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ABSTRACT

Alzheimer’s Disease is the most common cause of dementia. Accurate diagnosis and prognosis
of this disease are essential to design an appropriate treatment plan, increasing the life expectancy
of the patient. Intense research has been conducted on the use of machine learning to identify
Alzheimer’s Disease from neuroimaging data, such as structural magnetic resonance imaging.
In recent years, advances of deep learning in computer vision suggest a new research direction
for this problem. Current deep learning-based approaches in this field, however, have a number
of drawbacks, including the interpretability of model decisions, a lack of generalizability
information and a lower performance compared to traditional machine learning techniques. In
this paper, we design a two-stage framework to overcome these limitations. In the first stage,
an ensemble of 125 U-Nets is used to grade the input image, producing a 3D map that reflects
the disease severity at voxel-level. This map can help to localize abnormal brain areas caused
by the disease. In the second stage, we model a graph per individual using the generated
grading map and other information about the subject. We propose to use a graph convolutional
neural network classifier for the final classification. As a result, our framework demonstrates
comparative performance to the state-of-the-art methods in different datasets for both diagnosis
and prognosis. We also demonstrate that the use of a large ensemble of U-Nets offers a better
generalization capacity for our framework.

1. Introduction
1.1. Context

Alzheimer’s Disease (AD) is a common neurodegenerative disease characterized by the progressive impairment
of cognitive functions. This pathology is the most common type of dementia and a major cause of mortality in people
over 65 years old [1]. Memory loss is the first symptom of AD, and it gets worse over time. As the disease progresses,
AD patients require help even with basic activities, making a significant impact on their daily lives as well as their
family. In 2006, there were 26.6 million AD patients worldwide [2] which increased to 46.8 million in 2015. Moreover,
this number is expected to reach 131.5 million in 2050 [3]. As a result, the costs of caring for Alzheimer’s patients
are rapidly increasing. Furthermore, more treatments and services are required over time, continuously driving up
those costs. Consequently, early and accurate detection of Alzheimer’s Disease is critical for the development of new
therapies, slowing disease progression, and reducing associated costs.

The prodromal stage of AD is Mild Cognitive Impairment (MCI) [4]. People may experience minor changes in
cognitive abilities at this stage but there is still no impact on their daily lives [5]. Statistically, 10 – 17% of people
with MCI will progress to AD over a few years while other MCI patients will remain stable [6]. The first group refers
to progressive MCI (pMCI) and the second one refers to stable MCI (sMCI). Besides the need of distinguishing AD
patients from cognitively normal people (CN) (i.e., AD diagnosis), identifying pMCI patients from sMCI patients
(i.e., AD prognosis) is even more crucial to apply appropriate therapies and slow down the transition fromMCI to AD.
Therefore, a fast and accurate tool for both AD diagnosis and prognosis is expected to help clinician to take care of the
patient as soon as possible.

Brain atrophy is an important biomarker of Alzheimer’s disease. Many studies state that this morphological change
may occur before the first cognitive symptoms of AD [7, 8, 9, 10]. Those anatomical changes can be identified with
the help of structural magnetic resonance imaging (sMRI) [11]. Recently, with the advances of convolutional neural
networks (CNN), a large number of methods have been proposed for automatic AD diagnosis and prognosis using
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sMRI [12, 13, 14]. Indeed, over the last decade, Deep Learning (DL) has demonstrated breakthrough performance
in natural image classification. Unlike traditional machine learning algorithms, deep learning allows to automatically
extract discriminative features from the input without prior knowledge. It has also received a lot of attention in medical
imaging analysis, where it can help clinicians to follow disease progression. However, the large size of 3D sMRI and
the limited GPU memory has required to adapt DL methods to medical imaging. These methods can be categorized
into: 2D slice-based methods, 3D subject-based methods, 3D region-of-interest (ROI) methods and 3D patch-based
methods.

1.2. Related works
2D slice-based methods: The concept behind slice-based approaches is that a minimal number of 2D slices may

accurately depict the disease status. Some methods employ their own strategy to extract the most appropriate 2D
slices from 3D sMRI, while others use standard image projections (i.e., coronal, sagittal, axial plane) [14]. Valliani
et al. considered only the median axial slice of sMRI and used ResNet for AD diagnosis [15]. Pan et al. trained 123
classifiers for 123 2D slice positions of three projection planes for both AD diagnosis and prognosis [16]. The 15models
with the highest accuracy on validation set were chosen to form the final ensemble model. Qiu et al. manually chose
three slice positions to analyze well-known regions associated with Alzheimer’s disease: lateral ventricles, inferior
temporal, and middle temporal cortices [17]. Three CNN models (one per region) were then trained for the problem of
classification CN vs. MCI. The final result was based on the majority vote. Entropy-based sorting is another method to
select slice positions. It is based on the hypothesis that a slice with higher intensity variation is more informative. This
strategy was used in [18, 19] to select the most 32 informative slices for various AD classification tasks. All of these
slice-based methods have the advantage of being based on well-known CNNs architectures dedicated to natural image
classification. However, a comparative study showed that 2D slice-based methods were less efficient than 3D methods
[12]. This study explained that spatial information is not fully exploited by 2D slice-based methods which limits their
performance.

3D subject-based methods: Recently, more methods using the whole 3D MRI have been proposed for AD
classification (3D subject-based methods). In general, these models have fewer layers than 2D slice-based approaches
due to the limited computing capacity. Backström et al. used a 3D CNN with 8 layers for AD diagnosis [20]. Yee et
al. used dilated convolution to increase the model depth to 11 layers [21]. In doing so, they improved the receptive
field while keeping a reasonable number of parameters. VGG and ResNet are usually employed by many authors
for classification tasks in natural images. In [22], the authors implemented 3D version of these two architectures
and showed comparable performance of both models for different AD classification tasks. Modern architecture like
inception module was also proposed in [23]. Li et al. proposed a multi-model for AD diagnosis [24]. As each model had
a different receptive field, the ensemblemodel was expected to be able to capture both global and local features. Overall,
3D subject-based methods have the advantage of preserving spatial information. However, since the 3D architectures
are shallower, with current memory limitations these models do not yet offer optimal performance.

3D regions-of-interest (ROI)methods:With a limited computing capacity, reducing the input dimension is a good
way to increase the model complexity. Many methods focused on particular parts of the brain known to be related to
AD. Only one or a few small 3D cubic sub-volumes located at specific brain structures are used as input. Consequently,
deeper models can be used and more complex patterns can be captured. The hippocampal region is a ROI well-known
to be affected by AD [25]. Huang et al. cropped a region centered at the hippocampi from sMRI. They used a VGG-like
architecture for classification [26]. Cui et al. used two cubic sub-volumes surrounding the left and right hippocampus
to exploit also their adjacent regions for accurate AD classification [27]. They suggested that these areas, including the
parahippocampus and amygdala, may be involved in AD. The main drawback of this type of method is that they only
use the information around a priori defined anatomical regions. In contrast, alterations caused by AD can affect other
brain areas [28]. Therefore, relevant information outside of the selected ROIs is not used, limiting model performance.

3D patch-based methods: Another way to reduce the input dimension is to use 3D patch-based methods. An
MRI is simply divided into multiple smaller patches, all of them are then used for training. Cheng et al. extracted 27
overlapping patches that were uniformly distributed across the whole brain. They then trained 27models (one per patch)
and an ensemble model aggregating patch-level results to make the final decision [29]. Li et al. divided the original
MRI into 27 non-overlapping patches [30]. These patches were grouped into different clusters and one CNN was
trained per cluster for the AD diagnosis problem. The final decision was made by ensembling these models. In several
studies, Liu et al. used a landmark detection algorithm to locate the most informative patches in sMRI [31, 32, 33].
In [31], the authors trained 27 different models (one per patch) for the classification problem. The final decision was
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obtained bymajority voting strategy. In [32], they designed an end-to-end CNNmodel with multiple branches, each one
analyzing one patch. The learned features were concatenated and forwarded through a final CNN for AD classification.
In [33], they constructed multi-channels input from extracted patches and used a simple CNN for AD classification.
Lian et al. performed a voxelwise anatomical correspondence across all available images [34]. They then selected 120
voxel locations and used them as centers for extracting 120 patches. They built a single end-to-end CNN model in
which feature representations learned from patch-level was concatenated at regional-level, feature representation at
regional-level was then concatenated to provide the decision at subject-level. From a literature review, it appears that a
single model is not enough to capture the diverse patterns of all patch locations [12]. Indeed, methods using multiple
models [29, 30, 31] offer better AD classification accuracy. Compared to previously detailed strategies, 3D patch-based
methods enable to fully exploit the 3D information, to drastically reduce memory requirement and to analyze the entire
MRI.

1.3. Current limitations of DL in AD classification
Although many efforts were made to adapt deep learning methods to AD classification, existing methods still

present several limitations. Indeed, current approaches have limited prognosis performance and usually suffer from a
lack of generalization and interpretability.

Limited Performance: At the time of writing this paper, CNN based-models seemed not to perform better than
conventional machine learning methods (e.g., support vector machine SVM). Bron et al. showed similar performance
between CNN and SVM models while carefully following the state-of-the-art CNN designs [10]. In another study,
Wen et al. [12] even found that their linear SVM model was at least as good as the best CNN model for AD diagnosis
and better for AD prognosis. They both suggested that a more sophisticated DL architecture may help for better
performance.

Limited Generalization: A recent survey showed that about 90% of studies use the same dataset (i.e., ADNI
dataset) to evaluate their model performance which limits our knowledge of CNN performance on other databases
[14]. Moreover, most of the studies mentioned above used the same dataset for training and testing. Such validation
framework is known to over-estimate method performance. Indeed, in-domain validation is dangerous as methods
showing high performance on a single dataset might just better capture the particular characteristics of that dataset
and might poorly perform in another dataset [35]. As a consequence, current DL literature offers limited knowledge
about the generalization capability of DL methods on external datasets. This limitation does not only apply to AD
classification application but also to other diseases (e.g., Frontotemporal Dementia [36], Parkinson’s disease [37], etc.).
A general cause leading to a low generalization capacity is overfitting on the training set [12]. Especially, this often
occurs when the size of the training domain is too small. To alleviate this problem, we applied several data augmentation
techniques during the training process (see Section 3.5), making the model more robust to heterogeneity. Furthermore,
our use of a large number of models (see Section 3.3) that can be seen as an ensemble model allows the reduction of
generalization error [38].

Limited Interpretation and Explanation: Besides the need for an accurate and generalizable AD classification
model, understanding the model decision is also vital. In this study, we consider two terminologies: interpretability
and explainability as in [39]. Interpretability refers to the passive characteristic of a model that can be directly
understood by humans. By contrast, explainability refers to external procedures applied to a model to discover its
internal functionalities. The majority of current deep learning methods use an external explainable method (e.g., Class
Activation Mapping, Gradient Class Activation Mapping, Guided Backpropagation) to study their model decision.
However, some explainable methods (i.e., Guided Backpropagation and Guided Gradient Class Activation Mapping)
produce visually and quantitatively similar explanations between a model randomly-initialized and a trained model.
This makes analysis based on the produced explanations suspicious [40]. In [21], two explainable methods were applied
to the same model but different results were obtained. Moreover, in [10], the obtained saliency map showed regions
known to be little affected by AD. Indeed, each explainable method works differently, so the discovery may not be
unique or little informative. For an interpretable model instead, humans can directly infer its characteristic without
losing information due to additional actions. Thus, this kind of method seems to be more valuable to understand
the model decision. However, to the best of our knowledge, there is currently few interpretable methods for AD
classification, with our definition [41, 42].
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1.4. Contributions
In this paper, to address these current major limitations of DL methods, we propose a novel interpretable,

generalizable and accurate deep framework for both AD diagnosis and prognosis. This clinical tool is available at
https://volbrain.net.

First, we propose a novel Deep Grading (DG) biomarker to improve the interpretability of deep model outputs.
Inspired by the patch-based grading frameworks [9, 43, 44, 45, 46, 47], this new biomarker can capture CN, AD
patterns from MRI input and provides a grading map with a score between −1 and 1 at each voxel that reflects the
disease severity. This interpretable biomarker may assist clinicians in localizing brain regions affected by AD, allowing
them to make more informed decisions.

Second, we propose to extend the concept of Collective Artificial Intelligence (AI) to AD diagnosis and prognosis.
The collective AI consists of using a large number of communicating neural networks, each of them is specializing
in a unique brain location. The global result is then obtained by fusing the local results. For the brain segmentation
application, it has demonstrated a better generalization capacity against domain shift [48, 49]. In this study, we propose
a robust fusion strategy in the generation of the global deep grading map using validation accuracy. Our experiments
show an improvement of model performance using this strategy. Moreover, this could also help to emphasize the brain
locations related to AD, making the global deep grading map more reliable.

Finally, we propose to use graph-based modeling to better capture AD signature. Concretely, we propose to use
graph convolutional network (GCN) model for AD classification problems. As a result, this shows state-of-the-art in
performance for both AD diagnosis and prognosis.

This paper is an extension of the conference paper [50], with several application-based contributions: (i) a study of
graph design (i.e., edge connectivity) and the choice of GCN as a classifier to boost the framework performance, (ii)
an analysis of grading map interpretability with respect to the subject’s age and (iii) a study of the consistency of our
grading-based method to domain shift.

2. Materials
2.1. Datasets

The data used in this study, consisting of 2106 subjects, were obtained from multiple cohorts: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [51], the OpenAccess Series of Imaging Studies (OASIS) [52], the Australian
Imaging, Biomarkers and Lifestyle (AIBL) [53] and the Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD) [54]. We used the baseline T1-weighted MRI available in each of these studies. Each dataset contains AD
patients and CN subjects. ADNI1 and AIBL datasets also include pMCI and sMCI patients. As in [12], patients were
considered as pMCI if they were diagnosed asMCI at the baseline and progressed to ADwithin 36months. By contrast,
patients were considered as sMCI if they were diagnosed as MCI at the baseline and all of sessions in the following
36 months. The group lists were obtained using ClinicaDL 1 [12] and thus the selection criteria is similar. Table 1
summarizes the number of participants and their age distribution for each dataset used in this study. T-tests showed
no statistical differences in terms of age between two groups of the same dataset. During our experiments, AD and
CN subjects from ADNI1 were used for training and all the other subjects as testing set. To minimize possible bias
learned through training, we selected the same number of AD/CN subjects fromADNI1 for training without significant
differences between the two age distributions (pvalue = 0.27). The evaluation consisted of two different tasks: Diagnosis
(main task) and Prognosis (unknown task).

2.2. Preprocessing
All the T1w MRI were preprocessed using the following steps: (1) denoising [55], (2) inhomogeneity correction

[56], (3) affine registration into MNI space (181 × 217 × 181 voxels at 1mm × 1mm × 1mm) [57], (4) intensity
standardization [58] and (5) intracranial cavity (ICC) extraction [59]. After preprocessing, we used AssemblyNet 2

[48] to segment 133 brain structures (see Figure 1). In this study, brain structure segmentation is used to determine
the structure volumes (i.e., normalized volume in % of ICC) and aggregate information to build the structured-based
grading map (see Section 3.2 and Figure 1).

1https://github.com/aramis-lab/clinicadl
2https://github.com/volBrain/AssemblyNet
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Table 1
Summary of participants used in our study. Data used for training are in bold

Dataset CN AD sMCI pMCI

ADNI1
No. subjects 170 170 129 171

Age (Mean ± Std) 75.9 ± 5.2 75.1 ± 7.2 74.6 ± 7.5 74.5 ± 7.0
pvalue of t-test 0.27 0.91

ADNI2
No. subjects 149 181

Age (Mean ± Std) 74.1 ± 6.6 74.0 ± 7.2
pvalue of t-test 0.09

AIBL
No. subjects 232 47 12 30

Age (Mean ± Std) 72.3 ± 6.7 72.7 ± 8.6 72.5 ± 6.2 73.9 ± 8.0
pvalue of t-test 0.72 0.67

OASIS
No. subjects 658 98

Age (Mean ± Std) 68.6 ± 8.9 76.8 ± 8.4
pvalue of t-test 1.4e-16

MIRIAD
No. subjects 23 46

Age (Mean ± Std) 69.6 ± 7.0 69.3 ± 7.0
pvalue of t-test 0.86

3. Method
3.1. Method overview

An overview of our proposed pipeline is shown in Figure 1. Our pipeline is designed based on different blocks,
each of which serves a distinct purpose. First, the role of the collective AI block is to simulate a big model that
cannot fit into a GPU by a large ensemble of smaller models. This strategy may help to capture more disease-related
patterns than a single model. Indeed, it shows an improvement in generalization (see Section 4.1.1) compared to other
techniques. Second, the deep grading map provides a quantitative and interpretable assessment of the progression of
AD. This 3D map can show AD-related regions, providing insight into the model prediction and helping clinicians in
making reliable decisions. We use a segmentation here for a better visualization of the grading map and to reduce the
data dimensionality in a meaningful way for experts. Finally, we use GCN to capture the relationship between brain
structures. We demonstrate that GCN is well-adapted with grading features for AD detection (see Section 4.1.3).

Figure 1: Overview of our processing pipeline. The MRI image, its segmentation and the deep grading map illustrated here
are from an AD subject.
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Concretely, a preprocessed T1-weighted MRI with the size of 181 × 217 × 181 voxels was downsampled to
91×109×91 voxels to reduce the computational cost. The downsampled image was divided into k×k×k (i.e., k = 5)
overlapping patches of the same size (i.e., 32 × 48 × 32 voxels). We used m = k × k × k (i.e., m = 125) 3D U-Nets to
grade these patches. The 125 grading patches were fused to reconstruct a global grading map of 91 × 109 × 91 voxels.
This map was upscaled using interpolation to have the same size as the original input. After that, the segmentation of
the original input (obtained with AssemblyNet [48]) was used to compute the average grading score for each structure.
In this way, we obtained a vector of s elements where s is the number of segmented structures (i.e., s = 133). Finally,
we created a fully connected graph with s nodes presenting the characteristic of s structures (e.g., structure grading,
structure volume, subject’s age) and used a graph convolutional neural network for the classification.

3.2. Deep grading
In AD diagnosis and prognosis, most of deep learning models only use CNN as a binary classification tool. In this

study, we use CNN to produce 3D interpretable maps indicating the structural alterations caused by AD.
To capture these anatomical alterations, we extend the idea of several patch-based grading frameworks [43, 44,

46, 60]. The main objective is to provide a 3D grading map with a score between -1 and 1 at each voxel reflecting the
disease severity. In [43], the authors proposed to grade the hippocampus. For each voxel of this structure, they defined
a surrounding patch and used a locally adaptive search algorithm to find the corresponding patch in all of training
images. Similarity scores were then computed between the testing patch and training patches. These scores were used
to estimate the grade (i.e., degree of similarity to one group or another) for the considered voxel. Then, an average
grading value was computed for the structure. The subject was classified as AD or CN depending on the sign of the
grading value. They found that grading feature is more powerful than the measure of structure volume in distinguishing
AD and CN subjects. Tong et al. used a sparse coding process to select a small number of discriminative voxels over
the whole brain [44]. They showed that grading feature was efficient for AD prognosis even when training with AD/CN
subjects. Contrary to these previous methods based on handcrafted feature extraction, here we propose a novel deep
grading framework based on a large ensemble of 3D U-Nets (i.e., 125 U-Nets).

Concretely, each of our 125 U-Nets (with the architecture similar to [48]) takes a 3D sMRI patch (e.g., 32×48×32
voxels in the MNI space) and outputs a grading map with value in range [−1, 1] for each voxel. Voxels with a higher
value are considered closer to AD, while voxels with a lower value are considered closer to CN. For the ground-truth
used during training, we assign the value 1 (resp. −1) to all voxels inside a patch extracted from an AD patient (resp.
CN subject). All voxels outside of ICC are set to 0.

Once trained, the deep models are used to grade patches. These local outputs are gathered to reconstruct the final
grading map (see Section 3.3). Using the structure segmentation, we represent each brain structure grading by its
average grading score (see Figure 1). This anatomically driven aggregation allows better and meaningful visualization
of the disease progression. In this way, during the classification step (see Section 3.4), each subject is encoded by an
s-dimensional vector where s is the number of brain structures (i.e., s = 133).

3.3. Collective AI
In medical analysis, high generalization capacity across domains and unknown tasks presents potential clinical

value as real data is diverse and may come from any source. As recently shown in [10, 12], current deep learning
methods for AD classification can well generalize to similar datasets but poorly perform on datasets having differences
such as MRI protocols, age ranges, country of origin or inclusion criteria. In our testing datasets, different age range
and MRI protocol were present in OASIS, different country of origin was present in AIBL and different inclusion
criteria was present in MIRIAD. It should be noted that for OASIS, MCI and AD patients are mixed, so we used the
ADNI inclusion criteria to separate AD patients and be able to assess the diagnosis of AD.

In this work, we propose to use an innovative collective artificial intelligence strategy to improve the generalization
across domains and to unseen tasks. As recently shown for segmentation problems [48, 49], the use of a large number
of compact networks capable of communicating offers a better capacity for generalization. For brain segmentation,
this strategy showed strong generalization to previously unexplored domains [48] (i.e., trained on healthy adults and
tested on children and AD patients). For the problem of multiple sclerosis lesion segmentation, this strategy also
demonstrated the consistency across different natures of training domains [49]. There are many other advantages of
using the collective AI strategy. First, the use of a large number of compact networks is equivalent to a big neural
network with more filters but the computation capacity required remains affordable. It should be noted that the same
model taking the whole image at full resolution cannot be trained due to the limited memory of current GPUs. Second,
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the voting system based on a large number of specialized and diversified models helps the final grading decision to be
more robust against domain shift and different tasks.

Concretely, after preprocessing and downsampling steps, we obtainm = k×k×k patches P1, . . . , Pm (i.e.,m = 125)
with about 50% overlapping volume. During training, for each patch location, a specialized model is trained. Therefore,
we train m 3D U-Nets to cover the whole image (see Figure 1). Moreover, each U-Net is initialized using transfer
learning from its nearest neighbor U-Net, except the first one trained from scratch as proposed in [48]. As adjacent
patches share common patterns, this communication allows grading models to share useful knowledge between them.

To obtain the final grading map, we propose a robust fusion strategy based on an average between overlapping
patches, weighted by the accuracy obtained on the validation set. This weighted average for grading score fusion is
computed as follows:

Gi =

∑

xi∈Pj �j ∗ gij
∑

xi∈Pj �j

where Gi is the grading score of the voxel xi in the final grading map, gij is the grading score of the voxel xi in the
local grading patch Pj , and �j is the balanced accuracy on validation of the patch j. This weighted vote enables to give
more weight to the decision of accurate models during the reconstruction.

3.4. Feature classification
Most of current methods globally compared classes (e.g., AD vs. CN) to perform classification. This kind of

approach finds useful information from inter-subject similarities. For Alzheimer’s disease, the anatomical changes may
occur in different brain areas and are different between subjects. These intra-subject variabilities may provide useful
information for accurate AD detection. Consequently, it should be beneficial to combine these two characteristics for
efficient classification. This can be done with the help of graph-based modeling. Indeed, following the idea of [60], we
modeled the intra-subject variabilities using a graph representation to capture the relationships between brain regions.
We defined an undirected graph  = (ℕ,E), where ℕ = n1, . . . , ns is the set of nodes for the s brain structures and
E = s × s is the matrix of edge connections. In our approach, all nodes were connected with each other in a complete
graph, where nodes embed brain features (e.g., our proposedDG feature) and potentially other types of external features.

Indeed, besides the grading map, the volume of structures obtained from the segmentation could be helpful to
distinguish AD patients from CN since AD yields to structure atrophy [44, 60]. In addition, the subject’s age is also an
important factor since anatomical patterns in the brain of young AD patients could be similar to elder CN. Therefore,
the combination of those features is expected to improve our classification performance. In our graph, each node could
embed the structure grading score DG, structure volume V, and subject’s age A. All possible combinations are studied
in Section 4.1.1. Different types of graph edges are compared in Section 4.1.2. Finally, we used a graph convolutional
neural network (GCN) [61] as the way to pass messages between nodes and perform the final decision. A comparison
between different classifiers is provided in Section 4.1.3 to explain our choice of GCN.

3.5. Implementation details
For each of the 125 patch locations, 80% of the training dataset (i.e., ADNI1) was used for training a 3D U-Net and

the remaining 20% for validation. To avoid bias resulting from dataset imbalance, the training/validation sets employed
the same number of AD and CN. As the number of images in ADNI1 dataset was small, the training/validation data was
re-split for each patch location to exploit the maximum information possible. The model was trained with voxel-wise
mean absolute error (MAE) loss and Adam optimizer with a learning rate of 0.001. All voxels equally contribute to the
loss function during training. The training process is stopped after 20 epochs without improvement in validation loss.
We employed several data augmentation and sampling strategies to alleviate the overfitting issue during training. To
train each U-Net, first, the corresponding cropping position of sub-volume was randomly translated by t ∈ {−1, 0, 1}
voxel in 3 dimensions of the image. Second, we sampled a sub-volume X1 (with the label Y1) from AD population,
another sub-volume X2 (with the label Y2) from CN population and applied Mixup technique [62] to create a new
sample: Xnew = �X1 + (1 − �)X2, Ynew = �Y1 + (1 − �)Y2 where � ∼ Beta(0.3, 0.3). This sample was used as the
only input during the training.

Once the DG feature was obtained, we represented each subject by a graph of 133 nodes. Each node represented
a brain structure and embeds its characteristic (e.g., DG, V, A). Our classifier was composed of three layers of GCN
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Table 2
Comparison of different types of features for classification. All the edges are set to 1, the classifier used is GCN. Red: best
result, Blue: second best result. The balanced accuracy (BACC) is used to assess the model performance. The results are
the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects
of the ADNI1 dataset. Value in bold: p of one-sided Wilcoxon test comparing with our baseline (in gray) is lower than
0.05, meaning a significantly superior performance is found compared to the baseline. A comparison using area under curve
(AUC) is provided in annexes.

No. Features

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

1 DGI 88.6 82.3 88.0 96.2 68.2 71.4 88.4 68.2
2 DGCnw 86.4 88.0 89.1 99.3 70.3 73.0 88.5 70.4
3 DGC 87.2 88.5 88.9 99.8 70.6 75.4 89.0 71.0
4 V 67.4 64.0 72.8 70.6 56.1 61.2 69.8 56.5
5 A 50.5 52.7 46.1 42.2 49.8 50.3 46.5 50.0
6 V ,A 63.2 59.8 58.5 54.5 52.9 55.7 57.6 53.0
7 DGC , V 86.3 88.4 88.4 98.7 70.8 75.2 88.3 71.0
8 DGC , A 87.5 92.1 88.8 99.0 73.8 74.5 89.5 73.7
9 DGC , V , A 87.3 91.8 88.2 98.7 73.9 72.7 88.9 73.6

[61] with 32 channels, followed by a global mean average pooling layer and a fully connected layer with an output size
of 1. The model was trained using the binary cross-entropy loss, Adam optimizer with a learning rate of 0.0003. No
data augmentation was applied during training. The training process was stopped after 20 epochs without improvement
in validation loss. During testing, we randomly added noise X ∼  (0, 0.01) to the node features and computed the
average of 3 predictions to get the global decision [63]. Experiments showed that it helps our GCN to be more stable.
For training and evaluating steps, we used a NVIDIA TITAN X with 12GB of memory. The total training time for
m = 125 U-Nets and the GCN model is about 23 hours. The total inference time of our method is about 1.63 seconds
per preprocessed image.

4. Experimental results
4.1. Performance study

In this section, the 125 CNN grading models and the classifier were trained using AD and CN subjects of the
ADNI1 dataset. Then, we assessed their generalization capacity to domain shift using AD and CN subjects from
ADNI2, AIBL, OASIS and MIRIAD. The generalization capacity for unseen tasks was studied using pMCI, sMCI
subjects (AD prognosis) from ADNI1 (same domain) and AIBL (out of domain). Due to the imbalanced nature of
testing datasets, we used the balanced accuracy (BACC) and area under receiver operating characteristic curve (AUC)
to measure the performance of different classifiers. The global BACC/AUC for diagnosis and prognosis was measured
with all available testing images for each task. Each experiment was repeated ten times (to reduce bias related to
random nature of DL training) and the average results was provided as final results. All comparisons were made using
the Wilcoxon test by comparing the ten BACC/AUC values obtained over the 10 repetitions as recommended in [64].
The one-sided test was applied to confirm a superior performance. A confidence level of 5% is used so that pvalue < 0.05
means the considered result is significantly better than a chosen baseline.

4.1.1. Features for classification
In this part, we study the different feature types used as input of the final classifier. The edges connecting the

graph nodes are set to 1 in this comparison. The DG feature is denoted as DGC (resp. DGI ) when obtained with the
collective (resp. individual) AI strategy. The individual AI strategy refers to the use of a single U-Net to learn patterns
from all patches of the input image. We also denoteDGCnw for the no-weighted version ofDGC . The results of BACC
performance are presented in Table 2. The result of AUC are in annexes (Table 7).
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Comparison of Grading vs. Volume
As discussed previously, brain atrophy is an important biomarker of Alzheimer’s disease. Many studies used

structure volume for AD classification and achieved encouraging results [65, 66, 67]. So, we compare the proposed
biomarker (grading, exp. 3) and the classical one (volume, exp. 4) to assess the efficiency of our new biomarker. The
additional evaluation using the age feature (exp. 5) was performed to confirm that no age bias was present in the
training/testing partitions.

The efficiency ofDGC (exp. 3) was clearly better than V (exp. 4).DGC outperformed V in global diagnosis, global
prognosis and all of the tests on an individual dataset (all pvalue < 0.05). Thus, the proposed biomarker DGC presents
an important interest for AD classification.

Moreover, we trained a UMAP [68] with AD/CN subjects from ADNI1 and visualized the transformed test set in
2D space (see Figure 2). The transformed data was colored with respect to the diagnosis class. Two types of input were
considered: grade (DGC ) and volume (V). The grading feature was visually better to separate AD and CN subjects
than the volume feature. To confirm this assessment, we applied K-means with 2 clusters (we considered 1 cluster for
CN/sMCI and 1 cluster for AD/pMCI) to this 2D data to assess the separability of the two clusters. The silhouette score
[69] was used to measure this separability. This score ranges from −1 to 1. A higher value means clusters are more
distinguishable. As a result, the silhouette score obtained with DGC was 0.55, better than 0.41 obtained with V.

Figure 2: UMAP visualization of test set.

Comparison of Collective AI features vs. Individual AI features
We aimed at assessing the efficiency of the collective AI strategy. To do this, we compared the efficiency of DGC

and DGI features (exp. 1, 3) (see Table 2). Experimental results showed that DGC (exp. 3) is significantly better than
DGI (exp. 1) for both global diagnosis (pvalue = 0.007) and global prognosis (pvalue = 0.001). Consequently, collective
AI strategy offered a significant improvement for unseen domain (AD diagnosis) and unseen task (AD prognosis). In
terms of generalization, DGC alleviated the drop in performance in AIBL dataset for AD diagnosis.

Efficiency of the weighted fusion strategy in Collective AI features
We validate the efficiency of the weighted fusion strategy in Collective AI by comparing this strategy with its no-

weighted version (exp. 2, 3) (see Table 2). Experimental results showed that DGC (exp. 3) is significantly better than
DGCnw (exp. 2) for global diagnosis (pvalue = 0.019) and similar for global prognosis (pvalue = 0.188). Consequently,
the weighted fusion strategy can improve the model performance in AD diagnosis while keeping a good performance
in AD prognosis.

Combination of grading and additional features
Several works showed that complementary information about the subject could help to improve the performance

of their classifier [44, 45]. In these studies, different cognitive scores were used such as MMSE, CDR-SB, RAVLT,
FAQ, ADAS11, and ADAS13 cognitive tests. However, this information is not always available. Instead, we employed
brain structure volumes and the subject’s age as additional features here.

Four experiments were made using multiple types of features in graph nodes (exp. 6, 7, 8, 9). The best performance
of diagnosis and prognosis was obtained using DGC , A (exp. 8) and it was significantly better than using only DGC
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Table 3
Comparison of different graph edge types. The classifier used is GCN and the input features is DGC and A. Red: best
result, Blue: second best result. The balanced accuracy (BACC) is used to assess the model performance. The results are
the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects
of the ADNI1 dataset. A comparison using area under curve (AUC) is provided in annexes.

Edge

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

Fully-one 87.5 92.1 88.8 99.0 73.8 74.5 89.5 73.7
Correlation 87.5 91.8 88.4 98.6 73.4 74.1 89.2 73.3

Volume difference 87.6 92.4 89.1 99.6 73.9 75.6 89.6 73.9

(exp. 3) for both global scores (all pvalue < 0.05). Overall, using subject’s age in addition to DGC produced the best
results. Consequently, in the rest of the paper, we use DGC and the age feature as input for further analysis.

4.1.2. Comparison of different types of graph edges
In this part, we compare different types of graph edges. In general, when constructing a graph from neuroimage

data, there are different ways to define the connection between nodes [70]. Huang et al. defined it by counting fiber tracts
in Diffusion Tensor Imaging [71]. Li et al. computed this as the pairwise correlations of functional magnetic resonance
imaging time series [72]. With sMRI data, Mahjoub et al. defined the connection between two ROI as the absolute
difference between their averaged cortical attributes [73]. In this study, we propose different edge types as follows:
Fully-one edge (all edges are set to 1), correlation-based edge (the edge connecting each pair of brain structures is
defined as the Pearson’s correlation based on their grading scores), volume difference-based edge (the edge connecting
each pair of brain structures is the absolute difference of their volumes). The results of the comparison are presented
in Table 3. We observe that the edge based on structure volume difference leads to a better classification performance
than other tested types of edge in all datasets and all tasks. Thus, we use the edge based on structure volume difference
in the rest of the paper.

4.1.3. Comparison of different classifiers
In this section, we study different solutions for the graph classification. We compare the use of GCN with

other classifiers such as SVM, multi-layer perceptron, Transformer Graph [74], sample and aggregate graph (SAGE)
[75], residual gated graph (ResGatedGraph) [76], graph attention network (GAT) [77] and topology adaptive graph
(TAG) [78]. Table 4 shows the results of this comparison. We can observe that GCN achieves the best performance
most of the time. Consequently, we chose GCN as a classifier in our framework.

4.1.4. Comparison with state-of-the-art methods
Tables 5 and 6 summarize the current performance in BACC of state-of-the-art methods proposed for AD diagnosis

and prognosis classification that have been validated on external datasets. A comparison of performance in AUC is
provided in annexes (Tables 10 and 11). In this comparison we consider five categories of deep methods: patch-based
strategy based on a single model (Patch-based CNN [12]), patch-based strategy based on multiple models (Landmark-
based CNN [32], Hierarchical FCN [34]), ROI-based strategy based on a single model focused on hippocampus (ROI-
based CNN [12]), subject-based considering the whole image based on a single model (Subject-based CNN [12],
Efficient 3D [21] and AD2A [79]) and a classical voxel-based model using a SVM (Voxel-based SVM [12]). Only
methods evaluated across different datasets were selected here.

Comparison with methods under the same condition
For a fair comparison, we retrained and evaluated four methods whose code is available: Patch-based CNN, ROI-

based CNN, Subject-based CNN and Voxel-based SVM [12] with our training/testing data. The results are reported in
Table 5.
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Table 4
Comparison of different classifiers. For graph-based approaches (i.e., all the approaches except SVM and multi-layer
perceptron), the edge based on structure volume difference is used and the input features is DGC and A. Red: best result,
Blue: second best result. The balanced accuracy (BACC) is used to assess the model performance. The results are the
average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects of
the ADNI1 dataset. A comparison using area under curve (AUC) is provided in annexes.

Classifier

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

SVM 85.7 88.7 87.4 95.6 69.0 69.7 87.6 68.9
Multi-layer perceptron 82.5 87.4 83.4 88.0 66.4 61.7 84.6 65.8

Transformer 87.9 91.3 87.9 98.5 72.8 75.4 89.1 72.9
SAGE 87.2 91.8 88.1 98.3 73.4 73.3 88.9 73.2

ResGatedGraph 84.6 87.6 81.9 92.7 72.5 70.8 84.0 70.3
GAT 87.7 91.6 88.7 98.2 73.4 72.5 89.3 73.1
TAG 87.4 91.3 87.8 97.7 73.3 74.2 88.8 73.2
GCN 87.6 92.4 89.1 99.6 73.9 75.6 89.6 73.9

Table 5
Comparison of our method with state-of-the-art methods with available code that have been retrained on our training
dataset and tested on our dataset. Red: best result, Blue: second best result. The balanced accuracy (BACC) is used
to assess the model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset, the same
training/testing partition is used for evaluation. A comparison using area under curve (AUC) is provided in annexes.

Method
Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

ADNI2
N = 330

AIBL
N = 279

OASIS
N = 756

MIRIAD
N = 69

ADNI1
N = 300

AIBL
N = 32

Patch-based CNN [12] 72.4 63.4 67.5 63.0 62.5 47.5
ROI-based CNN [12] 79.7 74.4 79.0 81.5 65.5 62.5
Subject-based CNN [12] 76.1 81.5 86.0 89.1 64.8 55.8
Voxel-based SVM [12] 83.3 88.2 87.4 93.5 67.2 70.0

Our method 87.6 92.4 89.1 99.6 73.9 75.6

For AD diagnosis (i.e., AD/CN), as ADNI2 and ADNI1 (training set) are very similar, we used the performance
on ADNI2 as a reference to assess the capacity of generalization on other datasets (i.e., AIBL, OASIS, MIRIAD).
Based on that, we observed a major drop in performance in Patch-based CNNmethod for AIBL, OASIS and MIRIAD,
ROI-based CNN method for AIBL (see Table 5). For AD prognosis (i.e., pMCI/sMCI), we also observed a drop in
performance between AIBL and ADNI1 (training domain) in Patch-based CNN method, ROI-based CNN method and
Subject-based CNN method. Overall, our method shows a good generalization capacity against domain shift and to
unseen tasks compared to other methods.Moreover, our method always achieves the best result in terms of performance
for all datasets/tasks and outperforms the traditional method (i.e., Voxel-based SVM) by a large margin.

Literature comparison
We also detail the results of four other methods without available implementation performing evaluation across

different datasets. In this case, we present the results of the original papers in Table 6. Consequently, there are many
different factors between methods: number of subjects in training/testing sets, selection criteria, etc. However, this
could help to get an idea of the performance of current methods in the application of AD diagnosis/prognosis.
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Table 6
Comparison of our method with state-of-the-art methods using published results. Red: best result, Blue: second best result.
The balanced accuracy (BACC) is used to assess the model performance. All the methods are trained on the AD/CN subject
of the ADNI1 dataset. However, there are many different factors: number of subjects in training/testing sets, selection
criteria, etc. A comparison using area under curve (AUC) is provided in annexes.

Method
Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL

Landmark-based CNN [32] 90.8 - - 92.4 - -
Hierarchical FCN [34] 89.5 - - - 69.0 -
AD2A [79] 88.3 87.8 - - - -
Efficient3D [21] - 90.7 91.9 95.7 70.1 65.2

Our method 87.6 92.4 89.1 99.6 73.9 75.6

Overall, our method has most of the time the best or the second best result. Furthermore, it should be noted that
our model is trained using only 340 images (from ADNI1) without any domain adaptation technique but outperforms
Efficient3D (trained on 2843 images) and AD2A (with domain adaptation) in most of datasets/tasks.

4.2. Interpretation of deep grading maps
To highlight the interpretability capabilities offered by our DG feature, we computed the average DG map for each

group: AD, pMCI, sMCI and CN (see Figure 3). First, we could note that the average grading increased between each
stage of the disease. Second, we estimated the top 10 structures with highest absolute value of grading score over all
the testing subjects. Nine of these structures were known to be specifically and early impacted by AD. These structures
were: bilateral hippocampus [80], left amygdala and left inferior lateral ventricle [81], left parahippocampal gyrus [82],
left posterior insula [83], left thalamus [84], left transverse temporal gyrus [85], left ventral diencephalon [86]. These
results showed a high correlation with current physiopathological knowledge on AD [87].

Figure 3: Average grading map per group of subjects.

Typical individual grading maps of each population (i.e., CN, sMCI, pMCI, AD) were selected and are presented
in Figure 4. First, we observed that older people had higher grade than younger people as expected. Second, for the
same age range, the color of grading maps changed progressively depending to the disease severity. Third, CN/AD
populations seemed to be more distinguishable from each other than sMCI/pMCI populations. We observed high
similarity between older sMCI patients (80-90 years old) and younger pMCI patients (60-70 years old). This might
be the reason why the performance of AD prognosis was lower than AD diagnosis and why the use of age improved
the results of AD prognosis. Finally, we observed that the earliest brain alteration started from hippocampus and its
surrounding regions (sMCI at 70-80 years old in Figure 4) and spanned over time to the whole brain (AD at 80-90
years-old in Figure 4). All of these findings demonstrated the potential capacity of deep gradingmaps to assist clinicians
in practice.

HD Nguyen: Preprint submitted to Elsevier Page 12 of 21



Towards better Interpretable and Generalizable AD detection using Collective Artificial Intelligence

Figure 4: Typical grading maps (from individual subjects) for each state of disease with respect to age.

4.3. Consistency study
Thibeau-sutre et al. have recently shown that for the same CNN architecture, different training data or even training

runs can lead to different explanations [88]. They suggested that a good explanation method should not depend on
training data or training initialization. In this study, we analyzed these two aspects for our grading maps (dependency
to data training and model initialization) by performing two experiments.

First, we trained two grading models (each one consisting of 125 U-Nets) on ADNI1 (model 1) and ADNI2 (model
2) datasets. For each model, we then calculated the DGC vector from the grading map for all images in testing set
(excluding ADNI1 and ADNI2). Finally, we measured the cosine similarity of two DGC vectors obtained from each
image. We obtained a median of 0.92 as similarity between two DGC vectors from two models training on different
datasets that demonstrate the good robustness to domain shift of our method.

For the second one, we trained the grading model twice using only ADNI1 as training set (models 1 & 3). Finally,
we obtained a median of 0.95 as similarity between DGC vectors from two retrained models on the same dataset that
demonstrate the good robustness to training initialization of our method.

Figure 5 shows examples of individual grading maps for four considered populations (i.e., CN, sMCI, pMCI, AD).
We can visually see the similarities between grading models trained on different datasets (i.e., models 1 & 2) and
between grading models trained several times on the same dataset (i.e., models 1 & 3). Overall, the three models
identify AD-related areas in a similar way. These experiments show the consistency of Deep Grading maps across
different training runs and different training sets.

5. Discussion
In this paper, we proposed a novel deep grading framework dedicated to Alzheimer’s disease diagnosis and

prognosis. Our framework was designed to overcome three main limitations of current deep learning methods for AD
classification: performance compared to conventional machine learning method (i.e., SVM), generalization to unseen
datasets/tasks and interpretability.
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Figure 5: Consistency of grading maps between retrained grading models (models 1 & 3), and between grading models
trained on different datasets (models 1 & 2).

While many studies found that deep learning and SVM methods had a similar performance for AD classification
problem [10, 12], the authors also suggested that better model design could improve the performance of DL methods.
Indeed, Jo et al. indicate that hybrid methods using CNN features and a conventional classifier showed better accuracy
than pure deep learning methods [89]. In this study, we combined CNN features with a GCN classifier. The use of
a GCN also allows to combine additional demographic information to further improve the model performance. As
a result, our model showed a better performance with a large margin compared to traditional methods (e.g., SVM).
Furthermore, a careful design of edge connectivity in the subject’s graph may also boost the model performance. In
this study, we propose to define the edge connection between two brain structures as the absolute difference of their
volumes. This type of connectivity allows our model to make more accurate decisions. The analysis of this connectivity
is provided in annexes.

This study is one of the few assessing deep model performance on multiple independent datasets (i.e., ADNI2,
AIBL, OASIS, MIRIAD) and unseen tasks (i.e., AD prognosis) [10, 12, 21, 32, 34, 79]. For AD diagnosis, the result on
ADNI2 dataset was 87.6% in BACC which was competitive with the current performance reported in the literature. On
OASIS, we achieved the second place with 89.1% accuracy. On AIBL and MIRIAD, our model outperformed current
state-of-the-art methods with respectively 92.4% and 99.6%. Besides several studies found a drop in performance when
evaluating on independent datasets [10, 12]. This performance drop could come from differences in MRI protocols,
age ranges, country of origin and inclusion criteria. Our results demonstrated the high generalization capacity of our
method against datasets with such differences. Especially, the use of collective AI enabled a better generalization to
unseen tasks (i.e., AD prognosis) than other deep learning methods. Finally, the use of the weighted fusion strategy
could improve even more the model performance (in AD diagnosis).

In terms of interpretability, our framework provides 3D grading maps capable of indicating regions impacted by
AD. Themost important structures highlighted by our gradingmapwere correlated with knowledge about the disease in
the literature. Furthermore, our experiments showed that grading features were more efficient than volume features for
both AD diagnosis and prognosis which confirmed the finding of [43, 9]. When coupling the grading map with a GCN
classifier, it yielded high performance across datasets. Hence, grading maps are not only an interpretable visualization
but provide also discriminative features for AD classification. However, the use of GCN made our framework become
not fully interpretable. The fully-interpretable framework can be done by replacing the final GCN by an SVM classifier
or a simple threshold. Although, this implies a trade-off between interpretability and performance.
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Compared to the explanation maps of explainable methods such as Class Activation Mapping [90] and Layer-
wise relevance propagation [91], our grading map exhibits interesting properties. Indeed, our grading maps provide
quantitative value reflecting the disease severity, while explanation maps give qualitative information about the relative
importance of each feature during the decision-making process. For example, in an explanation map of an AD subject,
we do not know if the non-highlighted regions (structures unused by the models to take their decision) are healthy or
just non-informative (redundant information with other structures, too noisy due to high inter-subject variability, etc.).
Moreover, the explanation maps are generally normalized to the same range of values [0, 1], making the comparison
of two explanation maps only qualitative.

This paper is among a few studies proposing an interpretable model for AD classification problem. Another
approach for an interpretable model is to carefully design the graph neural network classifier and its input. Li et
al. define individual graphs using features extracted from neuroimaging data and a graph neural network with ROI-
aware convolutional layer and an appropriate loss function [72]. Similar to our result, this approach can provide both
salient brain regions at the subject level and the community level. However, similar to explainable methods discussed
above, it cannot provide quantitative information on the disease severity for a given region.

While the performance of our framework across unseen datasets and unknown tasks was quite high, there also
exist some limitations. First, the ground truth used for grading was potentially not optimal due to a lack of consensus
on structures relevant to Alzheimer’s disease. Indeed, there may be some structures that are not impacted by AD and
the ground-truth of these structures should be zero. With our ground-truth annotation, small structures surrounding
another one highly related to AD had a high chance to appear together in all patches. Thus, those structures would
be also predicted as related to AD. Another direction should focus on an unsupervised learning manner to find only
abnormalities caused by AD to improve the interpretability. Second, this study exploited only structural MRI while the
performance could be improved using multi-modal inputs such as PET, functional MRI, diffusion MRI or perfusion
MRI [92]. Better disease patterns are expected to be learned with this kind of input. However, a multi-modal input
implies even larger differences between different datasets. Thus, a new generalization study should be considered to see
if the gain in performance from better disease patterns can overcome the performance drop resulting from differences
between different datasets.

6. Conclusion
In this paper, we addressed three major limitations of CNN-based methods by introducing a novel interpretable,

generalizable and accurate deep grading framework. First, deep grading offers a meaningful visualization of the disease
progression. Second, we proposed a collective artificial intelligence strategy to improve the generalization on datasets
owning differences such as MRI protocols, age ranges, country of origin and inclusion criteria. Finally, we proposed
to use a graph-based modeling to better capture AD signature using both inter-subject similarity and intra-subject
variability. Based on that, our DG method showed state-of-the-art performance in both AD diagnosis and prognosis.
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Annexes
Performance measures using the AUC metric

This section presents the various performance measures of the paper using the AUC metric.

Table 7: Comparison of different types of features for classification. All the edges are set to 1, the classifier used is GCN.
Red: best result, Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess the model performance.
The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the
AD/CN subjects of the ADNI1 dataset. Value in bold: p of one-sided Wilcoxon test comparing with baseline (in gray) is
lower than 0.05, meaning a significantly superior performance is found compared to the baseline.

No. Features

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

1 DGI 97.3 94.8 93.1 99.5 74.8 74.6 95.6 74.3
2 DGCnw 96.8 96.5 95.3 100.0 76.7 77.1 96.2 76.6
3 DGC 96.5 96.4 95.3 100.0 76.6 77.1 96.2 76.6
4 V 71.2 75.7 79.7 78.3 58.1 62.1 76.3 58.7
5 A 54.2 55.1 38.3 48.8 49.9 44.7 44.7 49.5
6 V ,A 68.0 68.5 57.7 64.9 53.6 56.4 60.9 53.8
7 DGC , V 95.8 96.9 94.5 99.9 76.5 77.6 95.7 76.5
8 DGC , A 96.6 97.5 93.3 100.0 77.4 76.5 95.2 77.0
9 DGC , V , A 95.9 97.5 92.8 99.9 77.4 76.9 94.8 77.0

Table 8: Comparison of different graph edge types. The classifier used is GCN and the input features is DGC and A. Red:
best result, Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess the model performance.
The results are the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the
AD/CN subjects of the ADNI1 dataset.

Edge

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

Fully-one 96.6 97.5 93.3 100.0 77.4 76.5 95.2 77.0
Correlation 96.8 97.4 93.0 100.0 77.3 76.9 94.1 76.8

Volume difference 96.8 97.5 93.4 100.0 77.3 76.6 94.4 76.9
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Table 9: Comparison of different classifiers. For graph-based approaches (i.e., all the approaches except SVM and multi-layer
perceptron), the edge based on structure volume difference is used and the input features is DGC and A. Red: best result,
Blue: second best result. The Area Under the ROC Curve (AUC) is used to assess the model performance. The results are
the average accuracy of 10 repetitions and presented in percentage. All the methods were trained on the AD/CN subjects
of the ADNI1 dataset.

Classifier

Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

Global
Diagnosis
(AD/CN)

Global
Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL All All
N = 330 N = 279 N = 756 N = 69 N = 300 N = 32 N = 1434 N = 332

SVM 94.9 95.5 93.8 99.9 76.1 77.1 93.7 76.1
Multi-layer perceptron 90.4 92.8 91.0 99.9 73.0 74.9 89.7 72.8

Transformer 96.4 96.6 93.6 99.9 77.1 75.3 94.6 76.6
SAGE 96.7 97.4 93.0 99.9 77.1 76.0 94.1 76.6

ResGatedGraph 84.6 87.6 81.9 92.7 70.5 71.0 84.0 70.4
GAT 96.6 97.2 92.7 100.0 77.5 76.9 93.6 77.0
TAG 96.6 97.0 92.9 99.9 77.1 76.8 94.0 76.7
GCN 96.8 97.5 93.4 100.0 77.3 76.6 94.4 76.9

Table 10: Comparison of our method with state-of-the-art methods that have been retrained on our training dataset using
the available code and tested on our dataset. Red: best result, Blue: second best result. The Area Under the ROC Curve
(AUC) is used to assess the model performance. All the methods are trained on the AD/CN subject of the ADNI1 dataset,
the same training/testing partition is used for evaluation.

Method
Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

ADNI2
N = 330

AIBL
N = 279

OASIS
N = 756

MIRIAD
N = 69

ADNI1
N = 300

AIBL
N = 32

Patch-based CNN [12] 79.3 86.8 87.8 88.6 65.5 52.5
ROI-based CNN [12] 90.8 90.8 92.7 97.4 69.6 75.0
Subject-based CNN [12] 85.4 90.4 92.4 98.8 70.0 59.6
Voxel-based SVM [12] 93.8 93.6 93.6 99.4 74.3 75.0

Our method 96.6 97.5 93.3 100.0 77.4 76.5

Table 11: Comparison of our method with state-of-the-art methods using published results. Red: best result, Blue: second
best result. The Area Under the ROC Curve (AUC) is used to assess the model performance. All the methods are trained on
the AD/CN subject of the ADNI1 dataset. However, there are many different factors: number of subjects in training/testing
sets, selection criteria, etc.

Method
Diagnosis
(AD/CN)

Prognosis
(p/sMCI)

ADNI2 AIBL OASIS MIRIAD ADNI1 AIBL

Landmark-based CNN [32] 95.9 - - 97.2 - -
Hierarchical FCN [34] 95.1 - - - 78.1 -
AD2A [79] 93.4 92.5 - - - -
Efficient3D [21] - - - - - -

Our method 96.6 97.5 93.3 100.0 77.4 76.5
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Cross-brain regions connectivity analysis
To analyze the cross-brain regions connectivity, we compute two averaged adjacency matrices (i.e., edge weights)
respectively for all AD patients and all CN subjects using the absolute difference of volumes. After that, we compute
the absolute difference of these two matrices (see Figure 6). This results in a matrix of size 133 × 133, we then select
25 highest values (top 0.14% highest values). These values correspond to 25 pairs of structures. Among these pairs
of structures, we observe some structures that have been presented in Section 4.2, such as bilateral hippocampus, left
amygdala, left parahippocampal gyrus and left ventral diencephalon. These structures have been shown to be related
to AD [81, 80, 82, 85]. In AD patients, these structures may present more atrophy volumes than other structures. In
CN people, the atrophy volumes of these structures (due to the normal aging process) may be close to other structures.
Thus, the absolute difference volumes should be a discriminative feature for AD classification. And in our case, using
the absolute difference volumes as the edge weights allows an improvement in performance.

Figure 6: Averaged adjacency matrices of AD population (left) and CN population (right). All the values are normalized
to [0, 1] for visualization.
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