}, \quad \Psi_{p,2} = \left(\int_0^T \psi_j(t) \psi_k(t) v(t) dt \right)_{0 \leq j, k \leq p-1}.$$

Note that using (7) and (9), we have

$$\mathbb{E} \left(\hat{\Psi}_{m,1} \right) = \Psi_{m,1} + \frac{1}{N} \left(\int_0^T \varphi_j(t) \varphi_k(t) \lambda(t) x^2(t) dt \right)_{0 \leq j, k \leq m-1} \quad \text{and} \quad \mathbb{E} \left(\hat{\Psi}_{p,2} \right) = \left(1 - \frac{1}{N} \right) \Psi_{p,2},$$

where $\lambda(t)$ is defined by (8). Lastly, we define

$$L(S_m) = \sup_{t \in [0,T]} \sum_{j=0}^{m-1} \varphi_j^2(t), \quad L(\Sigma_p) = \sup_{t \in [0,T]} \sum_{j=0}^{p-1} \psi_j^2(t).$$

These quantities are classical in model selection, see Massart (2007). They only depend respectively on the subspace S_m (on the subspace Σ_p) and not on the bases chosen to define them. Indeed, $L(S_m) = \sup_{h_1 \in S_m} \|h_1\| = \sup_{t \in [0,T]} h_1^2(t)$, where $\|h_1\|^2 = \int_0^T h_1^2(t) dt$, and analogously for $L(\Sigma_p)$.

Below, we restrict the possible choices of the dimensions m, p by a condition which ensures the stability of least-squares estimators (see e.g. Cohen et al. (2013), Comte and Genon-Catalot (2020a, b)). For c a numerical constant, that can take any value, we consider dimensions m, p such that

$$m, p \leq N \quad \text{and} \quad L(S_m)(\|\Psi_{m,1}\|_{\text{op}} \vee 1) \leq \frac{c N}{2 \log N}, \quad L(\Sigma_p)(\|\Psi_{p,2}\|_{\text{op}} \vee 1) \leq \frac{c N}{2 \log N}. \quad (14)$$
The necessity of this constraint is fully detailed in the references mentioned above. The problem is the following one: we do not know if \(\| \Psi_{m,1}^{-1}_{\text{op}} \) (resp. \(\| \Psi_{p,2}^{-1}_{\text{op}} \)) is bounded independently of \(m \) (resp. \(p \)). If it is not the case, we can not handle the risk of the estimator.

However, we can prove the following result.

Proposition 6.
1. If, for all \(t \in [0, T] \), \(\alpha(t) \geq 0 \), then \(\| \Psi_{m,1}^{-1}_{\text{op}} = \| \Psi_{m,1}^{-1}_{\text{op}} \leq \mu_0^{-2} \).
2. If, for all \(t \in [0, T] \), \(\gamma(t) \geq 0 \), then \(\| \Psi_{p,2}^{-1}_{\text{op}} = \| \Psi_{p,2}^{-1}_{\text{op}} \leq \sigma_0^{-2} \).

In this case, the constraint (14) is very weak.

But, in general, the cutoff (14) is needed. In parallel, we define the truncated estimators

\[
\bar{\alpha}_m = \bar{\alpha}_m 1_{\Lambda_{m,1}}, \quad \Lambda_{m,1} = \{ \lambda(S_m)(\| \hat{\Psi}_{m,1}^{-1}_{\text{op}} \vee 1) \leq cN/\log N \} \tag{15}
\]

and

\[
\bar{\gamma}_p = \bar{\gamma}_p 1_{\Lambda_{p,2}}, \quad \Lambda_{p,2} = \{ \lambda(S_p)(\| \hat{\Psi}_{p,2}^{-1}_{\text{op}} \vee 1) \leq cN/\log N \}. \tag{16}
\]

It is worth noting that the following holds.

Proposition 7. The mappings \(m \mapsto \| \Psi_{m,1}^{-1}_{\text{op}} \), \(m \mapsto \| \hat{\Psi}_{m,1}^{-1}_{\text{op}} \), \(p \mapsto \| \Psi_{p,2}^{-1}_{\text{op}} \), \(p \mapsto \| \hat{\Psi}_{p,2}^{-1}_{\text{op}} \) are increasing.

Now, we can state the risk bounds of the above estimators for fixed \(m, p \).

Proposition 8. Assume that [H1] and [H2] hold. Consider the estimator \(\bar{\alpha}_m(t) \) of \(\alpha(t) \) defined by (15), for \(m \) satisfying (14).
1. For the risk based on the empirical \(X \)-norm, we have
 \[
 \mathbb{E}\| \bar{\alpha}_m - \alpha \|_X^2 \leq \left(1 + \frac{\lambda(T)}{N} \right) \left(\inf_{h \in S_m} \| h - \alpha \|_x^2 + \frac{2m}{N} \right) + \frac{c}{N}, \tag{17}
 \]
 where \(\lambda \) in defined by (8).
2. For the risk based on the deterministic \(x \)-norm, we have
 \[
 \mathbb{E}\| \bar{\alpha}_m - \alpha \|_x^2 \leq 2 \left(1 + \frac{\lambda(T)}{N} \right) \left(\inf_{h \in S_m} \| h - \alpha \|_x^2 + \frac{2m}{N} \right) + \frac{c}{N}. \tag{18}
 \]

Refining the proof of the bias term, we get

\[
\mathbb{E}\| \bar{\alpha}_m - \alpha \|_x^2 \leq \left(1 + \frac{c}{\log(N)}K_N(T) \right) \left(\inf_{h \in S_m} \| h - \alpha \|_x^2 + 8 \left(1 + \frac{\lambda(T)}{N} \right) \frac{m}{N} + \frac{c}{N} \right), \tag{19}
\]

with

\[
K_N(T) := 8T \sup_{t \in [0,T]} x^2(t) \left(\frac{C_1(T)}{\mu_0^4} + \frac{(\lambda(T))^2}{N} \right)
\]

and \(C_1(T) \) is a constant depending on \(T \).

In (17), (18), (19), the quantity \(c \) is a generic constant, which depends on \(T \).

Proposition 9. Assume that [H1] and [H2] hold. Consider the estimator \(\bar{\gamma}_p(t) \) of \(\gamma(t) \) defined by (16), for \(p \) satisfying (14).
1. For the risk based on the empirical \(\sqrt{V} \)-norm, we have
 \[
 \mathbb{E}\| \bar{\gamma}_p - \gamma \|_{\sqrt{V}}^2 \leq (1 - \frac{1}{N}) \left(\inf_{h \in \Sigma_p} \| h - \gamma \|_{\sqrt{V}}^2 + \frac{2p}{N} \right) + \frac{c}{N}. \tag{20}
 \]
2. For the risk based on the deterministic \(\sqrt{\nu} \)-norm, we have
 \[
 \mathbb{E}\| \bar{\gamma}_p - \gamma \|_{\sqrt{\nu}}^2 \leq 2 \left(1 - \frac{1}{N} \right) \left(\inf_{h \in \Sigma_p} \| h - \gamma \|_{\sqrt{\nu}}^2 + \frac{2p}{N} \right) + \frac{c}{N}. \tag{21}
 \]
With a more elaborate proof,
\[E\left\| \tilde{\gamma}_p - \gamma \right\|_V^2 \leq \left(1 + \frac{c}{\log(N)} R(T)\right) \inf_{h \in \Sigma_p} \left\| h - \gamma \right\|_V^2 + 8 \left(1 - \frac{1}{N}\right)^p + \frac{c}{N} \] \tag{22}
with
\[R(T) := 2T \sup_{t \in [0,T]} v(t) \frac{C_2(T)}{4_0^2} \]
and \(C_2(T)\) is a constant depending on \(T\).

In (20), (21), (22), the quantity \(c\) is a generic constant, which depends on \(T\).

In the two previous propositions, for the risks based on the deterministic norms, we obtain two inequalities. The difference between (18) and (19) (resp. between (21) and (22)) lies in the evaluation of the bias term where the factor 2 is improved into a factor \(1 + o(1)\).

We comment here the dependence on \(T\) of the bounds (17) and (21). The main term in the right-hand-side of (21) is independent of \(T\). The same holds in (17) if \(\alpha\) is lower bounded by a positive constant. Indeed then \(\lambda(T)\) is upper bounded independently of \(T\). On the contrary, the constants \(c\) corresponding to residual terms depend on \(T\) through moments of \(X(t), V(t)\), which can have exponential order in \(T\).

3.3. Rates of convergence

Rates of convergence can be deduced from risk bounds provided that functional regularity conditions on \(\alpha, \gamma\) are set. We give results for \(\alpha\) only, but the same type of results holds for \(\gamma\). Regularity spaces depend on the basis which is used. Below and in the simulation section, examples are presented.

3.3.1. Rates on trigonometric spaces

First we consider the collection \((S_{m}^{\text{Trig}}, m \geq 0)\) of subspaces of \(L^2([0,T])\) where \(S_{m}^{\text{Trig}}\) has odd dimension \(m\) and is generated by the orthonormal trigonometric basis (denoted by \([T]\) \((\varphi_{j,T})\) with \(\varphi_{0,T}(t) = \sqrt{1/T}1_{[0,T]}(t)\), \(\varphi_{2j-1,T}(t) = \sqrt{2/T} \cos(2\pi j t/T) 1_{[0,T]}(t)\) and \(\varphi_{2j,T}(t) = \sqrt{2/T} \sin(2\pi j t/T) 1_{[0,T]}(t)\) for \(j = 1, \ldots, (m-1)/2\). This basis satisfies \(\sum_{j=0}^{m-1} \varphi_{j,T}^2(t) = m/T\). Therefore \(L(S_{m}^{\text{Trig}}) = m/T\).

Assume moreover that, for some \(c_0^2 > 0\),
\[\forall t \in [0,T], x^2(t) \geq c_0^2. \quad \tag{23} \]

This assumption is fulfilled if \(\alpha(t) \geq 0, \forall t \in [0,T]\), with \(c_0 = \mu_0\). Then, it follows from the proof of Proposition 6 that (23) implies \(\|\Psi\|_{\text{op}} \leq 1/c_0^2\). As a consequence, under (23), \(m\) satisfies condition (14) as soon as \(m \leq c_0^2TN/\log(N)\), which is a weak constraint.

Let \(r\) be a positive integer, \(L > 0\) and define
\[W_T^{\text{per}}(r, L) := \{ g \in C^r([0,T]; \mathbb{R}) : g^{(r-1)} \text{ is absolutely continuous,} \}
\[\int_0^T g^{(r)}(x)^2 dx \leq L \text{ and } g^{(j)}(0) = g^{(j)}(T), \forall j = 0, \ldots, r-1\}. \]

By Proposition 1.14 of Tsybakov (2009), a function \(f \in W_T^{\text{per}}(r, L)\) admits a development
\[f = \sum_{j=0}^{\infty} \theta_{j,T} \varphi_{j,T} \quad \text{such that} \quad \sum_{j=0}^{\infty} \theta_{j,T}^2 \tau_{j}^2 \leq C(T, L), \]
where \(\tau_j = j^r\) for even \(j\), \(\tau_j = (j-1)^r\) for odd \(j\), and \(C(T, L) := L^2(T/\pi)^{2r}\). So, with \(f = \sum_{j=0}^{m-1} \theta_{j,T} \varphi_{j,T}\),
\[\|f - f_m\|^2 \leq K(T, L, r)m^{-2r}. \]
Thus we obtain the following rate

Corollary 1. Assume that [H1], [H2], (23) hold and that \(\alpha \in W_T^{p\gamma}(r,L) \). Then choosing \(m^* = c^*N^{1/(2r+1)} \) gives \(\mathbb{E}(\|\hat{\alpha}_{m^*} - \alpha\|^2) \leq C(T,r,L,c_0^3)N^{-2r/(2r+1)} \).

Indeed, \(m^* \) satisfies \(m^* \leq c_0^2TN/\log(N) \) for well chosen \(c^* \).

Note that we also use the cosine basis \([C]\) defined by \(\varphi_{0,T}(x) = \sqrt{1/T}\mathbf{1}_{[0,T]}(t) \), \(\varphi_{j,T}(t) = \sqrt{2/T}\cos(\pi jT)\mathbf{1}_{[0,T]}(t) \), \(j = 1, \ldots, m-1 \), see Efromovich (1999, p.46). It is clearly an orthonormal basis. For a twice differentiable function, the projection coefficients decrease like \(1/j^2 \) without border constraints; such constraints are required for higher regularities only, see Efromovich (1999, p.32). In practical implementation, it appears that this basis is more convenient and performant than the complete trigonometric basis.

3.3.2. Rates on Sobolev Laguerre spaces.

Consider now a collection of subspaces of \(L^2(\mathbb{R}^+) \), generated by the Laguerre basis \([L]\) defined by

\[
\ell_j(t) = \sqrt{2}L_j(2t)e^{-t}1_{t \geq 0}, \quad j \geq 0, \quad L_j(t) = \sum_{k=0}^{j} (-1)^k \frac{j^k}{k!}.
\]

We set \(S_m^{\text{Log}} = \text{span}\{\ell_j, j = 0, \ldots, m-1\} \). We have \(\forall t \geq 0, \sum_{j=0}^{m-1} \ell_j^2(t) \leq 2m \) (see Abramowitz and Stegun (1964)) and as \(\varphi_j(0) = \sqrt{2} \), \(L(S_m^{\text{Log}}) = 2m \).

The basis is orthonormal in \(L^2(\mathbb{R}^+) \), but not in \(L^2([0,T]) \). However, the bounds (17)-(20) can be obtained for this basis too as the orthonormality is not used in the proof. Thus we can get rates on Sobolev Laguerre spaces defined by \(W^s(D) = \{f \in L^2(\mathbb{R}^+), \sum_{j \geq 1} j^sc_j(f)^2 \leq D < +\infty\} \), \(c_j(f) = \int_0^{+\infty} f(t)\ell_j(t)dt \). A function belonging to \(W^s(D) \) has, roughly speaking, regularity properties of order \(s \), see Comte and Genon-Catalot (2018).

Therefore, under [H1], [H2], if \(\alpha \in W^s(D) \) and if \(m^\circ = cN^{1/(s+1)} \) satisfies constraint (14), then \(\mathbb{E}(\|\hat{\alpha}_{m^\circ} - \alpha\|^2) \leq c(T,D)N^{-s/(s+1)} \), which is an optimal rate for regression type estimation with Laguerre basis, see Comte and Genon-Catalot (2020a, Theorem 1).

4. Adaptive estimators

We will assume in the following that (see examples of bases in section 3.3):

\[
L(S_m) \leq c_p^2 m, \quad L(\Sigma_p) \leq c_p^2 p.
\]

We set

\[
\mathcal{M}_{N,1} = \left\{ m \leq N, L(S_m)\|\Psi^{-1}_{m,1}\|_{op} \leq \frac{c}{2\log(N)} \right\}, \quad \widehat{\mathcal{M}}_{N,1} = \left\{ m \leq N, L(S_m)\|\tilde{\Psi}^{-1}_{m,1}\|_{op} \leq \frac{c}{2\log(N)} \right\},
\]

\[
\mathcal{M}_{N,2} = \left\{ p \leq N, L(\Sigma_p)\|\Psi^{-1}_{p,2}\|_{op} \leq \frac{c}{2\log(N)} \right\}, \quad \widehat{\mathcal{M}}_{N,2} = \left\{ p \leq N, L(\Sigma_p)\|\tilde{\Psi}^{-1}_{p,2}\|_{op} \leq \frac{c}{2\log(N)} \right\}.
\]

Now we define

\[\hat{m} = \arg\min_{m \in \mathcal{M}_{N,1}} \{U_{N,1}(\hat{\alpha}_m) + \text{pen}_1(m)\}, \quad \text{pen}_1(m) = \kappa_1 \frac{m}{N} (24)\]

\[p^* = \arg\min_{p \in \mathcal{M}_{N,2}} \{U_{N,2}^\circ(\gamma_p) + \text{pen}_2(p)\}, \quad \text{pen}_2(p) = \kappa_2 \frac{p}{N} (25)\]

Note that \(U_{N,1}(\hat{\alpha}_m) = -\|\hat{\alpha}_m\|^2_X \) and \(U_{N,2}(\gamma_p^*) = -\|\gamma_p^*\|^2_{\sqrt{V}} \).
To explain the choice of \hat{m} and p^*, we recall that the penalisation method mimicks the squared bias/variace compromise of the risk. On the one hand, the bias is equal to
\[
\|\pi^X_{(m)} \alpha - \alpha\|_X^2 = \inf_{h \in S_m} \|\alpha - h\|_X^2 = \|\alpha\|_X^2 - \|\pi^X_{(m)} \alpha\|_X^2,
\]
and is, up to a constant, $-\|\pi^X_{(m)} \alpha\|_X^2$: it is estimated by $-\|\hat{\alpha}_m\|_X^2 = U_{N,1}(\hat{\alpha}_m)$. On the other hand, the variance term is proportional to m/N, which is our penalty term.

Theorem 1. Under [H1]-[H2], there exists a numerical constant κ_0 such that for $\kappa_1 \geq \kappa_0$, $\kappa_2 \geq \kappa_0$,
\[
\mathbb{E}(\|\hat{\alpha}_m - \alpha\|_X^2) \leq C_1 \inf_{m \in M_{N,1}} \left(1 + \frac{\lambda(T)}{N} \right) \inf_{h \in S_m} \|h - \alpha\|_X^2 + \kappa_1 \frac{m}{N} + \frac{c}{N},
\]
\[
\mathbb{E}(\|\gamma_{p^*} - \gamma\|_V^2) \leq C_2 \inf_{p \in M_{N,2}} \left(1 + \frac{1}{N} \right) \inf_{h \in \Sigma_p} \|h - \gamma\|_V^2 + \kappa_2 \frac{p}{N} + \frac{c}{N},
\]
where C_1 and C_2 are numerical constants.

The quantity c is a generic constant, which depends on T.

Theorem 1 shows that our estimators are adaptive in the sense that their risk automatically realizes the best compromise between the bias and the variance terms.

The theory asserts the existence of a numerical constant κ_0, ensuring the risk bound. One problem for practical implementation is to find an adequate value for κ_0 in the penalty. Therefore, it is customary to determine this value by preliminary simulations; to avoid overfitting, the preliminary examples are different from the ones presented.

5. Estimation of $\alpha(t)$ when $\beta(t) \equiv 0$

To have a benchmark for comparison, we consider here the simpler case where $\beta(t) \equiv 0$ in model (1), i.e. the model given by N i.i.d. Ornstein-Uhlenbeck processes:
\[
dx_i(t) = \alpha(t)X_i(t)dt + dW_i(t), \quad X_i(0) = X_i^0, \quad i = 1, \ldots, N. \quad (26)
\]

The problem of nonparametric estimation of $\alpha(t)$ from (26) has been first tackled in Nguyen and Pham (1982) who propose a projection estimator using an increasing sequence of subspaces of $L^2([0, T])$ as we do here for the couple $(\alpha(t), \gamma(t))$. However, this paper neither gives any concrete choice of projection bases and nor studies the L^2-risk of the projection estimator. Moreover, the problem of an adaptive choice of the projection dimension is not raised at all. This is why we complete this study below. Taking into account our previous statements, we do it as briefly as possible to avoid repetitions.

5.1. Direct estimation of $\alpha(t)$. Consider, for $h \in L^2([0, T])$, the contrast given by:
\[
\Lambda_N(h) = \frac{1}{N} \int_0^T h^2(t) \sum_{j=1}^N X_j^2(t)dt - \frac{2}{N} \int_0^T h(t) \sum_{j=1}^N X_j(t)dX_j(t).
\]

Set $Y(t) := Y_N(t) = \frac{1}{N} \sum_{j=1}^N X_j^2(t) = X^2(t) + V(t), \quad y(t) = x^2(t) + v(t).$

Then we have

\[\text{Proofs are omitted: they follow the same lines as the proofs of the previous parts and are simpler.} \]

\[\Psi \]

Theorem 2.

Let \(m \) satisfy \(m \leq N \) and \(L(S_m)(\|\Psi_m\|_{op}^{-1} \vee 1) \leq \frac{cN}{2 \log N} \) with \(\Psi_m = E\tilde{\Psi}_m \) and \(c \) a numerical constant. Define the truncated estimator

\[\tilde{\alpha}_m = \hat{\alpha}_m 1_{\Lambda_m}, \quad \Lambda_m = \{ L(S_m)(\|\Psi_m\|_{op}^{-1} \vee 1) \leq \frac{cN}{2 \log N} \}. \]

Then we have

\[E\|\tilde{\alpha}_m - \alpha\|^2_Y \leq \inf_{h \in S_m} \|h - \alpha\|^2_Y + \frac{2m}{N} + \frac{c}{N}, \quad E\|\tilde{\alpha}_m - \alpha\|^2_Y \leq 2 \inf_{h \in S_m} \|h - \alpha\|^2_Y + \frac{4m}{N} + \frac{c}{N}, \]

(c is a generic constant, which depends on \(T \)).

As previously, we can define an adaptive estimator with a data-driven choice of the dimension \(m \) under the assumption that \(L(S_m) \leq c \sqrt{m} \). In parallel as above, we set

\[\mathcal{M}_N = \left\{ m \leq N, L(S_m)(\|\Psi_m\|_{op}^{-1} \vee 1) \leq \frac{cN}{2 \log N} \right\}, \quad \tilde{\mathcal{M}}_N = \left\{ m \leq N, L(S_m)(\|\Psi_m\|_{op}^{-1} \vee 1) \leq \frac{cN}{2 \log N} \right\}, \]

\[\hat{m} = \arg \min_{m \in \tilde{\mathcal{M}}_N} \left\{ \Lambda_N(\tilde{\alpha}_m) + \text{pen}(m) \right\}, \quad \text{pen}(m) = \kappa \frac{m}{N}. \]

(27)

Theorem 2. Under \([H1]-[H2]\), there exists a numerical \(\kappa' \) such that for \(\kappa \geq \kappa' \),

\[E\left(\|\tilde{\alpha}_m - \alpha\|^2_Y \right) \leq C \inf_{m \in \mathcal{M}_N} \left(\inf_{h \in S_m} \|h - \alpha\|^2_Y + \kappa' \frac{m}{N} \right) + \frac{c}{N}, \]

where \(C \) is a numerical constant and \(c \) is a generic constant, which depends on \(T \).

Proofs are omitted: they follow the same lines as the proofs of the previous parts and are simpler.
5.2. Estimators of $\alpha(t)$ from Section 3. When $\alpha(t) = \gamma(t)$ i.e. when $\beta(t) = 0$, we also have at disposal two other estimators of $\alpha(t)$: the first estimator of $\alpha(t)$ (denoted below [M1]) and the estimator of $\gamma(t)$ (below [M3]), which are distinct and different from the estimator of the previous subsection (below [M2]). These three estimators are implemented in Section 6 and their risks computed in Table 2. It appears that, with the same basis for both, the estimator of α given from γ^*_m, by [M3] is better than $\hat{\alpha}_m$ given by [M1]. Here is an interpretation of this phenomenon.

Suppose that we are in a parametric model where $\alpha(t) = \sum_{j=0}^{m-1} \varphi_j(t)\alpha_j$, $\gamma(t) = \sum_{j=0}^{m-1} \varphi_j(t)\gamma_j$ with fixed and known m. Then the exact maximum likelihood estimators of $\alpha(m) = t(\alpha_0, \ldots, \alpha_{m-1})$ and $\gamma(m) = t(\gamma_0, \ldots, \gamma_{m-1})$ are respectively (see (13)):

$$
\hat{\alpha}(m) = \hat{\Psi}^{-1}_{m,1}\hat{\beta}_{m,1}, \quad \gamma^*_m = \hat{\Psi}^{-1}_{m,2}\hat{\beta}_{m,2}.
$$

From these exact expressions, a simple computation shows that, as N tends to infinity,

$$
\sqrt{N}(\hat{\alpha}(m) - \alpha(m)) \rightarrow_L X_1 \sim N(m, \Psi^{-1}_{m,1}) \quad \sqrt{N}(\gamma^*_m - \gamma(m)) \rightarrow_L X_2 \sim N(0, \Psi^{-1}_{m,2}).
$$

where we recall that

$$
\Psi_{m,1} = \mu_0^2 \left(\int_0^T \varphi_j(t)\varphi_k(t) \exp \left(2 \int_0^t \alpha(s)ds \right) dt \right)_{0 \leq j,k \leq m-1},
$$

$$
\Psi_{m,2} = \left(\int_0^T \varphi_j(t)\varphi_k(t) [\sigma_0^2 \exp(2\Gamma(t)) + \exp(2\Gamma(t) \int_0^t \exp(-2\Gamma(s))ds)] dt \right)_{0 \leq j,k \leq p-1}.
$$

Therefore, if $\mu_0^2 \leq \sigma_0^2$ and $\alpha(t) = \gamma(t)$, $\Psi_{m,1} < \Psi_{m,2}$ (in the sense of inequality between positive symmetric matrices), thus, $\Psi^{-1}_{m,1} > \Psi^{-1}_{m,2}$.

Then $N\|\hat{\alpha}(-) - \alpha(-)\|^2 = N \left((\hat{\alpha}(m) - \alpha(m))(\hat{\alpha}(m) - \alpha(m)) \right) \rightarrow_L Z_1 = \hat{\Psi}_{1,1} X_1$ and $N\|\gamma^*(-) - \gamma(-)\|^2 \rightarrow_L Z_2 = \hat{\Psi}_{2,2} X_2$. Setting $Y_1 = \Psi^{1/2}_{m,1} X_1$, we have $Y_1 \sim N(m, \text{Id}_m)$ and $Z_1 = \hat{\Psi}_{1,1} Y_1$. Thus, for $Y \sim N(m(0, \text{Id}_m)$, it holds $E(Z_1) = E(Y\Psi^{-1}_{m,1} Y)$. Analogously $E(Z_2) = E(Y\Psi^{-1}_{m,2} Y)$ and thus $E(Z_1) > E(Z_2)$. This means that, for $\mu_0^2 \leq \sigma_0^2$, the estimator γ^*_m is asymptotically better than $\hat{\alpha}(m)$. This is illustrated in the simulation experiments.

6. Numerical experiments

6.1. Description of experiments. We consider the four couples of functions $(\alpha_{\ell}, \gamma_{\ell})$ for $\ell \in \{1, \ldots, 4\}$:

- (1) $\alpha_1(t) = \frac{1}{2} + \frac{1}{4}t$, $\gamma_1(t) = 1 - t$,
- (2) $\alpha_2(t) = -1 + \frac{1}{2}t$, $\gamma_2(t) = 1 - \frac{1}{2}t$,
- (3) $\alpha_3(t) = \cos(1.2\pi t)$, $\gamma_3(t) = \sin(1.2\pi t)$,
- (4) $\alpha_4(t) = \exp(-(t - 1)^2)$, $\gamma_4(t) = \exp(-(t - 3/2)^2/2)$.

We also experiment the case $\alpha \equiv \gamma$ or $\beta \equiv 0$. We take four examples:

- (1*) $\alpha^*_1(t) = 1/2 + t/4 (= \alpha_1(t))$,
- (2*) $\alpha^*_2(t) = 1 - t^2/2 (= \gamma_2(t))$,
- (3*) $\alpha^*_3(t) = \cos(1.2\pi t) = \alpha_3(t)$,
- (4*) $\alpha^*_4(t) = \exp(-(t - 1)^2) = \alpha_4(t)$.

For $T = 1, 3$, and $N = 250, 1000$, discrete samples are generated with Euler scheme with step $T/1000$, and initial conditions $\mu_0 = 1/2, \sigma_0 = 1$ (note that $\mu_0 \leq \sigma_0$, see Section 5.2). We proceed with 400 repetitions. Note that in Belomestny and Schoenmakers (2018), a nice
simulation algorithm with reduced complexity, is proposed, especially in the case of linearly growing coefficients, but not depending on t.

For the strategy of Section 4, three bases are tested: the standard trigonometric basis $[T]$, the cosine-basis $[C]$ and the Laguerre basis $[L]$, see section 3.3.

The cutoff is replaced by a limitation in the collection of models: maximal dimensions are less that 11 for $[T]$, 26 for $[C]$ and 7 for $[L]$. By doing so, all matrices are numerically invertible and we can check that the maximal dimension is not systematically chosen (otherwise we would enlarge the collection).

For each basis $[T]$, $[C]$, $[L]$, the penalty constants are calibrated from preliminary numerical experiments and taken as $\kappa_{1,[T]} = 2$, $\kappa_{1,[C]} = 4$ and $\kappa_{1,[L]} = 4$ for the estimation of α, and $\kappa_{2,[T]} = \kappa_{2,[C]} = \kappa_{2,[L]} = 2$ for the estimation of γ (κ_1 is defined in (24), κ_2 is defined in (25) and the additional index determines the basis).

For the case where $\alpha(t) = \gamma(t)$ ($\beta(t) \equiv 0$), we implement the three possible estimators:

- Estimator of $\alpha(t)$ given by $\hat{\alpha}_m(t)$ (method M1, described in Section 4)
- Estimator of $\alpha(t)$ given by $\hat{\gamma}_m(t)$ (method M2, described in Section 5)
- Estimator of $\alpha(t) = \gamma(t)$ given by $\gamma^*_m(t)$ (method M3, described in Section 4).
For method M2, we only experiment the two bases $[C], [L]$ with penalty constants $\kappa_{[C]} = \kappa_{[L]} = 4$ (see (27)).

The computed MISE is the mean over the experiments $k = 1, \ldots, 400$ of non-weighted approximated L^2-error, for α:

$$\frac{1}{400} \sum_{k=1}^{400} \frac{T}{100} \sum_{i=1}^{100} \left[\alpha_i T - \hat{\alpha}^{(k)}_m \frac{iT}{100} \right]^2,$$

where $\hat{\alpha}^{(k)}_m$ is the estimator computed for simulation k, and analogously for γ and for the estimators in the case $\alpha = \gamma$.

Table 1. $100 \times$ MISE for estimation of α and γ (with $100 \times$ standard deviation in parenthesis) in Examples 1 to 4 with bases $[T], [C]$ and $[L]$, for $N = 250$ and $N = 1000$, $T = 1$ and $T = 3$ and for $\mu_0 = 1/2$ and $\sigma_0 = 1$.

<table>
<thead>
<tr>
<th></th>
<th>Estimation of α</th>
<th>Estimation of γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N = 250$</td>
<td>$N = 1000$</td>
</tr>
<tr>
<td></td>
<td>$T = 1$</td>
<td>$T = 3$</td>
</tr>
<tr>
<td>Ex. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[T]$</td>
<td>5.02(5.6)</td>
<td>10.6(2.3)</td>
</tr>
<tr>
<td>$[C]$</td>
<td>2.34(3.1)</td>
<td>1.62(1.9)</td>
</tr>
<tr>
<td>$[L]$</td>
<td>3.86(3.8)</td>
<td>3.64(3.5)</td>
</tr>
<tr>
<td>Ex. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[T]$</td>
<td>4.35(3.6)</td>
<td>791(16)</td>
</tr>
<tr>
<td>$[C]$</td>
<td>1.92(2.8)</td>
<td>45.3(11)</td>
</tr>
<tr>
<td>$[L]$</td>
<td>3.21(2.7)</td>
<td>3.35(3.6)</td>
</tr>
<tr>
<td>Ex. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[T]$</td>
<td>17.3(6.9)</td>
<td>18.7(12)</td>
</tr>
<tr>
<td>$[C]$</td>
<td>5.74(5.0)</td>
<td>18.5(12)</td>
</tr>
<tr>
<td>$[L]$</td>
<td>7.32(6.3)</td>
<td>22.1(18)</td>
</tr>
<tr>
<td>Ex. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[T]$</td>
<td>6.76(5.5)</td>
<td>3.95(2.1)</td>
</tr>
<tr>
<td>$[C]$</td>
<td>2.72(3.7)</td>
<td>3.13(3.6)</td>
</tr>
<tr>
<td>$[L]$</td>
<td>3.36(4.6)</td>
<td>5.92(4.2)</td>
</tr>
</tbody>
</table>

6.2. Results. Table 1 shows the MISEs for the estimation of α, γ in Examples 1 to 4 for the three bases. As expected, in all cases, the MISE gets smaller when N increases. Clearly, the trigonometric basis $[T]$ has difficulty for the estimation of non periodic functions (that is, functions which do not take the same value in 0 and T), and gives results which are systematically less good than the two others. This is also illustrated by Figure 1 for Example 1, in which beams of 40 estimators (green) for $N=1000$ and $T = 3$ are compared to the true functions (red): the plots on the first line for basis $[T]$ have clearly important side-effects, while the two other bases seem to correct it. This is the reason why we implemented basis $[C]$. When T increases, the MISE most of the time increases also, which seems to be a natural scale effect, and the MISE for γ is generally smaller than the MISE for α: it is true that the functions are different, but they are of similar types, so it is likely that γ is easier to estimate than α, see also Figure 1 and compare left plots (estimation of α) and right plots (estimation of γ). This is in accordance with the results of Section 5.2, which indicate that the estimator of γ has smaller risk than the estimator of α when $\mu_0^2 \leq \sigma_0^2$. Figures 2 and 3 allow to compare the improvement when going from $N = 250$ (Figure 2) to $N = 1000$ (Figure 3) on the same Example 2. Lastly, Figure 4 is a plot for $N = 1000$ and $T = 3$ concerning Example 4.
Table 2. When $\beta(t) \equiv 0$ (and thus $\alpha = \gamma$), $100 \times$ MISE for estimation of α (with $100 \times$ standard deviation in parenthesis) in Examples 1* to 4* with bases [C] and [L], for $N = 250$ and $N = 1000$, $T = 3$ and for $\mu_0 = 1/2$ and $\sigma_0 = 1$. The three methods are: M1 the method of estimation of α in the complete model, M3 the method of estimation of $\gamma = \alpha$ in the complete model and M2 the specific method of section 5.

<table>
<thead>
<tr>
<th></th>
<th>$N = 250$</th>
<th>$N = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>Ex.1*</td>
<td>[C]</td>
<td>1.62(1.2)</td>
</tr>
<tr>
<td></td>
<td>[L]</td>
<td>3.64(3.53)</td>
</tr>
<tr>
<td>Ex.2*</td>
<td>[C]</td>
<td>21.1(15)</td>
</tr>
<tr>
<td></td>
<td>[L]</td>
<td>20.0(26)</td>
</tr>
<tr>
<td>Ex.3*</td>
<td>[C]</td>
<td>20.0(24)</td>
</tr>
<tr>
<td></td>
<td>[L]</td>
<td>22.5(9)</td>
</tr>
<tr>
<td>Ex.4*</td>
<td>[C]</td>
<td>3.24(3.6)</td>
</tr>
<tr>
<td></td>
<td>[L]</td>
<td>5.31(3.7)</td>
</tr>
</tbody>
</table>

Table 2 gives the MISEs obtained when estimating α of Examples 1* to 4* by methods M1, M2, M3.

Method M1 is systematically the less good. The two other methods give similar results, even if method M2 seems almost all the time better although probably not significantly.
To conclude this section, we can say that the method works globally well in most contexts.

\[\text{Figure 3. True functions in bold red and beam of 40 estimated } \alpha (\text{left}) \text{ and } \gamma (\text{right}) \text{ with bases } [C] (\text{top}) \text{ and Laguerre (bottom) for Example 3 with } N = 1000.\]

\text{MISE for } \alpha: 0.0622, 0.0827 \text{ and mean of selected dimensions: 5.6, 7.0. MISE for } \gamma: 0.0239, 0.0817 \text{ and mean of selected dimensions: 9.97, 7.0.}

7. Concluding remarks.

In this paper, we study the nonparametric estimation of the deterministic functions \(\alpha(t), \beta(t)\) when the observed process is an interacting system of \(N\) particles given by (1). The process is assumed to be continuously observed throughout a time interval \([0,T]\) with fixed \(T\). The number \(N\) of particles is large. We build estimators of the functions \(\alpha(t), \gamma(t) = \alpha(t) - \beta(t)\) by minimizing projection contrasts deduced from likelihoods, using increasing sequences of finite dimensional subspaces of \(L^2([0,T])\). Bounds for the \(L^2\)-risk of the projection estimators are given based either on an empirical norm or a deterministic norm linked with the problem. The bounds of the risks allow to discuss rates of convergence. Then, a data-driven choice of the dimension for the projection space is provided leading to an adaptive result. The case where \(\beta(t) \equiv 0\) is briefly treated.

Implementation of the estimators is done based on simulated data for various examples of functions \(\alpha(t), \gamma(t)\) and two different bases of \(L^2([0,T])\). The numerical results show that the adaptive estimators perform well, the estimation of \(\gamma(t)\) being better than the estimation of \(\alpha(t)\).

The problem of discrete time observation is shortly discussed in the Appendix 9, and could be completed.

The generalization of our study to include a diffusion coefficient \(\sigma(X^N(t))\) in (1) with a known \(\sigma(\cdot)\) is certainly feasible. More challenging, the study of the estimation of \(\alpha, \beta\) in the general
Figure 4. True functions in bold red and beam of 40 estimated α (left) and γ (right) with bases [C] (top) and Laguerre (bottom) for Example 4 with $N = 1000$. MISE for α: 0.0084, 0.0091 and mean of selected dimensions: 3.2, 5.05. MISE for γ: 0.0031, 0.0022 and mean of selected dimensions: 11.2, 5.8.

Recall the notations (2)-(3) and $X_j = X_j^N$.

8. Proofs

8.1. Proof of Proposition 1. We have:

$$d(\sum_{j=1}^{N} X_j(t)) = [\alpha(t) \sum_{j=1}^{N} X_j(t) - \beta(t) \sum_{j=1}^{N} (X_j(t) - X_j(t))] dt + \sum_{j=1}^{N} dW_j(t) = \alpha(t) \sum_{j=1}^{N} X_j(t) dt + \sum_{j=1}^{N} dW_j(t).$$

Therefore, $dX(t) = \alpha(t)X(t)dt + \frac{1}{N} \sum_{j=1}^{N} dW_j(t) = \alpha(t)X(t)dt + \frac{1}{\sqrt{N}} dB_{N,1}(t)$. This equation can be easily solved and yields the solution given in the proposition.
We have:
\[\sup_{t \leq T} |X(t) - x(t)| \leq \sup_{t \leq T} \exp \left(\int_0^t \alpha(u) \, du \right) \left(|X(0) - \mu_0| + \sup_{t \leq T} \frac{1}{\sqrt{N}} \left| \int_0^t \exp \left(- \int_0^s \alpha(u) \, du \right) dB_{N,1}(s) \right) \]

Using the Markov and Burkholder-Davis-Gundy (B-D-G) inequalities yields
\[\mathbb{P} \left(\sup_{t \leq T} \frac{1}{\sqrt{N}} \left| \int_0^t \exp \left(- \int_0^s \alpha(u) \, du \right) dB_{N,1}(s) \right| > \varepsilon \right) \leq \frac{C_4}{\varepsilon^4 N^2} \left(\int_0^T \exp \left(-2 \int_0^s \alpha(u) \, du \right) ds \right)^2 \]
where \(C_4 \) is the constant of the B-D-G inequality. We conclude that \(\sup_{t \leq T} \left| \frac{1}{\sqrt{N}} g_N(t) \right| \) converges a.s. to 0 and using [H1], this yields the result. \(\Box \)

8.2. Proof of Proposition 2. We apply Ito’s formula to the function \(F(x, y) = (x - y)^2 \) and use that \(\langle dX_i, dX_i \rangle_t = dt, \langle dX, dX \rangle_t = \frac{1}{N} dt, \langle dX_i, dX \rangle_t = \frac{1}{N} dt \),
\[d[X_i(t) - X(t)]^2 = 2[X_i(t) - X(t)] dX_i(t) - 2[X_i(t) - X(t)] dX(t) + \frac{1}{2} [2 dt + \frac{2}{N} dt - \frac{4}{N} dt] \]
Using \(\sum_{j=1}^N (X_j(t) - X(t)) = 0 \) and (6) yields
\[d\left\{ \sum_{i=1}^N (X_i(t) - X(t))^2 \right\} = 2 \sum_{i=1}^N [X_i(t) - X(t)] dX_i(t) + (N - 1) dt \]
\[= 2 \sum_{i=1}^N [X_i(t) - X(t)] [\alpha(t)X(t) + \gamma(t)[X_i(t) - X(t)] dt + (N - 1) dt + 2 \sum_{i=1}^N [X_i(t) - X(t)] dW_i(t). \]
Thus, \(dV(t) = [2\gamma(t)V(t) + 1 - \frac{1}{N}] dt + dM_N(t) \) where
\[M_N(t) = \frac{2}{N} \int_0^t \sum_{i=1}^N [X_i(s) - X(s)] dW_i(s) = \frac{2}{\sqrt{N}} \int_0^t \sqrt{V(s)} dB_{N,2}(s). \]

By the usual change \(V(t) = C(t) \exp \left(2 \int_0^t \gamma(s) ds \right) \), setting \(\Gamma(t) = \int_0^t \gamma(s) ds \), we can obtain the expression:
\[V(t) = \exp \left(2\Gamma(t) \right) \left(V(0) + (1 - \frac{1}{N}) \int_0^t \exp \left(-2\Gamma(s) \right) ds \right) + \exp \left(2\Gamma(t) \right) \int_0^t \exp \left(-2\Gamma(s) \right) dM_N(s) \]
\[= \exp \left(2\Gamma(t) \right) \left(V(0) + (1 - \frac{1}{N}) \int_0^t \exp \left(-2\Gamma(s) \right) ds \right) + M_N(t) \]
\[+ 2 \exp \left(2\Gamma(t) \right) \int_0^t \gamma(s) \exp \left(-2\Gamma(s) \right) M_N(s) ds. \]

Note that
\[V(t) = v(t) + A_N(t) + B_N(t) \quad (28) \]
where
\[A_N(t) = \exp \left(2\Gamma(t) \right) \left(\frac{1}{N} \sum_{i=1}^N [X_i(0) - \mu_0]^2 - \sigma_0^2 - [\mu_0 - X(0)]^2 - \frac{1}{N} \int_0^t \exp \left(-2\Gamma(s) \right) ds \right), \]
\[B_N(t) = M_N(t) + 2 \exp \left(2\Gamma(t) \right) \int_0^t \gamma(s) \exp \left(-2\Gamma(s) \right) M_N(s) ds. \]
By [H1], \(A_N(t)\) converges to 0 almost surely uniformly on \([0, T]\) as \(N\) tends to infinity. To obtain that \(V(t)\) converges to \(v(t)\) uniformly almost surely on \([0, T]\) to 0, it is enough to prove that

\[
\sup_{s \leq T} |M_N(s)| \to_{a.s.} 0. \tag{29}
\]

For this, we follow Kasonga (1990, p.873).

One of Doob’s martingale inequalities states that, for \(\alpha > 0, \beta > 0, \), \(\mathbb{P}(\sup_{s \leq T} (M_N(s) - \frac{\alpha}{2} \langle M_N \rangle_s) > \beta) \leq e^{-\alpha \beta} \). Here \(\langle M_N \rangle_s = \frac{4}{N} \int_0^s V(u)du\). This yields

\[
\mathbb{P}(\sup_{s \leq T} |M_N(s)| > \frac{2\alpha}{N} \int_0^T V(u)du + \beta) \leq 2e^{-\alpha \beta}
\]

Taking \(\alpha = N^a, \beta = N^{-b}\) with \(0 < b < a < 1\) yields

\[
\mathbb{P}(\sup_{s \leq T} |M_N(s)| > \frac{2}{N^{1-a}} \int_0^T V(u)du + N^{-b}) \leq 2e^{-N^{a-b}}.
\]

By (28), we have

\[
\int_0^T V(t)dt \leq C(T) \left(\sup_{t \in [0,T]} [v(t) + A_N(t)] + \sup_{t \in [0,T]} |M_N(t)| \right)
\]

where \(C(T) = 1 + 2 \sup_{t \in [0,T]} \exp(2\Gamma(t)) \int_0^T |\gamma(s)| \exp(-2\Gamma(s))ds\). Consequently,

\[
\mathbb{P} \left(1 - \frac{2C(T)}{N^{1-a}} \sup_{s \leq T} |M_N(s)| > N^{-b} + \frac{2C(T)}{N^{1-a}} \left(\sup_{t \in [0,T]} \{v(t) + A_N(t)\} \right) \right)
\]

\[
= \mathbb{P} \left(\sup_{s \leq T} |M_N(s)| > N^{-b} + \frac{2C(T)}{N^{1-a}} \left(\sup_{t \in [0,T]} [v(t) + A_N(t)] + \sup_{t \in [0,T]} |M_N(t)| \right) \right)
\]

\[
\leq \mathbb{P} \left(\sup_{s \leq T} |M_N(s)| > \frac{2}{N^{1-a}} \int_0^T V(u)du + N^{-b} \right) \leq 2e^{-N^{a-b}}.
\]

As \(\sup_{t \in [0,T]} [v(t) + A_N(t)]\) converges almost surely, by the Borel-Cantelli lemma, we obtain (29).

So the proof of Proposition 2 is complete. □

8.3. Proof of Lemma 1. We have for \(r \geq 1\),

\[
\mathbb{E}|X^r(t)| \leq 2^{r-1} \left(\exp(r \int_0^T \alpha(s)ds)\mathbb{E}|X^r(0)| + \frac{1}{N^{r/2}} \mathbb{E}|g_N^r(0)| \right).
\]

By the definition of \(g_N\),

\[
\mathbb{E}|g_N^r(t)| = C_r \sigma^r(t), \text{ where } \sigma^2(t) = \exp(2 \int_0^t \alpha(s)ds) \int_0^t \exp(-2 \int_0^s \alpha(u)du)ds, \ C_r = \mathbb{E}|Z|^r,
\]

for \(Z\) a standard Gaussian variable. Next, we have, as the \(X_i(0)\)'s are i.i.d. and have moments of any order, using the Rosenthal inequality (see Hall and Heyde, 1980, p.23-24),

\[
\mathbb{E}|X^r(0)| \leq 2^{r-1} (|\mu_0|^r + \mathbb{E}|X^r(0) - \mu_0|^r)
\]

\[
\lesssim |\mu_0|^r + \frac{1}{N^{r-1}} \mathbb{E}|X_i(0) - \mu_0|^r + \frac{1}{N^{r/2}} (\mathbb{E}|X_i(0) - \mu_0|^2)^{r/2} \leq c_r.
\]

Thus, for all \(t \in [0, T]\), \(\mathbb{E}|X^r(t)| \leq c_0(r, T)/2\) for some constant \(c_0(r, T)\).
Note that for all \(t, V(t) > 0 \). Analogously, by the Rosenthal inequality, we check that, for all \(r \geq 1 \), \(\mathbb{E} V_r(0) \leq C \) where the constant \(C \) does not depend on \(N \).

The process \((V(t) \) is solution of a stochastic differential equation with drift \(b(t, v) = 2\gamma(t)v + 1 - N^{-1} \) and diffusion coefficient \(\sigma(v) = 2\sqrt{v}N^{-1/2} \) satisfying \(b^2(t, v) + \sigma^2(v) \leq K_T(1 + v^2) \) with \(K_T = \sup\{2, 8\sup_{t \leq T} \gamma^2(t)\} \). Therefore, for all \(r \geq 1 \), using the equation for \(V(t) \), \(\mathbb{E} V_r^2(0) \leq C \), the Cauchy-Schwarz and the BDG inequalities, we standardly obtain, for another constant \(K_T \),

\[
\mathbb{E} V_r^2(t) \leq K_T(T) \left(1 + \int_0^t \mathbb{E} V_r^2(s) \, ds \right).
\]

By the Gronwall lemma, this yields \(\mathbb{E} V_r^2(t) \leq K_T(T)e^{TK_T(T)} \). The conclusion follows, using that, for all \(r \geq 1 \), \(\mathbb{E} V_r^r(t) \leq \mathbb{E}^{1/2}V_r^2(t) \leq c_0(r, T)/2. \)

8.4. Proof of Proposition 3. By Proposition 1, as \(\mu_0 \neq 0 \), the process \(X(t) \) satisfies

\[
\frac{X(t)}{x(t)} - 1 = \left(\frac{X(0)}{\mu_0} - 1 \right) + \frac{1}{\mu_0 \sqrt{N}} L_N(t),
\]

where \(L_N(t) = \int_0^t \exp \left(-\int_0^s \alpha(u) \, du \right) dB_{N,1}(s) \) is a martingale with deterministic bracket \(\langle L_N \rangle_t = \int_0^t \exp \left(-2\int_0^s \alpha(u) \, du \right) \, ds \). We get,

\[
\mathbb{P}(\sup_{t \in [0, T]} \left| \frac{X(t)}{x(t)} - 1 \right| > \delta) \leq \mathbb{P}(\left| \frac{X(0)}{\mu_0} - 1 \right| > \delta/2) + \mathbb{P}(\sup_{t \in [0, T]} |L_N(t)| > \delta \mu_0 \sqrt{N}/2)
\]

The Rosenthal inequality yields, for all \(r \geq 1 \),

\[
\mathbb{P}(\left| \frac{X(0)}{\mu_0} - 1 \right| > \delta/2) \leq \frac{2^{2r}}{\delta \mu_0^{2r}} \mathbb{E} |X(0) - \mu_0|^{2r} \leq \frac{1}{N^{2r-1}} \mathbb{E} |X_i(0) - \mu_0|^{2r} + \frac{1}{N^r} (\mathbb{E} |X_i(0) - \mu_0|^2)^r
\]

\[
\leq \frac{1}{N^{2r-1}} \mathbb{E} |X_i(0) - \mu_0|^{2r} + \frac{\sigma_0^{2r}}{N^r}
\]

The Bernstein inequality for martingales (see Revuz and Yor (1999), p.153-154) yields

\[
\mathbb{P}(\sup_{t \in [0, T]} |L_N(t)| > \delta \mu_0 \sqrt{N}/2, \langle L_N \rangle_T \leq d(T)) \leq 2 \exp \left(-\frac{\delta^2 \mu_0^2 N}{8d(T)} \right).
\]

Now, we have:

\[
\mathbb{P} \left(\sup_{t \in [0, T]} \left| \frac{X^2(t)}{x^2(t)} - 1 \right| > \delta \right) \leq \mathbb{P} \left(\sup_{t \in [0, T]} \left| \frac{X(t)}{x(t)} - 1 \right|^2 > \delta/2 \right) + \mathbb{P} \left(\sup_{t \in [0, T]} \left| \frac{X(t)}{x(t)} - 1 \right| > \delta/4 \right)
\]

\[
\leq \frac{c(r)}{\delta^{2r} N^r} + 2 \left(\exp \left(-\frac{\delta^2 \mu_0^2 N}{16d(T)} \right) + \exp \left(-\frac{\delta^2 \mu_0^2 N}{16 \times 8d(T)} \right) \right).
\]

Thus, for positive constants \(c_1(T) \) also depending on \(\mu_0, \sigma_0^2 \), and \(c_2(r) \),

\[
\mathbb{P} \left(\sup_{t \in [0, T]} \left| \frac{X^2(t)}{x^2(t)} - 1 \right| > 1/2 \right) \leq 4 \exp \left(-c_1(T)N \right) + \frac{c_2(r)}{N^r}.
\]

Remark 1. If \(\mu_0 = 0 \), then \(x(t) \equiv 0 \), which forbids the ratio; if \(\sigma_0^2 = 0 \), then \(v(0) = 0 \) and analogous problem arises. If \(X_i(0) \) is Gaussian or sub-Gaussian, we have a pure exponential bound.
8.5. Proof of Proposition 4. We have

\[
\frac{V(t)}{v(t)} - 1 = \frac{(V(0) - v(0))}{v(0)} + \frac{1}{N} \int_0^t e^{-2\Gamma(s)} ds - \frac{1}{Nv(0)} \int_0^t e^{-2\Gamma(s)} ds + \frac{2}{(v(0))} \int_0^t e^{-2\Gamma(s)} \sqrt{V(s)} dB_{N,2}(s)
\]

Thus,

\[
\left| \frac{V(t)}{v(t)} - 1 \right| \leq \left| \frac{V(0) - v(0)}{v(0)} \right| + \frac{1}{Nv(0)} \int_0^t e^{-2\Gamma(s)} ds + \frac{2}{(v(0))} \int_0^t e^{-2\Gamma(s)} \sqrt{V(s)} dB_{N,2}(s)
\]

We have

\[
V(0) - v(0) = \frac{1}{N} \sum_{i=1}^N (X_i(0) - \mu_0)^2 - \sigma_0^2 - (X(0) - \mu_0)^2.
\]

By the Rosenthal inequality, for all \(r \geq 1, \)

\[
\mathbb{E}|V(0) - \mathbb{E}V(0)|^{2r} \leq \frac{C}{N^r}.
\]

(31)

Set \(K_N(t) = \int_0^t \exp(-2\Gamma(s))\sqrt{V(s)} dB_N(s). \) We have \(\langle K_N \rangle_t = \int_0^t \exp(-4\Gamma(s)) V(s) ds. \) Set \(k(T) = \int_0^T \exp(-4\Gamma(s)) v(s) ds. \) For all \(p \geq 1, \)

\[
\mathbb{P}(\sup_{t \leq T} |K_N(t)| \geq c\sqrt{N}) \leq \mathbb{P}(\sup_{t \leq T} |K_N(t)| \geq c\sqrt{N}), (K_N)_T \leq 1 + k(T)) + \mathbb{P}((K_N)_T > 1 + k(T))
\]

\[
\leq 2 \exp\left(-\frac{c^2 N}{2(1+k(T))} \right) + \mathbb{E}\left(\int_0^T \exp(-4\Gamma(s))(V(s) - v(s))ds \right)^{2r}.
\]

In what follows, the constant \(C(T) \) may change for one line to another:

\[
\mathbb{E}\left(\int_0^T \exp(-4\Gamma(s))(V(s) - v(s))ds \right)^{2r} \leq C(T) \int_0^T \mathbb{E}[\exp(-4\Gamma(s))(V(s) - v(s))]^{2r} ds
\]

\[
\leq C(T) \left(|V(0) - v(0)| + \frac{1}{N} \int_0^T \exp(-2\Gamma(u)) du \right)^{2r} + \frac{1}{N^r} \int_0^T \mathbb{E}\left(\int_0^s \exp(-4\Gamma(u)) V(u) du \right)^r ds
\]

\[
\leq C(T) \mathbb{E}\left(|V(0) - v(0)|^{2r} + \frac{1}{N^{2r}} + \frac{1}{N^r} \int_0^T \mathbb{E}[V(u)]^r du \right)
\]

\[
\leq C(T) \left(\mathbb{E}|V(0) - v(0)|^{2r} + \frac{1}{N^{2r}} + \frac{1}{N^r} \right),
\]

applying Lemma 1. Thus, using (30)-(31), for all \(\delta, r > 0, \) there exist constants \(c_\delta(T), C(r, T, \delta) \) such that

\[
\mathbb{P}(\sup_{t \leq T} |V(t) - v(t)| \geq \delta) \leq 2 \exp\left(-c_\delta(T) N \right) + \frac{C(r, T, \delta)}{N^r}.
\]

The result follows by taking \(\alpha = 1/2. \)

8.6. Proof of Proposition 5. As \(\sum_{j=1}^N (X_j(t) - X(t)) = 0, \) we get

\[
U_{N,1}(h_1) = \int_0^T h_1^2(t) X^2(t) dt - 2 \int_0^T h_1(t) \alpha(t) X^2(t) dt - 2 \int_0^T h_1(t) X(t) \left(\frac{1}{N} \sum_{j=1}^N dW_j(t) \right).
\]

and

\[
U_{N,2}(h_2) = \int_0^T h_2^2(t) V(t) dt - 2 \int_0^T h_2(t) \gamma(t) V(t) dt - 2 \int_0^T h_2(t) \frac{1}{N} \sum_{j=1}^N (X_j(t) - X(t)) dW_j(t).
\]
We have

\[U_{N,1}(h_1) = \| h_1 - \alpha \|^2_X - \| \alpha \|^2_X - 2\nu_{N,1}(h_1), \quad U_{N,2}(h_2) = \| h_2 - \gamma \|^2_{\sqrt{V}} - \| \gamma \|^2_{\sqrt{V}} - 2\nu_{N,2}(h_2), \]

with

\[\nu_{N,1}(h_1) = \frac{1}{N} \left(\frac{1}{N} \sum_{j=1}^N dW_j(t) \right) = \frac{1}{\sqrt{N}} \int_0^T h_1(t)X(t)dB_{N,1}(t), \]

\[\nu_{N,2}(h_2) = \frac{1}{N} \sum_{j=1}^N (X_j(t) - X(t))dW_j(t) = \frac{1}{\sqrt{N}} \int_0^T h_2(t)dV(t)dB_{N,2}(t). \]

Note that \(\mathbb{E}(\nu_{N,i}(h_i)) = 0 \) for \(i = 1, 2 \) and thus

\[\mathbb{E}(U_{N,1}(h_1)) = \mathbb{E}(\| h_1 - \alpha \|^2_X - \| \alpha \|^2_X), \quad \mathbb{E}(U_{N,2}(h_2)) = \mathbb{E}(\| h_2 - \gamma \|^2_{\sqrt{V}} - \| \gamma \|^2_{\sqrt{V}}). \]

It is also interesting to note that, as \(\langle B_{N,1}, B_{N,2} \rangle = 0 \), it holds \(\mathbb{E}(\nu_{N,1}(h_1)\nu_{N,2}(h_2)) = 0. \)

8.7. **Proof of Proposition 6.** Let \(\mathbf{u} = \{u_0, u_1, \ldots, u_{m-1}\} \) a vector of \(\mathbb{R}^m \) such that \(\| \mathbf{u} \|^2_{2,m} = \sum_{j=0}^{m-1} u_j^2 = 1 \) and set \(h_1(t) = \sum_{j=0}^{m-1} u_j \varphi_j(t) \). We have \(\int_0^T h_1^2(t)dt = 1 \) and when \(\alpha(t) \geq 0 \),

\[\| \mathbf{u} \|^2_{2,m} \mathbf{u} = \int_0^T h_1^2(t)x^2(t)dt \geq \mu_0^2. \]

Analogously, when \(\gamma(t) \geq 0 \), \(v(t) \geq \sigma_0^2 \). Then for \(\mathbf{u} = \{u_0, u_1, \ldots, u_{p-1}\} \) a vector of \(\mathbb{R}^p \) such that \(\| \mathbf{u} \|^2_{2,p} = 1 \), \(\| \mathbf{u} \|^2_{2,p} \mathbf{u} \geq \sigma_0^2. \)

8.8. **Proof of Proposition 7.** This proposition is analogous to Proposition 2 of Comte and Genon-Catalot (2020a). Let \(t = \sum_{j=0}^{m-1} a_j \varphi_j \) and \(\vec{\mathbf{a}} = \{a_0, \ldots, a_{m-1}\} \), then \(\| t \|^2 = \| \vec{\mathbf{a}} \|^2_{m,2,m} = \| t \|_{\Psi_{m,1}}^2 \)

and \(\| t \|^2_x = \frac{1}{2}\mathbf{a} \Psi_{m,1} \mathbf{a} = \| \Psi_{m,1} \mathbf{a} \|^2_{2,m} \), where \(\Psi_{m,1} \) is a symmetric square root of \(\Psi_{m,1} \).

Thus

\[\sup_{t \in S_m, \| t \|_x = 1} \| t \|^2 = \sup_{\vec{\mathbf{a}} \in \mathbb{R}^m, \| \vec{\mathbf{a}} \|^2_{m,2,m}=1} \| \vec{\mathbf{a}} \|^2 \Psi_{m,1}. \]

Set \(\vec{\mathbf{b}} = \Psi_{m,1}^{1/2} \vec{\mathbf{a}} \), that is \(\vec{\mathbf{a}} = \Psi_{m,1}^{-1/2} \vec{\mathbf{b}} \).

Then

\[\sup_{t \in S_m, \| t \|_x = 1} \| t \|^2 = \sup_{\vec{\mathbf{b}} \in \mathbb{R}^m, \| \vec{\mathbf{b}} \|^2_{m,2,m}=1} \| \vec{\mathbf{b}} \|_{\Psi_{m,1}}^2 \vec{\mathbf{b}} = \| \Psi_{m,1}^{-1} \vec{\mathbf{b}} \|_{\text{op}}. \]

As, for \(m < m' \), \(S_m \) is strictly included in \(S_{m'} \), the result follows for the first mapping and analogously for the others.

8.9. **Proof of Proposition 8.** We start with some preliminaries. On \(\mathcal{O}_{N,1} \) defined in equation (10), the empirical norm \(\| . \|_X \) and the \(\cdot \| . \|_\sigma \)-norm are equivalent for elements of \(\mathbb{L}^2([0, T]) \) as on \(\mathcal{O}_{N,1} \)

\[\forall h \in \mathbb{L}^2([0, T]), \quad (2/3)\| h \|^2_X \leq \| h \|^2_{\sigma} \leq 2\| h \|^2_X. \]

We defined \(\Lambda_{m,1} \) in equation (15) and let us set

\[\Omega_{m,1} := \left\{ \left(\| h \|^2_X - \| h \|_{\sigma}^2 \right) \leq \frac{1}{2}, \forall h \in S_m \right\}. \]

We note that \(\mathcal{O}_{N,1} \subset \Omega_{m,1} \). Now, if \(\tilde{\mathbf{u}} = \{u_0, \ldots, u_{m-1}\} \in \mathbb{R}^m \) and \(h = \sum_{j=0}^{m-1} u_j \varphi_j \), then

\[\| h \|^2_X = \| \tilde{\mathbf{u}} \Psi_{m,1} \| \tilde{\mathbf{u}} \quad \text{and} \quad \| h \|^2_x = \| \tilde{\mathbf{u}} \Psi_{m,1} \|_{\Psi_{m,1}}^2 \tilde{\mathbf{u}}, \quad \text{so that} \]
We bound the expectation of the three terms above.

Now, we prove (17). For this, we write

\[\text{Lemma 2. We have, for } d \text{ a positive constant, } \mathbb{P}(O_{N,1}^c) \leq d/N^7. \text{ Moreover, under the assumptions of Proposition 8, for } m \text{ satisfying (14), we have, } \mathbb{P}(\Lambda_{m,1}^c) \leq d/N^7. \]

The following lemma, proved in Section 8.10, holds

\[\text{Theorem 2. We have, for } d \text{ a positive constant, } \mathbb{P}(O_{N,1}^c) \leq d/N^7. \text{ Moreover, under the assumptions of Proposition 8, for } m \text{ satisfying (14), we have, } \mathbb{P}(\Lambda_{m,1}^c) \leq d/N^7. \]

Now, we prove inequality (17) of Proposition 8.

To study the risk of \(\hat{\alpha}_m \), we need to have an adequate expression of the orthogonal projection of \(\alpha \) with respect to \(\langle \cdot, \cdot \rangle_X \). We have:

\[\hat{\Psi}_{m,1} = \left(\langle \varphi_j, \varphi_{\ell} \rangle_X \right)_{0 \leq j, \ell \leq m-1}. \]

The orthogonal projection \(\pi^X_{(m)} \alpha \) of \(\alpha \) on \(S_m \) with respect to the scalar product \(\langle \cdot, \cdot \rangle_X \) is characterized by \(\pi^X_{(m)} \alpha - \alpha \perp \varphi_j, j = 0, \ldots, m - 1 \). This yields

\[\pi^X_{(m)} \alpha = \sum_{j=0}^{m-1} a_j \varphi_j \quad \text{where} \quad a_{(m)} := \begin{pmatrix} a_0 \\ \vdots \\ a_{m-1} \end{pmatrix} = \hat{\Psi}_{m,1}^{-1} \begin{pmatrix} \langle \alpha, \varphi_j \rangle_X \end{pmatrix}. \quad (34) \]

The vector \(\hat{Z}_{m,1} \) can be written as

\[\hat{Z}_{m,1} = \begin{pmatrix} \langle \alpha, \varphi_j \rangle_X \\ \vdots \end{pmatrix}_{0 \leq j \leq m-1} + W_{m,1}, \quad W_{m,1} := \begin{pmatrix} \nu_{N,1}(\varphi_j) \\ \vdots \end{pmatrix}_{0 \leq j \leq m-1}. \quad (35) \]

Note that

\[\mathbb{E}(W_{m,1}^T W_{m,1}) = \frac{1}{N} \mathbb{E} \hat{\Psi}_{m,1} = \frac{1}{N} (\Psi_{m,1} + \frac{1}{N} C_m) \]

where

\[C_m = \left(\int_{0}^{T} \varphi_j(t) \varphi_k(t) x^2(t) \lambda(t) dt \right)_{0 \leq j, k \leq m-1}. \]

\[\textbf{Proof of inequality (17).} \]

Now, we prove (17). For this, we write \(\| \hat{\alpha}_m - \alpha \|_X^2 = T_1 + T_2 + T_3 \), with

\[T_1 := \| \hat{\alpha}_m - \alpha \|_X^2 1_{\Lambda_{m,1} \cap O_{N,1}}, \quad T_2 := \| \hat{\alpha}_m - \alpha \|_X^2 1_{\Lambda_{m,1} \cap \Omega_{N,1}}, \quad T_3 := \| \alpha \|_X^2 1_{\Lambda_{m,1}^c}. \quad (37) \]

We bound the expectation of the three terms above.

\[\bullet \text{ The last term } T_3 = \| \alpha \|_X^2 1_{\Lambda_{m,1}^c} \text{ satisfies:} \]

\[\mathbb{E}T_3 \leq \mathbb{E}^{1/2}(\| \alpha \|_X^2) \mathbb{E}^{1/2}(\Lambda_{m,1}^c). \quad (38) \]
We have
\[\mathbb{E}(\|\alpha\|_X^2) \leq T E \int_0^T \left[\alpha^2(t)X^2(t) \right]^2 dt \leq T \int_0^T \alpha^4(t)X^4(t)dt \leq c(T). \]
Thus, using Lemma 1,
\[\mathbb{E}T_3 \leq \frac{1}{N^{7/2}} \leq \frac{1}{N}. \] (39)

- Study of \(T_1 = \|\tilde{\alpha}_m - \alpha\|^2_X 1_{\Lambda_m,1 \cap O_{N,1}} \). We can write:
\[\|\tilde{\alpha}_m - \alpha\|^2_X = \|\tilde{\alpha}_m - \pi^X(m)\alpha\|^2_X + \|\pi^X(m)\alpha - \alpha\|^2_X = \|\tilde{\alpha}_m - \pi^X(m)\alpha\|^2_X + \inf_{h \in S_m} \|\alpha - h\|^2_X. \] (40)

On one hand, we have \(\tilde{\alpha}_m(t) = \sum_{j=0}^{m-1}[\tilde{\alpha}(m)]_j \varphi_j(t) \) with \((\tilde{\alpha}(m)) = \tilde{\Psi}_m^{-1} \tilde{Z}_m,1 \). On the other hand, \(\pi^X(m) = \sum_{j=0}^{m-1} a_j \varphi_j \) where (see (34)) \(a_m = \tilde{\Psi}_m^{-1} (\varphi_j, \alpha) \) \(0 \leq j \leq m-1 \).

Hence, by (35), \(\tilde{\alpha}(m) - a_m = \tilde{\Psi}_m^{-1} \Psi_m,1 \) and using (33),
\[\|\tilde{\alpha}_m - \pi^X(m)\alpha\|^2_X = \|\tilde{\Psi}_m^{-1} \Psi_m,1 \|_X \|\tilde{\Psi}_m^{-1} \Psi_m,1 \|_X \|\Psi_m,1\|_X = \|\Psi_m,1\|_X \|\Psi_m,1\|_X \|\Psi_m,1\|_X, \] (41)

Now, \(T_1 = \|\tilde{\alpha}_m - \pi^X(m)\alpha\|^2_X + \inf_{h \in S_m} \|\alpha - h\|^2_X 1_{\Lambda_m,1 \cap O_{N,1}} \) (see (40)).

On \(O_{N,1} \), all the eigenvalues of \(\Psi_m,1 \Psi_m,1 \Psi_m,1^{-1} \) belong to \([1/2, 3/2]\) and so all the eigenvalues of \(\Psi_m,1 \Psi_m,1 \Psi_m,1^{-1} \) belong to \([2/3, 2]\). Thus, we write
\[\Psi_m,1 \Psi_m,1 \Psi_m,1^{-1} \leq 2 \Psi_m,1 \Psi_m,1 \Psi_m,1^{-1} \] (42)

Therefore
\[\mathbb{E} \left(\|\tilde{\alpha}_m - \pi^X(m)\alpha\|^2_X 1_{O_{N,1} \cap \Lambda_m} \right) \leq 2 \mathbb{E} \left(\sum_{0 \leq j,k \leq m-1} [\Psi_m,1]_j [\Psi_m,1]_k [\Psi_m,1]_j,k \right), \]
\[= \frac{2}{N} \sum_{0 \leq j,k \leq m-1} [\Psi_m,1]_j [\Psi_m,1]_k [\Psi_m,1]_j,k + \frac{1}{N} [C_m]_j,k \]
\[= \frac{2m}{N} + \frac{2}{N^2} \text{Tr}[\Psi_m,1 C_m]. \] (43)

by using equality (36).

Now, we bound \(\text{Tr}[\Psi_m,1 C_m] \). We have
\[\text{Tr}[\Psi_m,1 C_m] = \int_0^T \sum_{0 \leq j,k \leq m-1} \varphi_j(t) [\Psi_m,1]_j [\Psi_m,1]_k x^2(t) \lambda(t) dt = \int_0^T t \varphi_m(t) \Psi_m,1 \varphi_m(t) x^2(t) \lambda(t) dt \]
where \(t \varphi_m(t) = (\varphi_0(t), \ldots, \varphi_{m-1}(t)) \). As \(\Psi_m,1 \) is symmetric positive definite, for all \(t \),
\[t \varphi_m(t) \Psi_m,1 \varphi_m(t) x^2(t) \lambda(t) \leq \lambda(T) t \varphi_m(t) \Psi_m,1 \varphi_m(t) x^2(t). \]
Consequently,
\[\text{Tr}[\Psi_m,1 C_m] \leq \lambda(T) \text{Tr}[\Psi_m,1 \Psi_m,1] = m \lambda(T). \]

So we obtain:
\[\mathbb{E}(T_1) \leq \left(1 + \frac{\lambda(T)}{N} \right) \left(\inf_{h \in S_m} \|\alpha - h\|^2_X + \frac{m}{N} \right), \] (44)
using that
\[E \left(\inf_{h \in S_m} \| \alpha - h \|_X^2 \right) \leq \left(1 + \frac{\lambda(T)}{N} \right) \left(\inf_{h \in S_m} \| \alpha - h \|_X^2 \right). \]

- Study of \(T_2 = \| \tilde{\alpha}_m - \alpha \|_X^2 1_{\Lambda_{m,1} \cap O_{N,1}} \). We have \(T_2 \leq (\| \tilde{\alpha}_m - \pi^X_{(m)} \alpha \|_X^2 + \| \alpha \|_X^2) 1_{\Lambda_{m,1} \cap O_{N,1}} \).

Using (41) yields
\[T_2 \leq (t \mathbb{W}_{m,1} \hat{W}_{m,1}^{-1} \mathbb{W}_{m,1} + \| \alpha \|_X^2) 1_{\Lambda_{m,1} \cap O_{N,1}}. \]

By the definition of \(\Lambda_{m,1} \) and the Cauchy-Schwarz inequality, we get
\[E T_2 \leq \left(\frac{cN}{L(S_m) \log(N)} E^{1/2} (t \mathbb{W}_{m,1} \mathbb{W}_{m,1}) + E^{1/2} \| \alpha \|_X^2 \right) \mathbb{E}^{1/2} (O_{N,1}). \]

We have already seen that \(E(\| \alpha \|_X^2) \leq c(T) \). For the term \(E[(t \mathbb{W}_{m,1} \mathbb{W}_{m,1})^2] \), we prove the following lemma:

Lemma 3. Let the Assumptions of Proposition 8 hold. With \(\mathbb{W}_{m,1} \) defined in (35), we have, for some constant \(c(T) \), if the \(\varphi \)'s are bounded: \(E(((t \mathbb{W}_{m,1} \mathbb{W}_{m,1})^2) \leq c(T)(mL(S_m))/N^2 \). Otherwise, \(E((t \mathbb{W}_{m,1} \mathbb{W}_{m,1})^2) \leq c(T)(mL^2(S_m))/N^2 \).

Plugging the result of Lemma 3 in (46) allows to conclude for all \(m \) satisfying (14) that \(E(T_2) \leq c/N \). Joining the bounds for the expectations of \(T_1, T_2, T_3 \) gives Inequality (17). \(\square \)

Proof of Inequality (18). We have now the following decomposition: \(\| \tilde{\alpha}_m - \alpha \|_x^2 = T'_1 + T'_2 + T'_3 \) with
\[T'_1 := \| \tilde{\alpha}_m - \alpha \|_x^2 1_{\Lambda_{m,1} \cap O_{N,1}}, \quad T'_2 := \| \tilde{\alpha}_m - \alpha \|_x^2 1_{\Lambda_{m,1} \cap O_{N,1}}, \quad T'_3 := \| \alpha \|_x^2 1_{\Lambda_{m,1}}. \]

We have \(E(T'_3) \leq a \| \alpha \|_x^2 / N^7 \).

Next, \(T'_2 \leq 2(\| \tilde{\alpha}_m \|_x^2 + \| \alpha \|_x^2) 1_{\Lambda_{m,1} \cap O_{N,1}} \). We have
\[\| \tilde{\alpha}_m \|_x^2 = \| \tilde{\alpha}_m \|_x^2 \Psi_{m,1} \tilde{\alpha}(m) \leq \| \Psi_{m,1} \|_{\text{op}} \| \tilde{\alpha}_m \|_{2,m} \leq \sup_{t \in [0,T]} x^2(t) \| \tilde{\alpha}_m \|_{2,m}. \]

Moreover, by formula (13),
\[\| \tilde{\alpha}_m \|_{2,m} \leq \| \tilde{Z}_{m,1} \|_{2,m} \leq 2 \sum_{j=0}^{m-1} (\alpha, \varphi)_j X_j < X^2 + 2t \mathbb{W}_{m,1} \mathbb{W}_{m,1} \leq 2 \int_0^T \alpha^2(t) X^4(t) dt + 2t \mathbb{W}_{m,1} \mathbb{W}_{m,1}. \]

Now using (15), on \(\Lambda_{m,1} \),
\[\| \tilde{\alpha}_m \|_{2,m}^2 \leq \left(\frac{cN}{L(S_m) \log(N)} \right)^2 \| \tilde{Z}_{m,1} \|_{2,m}^2. \]

By (35),
\[\| \tilde{Z}_{m,1} \|_{2,m}^2 \leq 2 \sum_{j=0}^{m-1} (\alpha, \varphi)_j X_j < X^2 + 2t \mathbb{W}_{m,1} \mathbb{W}_{m,1} \leq 2 \int_0^T \alpha^2(t) X^4(t) dt + 2 t \mathbb{W}_{m,1} \mathbb{W}_{m,1}. \]

So \(E(\| \tilde{Z}_{m,1} \|_{2,m}^2) \leq 8T \int_0^T \alpha(t) E[X^8(t)] dt + 8E((t \mathbb{W}_{m,1} \mathbb{W}_{m,1})^2) \). By Lemma 1 and Lemma 3, we get that \(E(\| \tilde{Z}_{m,1} \|_{2,m}^2) \leq 1 \) as \(m \vee L(S_m) \leq N \). As a consequence, \(E(\| \tilde{\alpha}_m \|_{2,m}^2) \leq N^4 \) and
\[E(T'_3) \leq N^2 \mathbb{E}^{1/2} (O_{N,1}) \leq N^{-3/2}. \]

For the term \(T'_1 \), we simply have \(E(T'_1) \leq 2E(T_1) \) by using the definition of \(O_{N,1} \). Joining the bounds on \(E(T'_j) \), for \(j = 1, 2, 3 \) gives the result. \(\square \)
Proof of Inequality (19). We propose a more precise study of T'_1. We have
\[
\|\hat{\alpha}_m - \alpha\|_x^2 = \|\hat{\alpha}_m - \alpha^x_m\|_x^2 + \|\alpha^x_m - \alpha\|_x^2 \\
\leq \|\alpha^x_m - \alpha\|_x^2 + 2(\|\hat{\alpha}_m - \pi^X(\alpha)\|_x + \|\pi^X(\alpha) - \alpha^x_m\|_x^2)
\]
We get on $\Omega_{m,1}$,
\[
\|\hat{\alpha}_m - \alpha\|_x^2 \leq \|\alpha^x_m - \alpha\|_x^2 + 4\|\hat{\alpha}_m - \pi^X(\alpha)\|_x^2 + 2\|\pi^X(\alpha) - \alpha^x_m\|_x^2.
\]
Let $g = \alpha - \alpha^x_m$, then $\pi^X(\alpha)g = \pi^X(\alpha) - \alpha^x_m$, and
\[
E(T'_1) \leq \|\alpha^x_m - \alpha\|_x^2 + 4E(\|\hat{\alpha}_m - \pi^X(\alpha)\|_x^2 \mathbf{1}_{\Omega_{m,1} \cap \Omega_{N,1}}) + 4E(\|\pi^X(\alpha)\|_x^2 \mathbf{1}_{\Omega_{m,1} \cap \Omega_{m,1}})
\]
where $\|\alpha^x_m - \alpha\|_x^2 = \inf_{h \in S_m} \|\alpha - h\|_x$ is the bias term and by (44),
\[
E(\|\hat{\alpha}_m - \pi^X(\alpha)\|_x^2 \mathbf{1}_{\Omega_{m,1} \cap \Omega_{m,1}}) \leq 2 \left(1 + \frac{\lambda(T)}{N}\right) \frac{m}{N}.
\]
We have

Lemma 4. Under the Assumptions of Proposition 8,
\[
E(\|\pi^X(\alpha)\|_x^2 \mathbf{1}_{\Omega_{m,1} \cap \Omega_{m,1}}) \leq \frac{2cT}{\log(N)} \sup_{t \in [0,T]} x^2(t) \left(\frac{C_1(T)}{\mu_0^4} + \frac{(\lambda(T))^2}{N}\right) \|\alpha - \alpha^x_m\|_x^2.
\]
Applying Lemma 4 to (48) and using (49) yields
\[
E(T'_1) \leq \left(1 + \frac{8cT}{\log(N)} \sup_{t \in [0,T]} x^2(t) \left(\frac{C_1(T)}{\mu_0^4} + \frac{(\lambda(T))^2}{N}\right) \right) \|\alpha^x_m - \alpha\|_x^2 + 8 \left(1 + \frac{\lambda(T)}{N}\right) \frac{m}{N},
\]
which gives the result in (19) by definition of $K_N(T)$. □

Proof of Lemma 4. Let $(\bar{\varphi}_j)_{0 \leq j \leq m-1}$ an orthonormal basis of S_m w.r.t. $(\langle . , . \rangle)_x$. We can write $\bar{\varphi}_j = \sum_{k=0}^{m-1} a_{j,k} f_k$, and we set $A_m = (a_{j,k})_{0 \leq j,k \leq m-1}$. Let $\hat{G}_{m,1} = ((\bar{\varphi}_j, \bar{\varphi}_k)_X)_{0 \leq j,k \leq m-1}$, obviously $\hat{G}_{m,1} = t^t A_m \hat{\Psi}_{m,1} A_m$. Then as $\text{Id}_n = ((\bar{\varphi}_j, \bar{\varphi}_k))_{0 \leq j,k \leq m-1} = t^t A_m \hat{\Psi}_{m,1} A_m$, we know that A_m is a square root of $\Psi_{m,1}$. As a consequence,
\[
\Omega_{m,1} = \{||\hat{\Psi}_{m,1}^{\frac{1}{2}} \hat{\Psi}_{m,1}^{-\frac{1}{2}}||_{\text{op}} \leq \frac{1}{2}\} = \{||\hat{G}_{m,1} - \text{Id}_m||_{\text{op}} \leq 1/2\}.
\]
Next, we write $\pi^X(\alpha)g = \sum_{k=0}^{m-1} \beta_k \bar{\varphi}_k$, and we have $\langle g - \pi^X(\alpha)g, \bar{\varphi}_j \rangle_X = 0$ for $j = 0, \ldots, m-1$. Then on $\Omega_{m,1}$, we have $\|\hat{G}_{m,1}\|_{\text{op}} \leq 2$. Then $\hat{G}_{m,1} \beta_m = ((\bar{\varphi}_j, g)_X)_{0 \leq j \leq m-1}$, where $\beta_m = \langle \beta_0, \ldots, \beta_{m-1} \rangle$. Thus on $\Omega_{m,1}$, we have
\[
\|\pi^X(\alpha)g\|_x^2 = \sum_{k=0}^{m-1} \beta_k^2 = \|\hat{G}_{m,1}((\bar{\varphi}_j, g)_X)_{0 \leq j \leq m-1}\|_2^2 \leq 4 \sum_{j=0}^{m-1} \langle \bar{\varphi}_j, g \rangle_X^2.
\]
Note that, as $\int_0^T \bar{\varphi}_j(t)g(t)x^2(t)dt = \langle g, \bar{\varphi}_j \rangle_X = 0$,
\[
E((\bar{\varphi}_j, g)_X) = \int_0^T \bar{\varphi}_j(t)g(t)E(X^2(t))dt = \frac{1}{N} \int_0^T \bar{\varphi}_j(t)g(t)x^2(t)\lambda(t)dt.
\]
We have
\[
\sum_{j=0}^{m-1} \bar{\varphi}_j^2(t) = t^t \varphi(\alpha) \varphi(t) \varphi(\alpha)^t = t^t \varphi(\alpha)^t \Psi_{m,1}^{-1} \varphi(\alpha)(t) \leq L(S_m) \|\Psi_{m,1}^{-1}\|_{\text{op}},
\]
where $\varphi_{(m)}(t) = \langle \varphi_0(t), \ldots, \varphi_{m-1}(t) \rangle$. Therefore, recalling that $g = \alpha - \alpha_m x$, we get
\[
\sum_{j=0}^{m-1} \mathbb{E}(\langle \varphi_j, g \rangle_X)^2 \leq \frac{T}{N^2} \mathcal{L}(m) \|\Psi_{m,1}\|_{\text{op}} \int_0^T x^4(t) \lambda^2(t)(\alpha(t) - \alpha_m x(t))^2 dt
\]
Thus
\[
\sum_{j=0}^{m-1} \mathbb{E}(\langle \varphi_j, g \rangle_X)^2 \leq \frac{cT}{2N \log(N)} \sup_{t \in [0,T]} x^2(t) \lambda^2(t) \|\alpha - \alpha_m x\|^2_x.
\]
Now
\[
\mathbb{E}(\|\pi_{(m)}^X g\|_x^21_{\Lambda_{m,1} \cap \Omega_{m,1}}) \leq 4 \sum_{j=0}^{m-1} \text{Var}(\langle \varphi_j, g \rangle_X) \leq \frac{2cT}{N \log(N)} \sup_{t \in [0,T]} x^2(t) \lambda^2(t) \|\alpha - \alpha_m x\|^2_x.
\]
We have
\[
\sum_{j=0}^{m-1} \text{Var}(\langle \varphi_j, g \rangle_X) = \sum_{j=0}^{m-1} \mathbb{E} \left[\left(\int_0^T g(t) \varphi_j(t)(X^2(t) - \mathbb{E}(X^2(t))) dt \right)^2 \right]
\]
\[
\leq T \sum_{j=0}^{m-1} \int_0^T g^2(t) \varphi_j^2(t) \text{Var}(X^2(t)) dt \leq T L(S_m) \|\Psi_{m,1}\|_{\text{op}} \int_0^T g^2(t) \text{Var}(X^2(t)) dt
\]
\[
\leq \frac{cT}{2 \log(N)} \sup_{t \in [0,T]} x^2(t) C_1(T) \frac{\|\alpha - \alpha_m x\|^2_x}{\mu_0^4}
\]
as, after some elementary computations $\text{Var}(X^2(t)) \leq (x^4(t)/\mu_0^4)(C_1(T)/N)$, with
\[
C_1(T) = C + 3 \left(\int_0^T e^{-\int_0^s \alpha(u) du} ds \right)^2 + 4(\mu_0^2 + \sigma_0^2) \int_0^T e^{-\int_0^s \alpha(u) du} ds,
\]
\[
C = 2\mathbb{E}(Y_1^4) + 4L_0 \mathbb{E}(\|Y_1\|^4) + 4\mu_0^2 \sigma_0^2 \text{ and } Y_1 = X_1(0) - \mu_0. \text{ Therefore we get}
\]
\[
\mathbb{E}(\|\pi_{(m)}^X g\|_x^21_{\Lambda_{m,1} \cap \Omega_{m,1}}) \leq \frac{2cT}{\log(N)} \sup_{t \in [0,T]} x^2(t) \left(\frac{C_1(T)}{\mu_0^4} + \frac{(\lambda(T))^2}{N} \right) \|\alpha - \alpha_m x\|^2_x.
\]
This ends the proof of Lemma 4. \(\square\)

8.10. \textbf{Proof of Lemmas.}

\textbf{Proof of Lemma 2.} On the one hand, $\mathbb{P}(\Omega_{N,1}^c) \lesssim N^{-7}$ by Proposition 3 with $p = 7$, and on the other hand $\Omega_{N,1} \subset \Omega_{m,1}$. Therefore, $\mathbb{P}(\Omega_{m,1}^c) \lesssim 1/N^7$.

By the same proof as the one of Proposition 4 (ii) in Comte and Genon-Catalot (2020a), we have that:
\[
\{\|\Psi_{m,1}^- - \Psi_{m,1}^-\|_{\text{op}} > \alpha \|\Psi_{m,1}^-\|_{\text{op}}\} \subset \{\|\Psi_{m,1}^{1/2} \hat{\Psi}_{m,1} \Psi_{m,1}^{1/2} - \text{Id}_{m}\|_{\text{op}} > \inf \{\alpha, 1\}/2\).
\]
Then, we mimick Lemma 5 of the same paper to get that, for m satisfying (14),
\[
\mathbb{P}(\Lambda_{m,1}^c) \leq \mathbb{P}(\{\|\Psi_{m,1}^- - \Psi_{m,1}^-\|_{\text{op}} > \|\Psi_{m,1}^-\|_{\text{op}}\})
\leq \mathbb{P}(\{\|\Psi_{m,1}^{1/2} \hat{\Psi}_{m,1} \Psi_{m,1}^{1/2} - \text{Id}_{m}\|_{\text{op}} > 1/2\}) = \mathbb{P}(\Omega_{m,1}^c). \quad (50)
\]

\textbf{Proof of Lemma 3.} We have
\[
\mathbb{E}(\|\Psi_{m,1}\Psi_{m,1}\|^4) \leq \frac{1}{N^2} \mathbb{E}(\sum_{j=0}^{m-1} \int_0^T \varphi_j(t)X(t)dB_{N,1}(t))^2 \leq \frac{m}{N^2} \sum_{j=0}^{m-1} \mathbb{E}(\int_0^T \varphi_j(t)X(t)dB_{N,1}(t))
\]
Therefore, using the Burholder-Davies-Gundy inequality yields
\[
\mathbb{E}[\{\mathbb{W}_{m,1}\mathbb{W}_{m,1}\}]^2 \leq \frac{m}{N^2} \sum_{j=0}^{m-1} \mathbb{E} \left[\int_0^T \varphi_j^2(t) X^2(t) dt \right]^2 \leq \frac{T m}{N^2} \sum_{j=0}^{m-1} \varphi_j^4(t) \mathbb{E}(X^4(t)) dt
\]
We use the fact that the \(\varphi_j \)'s are bounded and Lemma 1 to obtain
\[
\mathbb{E}[\{\mathbb{W}_{m,1}\mathbb{W}_{m,1}\}]^2 \leq \frac{m}{N^2} L(S_m)
\]
Otherwise, we obtain \(\mathbb{E}[\{\mathbb{W}_{m,1}\mathbb{W}_{m,1}\}]^2 \leq (m/N^2)L^2(S_m) \).

8.11. Proof of Proposition 9. We defined \(\Lambda_p^c \) in equation (16) and let us set
\[
\Omega_{p,2} := \left\{ \left\| \frac{h}{\sqrt{V}} \right\| - 1 \leq \frac{1}{2}, \forall h \in \Sigma_p \right\}.
\]
On \(\mathcal{O}_{N,2} \) defined by (11), the empirical norm \(\| \cdot \|_{\sqrt{V}} \) and the \(\| \cdot \|_{V} \)-norm are equivalent for elements of \(L^2([0, T]) \). Moreover
\[
\Omega_{p,2} = \left\{ \| \Psi_{p,2}^{-1/2} \Psi_{p,2} \Psi_{p,2}^{-1/2} - \text{Id}_p \|_{\text{op}} \leq 1/2 \right\}.
\]
The following lemma holds

Lemma 5. We have, for \(b \) a positive constant, \(\mathbb{P}(\mathcal{O}_{N,2}^c) \leq b / N^7 \). Under the assumptions of Proposition 9, for \(p \) satisfying (14), we have, \(\mathbb{P}(\Lambda_{p,2}) \leq b / N^7 \).

To prove Inequality (20), we proceed as in the proof of Inequality (17), using that \(\mathbb{E}(V(t)) = (1 - 1/N)\nu(t) \), which makes things easier. The two inequalities also follow and we use that \(\text{Var}(V(t)) \leq (\nu^2(t)/\sigma_0^4)(C_2(T)/N) \) with \(C_2(T) = \mathbb{E}((|X_1(0) - \mu_0|^4) + 4 \int_0^T e^{-4\Gamma(s)} \nu(s) ds \).

8.12. Proof of Theorem 1. The proof is given for the estimation of \(\alpha \) only, the \(\gamma \) case being very similar.

Lemma 6. Under the assumptions of Theorem 1, for all \(m, m' \leq N \),
\[
\mathbb{E} \left[\left(\sup_{h_1 \in B_{m,m'}} \nu_{N,1}^2(h_1) - (p_1(m) + p_1(m')) + 1_{\mathcal{O}_{N,1}} \right) \right] \leq 1.6\kappa e^{-m'/N},
\]
where \(\mathcal{O}_{N,1} \) is defined by (10), \(B_{m,m'} = \{ h_1 \in S_m + S_{m'}, \| h_1 \|_x \leq 1 \} \) and \(p_1(m) = \kappa m / N \), where \(\kappa \) is a numerical constant.

Proof of Lemma 6. By the exponential inequality for martingales (see the Bernstein Inequality for martingales in Revuz and Yor (1999)), we have
\[
\mathbb{P} \left(\int_0^T h_1(t) X(t) d\mathbb{N}_{1}(t) \geq x, \int_0^T h_1^2(t) X^2(t) dt \leq y \right) \leq \exp \left(-\frac{x^2}{2y} \right).
\]
In other words, we have
\[
\mathbb{P} \left(\nu_{N,1}(h_1) \geq \epsilon, \| h_1 \|_X^2 \leq \eta^2 \right) \leq e^{-\frac{N \eta^2}{2m'}}.
\]
Therefore
\[
\mathbb{P} \left(\left(\nu_{N,1}(h_1) \geq \sqrt{3}\| h \|_x \sqrt{\epsilon} \right) \cap \mathcal{O}_{N,1} \right) \leq \mathbb{P} \left(\nu_{N,1}(h_1) \geq \sqrt{3}\| h \|_x \sqrt{\epsilon}, \| h_1 \|_X^2 \leq \frac{3}{2} \| h_1 \|_X^2 \right) \leq e^{-N \epsilon}.
\]
The result follows by applying the chaining method as in Baraud et al. (2001), sections 6-7, Proposition 6.1 with \(s^2 = 1 \). \(\square \)
By definition of \(\hat{m} \), we have \(\forall m \in \hat{M}_{N,1} \), and any \(\alpha_m \in S_m \),
\[
U_{N,1}(\alpha_m) + \text{pen}_1(\hat{m}) \leq U_{N,1}(\alpha_m) + \text{pen}(m).
\]
Moreover, by (32), it holds
\[
U_{N,1}(\alpha_m) - U_{N,1}(\alpha_m) = \|\hat{\alpha}_m - \alpha\|_X^2 - \|\alpha_m - \alpha\|_X^2 - 2\nu_{N,1}(\alpha_m).
\]
Consequently, \(\forall m \in \hat{M}_{N,1} \), and any \(\alpha_m \in S_m \),
\[
\|\hat{\alpha}_m - \alpha\|_X^2 \leq \|\alpha_m - \alpha\|_X^2 + \text{pen}_1(m) + 2\nu_{N,1}(\hat{\alpha}_m - \alpha_m) - \text{pen}_1(\hat{m})
\]
\[
\leq \|\alpha_m - \alpha\|_X^2 + \text{pen}_1(m) + \frac{1}{8}\|\hat{\alpha}_m - \alpha_m\|_X^2 + 8\sup_{h_1 \in S_m + S_m, h_1 \|_X = 1} \nu_{N,1}^2(h_1) - \text{pen}_1(\hat{m})
\]
(53)

Define
\[
\Xi_{N,1} = \{ M_{N,1} \subset \hat{M}_{N,1} \}.
\]
On \(\Xi_{N,1} \), Inequality (53) holds \(\forall m \in M_{N,1} \), and on \(\Xi_{N,1} \cap M_{N,1} \), \(\forall m \in M_{N,1} \),
\[
\|\hat{\alpha}_m - \alpha\|_X^2 \leq \|\alpha_m - \alpha\|_X^2 + \text{pen}_1(m) + \frac{1}{4}\|\hat{\alpha}_m - \alpha_m\|_X^2 + 8\left(\sup_{h_1 \in S_m + S_m, h_1 \|_X = 1} \nu_{N,1}^2(h_1) - (p_1(m) + p_1(\hat{m}))\right)
\]
\[
+8p_1(m) + 8p_1(\hat{m}) - \text{pen}_1(\hat{m}).
\]
Thus, on \(\Xi_{N,1} \cap M_{N,1} \), \(\forall m \in M_{N,1} \),
\[
\frac{1}{2}\|\hat{\alpha}_m - \alpha\|_X^2 \leq \frac{3}{2}\|\alpha_m - \alpha\|_X^2 + \text{pen}_1(m) + 8\left(\sup_{h_1 \in S_m + S_m, h_1 \|_X = 1} \nu_{N,1}^2(h_1) - (p_1(m) + p_1(\hat{m}))\right)
\]
\[
+8p_1(m) + 8p_1(\hat{m}) - \text{pen}_1(\hat{m}).
\]
By Lemma 6, we get
\[
\sum_{m' \leq N} \mathbb{E}\left[\sup_{h_1 \in B_{m'} \text{pen}_1} \nu_{N,1}^2(h_1) - (p_1(m) + p_1(m')) \right] \mathbf{1}_{\Xi_{N,1}} \leq 1.6\kappa \frac{\sum_{m' \leq N} e^{-m'}}{N} = \frac{C}{N}.
\]
For \(\kappa_1 \geq 8\kappa \), \(8p_1(m) + 8p_1(\hat{m}) \leq \text{pen}_1(m) + \text{pen}_1(\hat{m}) \). Thus, finally, \(\forall m \in M_{N,1} \), and \(\alpha_m \in S_m \), we get for \(\kappa_1 \geq 8\kappa \),
\[
\mathbb{E}\left(\|\hat{\alpha}_m - \alpha\|_X^2 \mathbf{1}_{\Xi_{N,1} \cap M_{N,1}}\right) \leq 3\left(1 + \frac{\lambda(T)}{N}\right)\|\alpha_m - \alpha\|_X^2 + 4\text{pen}_1(m) + \frac{C}{N}.
\]
Now we study \(\|\hat{\alpha}_m - \alpha\|_X^2 \mathbf{1}_{\Xi_{N,1} \cap M_{N,1}}\). We have \(T''_2 := \|\hat{\alpha}_m - \alpha\|_X^2 \leq \|\hat{\alpha}_m - \pi(\hat{m})\|_X^2 + \|\alpha\|_X^2 \).
Using (41) yields, as \(\hat{m} \in \hat{M}_{N,1} \),
\[
T''_2 \leq \frac{cN}{L(S_{\hat{m}}) \log(N)} t_{\hat{m}} \mathbb{W}_{m,1} \mathbb{W}_{\hat{m},1} + \|\alpha\|_X^2.
\]
Now, \(m \mapsto t_{\hat{m}} \mathbb{W}_{m,1} \mathbb{W}_{\hat{m},1} \) is increasing with \(m \), and \(L(S_{\hat{m}}) \geq L(S_1) \geq 1/T \). Therefore
\[
T''_2 \leq \frac{cTN}{\log(N)} t_{\hat{m}} \mathbb{W}_{N,1} \mathbb{W}_{\hat{m},1} + \|\alpha\|_X^2.
\]
By the Cauchy-Schwarz inequality, we get
\[
\mathbb{E}(T''_2 \mathbf{1}_{\Xi_{N,1} \cap M_{N,1}}) \leq \left(\frac{cTN}{\log(N)} \mathbb{E}^{1/2}(t_{\hat{m}} \mathbb{W}_{N,1} \mathbb{W}_{\hat{m},1}) + \mathbb{E}^{1/2}(\|\alpha\|_X^2)\right) \mathbb{P}^{1/2}(\Xi_{N,1} \cap M_{N,1})^{c}.
\]
We have seen above that $E(\|\alpha\|_X^4) \leq c(T)$. For the term $E([\frac{1}{N} \hat{W}^1 \hat{W}^1]^2)$, we apply Lemma 3 to obtain

$$E([\frac{1}{N} \hat{W}^1 \hat{W}^1]^2) \leq E(\frac{L^2(S_N)}{N}) \leq N^3.$$

Thus

$$E(T_2^1 1_{\Omega_{N,1} \cap \Omega_{N,1}^c}) \leq N^{5/2} p^{1/2}(\Omega_{N,1} \cap \Omega_{N,1}^c).$$

By Proposition 3, taking $r = 8$, we have $P(\Omega_{N,1}^c) \leq N^{-8}$. Now we use the Lemma:

Lemma 7. It holds that $P(\Omega_{N,1}^c) \leq N^{-7}$.

This implies that $E(T_2^1 1_{\Omega_{N,1} \cap \Omega_{N,1}^c}) \leq N^{-1}$. We obtain the first inequality of Theorem 1 for $\kappa_1 \geq 8c := \kappa_0$ and $C_1 = 4.$ We proceed analogously for the second inequality of Theorem 1. □

Proof of Lemma 7. On $\Omega_{N,1}$, there exists $k \in \mathcal{M}_{N,1}$ such that $k \notin \hat{\mathcal{M}}_{N,1}$.

For this index k, we have $L(S_k)\|\Psi_k^{-1}\|_{op} \leq cN/2 \log(N)$ and $L(S_k)\|\hat{\Psi}_k^{-1}\|_{op} > cN/ \log(N)$. As

$$c(N/ \log(N)) < L(S_k)\|\hat{\Psi}_k^{-1}\|_{op} \leq L(S_k)\|\Psi_k^{-1} - \hat{\Psi}_k^{-1}\|_{op} + L(S_k)\|\hat{\Psi}_k^{-1}\|_{op} \leq L(S_k)\|\Psi_k^{-1} - \hat{\Psi}_k^{-1}\|_{op} + (c/2)(N/ \log(N)),$$

we get for this index k that $L(S_k)\|\Psi_k^{-1} - \hat{\Psi}_k^{-1}\|_{op} \geq cN/(2 \log(N))$.

Let $\Delta_m = \{L(S_m)\|\hat{\Psi}_m^{-1} - \Psi_m^{-1}\|_{op} > (c/2)N/ \log(N)\}$, we have, using the definition of $\mathcal{M}_{N,1}$,

$$P(\mathcal{M}_{N,1} \notin \hat{\mathcal{M}}_{N,1}) \leq \sum_{m \in \mathcal{M}_{N,1}} P(\Delta_m) \leq \sum_{m \in \mathcal{M}_{N,1}} P(\|\hat{\Psi}_m^{-1} - \Psi_m^{-1}\|_{op} > \|\Psi_m^{-1}\|_{op}).$$

By formula (50),

$$P(\|\hat{\Psi}_m^{-1} - \Psi_m^{-1}\|_{op} > \|\Psi_m^{-1}\|_{op} \leq \|\Omega_{m,1}^c\| \leq P(\Omega_{m,1}^c) \leq N^{-8}.$$

This implies $P(\mathcal{M}_{N,1} \notin \hat{\mathcal{M}}_{N,1}) \leq N^{-7}$. □

References

Assume that instead of observing continuous paths, we have at hand only discrete observations \((X(p\Delta))_{1 \leq p \leq n}\) with \(n\Delta = T\) and \(\Delta\) small. Results of Section 2 still hold, and in particular Lemma 1 and Propositions 3 and 4.
Moreover, looking at the formula in Proposition 3, we have for any \(s, t \in [0, T] \), that
\[
X(t) - X(s) = \left[\exp \left(\int_{0}^{t} \alpha(u)du \right) \exp \left(\int_{0}^{s} \alpha(u)du \right) \right] X(0) + \frac{1}{\sqrt{N}} \left[g_N(t) - g_N(s) \right]
\]
with
\[
g_N(t) = \exp \left(\int_{0}^{t} \alpha(u)du \right) \int_{0}^{t} e^{-\int_{0}^{u} \alpha(u)du} dB_{N,1}(s).
\]
This implies that \(\forall s, t \in [0, T], \forall p \geq 1 \)
\[
\mathbb{E} \left[|X(t) - X(s)|^{2p} \right] \leq C(p, T) \left[|t - s|^{2p} + \frac{|t - s|^p}{N^p} \right]. \tag{54}
\]

Let us consider only the case of the estimation of function \(\alpha \). The reference norms of the problem are
\[
\|h_1\|_{X,\Delta}^2 = \sum_{p=1}^{n} h_1^2(p\Delta)X^2(p\Delta), \quad \|h_1\|_{x,\Delta}^2 = \sum_{p=1}^{n} h_1^2(p\Delta)x^2(p\Delta),
\]
and fulfill
\[
\mathbb{E}[\|h_1\|_{X,\Delta}^2] = \|h_1\|_{x,\Delta}^2 + \frac{\Delta}{N} \sum_{p=1}^{n} h_1^2(p\Delta)\lambda(p\Delta)x^2(p\Delta).
\]
The discrete contrast is defined, for \(h_1 \in S_m \) by
\[
U_{N,1}^\Delta(h_1) = \|h_1\|_{X,\Delta}^2 - 2 \sum_{p=1}^{n-1} h_1(p\Delta)X(p\Delta)[X((p + 1)\Delta) - X(p\Delta)].
\]
The estimator becomes
\[
\hat{\alpha}_{m,\Delta} = \arg \min_{h_1 \in S_m} U_{N,\Delta}(h_1).
\]
The vector of coefficients of \(\hat{\alpha}_{m,\Delta} \), are denoted by \(\hat{\alpha}_{(m),\Delta} \) and are such that
\[
\hat{\alpha}_{(m),\Delta} = \hat{\Psi}^{-1}_{m,\Delta} \hat{Z}_{m,\Delta},
\]
with
\[
\hat{\Psi}_{m,\Delta} = \left(\Delta \sum_{p=1}^{n} \varphi_{j}(p\Delta)\varphi_{k}(p\Delta)X^2(p\Delta) \right)_{0 \leq j,k \leq m-1},
\]
and
\[
\hat{Z}_{m,\Delta} = \left(\sum_{p=1}^{n} \varphi_{j}(p\Delta)X(p\Delta)[X((p + 1)\Delta) - X(p\Delta)] \right)_{0 \leq j \leq m-1}.
\]
Clearly, the stability condition
\[
L(S_m) \left(\|\hat{\Psi}^{-1}_{m,\Delta}\|_{op} \vee 1 \right) \leq \frac{c^*N}{2\log(N)} \tag{55}
\]
leads to the truncated estimator
\[
\tilde{\alpha}_{m,\Delta} = \hat{\alpha}_{m,\Delta} 1_{\hat{\lambda}_{m,\Delta}}, \quad \tilde{\lambda}_{m,\Delta} = \left\{ L(S_m) \left(\|\hat{\Psi}^{-1}_{m,\Delta}\|_{op} \vee 1 \right) \leq \frac{c^*N}{\log(N)} \right\}.
\]
The following extension of e.g. Inequality (18) of Proposition 8 holds.
Proposition 12. Under [H1], [H2] and \(\alpha \) with continuous bounded derivative on \([0, T]\), for \(m \) satisfying condition (55), and \(\Delta \leq 1/N \)
\[
E \left[\|\tilde{\alpha}_{m,\Delta} - \alpha\|^2_{X,\Delta} \right] \leq \left(1 + \frac{\lambda(T)}{N} \right) \left(\inf_{h \in S_m} \|h - \alpha\|^2_{X,\Delta} + 4 \frac{m}{n} \right) + \frac{c(T)}{N}. \tag{56}
\]

The discrete norms may be replaced by integral ones, at possible price of additional assumptions.

Sketch of proof of Proposition 12. Most decompositions, linear algebra and several computations remain valid with quantities indexed by \(\Delta \). The main change is w.r.t. the decomposition of \(\tilde{Z}_{m,\Delta} = (\langle \alpha, \varphi_j \rangle X,\Delta) \) + \(\mathbb{V}_{m,\Delta} + \mathbb{R}_{m,\Delta}, \) \(\mathbb{R}_{m,\Delta} = (R_{N,\Delta}(\varphi_j))_{j} \),
\[
[\mathbb{V}_{m,\Delta}]_j = \nu_{N,\Delta}(\varphi_j)_j
\]
with
\[
\nu_{N,\Delta}(\varphi_j) = \frac{1}{\sqrt{N}} \sum_{p=1}^{n} \varphi_j(p\Delta)X(p\Delta)(B_{N,1}((p+1)\Delta) - B_{N,1}(p\Delta))
\]
and
\[
R_{N,\Delta}(\varphi_j) = \sum_{p=1}^{n} \left[\int_{p\Delta}^{(p+1)\Delta} [\alpha(u)X(u) - \alpha(p\Delta)X(p\Delta)]du \right] \varphi_j(p\Delta)X(p\Delta).
\]

Note that we still have
\[
E(\mathbb{V}_{m,\Delta} \mathbb{V}_{m,\Delta}^*) = \frac{1}{N} E[\Psi_{m,\Delta}] = \frac{1}{N} (\Psi_{m,\Delta} + \frac{1}{N} C_{m,\Delta}),
\]
and \([C_{m,\Delta}]_{j,k} = \Delta \sum_{p=1}^{n} \varphi_j(p\Delta)\varphi_k(p\Delta)x^2(p\Delta)\lambda(p\Delta) \).

The additional terms in the bound will come from the study of \(T_{1,\Delta} = \|\tilde{\alpha}_{m,\Delta} - \alpha\|^2_{X,\Delta} \mathbb{1}_{\tilde{\alpha}_{m,\Delta} \cap O_{N,1}} \).

Then inserting \(\pi_{(m,\Delta)}^{X,\Delta} \) the orthogonal projection of \(\alpha \) w.r.t. the empirical discrete scalar product, we get
\[
\|\tilde{\alpha}_{m,\Delta} - \alpha\|^2_{X,\Delta} = \|\tilde{\alpha}_{m,\Delta} - \pi_{(m,\Delta)}^{X,\Delta} \alpha\|^2_{X,\Delta} + \|\pi_{(m,\Delta)}^{X,\Delta} \alpha - \alpha\|^2_{X,\Delta}
\]
\[
= \|\tilde{\alpha}_{m,\Delta} - \pi_{(m,\Delta)}^{X,\Delta} \alpha\|^2_{X,\Delta} + \inf_{h \in S_m} \|\alpha - h\|^2_{X,\Delta}.
\]

As \(\pi_{(m,\Delta)}^{X,\Delta} \alpha = \sum_{j=0}^{m-1} a_j,\Delta \varphi_j \) where \(a(m,\Delta) = \Psi_{m,\Delta}^{-1}(\langle \varphi_j, \alpha \rangle X,\Delta)_{0 \leq j \leq m-1}, \) we get \(\tilde{\alpha}_{(m,\Delta)} - a(m,\Delta) = \Psi_{m,\Delta}^{-1}(\mathbb{V}_{m,\Delta} + (R_{m,\Delta}(\varphi_j))_{j}). \) We compute
\[
\|\tilde{\alpha}_{m,\Delta} - \pi_{(m,\Delta)}^{X,\Delta} \alpha\|^2_{X,\Delta} \leq 2 \psi_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{V}_{m,\Delta} + \psi_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{R}_{m,\Delta}
\]
and
\[
\|\tilde{\alpha}_{m,\Delta} - \pi_{(m,\Delta)}^{X,\Delta} \alpha\|^2_{X,\Delta} \leq 4 \psi_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{V}_{m,\Delta} + \psi_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{R}_{m,\Delta}.
\]

Now
\[
E(\mathbb{V}_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{V}_{m,\Delta}^*) = \frac{m}{N} + \frac{1}{N^2} \text{Tr}(\Psi_{m,\Delta}^{-1} C_{m,\Delta})
\]
\[
\leq \frac{m}{N} + \frac{m\lambda(T)}{N^2}
\]
On the other hand, for \(\alpha' \) bounded and using (54), we get
\[
E(\mathbb{R}_{m,\Delta} \Psi_{m,\Delta}^{-1} \mathbb{R}_{m,\Delta}^* \mathbb{1}_{\cap \tilde{\alpha}_{m,\Delta}}) \leq L(S_m) \Psi_{m,\Delta}^{-1} \|\alpha'\|_{\text{op}} T^2 \Delta (\Delta + \frac{1}{N}).
\]
Using that $L(S_m)\|\Psi^{-1}_{m,\Delta}\|_{\text{op}} \leq cN/\log(N)$, we obtain a term of order $O(1/N)$ for $\Delta \leq 1/N$.

$$E(T_{1,\Delta}) \leq \left(1 + \frac{\lambda(T)}{N}\right) \left(\inf_{h \in S_m} \|\alpha - h\|_{x,\Delta}^2 + \frac{m}{N}\right) + \frac{c(T)}{N}. $$

The other elements of the proof can also be extended and explain Inequality (56). \square